04静电场中的导体

合集下载

大学物理-第3章-静电场中的导体

大学物理-第3章-静电场中的导体

R2 R1
在金属球壳与导体球之间(r0 < r < R1时):
q r0
作过 r 处的高斯面S1
q
S1 E2 dS 0

E2 r
q
40r 2
q
E2 40r 2 er
在金属球壳内(R1< r < R2时):电场 E3 0
在金属球壳外( r > R2时): 作过 r 处的高斯面 S 2
S2
E4
dS
在它形成的电场中平行放置一无限大金属平板。求:
金属板两个表面的电荷面密度?
解:带电平面面电荷密度0 ,导体两面感应电荷面密度分 别为1 和 2,由电荷守恒有
1 2 0 (1)
导体内场强为零(三层电荷产生)
σ0 σ1
σ2
E0 E1 E2 0
(2)
E0
0 1 2 0
(3)
20 20 20
导体表面任一点的电场强度都与导体表面垂 直。
20
2.导体在静电平衡状态下 的一些特殊性质
❖ 导体是等势体,导体表面是等势面。
在导体内部任取两点P和Q,它们之间的电势差可以表示为
VP VQ
Q
E
dl
0
P
❖ 导体表面的电场强度方向与导体的表面相垂直。
❖ 导体上感应电荷对原来的外加电场施加影响,改
Q1
Q2
0
q
q
0

E4r
q
4 0 r 2
E4
q
4 0 r 2
er
43
思考:(3)金属球壳和金属球的电势各 为多少?
解:设金属球壳的电势为U壳 ,则:
U壳
R2 E4 dl

(整理)静电场中的导体和电介质

(整理)静电场中的导体和电介质

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。

(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。

从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。

用一句话说:静电平衡时导体为等势体。

二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。

S 面是任意的,∴导体内无净电荷存在。

结论:静电平衡时,净电荷都分布在导体外表面上。

2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。

(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。

又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。

4静电场中的导体

4静电场中的导体

3) 推论:处于静电平衡的导体是等势体 导体表面是等势面 导 体 是 等 势 体
en
E dl
E
+
+ + +
E dl 0
导体内部电势相等
dl
+
+
et
U AB E dl 0
AB
A
B
注意 当电势不同的导体相互接触或用另一导体(例如导 线)连接时,导体间将出现电势差,引起电荷宏观 的定向运动,使电荷重新分布而改变原有的电势差, 直至各个导体之间的电势相等、建立起新的静电平 衡状态为止。
各个分区的电场分布(电场方向以向右为正):
1 2 3 4 在Ⅰ区:E 2 0 2 0 2 0 2 0 1 Q 方向向左 0 2 0 S
Eint 0
◆ 导体表面紧邻处的场强必定和导体表面垂直。
E S 表面
证明(1):如果导体内部有一点场强不为零,该点的 自由电子就要在电场力作用下作定向运动,这就不 是静电平衡了。 证明(2):若导体表面紧邻处的场强不垂直于导体表 面,则场强将有沿表面的切向分量 Et,使自由电子 沿表面运动,整个导体仍无法维持静电平衡。
const .
E dS
S
q
i
i
0
E dl 0
L
3. 电荷守恒定律
讨论题:
1. 将一个带电+q、半径为 RB 的大导体球 B 移近一 个半径为 RA 而不带电的小导体球 A,试判断下列说 法是否正确。 +q B (1) B 球电势高于A球。 (2) 以无限远为电势零点,A球的电势 A 0 。 (3) 在距 B 球球心的距离为r ( r >> RB ) 处的一点P, q /(40。 r2) 该点处的场强等于 (4) 在 B 球表面附近任一点的场强等于 B / 0 ,

静电场中的导体和电介质

静电场中的导体和电介质
-
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理

大学物理-静电场中的导体

大学物理-静电场中的导体

E内= 0 等势体
静电平衡时的导体
接地 :取得与无限远相同的电势 通常取为零)。 (通常取为零)。
6
半径为R的金属球与地相连接 的金属球与地相连接, 例1. 半径为 的金属球与地相连接,在与球心 相距d=2R处有一点电荷 处有一点电荷q(>0),问球上的 相距 处有一点电荷 , 感应电荷 q'=? q'?q =
q3
q2 q1
B
R1 R2
A
R3
22
解: (1)当球体和球壳为一般带电体时 ) 用高斯定理可求得场强分布为
r −R E3 = (q1 + 3 Q) ( R2 ≤ r ≤ R3 ) 2 4πε0r R3 − R 1
3 3 2 3 2
4πε0 R q1 E2 = 2 4πε0r
E1 =
q1
3 1
r
(r ≤ R1 )
E = σ / εo
1 3.面电荷密度正比于表面曲率 σ ∝ R 面电荷密度正比于表面曲率
31
例4-2 (3)如果外壳接地,情况如何? )如果外壳接地,情况如何? (4)如果内球接地,情况又如何? )如果内球接地,情况又如何? (3)如果外壳接地 ) 则: 外壳电势= 外壳电势= 无穷远处电势 =0 外壳带电量= 外壳带电量=Q’
S
ε0 V
S 是任意的。 是任意的。 令S→ 0,则必有ρ 内 = 0。 。
8
必为零。 2.导体壳: 外可不为零,但σ内 和 E内必为零。 导体壳: 可不为零, 导体壳 σ
σ内 = 0
E内 = 0
S内
σ外
理由: 理由: 在导体中包围空腔选取 高斯面S 高斯面 , 则:
S
r r ∫ E导内 ⋅ d s = 0

静电场中的导体

静电场中的导体

分布在导体的表面上。
4、导体以外,靠近导体表面附近处的场强大小与导 体表面在该处的面电荷密度 的关系
E 0

静电平衡时导体上电荷的分布
1、 实心导体
+
+ + + +
E 0
+
S
+ + +
+
q E dS 0
S
0
q 0
结论: 导体内部无电荷,电荷只能分布
q
+
q
+
+
q
+
实验验证
外表面所带感应电荷全部入地
总结: 空腔导体(无论接地与否)将使腔内不
受外场影响。
接地空腔导体将使外部空间不受腔内电
场的影响。
四 有导体存在时场强和电势的计算
电荷守恒定律 电荷分布
静电平衡条件
E U
例1、有一外半径R1,内半径为R2的金属球壳。在球壳 中放一半径为R3的金属球,球壳和球均带有电量10-8C的 正电荷。问:(1)两球电荷分布。(2)球心的电势。 (3)球壳电势。 + + + 解:(1)、电荷+q分布在内球表面。 + - + 球壳内表面带电-q。
S A+ +
A
+
+
B+ B +
+ +
+
b、空腔内有带电体
E dS 0
S1
q
i
0
Qq
电荷分布在表面上
思考: 内表面上有电荷吗?
E dS 0 qi 0

静电场中的导体

静电场中的导体
静电场中的 导体
一、导体的静电平衡条件
+
++++ + + + +
感应电荷
静电平衡条件
导体 内部 的场
E0
E E0 E'
E'
静电平衡时
E E' E0
E E0 E' 0
外场
E0
•静电平衡条件: 导 感应场 E '
体内部场强为0。
导体内部的场 E
二、处于静电平衡的导体的性质
1.静电平衡时导体为等势体,导体表面 为等势面。
R2 R3
(1)球壳B内、外表面上的电量及球A和球壳B的电势
(2)将球壳B接地然后断开,再把金属球A接地,求金 属球A和球壳B内、外表面上各带有的电量以及球A 和球壳B的电势
• 例:有一块大金属平板,面 积为S,带有总电量Q,在 其近旁平等放置第二块 大金属板,此板原来不带 电.求静电平衡时,金属板 上的电荷 分布及其空间
如尖端放电
三、静电空腔内表面无电荷,全部电 荷分布于外表面。
证明:在导体内作高斯面
S
E
dS
q
0
导体内 E 0, q 0
面内电荷是否会等量异号?
如在内表面存在等量异号 电荷,则腔内有电力线, 电势沿电力线降落,所以 导体不是等势体,与静电 平衡条件矛盾。
所以内表面无电荷,所有电荷分布于外表 面。
• 不管外电场如何变化,由于导体表面电 荷的重新分布,总要使内部场强为 0。
• 空腔导体具有静电屏蔽作用。例如:高 压带电作业人员穿的导电纤维编织的工 作服。
2.腔内有电荷
空腔原带有电荷 Q ,将 q 电荷放入空腔内。 结论:

静电场中的导体与电介质

静电场中的导体与电介质

§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。

在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。

导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。

从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。

(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。

)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。

可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。

充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。

对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。

1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。

电场中的导体和电介质

电场中的导体和电介质

二、电容器
1、电容器的定义
两个带有等值而异号电荷的导体 所组成的系统,叫做电容器。
+Q
-Q
2、电容器的电容
如图所示的两个导体放在真空中,它们所 带的电量为+Q、-Q,它们的电势分别为 V1、V2,定义电容器的电容为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; •计算两极板之间的电势差; •根据电容器电容的定义求得电容。
3-4 物质中的电场
在静电场中总是有导体或电介质存在的,而且静电场 的一些应用都要涉及静电场中导体和电介质的行为, 以及它们对静电场的影响。
一、静电场中的导体
1、静电感应及静电平衡
若把导体放在静电场中,导体中的自由电子将在电场力的 作用下作宏观定向运动,引起导体中电荷重新分布而呈现 出带电的现象,叫作静电感应。 开始时, E’< E0 ,金属内部的场强不零, 自由电子继续运动,使得E’增大。这个过 程一直延续到E’= E0即导体内部的场强为零 时为止。此时导体内没有电荷作定向运动, 导体处于静电平衡状态。




根据静电平衡条件,空腔 由静电平衡条件,腔内壁非均匀 分布的负电荷对外效应等效于: 导体内表面总的感应电荷为 -q, 非均匀分布;外表面,总的感 在与 q 同位置处置 q 。 应电荷为 q,非均匀分布。
9





R


q q q U U U U U 0 q 壳 地 内壁 外壁 q q O o d q外壁 0
C Q V
Q C= 4 0 R V

静电场中的导体

静电场中的导体
E2 4 0 r 2
R1 r R2
E3
1
4
0
Q q/ r2
U
R1
E.dr
R2 R1
E2.dr
R2 E3.dr 0
r R2
q/
4 0
1 R1
1 R2
1
4 0
Q q/ R2
0,
解得
q
R 1
Q
R
2
故外球壳外表面荷电 Q q/ Q R1 Q
R2
17
10
例8-14 如图所示,一带正电Q的点电荷离半径为R的金属球壳 外的距离为d,求金属球壳上的感应电荷在球心O处的场强。
q/
R
r
E0 0 E/ d
Q
解 以球心为坐标原点,球心指向点电荷的方向为矢径方向,则
点电荷在球心处的场强
Q
E0 4 0 (R d )2 r0

E E/ E 0

0
q
总之,导体壳内部电场不受壳外电荷的影响,接地导体使 得外部电场不受壳内电荷的影响。这种现象称为静电屏蔽。
12
2、尖端放电
在带电尖端附近,电离的分子与周围分子碰撞,使周围的 分子处于激发态发光而产生电晕现象。
+ +
++ +++
+ +
+++
+
尖端效应在大多数情况下是有害的:如高压电线上的电晕, 故此,高压设备中的金属柄都做成光滑的球形。
△s面上σ均匀, E1=常矢 ,且垂直于导体表面,又E内=0
e
E表
E s1 1
0
ds
s

静电场中的导体和电介质

静电场中的导体和电介质

2.1.1 导体的静电平衡条件 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,则该带电体系达到了静电平衡。 均匀导体的静电平衡条件就是其体内场强处为0。 从导体静电平衡条件还可导出以下推论: (1)导体是个等位体,导体表面是个等位面。 (2)导体以外靠近其表面地方的场强处处与表面垂直。
2.2.3 电容器的并联、串联 (1) 并联 电容器并联时,总电容等于个电容器电容之和。 (2) 串联 电容器串联后,总电容的倒数是各电容器电容的到数之和
2.2.4 电容器储能(电能) 设每一极板上所带电荷量的绝对值为Q,两极板间的电压为U,则电容器储存的电能 从这个意义上说,电容C也是电容器储能本领大小的标志。
(2)极化电荷的分布与极化强度矢量的关系 以位移极化为模型,设想介质极化时,每个分子中的正电“重心”相对负电“重心”有个位移l。用q代表分子中正、负电荷的数量,则分子电矩P分子=ql。设单位体积内有 n个分子,则极化强度矢量P=np分子=nql。
取任意闭合面S,根据电荷守恒定律,P通过整个闭合面S的通量应等于S面内净余的极化电荷∑q′的负值 ,即 这个公式表达了极化强度矢量P与极化电荷分布的一个普遍关系。
(3)库仑平方反比率的精确验证 用实验方法来研究导体内部是否确实没有电荷,可以比库仑扭秤实验远为精确的验证平方反比律。 卡文迪许的验证实验装置见教材中图2-11。实验时,先使连接在一起的球1和壳3带电,然后将导线抽出,将球壳3的两半分开并移去,再用静电计检验球1上的电荷。反复实验结果表明球1上总没有电荷。
(1) 平行板电容器 平行板电容器由两块彼此靠得很近的平行金属极板组成。设两极板A、B的面积为S , 带电量分别为±q , 则电荷的面密度分别为 ±σe =±q/S 根据式(2.1),场强为 E = σe/ε0 , 电位差为 根据电容的定义

静电场中的导体和电介质电磁学

静电场中的导体和电介质电磁学
静电屏蔽
如前所述,导体壳的外表面保护了它所 包围的区域,使之不受导体壳外表面上的 电荷或外界电荷的影响,这个现象称为静 电屏蔽.
图2.12 <a> 腔内无电 荷
图2.12 <b>腔内有电荷
图2.12 <c> 导体腔接
图2.12 <d> c的等效图

图2.12 静电屏蔽
〔3〕静电场边值问题的唯一性定理
其中任意两导体之间都有电容,但并不完全取决 于自己的几何形状和相对位置,与周围其他导
§2.4 静电场中的电介质
1、电介质的极化 2、极化强度与退极化场 3、电介质的极化规律
§2.4.1 电介质的极化
1、电介质〔dielectrics〕 是绝缘体,内部大量的束缚电荷. 与导体和静电场的相互作用,既有相似之 处,但也有重要差别.
第二章 静电场中的导体和电介质
第二章 静电场中的导体和电介质
§2.1 物质的电性质 §2.2 静电场中的导体 §2.3 电容和电容器 §2.4 静电场中的电介质 §2.5 电介质中静电场的基本定理 §2.6 边值关系和有介质存在时的唯一性
定理
§2.1 物质的电性质
1、 导体、绝缘体与半导体 2、 物质的电结构
由于空气中存在离散的自由电荷,永电体 表面上的极化电荷会吸引一些自由电荷 而最终会被中和失去作用.
2、极化率与相对介电常数
设平行板电容器未填充电介质时极板间的场强
为E0<外场>,填充电介质后电场为E,由介质极
化规律知,介质极化强度为: P 0 E
与电容器正极板相对的介质表面有极化电荷面
密度:' P•nP,与负极板相对的介质表
§2.1.1 导体、绝缘体与半导体

静电场中导体

静电场中导体

q
S内
i
0
由于高斯面 S 可取得任意小,所以导 体内无净电荷分布。
2. 静电平衡导体, 其表面附近场强的大 ---- - - E S P 小与该处表面的电荷 面密度成正比。 + +S ' + +
+ + ++ + + ++ + +
S '
dS E dS E dS E dS E S S ' 侧面
1. 孤立带电导体接地时,为什么所有 电荷会流向地球?
2. 地球的电势为何视为零?
Q R q r
1 Q VR 40 R
尖端放电现象:

+ + + + +
避害:避雷针的使用等。
趋利:电焊,静电喷漆, 电子点火等。
§13-4 空腔导体内外的静电场 静电屏蔽
一、空腔导体内外的静电场 1. 空腔内没有电荷 空腔内没有电荷时,电荷只能分布 在导体外表面。空腔内没有电场分布。
P
σ
3. 孤立导体静电平衡时,表面曲率越 大的地方,电荷面密度越大。
+ + + + + + + + + + + +
以下例定性说明。
例: 设有两个相距很远的带电导体球, 半径分别为 R 和 r (R >r),用一导线将两 球相连, 哪个球带电量大?哪个球的面电 荷密度大?
R
Q
r q
R 解:设系统达到静电平衡时,两球的 带电量分别为Q 和 q , 两球的电势

静电场中的导体总结

静电场中的导体总结

q 2
方向朝左
2 0 s q EC 2 0 s
EB
q
方向朝右
X
方向朝右
16
2、右板接地
4 0
高斯定理:
q 1 2 s 2 3 0
1 2
0
A
3
q
B p
4
0
C
q
P点的合场强为零:
1 2 3 0
1 0
EA 0
q 2 s q 3 4 0 s q EB EC 0 0s
根据高斯定理有:
E ds
3
p
4
E1 E2 E3
q
i
i
2 3 0
0

( 2 3 )s
E4
0
0
X
E p E1 E2 E3 E4 0 P点的场强是四个带电面产生 1 2 3 4 0 E p E1 E2 E3 E4 0, E p
q p
V p Vq
Ei dl 0
p
导体静电平衡条件:
Ei 0
q
V p Vq
导体表面:场强方向处处垂直于表面 表面即为一等势面
4
导体的静电平衡
静电平衡条件:
场强
导体内部场强处处为零
表面场强垂直于导体表面
' E内 E 0 E 0 ' E表面 E0 E 表面
E1 0 E3 0 E2 4 0 r22 q1
q1 q1
A
B
q1 q2 E4 4 0 r42
q1 q1 q1 q2 1 q1 q2 V1 ( ) ; V3 4 0 R1 R2 R3 4 0 R3 1 q1 q1 q1 q2 1 q1 q2 V2 ( ) ; V4 4 0 r2 R2 R3 4 0 r4 1

静电场中的导体

静电场中的导体

物理学
势面。
1.2 静电平衡导体上的电荷分布
(1)导体内部各处的净电荷为零, 电荷只分布在导体的表面
如下图所示,由于导体内的电场强度E处处为零,所以通 过导体内任意高斯面的电通量为零,即
S E dS 0
根据高斯定理可知,此时高斯面 所包围的电荷量的代数和必然为零。 因为此高斯面是任意的,因此可得上 述表述是正确的。
若把金属导体放在外电场中,导体内部的自由电子在电 场力的作用下作宏观定向运动,从而使导体内正负电荷重新 分布。这种在外电场作用下,引起导体中电荷重新分布而呈 现出的带电现象,称为静电感应现象。
2.静电平衡条件
如下图所示,在电场强度为E0的匀强电场中放入一块金 属板。在电场力的驱动下,金属内部的电子逆着外电场的方
E dS E dS+ E dS+ E dS
S
上底
ห้องสมุดไป่ตู้
下底
侧面
E S +0 S +E S cos E S 2
此高斯面包围的净电荷为σΔS,根据高斯定理有
所以
ES S 0
E0
由上式可知,在静电平衡时,导体表面上各处的面电荷密 度与该表面外附近处的场强的大小成正比。
(3)孤立的导体处于静电平衡时,它的表面 各处的电荷面密度与各处表面的曲率有关,曲 率越大的地方,电荷面密度越大
对于腔内有带电体的空腔导体,如右图所示,空腔内表面 必定带有与腔内带电体等量异号的电荷,外表面带有与腔内带 电体等量同号的电荷。若导体接地,则空腔内带电体的电荷变 化将不再影响导体外的电场。
如下图所示,对于在腔内带电体的空腔导体外还有一带 电体B,由于静电感应,空腔导体外表面上的电荷及其带电 体B上的电荷将重新分布。静电平衡时,空腔导体有如下特 点:

静电场中的导体

静电场中的导体

解: 利用金属球是等势
R
球体上处处电势: U= 0 o
球心处: Uo= 0
即q 0 : 4 dqoR4q o2R0
q q
4oR 4o2R
q q2
R q
课堂练习: 有一外半径R3, 内半径R2的金属球
壳,在球壳中放一半径R1的同心金属球,若使
球壳带电Q和球带电q.
问: 两球体上的电荷如何 分布?球心电势为多少?
EB
Q 2oS
1 2 3 4 (2)第二块板接地
Q
则 4与大地构成一导体 40
A
BC
.P
同理可得:
12 QS 230
E
1 2 30
联立求解:
102Q S3Q SEAEC0 EBQ oS
若第二块板原来带有电荷Q’,现让其接地,结果如何?
例2 半径为R的金属球与地相连接,在与球心相距d=2R 处有一点电荷q(>0),问球上的感应电荷 q'=?
V壳4π10(R q3R q3Q外 R3表 )面 0 Q外表面 0
V球
R2
Edl
R1
q
q
R R 124q0r2d r4q0(R 11R 12) R 1
3)若接地不是外壳球而是内球 内球上所带电R量2 为零R 3 吗??
V 球 4π 10(R q1 R q2 Q R 3q)0
Q q
q q
电荷分布?
结论:一般情况下, 净电荷分布在导体 的外表面, 若导体 空腔内有带电体, 内外表面都有净电荷
3. 导体表面附近的场强
S 在导体表面上任取面元S,
如图作底面积为S的高斯柱面,轴线垂直S
则有 : 0 0
E d S 上 E d S 下 E d S 侧 E d S

静电场中的导体具有什么特征

静电场中的导体具有什么特征

静电场中的导体:
内部场强为零,电势处处相等,导体内部无静电荷!比如外电场迫使正电荷向导体的右端移动,在导体本身中左端是正电荷有端是负电荷,在导体内部又产生了一个电场与外界电场等大反向,所以电荷在导体内部移动不受电场力的作用,所以移动导体不会引起电势能的增加,所以导体内部电势处处相等。

电势到底等于多少,由导体所在点在外电场的电势和内电场电势相加得到,因为电势是标量嘛.
静电场:
静电场,指的是观察者与电荷量不随时间发生变化的电荷相对静止时所观察到的电场。

它是电荷周围空间存在的一种特殊形态的物质,其基本特征是对置于其中的静止电荷有力的作用。

库仑定律描述了这个力。

性质:
根据静电场的高斯定理:
静电场的电场线起于正电荷或无穷远,
终止于负电荷或无穷远,故静电场是有源场.
从安培环路定理来说它是一个无旋场.
根据环量定理,静电场中环量恒等于零,表明静电场中沿任意闭合路径移动电荷,电场力所做的功都为零,因此静电场是保守场.根据库仑定律,两个点电荷之间的作用力跟它们的电荷量的乘积成正比,和它们距离的平方成反比,作用力的方向在它们的连线上,即F=(k·q1q2)/r2;,其中q1、q2为两电荷的电荷量(不计正负性)、
k为静电力常量,约为9.0e+09(牛顿·米2)/(库伦2;),r为两电荷中心点连线的距离。

注意,点电荷是不考虑其尺寸、形状和电荷分布情况的带电体。

是实际带电体的理想化模型。

当带电体的距离比它们的大小大得多时,带电体的形状和大小可以忽略不计的点电荷。

第8章静电场中的导体和电介质知识点复习

第8章静电场中的导体和电介质知识点复习

d O'
导 体 板

+
直线
O
x
E2 2 0
由总电场
E E E 0 O 1 2 得 2 d
(3)
二、 静电场中的电介质 1. D 的高斯定理 2. 电容器的电容 3.孤立导体球的电容 4. 电容器的能量 5. 静电场的能量
D d S q 0 内
电容:

(6)
2
2 r L 0 C ln( R 2/R 1)
(5)
例4:两个同心金属球壳,内球壳半径为R1,外球壳半径 为R2,中间充满相对介电常数为 r 的均匀介质,构成一 个球形电容器。 (1) 求该电容器的电容; (2)设内外球壳 上分别带有电荷+Q和-Q,求电容器储存的能量。 解: (1)设内外球壳上分别带电Q和-Q, 则两球壳中间的场强大小为
Q 20r rL
R2
R1 dr
r
在电场中取体积元 d V ( 2 rL ) d r 则在 dV 中的电场能量为:
L
r
+Q
–QLeabharlann d W0r2
2 E d V
2 R 1 Q d r 2 W W d R 1 r 2 2 L 0 r
2 1 Q R 1 Q ln 2 22 rL R 2 C 0 1
由导体内部场 强为零得
3. 有导体存在时静电场的分析与计算
1
2
3
4
1 2 3 4 0 2 0 2 0 2 0 2 0
S
P
(1)
例1: 同心导体球面,半径分别为R1和R2,电量分别为 Q1和Q2。当把内球接地时,内球带电多少? 解:内球接地,其电势为零,设其电量为Q1

第四章 静电场中的导体

第四章 静电场中的导体
外不变,E外不变,q外 Q q不变。
Qq
+q
2º若将腔内带电体与导体壳连接, 会出现什么情况?
腔内无电荷分布:E内=0 屏蔽外场
Q
q
3º若将导体壳接地, 又会出现什么情况?
+q
q外 0 导体壳外:E外=0
屏蔽内场
12
静电屏蔽 在静电平衡的条件下:
当腔内有带电体时,将壳接地,
腔内带电体的电场对壳外无影响
E3
4 0
Q1 Q2
2 0S
如第二块金属板右边接地
① 左边导体板总电量不变,但右边导体板 总电量变化
27
(1 2 )S Q1
(1)
② 导体内任意一点场强=0
1 2 3 4 0
(3)
20 20 20 20
1 2 3 4 0 20 20 20 20
(4)
2 3 1 4 0
+q
屏蔽内场 在外电场中, 导体壳内和腔内无电场, 腔内物体不会受外界影响
EE==00
屏蔽外场
Q+q
13
五、有导体存在时静电场的分析与计算
例1 一半径为 R1的带电球体A,总电量q1 ,在它 外面有一个同心的带电球壳B,其内外半径分别为 R1 和R2 ,总电量Q。 试求:
(1)此系统的电场
分布及电势分布。
σ等于零)。
37
在球状导体的情况下: 接地点的电势等于无穷远处的电势等 于零,但与地相连的表面一般有电荷。
注意:公式 E / o 中E是所有表面
电荷产生的总场强大小。 σ是 紧靠场点处那个带电表面的面
电荷密度。而 E / 2o中E是
无限大平板情况下一个表面的 电荷产生的场强大小。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

场 两板之间 强 分 布 两板之外
E
Q
0S
E
E0
例:如图:在一个接地的导体球附近有一个 点电荷q。求导体球表面上感应电荷电量Q。
解:接地: 导体的电势为零。
V0 q 4 0 L Q 4 0 R
0
q
L
R O
地的电势和无限远的电势都定为零
要求:导体离地的距离远大于导体本身 的线度。
8—6电容
电容器
一、电容器:储存电荷及电能的一种“容器”
二、电容:储存电荷及电能的能力的大小。
例:半径为R、电量为Q的孤立导体球处 于真空中, 导体球电势: 比值:
Q V
导体
无外电场时
导体的静电感应过程
E外
加上外电场后
导体的静电感应过程
E外
+
加上外电场后
导体的静电感应过程
E外
+
+
加上外电场后
导体的静电感应过程
E外
+ + +
+ +
加上外电场后
导体的静电感应过程
E外
+ +
+
加上外电场后
导体的静电感应过程
E外
+ + +
+ +
加上外电场后
导体的静电感应过程
E外
D 0 E P 0 E e 0 E 1 e 0 E

:相对介电常数
0 r
:介电常数
D dS qi
n
l
S l
S l cos


cos
P cos Pn
电介质表面产生的极化电荷面 密度等于该处电极化强度沿表 面外法线方向的投影。
n

n
P
0

P cos Pn
π 2:
-
-
+ + + + +
电晕放电 kv
电 晕 放 电
尘埃带电
管壁堆积(集尘)
净气出口
除尘
烟气入口
尘埃出口
静电分离
―沙里逃金”
金属百叶窗


静电与农作物生长 大气电场和大气电流对植物的 生长生死攸关,如同阳光、空气、 水一样。植物生长于大气电场强 的地方,其光合作用进行得越快。 大气,植物的尖头树冠、毛状叶 片、圆锥花絮等,都是为满足吸 收大气中电荷的需要而逐步进化 成的“接受天线”。 地表附近场强约为130V/m,每秒钟有 1800C的正电荷入地,植物为其重要通道。
E
ES
0S
0 0 r
说明: 电介质虽没有充满空间,但当电介质的 表面是等势面时, E= E0 / r
总结:
$当充满均匀电介质,其内部的电场强 度为原电场强度的 1 r 倍。 $对均匀电介质,极化电荷只出现在表面。
$当充满某一均匀电介质或几种均匀电介质,但介 质的表面是等势面或垂直等势面时,只要将真空 中的公式中的 0 改为介质的介电常数 r 0 即可。
E= E0 / r
例 :平行板电容器充电后,极板上面电荷密 6 度 0 1 . 77 10 C / m,将两板与电源断电以后,再 插入 r 8 的均匀电介质后,计算电介质中的 E
解:由均匀介质中的高斯定理

S
E dS
q

+ 0
– 0
i
高斯面
S
q i E dS
S

例:有一个点电荷,带电量Q0,放在均匀的介电
常数为 电介质中。求任一点场强。
解:


S
Q E dS 0
高斯面
-- --+ -- --

E
Q0 4 r
2

Q0 4 0 r r
2
r
说明:当均匀电介质充满电场的全部空间时,
+ + +
+ +
加上外电场后
导体的静电感应过程
+ + +
E外
+
+ + +
加上外电场后
导体的静电感应过程
E外
+ + +
+ + +
加上外电场后
导体的静电感应过程
+ + + + + + + +
E外
加上外电场后
导体的静电感应过程
+ + + + + + + + + +
E外
加上外电场后
导体达到静平衡
+ + + + + + + + + +
五、电极化强度
电极化强度 P 是反映介质极化程度的物理量。 极化时: p 0
1、电极化强度定义:
p i P V
- +
C / m
2
单位:
E0
实验表明: 对于各向同性的电介质,其中任一点 处的电极化强度与该点的总场强成正比。
P e 0 E
e :介质的极化率
思路:
两空腔内的电场都不受外界影响。 qb、qc 受力为零。
例1.已知:导体板A,面积为S、带电量Q,在其旁边 放入导体板B。 求:(1)A、B上的电荷分布及空间的电场分布
(2)将B板接地,求电荷分布
1
A B 2 3 4
a
a点 b点 A板
1
2 0

2
2 0

3
2 0

4
2 0
介质中的高斯定理: 在静电场中,通过任意封闭 曲面的电位移通量等于该曲面所包围的自由电荷的 代数和。
D dS qi
S
注意: 电位移矢量 D 是一个辅助量。描写电场的基本物 理量是电场强度 E 。
七、各向同性的电介质中高斯定理: 对于各向同性的电介质:
P e 0 E
E n
E
n
S1
0
是空间所有电荷在表面附近 某点产生的合场强。
S2
3 、对孤立导体,表面各处的电荷面密度 与曲率有关。曲率越大的地方,电荷面密 度越大。 等势面
+ + + +
+
+ +
+
+ +
+ + + +
曲率较大(尖而凸出), 大。 曲率较小(比较平坦), 小。
曲率为负(凹进去), 最小。
腔内和导体内部: 1
E 0
E 0
2
E 0
q
+ +
腔体外及外表面的感应电荷在腔内的空间 产生的合场强为零。
如: 电子仪器、或传输微弱信号的导线中都常用 金属壳或金属网使内部电路不受外电场干扰。
2 、金属空腔内有带电体
不影响外界
+
E0
-q
+
Q+q
q
当导体接地时,腔内及内表面的感应电荷在 腔外的合场强为零。 例如:高压设备都用金属导体壳接地做保护, 内外互不影响。
人工静电场设置技术:
1.实用菌
数据来源:物理 原理技术 应用Vol.29,550-552, 2000
猴头菇\平菇
0.5m
处理方法: 场强 100kV/m 上午、下午各2小时 效果比较: 猴头菇 产量提高37% 时间缩短26% 平 菇 产量提高51% 时间缩短44%
直 流 高 压
对植物电晕放电
8-6
2
2 0
1
0
A B 2 3
3
2 0
E 3 E 2 E1
a
1
2 0

2
2 0

3
2 0
0
1 2 3
b
A板
1S 2 S Q
E1 E 2 E 3
A
B
电荷分布
1 0
2 3
Q S
1
A B 2 3
有外电场时:
#无极分子 #有极分子
- + - + - + - + - + - +
所有分子
p i 方向相同
E
E
每个分子要转动

pi 0

pi 0
四、
电介质对电场的影响
'
外电场: E0
极化电荷产生的电场:E 介质内的电场: E
+ - - ++ - + + + +
例: 平行板电容器两板带电分别为 ,(不 考虑边缘效应),求两板之间的电场强度。
解法1:
E

2 0


2 0

0


解法2: E
0
+ + + +
-
四、静电应用: 1、Van de Graff 起电机 2、静电除尘
3、静电分离
4、静电与农作物生长
静电除尘 强电场
静电场中的导体与电介质
静电场中的导体 电容器和电容
静电场中的电介质、介质中的高斯定律
相关文档
最新文档