【配套K12】[学习]2018-2019学年九年级数学上册 第二十四章 圆 24.1 圆的有关性质
2018-2019学年人教版数学九年级上册第24章圆单元测试含答案
人教版数学九年级上册《第24章圆》单元测试一.选择题(共10小题,满分30分,每小题3分)1.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B.C.D.2.一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.103.在半径为10cm圆中,两条平行弦分别长为12cm,16cm,则这两条平行弦之间的距离为()A.28cm或4cm B.14cm或2cm C.13cm或4cm D.5cm或13cm4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD 交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5 C.4.5 D.5.56.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000 D.4×1027.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸9.⊙O的半径为10cm,圆心角∠AOB=60°,那么圆心O到弦AB的距离为()A.10cm B.cm C.5cm D.cm10.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°二.填空题(共6小题,满分18分,每小题3分)11.如图,四边形ABCD内接于半圆O,其中点A,D在直径上,点B,C在半圆弧上,AB∥CD,∠B=90°,若AO=3,∠BAD=120°,则BC=.12.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.13.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是.14.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的倍.15.在一个圆中,如果60°的圆心角所对弧长为6πcm,那么这个圆所对的半径为cm.16.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=4,则阴影部分图形的面积为.三.解答题(共8小题,满分72分)17.(8分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?18.(8分)现将一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?19.(8分)如图,在⊙O中,点C是弧AB的中点,过点C分别作半径OA、OB的垂线,交⊙O于E、F两点,垂足分别为M、N,求证:ME=NF.20.(8分)如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.(10分)如图在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=3,求BD的长.22.(8分)如图,已知O为坐标原点,点A的坐标为(2,3),⊙A的半径为1,过A作直线l平行于x轴,点P在l上运动.(1)当点P运动到圆上时,求线段OP的长.(2)当点P的坐标为(4,3)时,试判断直线OP与⊙A的位置关系,并说明理由.23.(10分)已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.(12分)如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC 是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.参考答案一.选择题1.D.2.C.3.B.4.A.5.C.6.D.7.C.8.D.9.C.10.A.二.填空题11.3.12.<r≤3.13.相切.14.243.15.1816..三.解答题17.解:连接BC,AO,∵∠BAC=90°,OB=OC,∴BC是圆0的直径,AO⊥BC,∵圆的直径为1,∴AO=OC=,则AC==m,弧BC的长l==πm,则2πR=π,解得:R=.故该圆锥的底面圆的半径是m.18.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.19.证明:连接OC,∵OA⊥CE,OB⊥CF,∴EM=CM,NF=CN,∠CMO=∠CNO=90°,∵C为的中点,∴∠AOC=∠BOC,在△CNO与△CNO中,∵,∴△CNO≌△CNO,∴CM=CN,∴EM=NF.20.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.21.解:(1)直线BD与⊙O的位置关系是相切.证明:连结OD,DE.∵∠C=90°,∴∠CBD+∠CDB=90°.∵∠A=∠CBD,∴∠A+∠CDB=90°.∵OD=OA,∴∠A=∠ADO.∴∠ADO+∠CDB=90°.∴∠ODB=180°﹣90°=90°.∴OD⊥BD.∵OD为半径,∴BD是⊙O的切线.(2)∵AD:AO=8:5,∴,∴由勾股定理得AD:DE:AE=8:6:10.∵∠C=90°,∠CBD=∠A.∴△BCD∽△ADE.∴DC:BC:BD=DE:AD:AE=6:8:10.∵BC=3,∴BD=22.解:(1)如图,设l与y轴交点为C.当点P运动到圆上时,有P1、P2两个位置,∴;.(2)连接OP,过点A作AM⊥OP,垂足为M.∵P(4,3),∴CP=4,AP=2.在Rt△OCP中.∵∠APM=∠OPC,∠PMA=∠PCO=90°,∴△PAM∽△POC.∴,,∴,∴直线OP与⊙A相离.23.(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.24.解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.。
2018_2019学年九年级数学上册第二十四章圆24.3正多边形和圆知能综合提升新版新人教版2018
24.3正多边形和圆知能演练提升能力提升1.如图,在☉O中,OA=AB,OC⊥AB,则下列结论错误的是()A.弦AB的长等于圆内接正六边形的边长B.弦AC的长等于圆内接正十二边形的边长C.AC = BCD.∠BAC=30°2.一元硬币的直径约为24 mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12 mmB.12 3 mmC.6 mmD.6 3 mm3.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()3 3 2A. B. C. D.8 4 4 8 24.正n边形的中心角与它的一个内角的关系是.5.如图,两个正方形彼此相邻且内接于半圆,若小正方形的面积为16 cm2,则该半圆的半径为cm.6.若一个圆内接正方形的面积为36 cm2,则该圆外切正方形的面积等于cm2.7.请你用等分圆周的方法画出下面的图案.18.如图,已知☉O的内接等腰三角形ABC,AB=AC,弦BD,CE分别平分∠ABC,∠ACB,BE=BC,求证: 五边形AEBCD是正五边形.创新应用★9.如图①,图②,图③,……,图○n,M,N分别是☉O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……,正n边形ABCDE……的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图①中∠MON的度数;(2)图②中∠MON的度数是,图③中∠MON的度数是;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).参考答案2能力提升1.D2.A22 21 2 3 1 2 32 (+ (2 )= (2 )3.D分别求得三角形的三边长为2, 2 ,,满足,故该三角形是直角三角1 12 2形,其面积为2 ×2 × 2 = .84.互补5.4 56.72如图,AB=6 cm,AO=3 2 cm,PD=2PA=2AO=6 2 cm,所以圆外切正方形的面积为72 cm2.7.解先把圆周六等分,连接各等分点以及各等分点和圆心,然后在各个小三角形内作内角平分线,最后涂色即可得到此图案.8.证明在△ABC中,∵AB=AC,∴∠ABC=∠ACB.又BD,CE分别平分∠ABC,∠ACB,∴∠ABD=∠DBC=∠ACE=∠ECB.∴AD = CD = AE = BE.又BE=BC,∴BE = BC,即AD = DC = CB = BE = EA.故点A,E,B,C,D把☉O五等分,即五边形AEBCD是正五边形.创新应用9.解(1)连接OB,OC,∵BM=CN,∠ABO=∠BCO=30°,BO=CO,∴△BMO≌△CNO.∴∠MOB=∠NOC.∵∠BON+∠NOC=120°,3∴∠BON+∠MOB=∠MON=120°.(2)90°72°360°(3)∠MON=.n4。
2018_2019学年九年级数学上册第二十四章圆24.1圆的有关性质24.1.1圆课件新版新人教版
互动课堂理解
圆的相关概念的应用 【例】 如图,已知AB,CD是☉O的两条直径,试判断AD与BC的关 系.
分析判断两条直线的关系,包含位置关系与数量关系两个方面. 由同圆的半径相等可得OA=OB=OC=OD,由此联想到矩形的判定 方法,可得四边形ADBC是矩形,故而易于说明AD与BC相等且平行.
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
互动课堂理解
解:如图,连接AC,BD. 因为AB,CD是☉O的两条直径, 所以OA=OB=OC=OD,AB=CD. 所以四边形ADBC是矩形. 所以AD=BC,AD∥BC. 点拨同圆中的所有半径相等,因此圆中有直径或半径时,就有相 等的线段和等腰三角形出现,这为问题的解决提供必要条件.事实 上,该例也可利用若两个等腰三角形的顶角相等,则它们的底角也 相等的特征来说明.
教育最新K122018-2019学年九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆教案2 (新版)新人教
24.1.1 圆01 教学目标1.了解圆的基本概念,并能准确地表示出来.2.理解并掌握与圆有关的概念:弦、直径、圆弧、等圆、同心圆等.02 预习反馈阅读教材P79~80内容,理解记忆与圆有关的概念,并完成下列问题.1.如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.2.圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.3.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.以点A为圆心,可以画无数个圆;以已知线段AB的长为半径,可以画无数个圆;以点A 为圆心,AB 的长为半径,可以画1个圆.【点拨】 确定圆的两个要素:圆心(定点)和半径(定长).圆心确定圆的位置,半径确定圆的大小.5.到定点O 的距离为5的点的集合是以O 为圆心,5为半径的圆.03 新课讲授例1 (教材P80例1)矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.【思路点拨】 要求证几个点在同一个圆上,即需要证明这几个点到同一个点(即圆心)的距离相等.【解答】 证明:∵四边形ABCD 为矩形, ∴OA =OC =12AC ,OB =OD =12BD ,AC =BD .∴OA =OC =OB =OD .∴A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上(如图).例2 (教材P80例1的变式)△ABC 中,∠C =90°.求证:A ,B ,C 三点在同一个圆上. 【解答】 证明:如图,取AB 的中点O ,连接OC .∵在△ABC 中,∠C =90°, ∴△ABC 是直角三角形.∴OC =OA =OB =12AB (直角三角形斜边上的中线等于斜边的一半).∴A ,B ,C 三点在同一个圆上.【跟踪训练1】 (例1的变式题)(1)在图中,画出⊙O 的两条直径;(2)依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.解:(1)作图略.(2)矩形.理由:因为该四边形的对角线互相平分且相等,所以该四边形为矩形.【思考】由刚才的问题思考:矩形的四个顶点一定共圆吗?例3已知⊙O的半径为2,则它的弦长d的取值范围是0<d≤4.【点拨】直径是圆中最长的弦.例4在⊙O中,若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.【点拨】与半径相等的弦和两半径构造等边三角形是常用数学模型.【跟踪训练2】如图,点A,B,C,D都在⊙O上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?解:图略.6条.04 巩固训练1.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.【点拨】这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.2.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数为2.3.(24.1.1习题)点P到⊙O上各点的最大距离为10 cm,最小距离为8 cm,则⊙O的半径是1或9cm.【点拨】这里分点在圆外和点在圆内两种情况.4.如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点.若AC=10 cm,则OD的长为5__cm.【点拨】圆心O是直径AB的中点.5.如图,CD为⊙O的直径,∠EOD=72°,AE交⊙O于B,且AB=OC,则∠A的度数为24°.【点拨】连接OB构造三角形,从而得出角的关系.05 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?。
2019年九年级数学上册 第二十四章 圆复习(新版)新人教版
2019年九年级数学上册第二十四章圆复习(新版)新人教版一、内容和内容解析1.内容对本章内容进行梳理总结建立知识体系,综合应用本章知识解决问题.2.内容解析圆是继三角形、四边形等基本图形后的又一个重要内容,在生活中有着广泛的应用.圆是平面几何中最基本的图形之一,在几何中有着重要的地位.在本章内容的学习过程中,需要学生通过观察、测量、实验、归纳、对比、类比等方法发现图形的性质.同时,还要注意体会通过“推理”获得数学结论的方法,培养言之有据的习惯和有条理地思考、表达的能力.本课的教学重点:复习与圆有关的知识,建立本章知识结构.二、目标和目标解析1.目标(1)复习本章的重点内容,整理本章知识,形成知识体系,体会利用圆的知识综合解决问题的思路和方法.(2)进一步发展推理能力,能够具备有条理地思考和表达的能力.2.目标解析达成目标(1)的标志是:通过复习本章的主要内容,理解圆的有关知识,体会用圆的知识解决问题的思路和方法等.并能结合知识体系的构建过程,研究几何问题的一般思路和方法.达成目标(2)的标志是:学生能够在较复杂的问题情境中应用本章所学的图形的性质和判定方法进行推理,解决问题.三、教学问题诊断分析学生在前面具体内容的学习中已经接触过应用本章所学习的知识进行推理,这就要学生在复习课中既要对所学的知识能够重新回忆出来,又要在原有的基础上进行知识的建构,建立起不同知识之间的内在联系,从而建立起本章的知识结构,形成知识体系.本节课教学难点:本章知识点间的内在联系,知识体系的建构.四、教学过程设计1.知识梳理问题1 请同学们回顾:1、圆是如何定义的?2、同圆或等圆中的弧、弦、圆心角有什么关系?垂直于弦的直径有什么性质?一条弧所对的圆周角和它所对的圆心角有什么关系?3、点和圆有怎样的位置关系?直线和圆呢?圆和圆呢?怎样判断这些位置关系呢?4、圆的切线有什么性质?如何判断一条直线是圆的切线?5、正多边形和圆有什么关系?6、如何计算弧长、扇形面积、圆锥的侧面积和全面积.师生活动:教师出示问题,引导学生回顾本章所学的内容,梳理本章知识.学生先独立思考这些问题,通过复习笔记或看书在作业本上写出答案.然后,教师组织学生逐题展示交流,设计意图:通过6个问题,让学生对本章的知识点做一个梳理,为下一步建立本章的知识结构体系做好铺垫.2.体系建构问题2 请同学们整理一下本章所学的主要知识,您能发现它们之间的联系吗?你能画出一个本章的知识结构图吗?师生活动:教师组织学生在纸上画出本章的知识结构图,然后展示部分学生画的知识结构图,并请这些学生简要说明自己所画知识结构图.最后,教师出示课本上的知识结构图.设计意图:学生自己先画出本章的知识结构图,主要是让他们自己能够主动建构本章的知识结构,形成知识体系,这有利于提高学生对本章知识的整体把握.然后,教师出示本章知识结构,主要是帮助学生形成正确的、全面的知识结构.通过这样方式,突破本节课的难点.3.典型例题例1 在⊙O中,弦AB所对的圆心角∠AOB=100°,则弦AB所对的圆周角为____________.师生活动:学生独立完成,教师请学生上台讲解自己的解题思路和做法,其他同学补充.教师强调解题格式,展示学生中书写规范的.最后教师引导学生总结本题所用数学知识和思想方法.设计意图:通过本题,学生要会根据题意画出图形,分析出所求的角的度数可以是优弧所对角也可以是劣弧所对的角得出最终答案.例2 如图1,圆O的弦AB=8 cm,DC=2 cm,直径CE⊥AB于点D,求半径OC的长.图1 图2例3 如图2,AB是⊙O的弦,C是⊙O外一点,BC是⊙O的切线,AB交过C点的直径于点D,OA⊥CD,试判断△BCD的形状,并说明你的理由.师生活动:教师引导学生分析题目的已知和未知,找出条件到结论之间的联系.学生可以从问题出发,寻找垂径定理所需要的三角形,进而将题目中的已知条件转化.学生完成证明题的书写过程.设计意图:本题主要考查垂径定理,学生要对题目的条件和结论进行转化.4.小结教师与学生一起回顾本节课内容,并请学生回答以下问题:(1)本章的核心知识有哪些?这些知识间有什么样的联系?(2)通过本节课的复习,谈谈你对本章的研究思路的体会.设计意图:通过小结,学生回顾复习的内容,体会图形的位置关系与数量关系在一定条件下能相互转化的数学思想.5.布置作业教科书复习题24第2,4题.五、目标检测设计1.如图,P为⊙O的弦BA延长线上一点,PA=AB=2,PO=5,求⊙O的半径.设计意图:本题考查垂径定理的掌握和在解决问题中如何添加辅助线.2.如图,⊙O的直径AB=12,以OA为直径的⊙O1交大圆的弦AC于点D,过D点作小圆的切线交OC于点E,交AB于点F.(1)说明D是AC的中点;(2)猜想DF与OC的位置关系,并说明理由;(3)若DF=4,求OF的长.设计意图:本题综合考查与圆有关的知识.。
2018-2019学年九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆知能综合提升 (新版)新人教版
第二十四章圆24.1圆的有关性质24.1.1圆知能演练提升能力提升1.有下列结论:①弦比直径短;②过圆心的线段是直径;③半圆是弧;④长度相等的两条弧是等弧.其中正确的有()A.0个B.1个C.2个D.3个2.如图,在△ABC中,AB为☉O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°3.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM 方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()⏜→BO的路径运动一周.设OP为s,运动时4.如图,AB是半圆O的直径,点P从点O出发,沿OA→AA间为t,则下列图象能大致地刻画s与t之间关系的是()5.如图,A,B是☉O上两点,若四边形ACBO是平行四边形,☉O的半径为r,则点A与点B之间的距离为.6.如图,O2是☉O1上的一点,以O2为圆心,O1O2为半径作☉O2,与☉O1交于点A,B,则∠AO1B的度数为.(第5题图)(第6题图)7.如图,一根2 m长的绳子,一端拴在墙边,另一端拴着一只羊,画出羊的活动区域.8.如图,AB,AC为☉O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C,求证:CE=BF.★9.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则a,b,c 之间有什么关系?10.如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且CD=OA,求证:∠C=1∠3 AOE.创新应用★11.如图①,☉O的半径为r(r>0),若点P'在射线OP上,满足OP'·OP=r2,则称点P'是点P关于☉O的“反演点”.如图②,☉O的半径为4,点B在☉O上,∠BOA=60°,OA=8.点A',B'分别是点A,B关于☉O的反演点,求A'B'的长.图①图②参考答案能力提升1.B2.C3.D连接OP,因为OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.4.C当点P从点O向点A运动时,OP逐渐增大,当点P从点A向点B运动时,OP不变,当点P从点B 向点O运动时,OP逐渐减小,故能大致地刻画s与t之间关系的是选项C中的图象.5.√3r 连接AB.∵OA=OB,∴▱ACBO是菱形.∴AB与CO互相垂直且平分.∴AB=2√A2-(12A)2=√3r.6.120°连接AO2,BO2,由题意知☉O1与☉O2是等圆,所以△AO1O2与△BO1O2都为等边三角形.所以∠AO1O2=∠BO1O2=60°,即∠AO1B=120°.7.分析根据题意,羊的活动区域应是以O为圆心,以2 m为半径的半圆及其内部.解如图,羊的活动区域是图中的阴影部分(包括半圆周).8.证明∵OB,OC是☉O的半径,∴OB=OC.又∠B=∠C,∠BOE=∠COF,∴△EOB≌△FOC(ASA).∴OE=OF.∴CE=BF.9.解连接OM,OD,OA,根据矩形的对角线相等,得BC=OA,EF=OD,NH=OM.再根据同圆的半径相等,得a=b=c.10.分析因为∠AOE是△COE的一个外角,且与∠C不相邻,所以∠AOE=∠C+∠E.现在要证明∠C=13∠AOE,即∠AOE=3∠C,所以只要证得∠E=2∠C即可.又由于OE为半径,而连接OD后OD也是半径,故OE=OD,所以∠ODE=∠E,从而可证结论成立.证明如图,连接OD.因为CD=OA=OD,所以∠C=∠COD.又OD=OE,所以∠OED=∠ODE.∠AOE.所以∠AOE=∠C+∠OED=∠C+∠ODE=∠C+∠COD+∠C=3∠C,即∠C=13创新应用11.解因为☉O的半径为4,点A',B'分别是点A,B关于☉O的反演点,点B在☉O上,OA=8,所以OA'·OA=16,解得OA'=2.同理可知,OB'=4,所以点B的反演点B'与B重合.设OA交☉O于点M,连接B'M,因为∠BOA=60°,OM=OB',所以△OB'M为等边三角形,又OA'=A'M=2,所以A'B'⊥OM,所以在Rt△OB'A'中,根据勾股定理,得OB'2=OA'2+A'B'2,即16=4+A'B'2,解得A'B'=2√3.。
九年级数学上册第二十四章《圆》24.2点和圆、直线和圆的位置关系24.2.2直线和圆的位置关系第3
2018年秋九年级数学上册第二十四章《圆》24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系第3课时切线长定理试题(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋九年级数学上册第二十四章《圆》24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系第3课时切线长定理试题(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋九年级数学上册第二十四章《圆》24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系第3课时切线长定理试题(新版)新人教版的全部内容。
第3课时切线长定理知识要点基础练知识点1切线长定理1.如图,已知PA,PB分别切☉O于点A,B,∠P=60°,PA=8,那么弦AB的长是(B)A。
4 B.8C。
4 D.82。
如图,PA,PB是☉O的切线,切点为A,B,若OP=4,PA=2,则∠AOB的度数为(C)A.60°B.90°C。
120°D。
无法确定3。
如图,P是☉O外一点,PA,PB分别和☉O切于A,B两点,PA=6,∠P=50°,C是☉O上任意一点,过点C作☉O的切线,分别交PA,PB于点D,E,求:(1)△PDE的周长;(2)∠DOE的度数。
解:如图,连接OA,OB,OC;(1)∵DA,DC,EB,EC分别是☉O的切线,∴DA=DC,EB=EC,∴DE=DA+EB,∴PD+PE+DE=PD+DA+PE+BE=PA+PB.∵PA,PB分别是☉O的切线,∴PA=PB=6。
∴△PDE的周长=12。
2018-2019学年九年级数学上册 第二十四章 圆 24.2 点和圆、直线和圆的位置关 24.2.
第3课时切线长定理※教学目标※【知识与技能】理解切线长的概念,掌握切线长定理.了解三角形的内切圆和三角形的内心等概念. 【过程与方法】在折叠、发现、探究的过程中再次体现圆的轴对称美,从而培养学生的观察、分析、归纳能力.通过列方程解决问题,感受数与形的统一.【情感态度】通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.【教学重点】切线长定理及其运用.【教学难点】切线长定理的导出及其证明和运用切线长定理解决一些实际问题.※教学过程※一、复习导入回顾切线的判定方法及切线的性质定理?问题1经过⊙O上一个已知点A,作已知圆的切线怎样作?能作几条?问题2经过圆外一点P,如何准确地作已知⊙O的切线?二、探索新知从上面的复习,我们可以知道,过⊙O上任一点A都可以作一条切线,•并且只有一条.那么经过圆外一点P,如何准确地作已知⊙O的切线?(连接OP,以OP为直径作⊙O′交⊙O于A,B两点,作射线PA,PB,则PA,PB为⊙O 的切线,切点为A,B.)归纳总结经过圆外一点的圆的切线上,这点和切点之间的线段长,叫做这点到圆的切线长.切线与切线长的区别:圆的切线是直线,而切线长是一条线段长,不是直线.探究如图,PA,PB是⊙O的两条切线,切点分别为A,B.沿着直线PO将图形对折,图中的PA与PB,∠APO与∠BPO有什么关系?分析:连接OA和OB.∵PA和PB是⊙O的两条切线,∴OA⊥AP,OB⊥BP.又OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP.∴PA=PB,∠APO=∠BPO.归纳总结切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.思考如图是一块三角形铁皮,如何在它上面截下一块圆形的用料,并且使截下来的圆与三角形的三条边都相切?因为三角形的三条角平分线交于一点,并且这个点到三条边的距离相等.所以,如图,分别作∠B,∠C的平分线BM,CN,设它们相交于点I,归纳总结与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三、掌握新知例1 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=9,BC=14,CA=13.求AF,BD,CE的长.解:设AF=x,则AE=x,CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC,可得(13-x)+(9-x)=14.解得x=4.因此AF=4,BD=5,CE=9.例2 如图,P为⊙O外一点,PA,PB分别切⊙O于A,B 两点,连接OP交⊙O于点D.若PA=4cm,PD=2cm,求半径OA的长.解:设OA=x cm,OP=OD+PD=(x+2)cm.∵PA=4cm,由勾股定理,得PA2+OA2=OP2,即42+x2=(x+2)2.解得x=3.所以,半径OA的长为3cm.例3 如图,在△ABC中,O是内心,∠BOC=100°,则∠A= .分析:∵O是内心,∴BO,CO分别是∠ABC,∠ACB的平分线.∴∠ABC+∠ACB=2(∠OBC+∠OCB).又∠BOC=120°,∴∠OBC+∠OCB=60°∴∠ABC+∠ACB=120°.∴∠A=180°-120°=60°.答案:60°四、巩固练习1.如图,△ABC中,∠ABC=50°,∠ACB=75°,点O是△ABC的内心.求∠BOC的度数.2.△ABC的内切圆半径为r,△ABC的周长为l,求△ABC的面积.答案:1.2.解:如图,设内心为O,与内切圆的切点分别为D,E,F,连接OA,OB,OC,则S=12(AB+BC+AC)r=12lr.五、归纳小结本节课你学到了哪些知识?用到了哪些数学思想方法?应注意哪些概念之间的区别?※布置作业※从教材习题24.2中选取.※教学反思※在本节课教学中,对本课的重点学习内容能组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结。
人教版九年级数学上册第二十四章圆全章总复习及知识梳理
第二十四章 圆
旋转对称、中心 对称、轴对称
对称性
垂径定理及其推论(注意推论中“不是直径 的弦”的条件) 基本性质 弧、弦、圆心角 关系定理及其推 论 前提条件:在 同圆或等圆中
圆周角定理及其推论
第二十四章 圆
正多边形与圆
等分圆周
有关计算
第二十四章 圆
位置关系 切线的性质 直线与圆的 位置关系 切线的判定 切线的作用
且OM=3, 则⊙O的半径为( C ).
A.10 B. 8 C. 5 D.2
第二十四章 圆
分析
第二十四章 圆
相关题2 如图24-Z-4, 已知AB是⊙O的直径, 且AB=12.
弦CD⊥AB于点M, 且M是半径OB的中点, 则弦CD的长是
6 3 结果保留根号). ______(
第二十四章 圆
解析
【要点指导】一条弧所对的圆周角等于它所对的圆
心角的一半, 在解有关圆的问题时常常借助这个定理
进行角度转化.
第二十四章 圆
例 1 如图24-Z-1, 某珠宝店有一圆形货柜, 为了
增加珠宝的光彩, 在其圆形边缘上的点A处安装了
一台小灯, 它所发出的光线形成的最大张角是65°.
为了使整个货柜里的珠宝都能被灯光照射到, 最少 需在圆形边缘上安装这样的小灯( A.3台 B. 4台 C.5台
A
).
D.6台
第二十四章 圆
分析 ∵∠A=65°,
∴该圆周角所对的弧所对的圆心角是130°.
∵360°÷130°≈2.8, ∴至少要安装3台这样的小灯. 故选A.
第二十四章 圆
相关题1
如图24-Z-2, B, C是⊙A上的两点, AB的垂直平分
线与⊙A交于E, F两点,与线段AC交于点D.若∠BFC=20°, 则
九年级数学上册第二十四章圆基础知识点归纳总结(带答案)
九年级数学上册第二十四章圆基础知识点归纳总结单选题1、如图,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,∠ABC =25°,OC 的延长线交PA 于点P ,则∠P 的度数是( )A .25°B .35°C .40°D .50°答案:C分析:根据圆周角定理可得∠AOC =50°,根据切线的性质可得∠PAO =90°,根据直角三角形两个锐角互余即可求解.∵AC⌢=AC ⌢,∠ABC =25°, ∴∠AOC =2∠ABC =50°,∵ AB 是⊙O 的直径,∴ ∠PAO =90°,∴∠P =90°−∠AOC =40°.故选C .小提示:本题考查了圆周角定理,切线的性质,掌握圆周角定理与切线的性质是解题的关键.2、已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积为( )A .36πcm 2B .24πcm 2C .16πcm 2D .12πcm 2答案:B分析:利用圆锥侧面积计算公式计算即可:S 侧=πrl ;S 侧=πrl =π×4×6=24π cm 2 ,故选B .小提示:本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可.3、圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°答案:C分析:圆锥的侧面展开图是一个扇形,利用弧长公式进行计算即可得.解:设这个圆锥的侧面展开图的圆心角是n°,=2π×1,由题意得:n⋅3π180解得n=120,则这个圆锥的侧面展开图的圆心角是120°,故选:C.小提示:本题考查了圆锥的侧面展开图、弧长公式,熟记弧长公式是解题关键.4、如图,△ABC内接于⊙O,CD是⊙O的直径,∠ACD=40°,则∠B=()A.70°B.60°C.50°D.40°答案:C分析:由CD是⊙O的直径,根据直径所对的圆周角是直角,得出∠CAD=90°,根据直角三角形两锐角互余得到∠ACD与∠D互余,即可求得∠D的度数,继而求得∠B的度数.解:∵CD是⊙O的直径,∴∠CAD=90°,∴∠ACD+∠D=90°,∵∠ACD=40°,∴∠ADC=∠B=50°.故选:C.小提示:本题考查了圆周角定理,直角三角形的性质,注意掌握数形结合思想是解题的关键.5、如图,在平面直角坐标系中,以1.5为半径的圆的圆心P的坐标为(0,2),将⊙P沿y轴负方向平移1.5个单位长度,则x轴与⊙P的位置关系是()A.相交B.相切C.相离D.无法确定答案:A分析:根据题意,将圆心点向下平移1.5个单位,即可判断圆与x轴的位置关系.解:如图,∵圆心P的坐标为(0,2),将⊙P沿y轴负方向平移1.5个单位长度,∴平移后的点P的坐标为(0,0.5),∴OP=0.5,∵半径为1.5,∴PO<r,∴圆P与x轴相交,故选A.小提示:本题主要考查圆与直线的位置关系,结合题意判断圆与x轴的位置关系是解题的关键.6、如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且BC=10cm,DC=2cm.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是()cm.A.14B.12C.10D.8答案:C分析:首先画出圆柱的侧面展开图,根据底面周长12cm,求出AB的值,由BC=10cm,DC=2cm,求出DB的值,再在Rt△ABD中,根据勾股定理求出AD的长,即可得答案.解:圆柱侧面展开图如下图所示,∵圆柱的底面周长为12cm,∴AB =6cm,∵BC=10cm,DC=2cm,∴DB=8,在Rt△ABD中,AD=√AB2+DB2=√62+82=10( cm ),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D的最短距离是10cm,故选: C .小提示:此题主要考查了圆柱的平面展开图,以及勾股定理的应用,解题的关键是画出圆柱的侧面展开图.⌢上,则∠BAC的度数为()7、如图,在⊙O中,∠BOC=130°,点A在BACA.55°B.65°C.75°D.130°答案:B分析:利用圆周角直接可得答案.⌢上,解:∵∠BOC=130°,点A在BAC∴∠BAC=1∠BOC=65°,2故选B小提示:本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.8、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°答案:B分析:连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD =CD,根据等腰三角形的性质即可得到结论.解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E 是边BC 的中点,∴OD ⊥BC ,∴BD =CD ,∴∠ODB =∠ODC =12∠BDC =65°,故选:B .小提示:本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识.正确理解题意是解题的关键.9、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.10、如图,点A,B,C,D,E 在⊙O 上,AB =CD,∠AOB =42°,则∠CED =( )A .48°B .24°C .22°D .21°答案:D分析:先证明AB⌢=CD ⌢,再利用等弧的性质及圆周角定理可得答案. 解:∵ 点A,B,C,D,E 在⊙O 上,AB =CD,∠AOB =42°,∴AB⌢=CD ⌢, ∴∠CED =12∠AOB =12×42°=21°,故选:D.小提示:本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.填空题11、如图,在正六边形ABCDEF 中,连接AC,CF ,则∠ACF =____________度.答案:30分析:连接BE ,交CF 与点O ,连接OA ,先求出∠AOF =360°6=60°,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.连接BE ,交CF 与点O ,连接OA ,∵在正六边形ABCDEF 中,∴∠AOF =360°6=60°,∵OA =OC∴∠OAC =∠OCA∵∠AOF =∠OAC +∠ACF =2∠ACF∴∠ACF =30°,所以答案是:30.小提示:本题考查了正多边形与圆,等腰三角形的性质,三角形外角的性质,熟练掌握知识点是解题的关键.12、如图,在⊙O 中,半径OC 与弦AB 垂直于点D ,M 为AD 的中点,N 为AC⌢上的点,且MN ∥CD .若CD =5,MN =4,则⊙O 的半径为_______.答案:212##10.5分析:连接AO ,ON ,延长NM 交⊙O 于F ,过O 作OE ⊥NF 于E ,如图,设⊙O 的半径为r ,AD =t ,先证明四边形MEOD 是矩形得到OE =DM =12t ,OD =ME =r -5,再利用勾股定理得(r −5)2+t 2=r 2①,(r −5+4)2+(12t)2=r 2②,然后解方程组即可.解:连接AO ,ON ,延长NM 交⊙O 于F ,过O 作OE ⊥NF 于E ,如图,设⊙O的半径为r,AD=t,∵CD⊥AB,MN∥CD,∴∠ODM=∠DME=∠MEO=90°,∴四边形MEOD是矩形,∴OE=DM=1t,OD=ME=r-5,2在Rt△AOD中,(r−5)2+t2=r2,①t)2=r2,②在Rt△NOE中,(r−5+4)2+(12②×4-①得2r-21=0,,解得r=212即⊙O的半径为21.2所以答案是:212小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,理解题意,熟练掌握运用这些知识点是解题关键.13、如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是AD⌢所对的圆周角,则∠APD的度数是______.答案:30°##30度分析:根据垂径定理得出∠AOB =∠BOD ,进而求出∠AOD =60°,再根据圆周角定理可得∠APD =12∠AOD =30°. ∵OC ⊥AB ,OD 为直径,∴BD⌢=AD ⌢, ∴∠AOB =∠BOD ,∵∠AOB =120°,∴∠AOD =60°,∴∠APD =12∠AOD =30°,所以答案是:30°.小提示:本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键.14、如图,在△ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当△ACD 为直角三角形时,AD 的长为___________.答案:32或65 分析:根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可.解:连接OA ,①当D 点与O 点重合时,∠CAD 为90°,设圆的半径=r ,∴OA =r ,OC =4-r ,∵AC =2,在Rt △AOC 中,根据勾股定理可得:r 2+4=(4-r )2,解得:r =32, 即AD =AO =32;②当∠ADC =90°时,过点A 作AD ⊥BC 于点D ,∵12AO •AC =12OC •AD , ∴AD =AO⋅AC OC ,∵AO =32,AC =2,OC =4-r =52, ∴AD =65,综上所述,AD 的长为32或65, 所以答案是:32或65.小提示:本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.15、如图,已知A 为半径为3的⊙O 上的一个定点,B 为⊙O 上的一个动点(点B 与A 不重合),连接AB ,以AB 为边作正三角形ABC .当点B 运动时,点C 也随之变化,则O 、C 两点之间的距离的最大值是______.答案:6分析:连接OB ,OC ,OA ,在优弧AB 上取点N ,使得AN =AO .证明△BAO ≌△CAN (SAS ),推出OB =CN =3,推出OC ≤ON +CN =6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.解答题16、(1)如图①,在△ABC中,∠BAC=90°,AB=4,AC=3,若AD平分∠BAC交CB于点D,那么点D到AC的距离为.(2)如图②,四边形ABCD内接于⊙O,AC为直径,点B是半圆AC的三等分点(弧AB<弧BC),连接BD,若BD平分∠ABC,且BD=8,求四边形ABCD的面积.(3)如图③,为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮,其中一块圆形场地圆O,设计人员准备在内接四边形ABCD区域内进行花卉图案设计,其余部分方便游客参观,按照设计要求,四边形ABCD满足∠ABC=60°,AB=AD,且AD+DC=10(其中2≤DC≤4),为让游客有更好的观体验,四边形ABCD花卉的区域面积越大越好,那么是否存在面积最大的四边形ABCD?若存在,求出这个最大值,不存在请说明理由.答案:(1)127;(2)四边形ABCD的面积为32;(3)存在24√3.分析:(1)如图,作辅助线,证明AE=DE;证明△BDE∽△BCA,得到BEAB =DEAC,列出比例式即可解决问题.(2)(2)连接OB,根据题意得∠AOB=60°,作AE⊥BD,利用解直角三角形可求AB的长,通过解直角三角形分别求出BC,AD,CD的长,再根据面积公式求解即可;过点A作AN⊥BC于点N,AM⊥DC,交DC的延长线于点M,连接AC,可得S四边形ABCD =S四边形ANCM,根据面积法求出关于面积的二次函数关系式,根据二次函数的性质求出最值即可.解:如图,过点D作DE⊥AB于点E.则DE//AC;∵AD平分∠BAC,∠BAC=90°,∴∠DAE=45°,∠ADE=90°−45°=45°,∴AE=DE(设为λ),则BE=4−λ;∴△BDE∽△BCA,∴BEAB =DEAC,即:4−λ4=λ3解得:λ=127,∴点D到AC的距离127.(2)连接OB,∵点B是半圆AC的三等分点(弧AB<弧BC),∴∠AOB=60°∴∠ADB=ACB=30°∵AC是⊙O的直径,∴∠ABC=90°∵BD平分∠ABC∴∠ABD=∠CBD=45°过点A作AE⊥BD于点E,则∠BAE=∠ABE=45°∴AE=BE设AE=BE=x,则DE=AEtan30°=√3x∵BD=BE+DE=x+√3x=8∴AB=√2AE=4√6−4√2∵∠ADB=ACB=30°∴ABBC =tan30°=√33∴BC=√3AB=12√2−4√6∵BD平分∠ABC∴∠ABD=∠CBD∴AD⌢=CD⌢∴AD=CD∵AE⊥DE∴AD2=DE2+AE2∵AE=4√3−4,DE=√3x=12−4√3∴AD2=(12−4√3)2+(4√3−4)2=256−128√3∴S四边形ABCD =SΔABC+SΔADC=12AB·BC+12AD·CD=12AB·BC+12AD2=1 2(4√6−4√2)(12√2−4√6)+12(256−128√3)=64√3−96+128−64√3=32;(3)过点A作AN⊥BC于点N,AM⊥DC,交DC的延长线于点M,连接AC,∵AB=AD∴∠ACB=∠ACD∴AM=AN∵∠ADC+∠ABC=180°,∠ADC+∠ADM=180°, ∴∠ABC=∠ADM又∠ANB=∠AMD=90°,∴△ABN≌△ADM∴S四边形ABCD =S四边形ANCM∵AN=AM,∠BCA=∠DCA,AC=AC∴△ACN≌△ACM∴S四边形ANCM=2SΔACM∵∠ABC=60°∴∠ADC=120°∴∠ADM=60°,∠MAD=30°设DM=x,则AD=2x,AM=DM·tan60°=√3x,CD=10−2x,CM=10−x∴S四边形ANCM =2SΔACM=2×12×√3x(10−x)=−√3(x2−10x)∵2≤DC≤4∴2≤10−2x≤4,即3≤x≤4∵抛物线对称轴为x=5∴当x=4时,有最大值,为−√3×(16−40)=24√3小提示:本题属于圆综合题,考查了三角形的面积,解直角三角形,角平分线的性质定理,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.17、如图,已知圆锥的底面半径r为10cm,母线长为40cm.求它的侧面展开扇形的圆心角的度数和它的全面积.答案:90°,500π分析:根据由圆锥的底面圆的周长等于侧面展开扇形的弧长可求.解:由圆锥的底面圆的周长等于侧面展开扇形的弧长可知:,n=90°,2π×10=n×π×40180∴侧面展开扇形的圆心角的度数是90°.全面积=底面积+展开侧面积,=500π.全面积为:π×102+90×π×402360小提示:本题考查了圆锥全面积和展开图圆心角的度数,解题关键是明确圆锥的底面圆的周长等于侧面展开扇形的弧长,根据题意列方程求解.18、如图所示,扇形OAB的面积为4π cm2,∠AOB=90°,用这个扇形围成一个圆锥的侧面.求这个圆锥的底面圆的半径.答案:1cm分析:设这个圆锥的底面半径为r cm,先利用扇形面积公式得到90π·OA2=4π,则可得到OA=4,再利用圆锥360的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和扇形面积公式得到1·2π·r·4=4π,然后解2方程求出r即可.解:设这个圆锥的底面半径为r cm,=4π,解得OA=4,由题意得90π·OA2360·2π·r·4=4π,解得r=1.所以12所以这个圆锥的底面半径为1cm.小提示:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.。
2019年九年级数学上册第二十四章圆知识点总结新版新人教版
第二十四章 圆24.1.1 圆知识点一 圆的定义圆的定义:第一种:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫作圆。
固定的端点O 叫作圆心,线段OA 叫作半径。
第二种:圆心为O ,半径为r 的圆是所有到定点O 的距离等于定长r 的点的集合。
比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。
知识点二 圆的相关概念(1) 弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。
(2) 弧:圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
(3) 等圆:等够重合的两个圆叫做等圆。
(4) 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。
24.1.2 垂直于弦的直径知识点一 圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
知识点二 垂径定理(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
如图所示,直径为MD ,AB 是弦, 且CD ⊥AB ,垂径定理的直径垂直弧如上图所示,直径MD 与非直径弦AB 相交于点C , CD ⊥ABAC=BC AM=BMAD=BD 注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。
24.1.3 弧、弦、圆心角知识点 弦、弧、圆心角的关系(1) 弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
(2) 在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。
(3) 注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、C ⌒⌒ ⌒ ⌒弦不一定相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1.4 圆周角第1课时 圆周角定理及其推论01 基础题知识点1 圆周角的概念1.下列图形中的角是圆周角的是(B)知识点2 圆周角定理2.(茂名中考)如图,A ,B ,C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是(A)A .150°B .140°C .130°D .120°3.(滨州中考)如图,在⊙O 中,圆心角∠BOC =78°,则圆周角∠BAC 的大小为(C)A .156°B .78°C .39°D .12°4.(山西模拟)如图,直径为AB 的⊙O 中,BC ︵=2AC ︵,连接BC ,则∠B 的度数为(B)A .35°B .30°C .20°D .15° 知识点3 圆周角定理的推论5.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,∠A=35°,则∠B 的度数是(C)A .35°B .45°C .55°D .65°6.(绍兴中考)如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB=60°,则∠BDC 的度数是(D)A .60°B .45°C .35°D .30°7.(黔西南中考)如图,在⊙O 中,AB ︵=AC ︵,∠BAC=50°,则∠AEC 的度数为(A)A .65°B .75°C .50°D .55°8.(太原二模)如图,BD 是圆O 的直径,∠CBD=30°,则∠A 的度数为(C)A .30°B .45°C .60°D .75°9.(常州中考)如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M ,N ,量得OM =8 cm ,ON =6 cm ,则该圆玻璃镜的半径是(B)A.10 cm B .5 cmC .6 cmD .10 cm10.(朝阳中考)如图是一个圆形人工湖的平面图,弦AB 是湖上的一座桥,已知桥长100 m ,测得圆周角∠ACB=30°,则这个人工湖的直径为200m.11.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.证明:∵AB=BC , ∴AB ︵=BC ︵. ∴∠ADB =∠BDC. ∴DB 平分∠ADC.易错点 忽略弦所对的圆周角不唯一而致错12.已知⊙O 的弦AB 的长等于⊙O 的半径,则此弦AB 所对的圆周角的度数为30°或150°. 02 中档题13.(海南中考)如图,点A 、B 、C 在⊙O 上,AC∥OB,∠BAO=25°,则∠BOC 的度数为(B)A .25°B .50°C .60°D .80°14.(吕梁孝义市期中)如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED=20°,则∠BCD 的度数为(B)A.100° B.110°C.115° D.120°15.(广州中考)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是(D)A.AD=2OB B.CE=EOC.∠OCE=40° D.∠BOC=2∠BAD16.如图,⊙C经过原点,并与两坐标轴分别交于A,D两点,已知∠OBA=30°,点A的坐标为(2,0),则点D17.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求BC的长;(2)求BD的长.解:(1)∵AB为⊙O的直径,∴∠ACB=∠ADB=90°.∴在Rt△ABC中,BC=AB2-AC2=102-52=5 3.(2)∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∴∠BAD=∠ABD=45°.∴AD=BD.设BD=AD=x,在Rt△ABD中,由勾股定理,得AD2+BD2=AB2.∴x2+x2=102.解得x=5 2.∴BD=5 2.18.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC,AC于点D,E,且点D 为边BC的中点.(1)求证:△ABC为等边三角形;(2)求DE的长.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵点D是BC的中点,∴AD是BC的垂直平分线.∴AB=AC.又∵AB=BC,∴AB=AC=BC.∴△ABC为等边三角形.(2)连接BE.∵AB是⊙O的直径,∴∠AEB=90°.∴BE⊥AC.∵△ABC 是等边三角形, ∴AE=EC ,即E 为AC 的中点. 又∵D 是BC 的中点, ∴DE 是△ABC 的中位线. ∴DE=12AB =12×2=1.03 综合题19.(东营中考)如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,CM +DM 的最小值为8__cm .第2课时 圆内接四边形01 基础题知识点 圆内接四边形的性质1.(湘潭中考)如图,四边形ABCD 是⊙O 的内接四边形,若∠DAB=60°,则∠BCD 的度数是(D)A .60°B .90°C .100°D .120°2.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点.若∠BAD=105°,则∠DCE 的大小是(B)A .115°B .105°C .100°D .95°3.(娄底中考)如图,四边形ABCD 为⊙O 的内接四边形,已知∠C=∠D ,则AB 与CD 的位置关系是AB∥CD.4.如图,AB 是半圆O 的直径,∠BAC=30°,D 是AC ︵的中点,则∠DAC 的度数是30°.5.如图所示,已知圆心角∠AOB=100°,求∠A CD 的度数.解:在优弧AMB ︵上任取一点N ,连接AN ,BN , 由圆周角定理,得∠N=12∠AOB=12×100°=50°.∴∠ACB=180°-∠N=180°-50°=130°. ∴∠ACD=180°-∠ACB=180°-130°=50°.6.已知圆内接四边形相邻三个内角度数的比为2∶1∶7,求这个四边形各内角的度数. 解:根据圆内接四边形的对角互补可知,其对角和相等,所以四个内角的度数的比为2∶1∶7∶8.设这四个内角的度数分别为2x°、x°、7x°、8x°,则 2x +x +7x +8x =360.解得x =20. 则2x =40,7x =140,8x =160.答:这个四边形各内角的度数分别为40°、20°、140°、160°.7.(T4的变式)如图,四边形ABCD内接于⊙O,∠B=50°,∠ACD=25°,∠BAD=65°.求证:(1)AD=CD;(2)AB是⊙O的直径.证明:(1)∵四边形ABCD内接于⊙O,∴∠D=180°-∠B=130°.∵∠ACD=25°,∴∠DAC=180°-∠D-∠ACD=180°-130°-25°=25°.∴∠DAC=∠ACD.∴AD=CD.(2)∵∠BAC=∠BAD-∠DAC=65°-25°=40°,∠B=50°,∴∠ACB=180°-∠B-∠BAC=180°-50°-40°=90°.∴AB是⊙O的直径.易错点对圆内接四边形的概念理解不清导致错误8.(来宾中考)如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=140°.02中档题9.(山西中考模拟百校联考)如图,点A,B,C,D为⊙O上的点,四边形AOBC是菱形,则∠ADB的度数是(C)A.30° B.45° C.60° D.75°10.(聊城中考)如图,四边形ABCD 内接于⊙O,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC=105°,∠BAC=25°,则∠E 的度数为(B)A .45°B .50°C .55°D .60°11.(南京中考)如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E=215°.12.(吉林中考)如图,四边形ABCD 内接于⊙O,∠DAB=130°,连接OC ,点P 是半径OC 上任意一点,连接DP ,BP ,则∠BPD 可能为80(50°≤∠BPD≤100°)(写出一个即可).13.如图,⊙C 经过坐标原点,且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,4),M 是圆上一点,∠BMO=120°.求⊙C 的半径.解:∵四边形ABMO 内接于⊙C, ∴∠BAO+∠BMO=180°. ∵∠BMO=120°, ∴∠BAO=60°.在Rt△ABO 中,AO =4,∠BAO=60°, ∴AB=8.∵∠AOB=90°,∴AB为⊙C的直径.∴⊙C的半径为4.14.(苏州中考)如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD.连接AC交圆O于点F,连接AE,DE,DF.(1)求证:∠E=∠C;(2)若∠E=55°,求∠BDF的度数.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.∵CD=BD,∴AD垂直平分BC.∴AB=AC.∴∠B=∠C.又∵∠B=∠E,∴∠E=∠C.(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°-∠E.又∵∠CFD=180°-∠AFD,∴∠CFD=∠E=55°.∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°.03综合题15.(佛山中考)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E=∠F,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α,β的代数式表示∠A的大小.精品K12教育教学资料精品K12教育教学资料解:(1)证明:∵∠DCE=∠BCF,∠E=∠F, 又∵∠ADC=∠E +∠DCE,∠ABC=∠F+∠BCF, ∴∠ADC=∠ABC.(2)由(1)知∠ADC=∠ABC,∵四边形ABCD 内接于⊙O,∴∠ADC+∠ABC=180°.∴∠ADC=90°.在Rt△ADF 中,∠A=90°-∠F=90°-42°=48°.(3)连接EF.∵四边形ABCD 为⊙O 的内接四边形,∴∠ECD =∠A.∵∠ECD=∠CEF+∠CFE,∴∠A=∠CEF+∠CFE.∵∠A+∠CEF+∠CFE+∠DEC+∠BFC=180°, ∴2∠A+α+β=180°.∴∠A=90°-α+β2.。