最新高一向量知识点加例题(含答案)
高中平面向量知识点详细归纳总结(附带练习)
向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
高中数学向量专题复习(知识点+典型例题+大量习题附解析)精编材料值得拥有
平面向量平面向量平面向量的概念与线性运算向量概念及表示向量的线性运算平面向量基本定理及坐标表示平面向量基本定理正交分解及坐标表示坐标运算平面向量的数量积数量积的定义数量积的性质一、平面向量的概念与线性运算1.向量概念及表示定义:即有大小,又有方向的量叫做向量.表示:有向线段小字母上加箭头起点到终点,大字母加箭头向量的长度(模):a r 或AB 的模记作||a 或||AB . 几种特殊向量:2.向量的线性运算例如:AB BC CD AD +=u u u r u u u r u u u r u u u r +,0AB BC CA +=u u u r u u u r u u u r r +,BC BA AC -=u u u r u u u r u u u r ,DE DF FE -=u u ur u u u r u u u r .向量不等式:||||||||||||a b a b a b -≤±≤+r r r r r r (等号在向量a r ,b r共线时取得).例如:||3a =r ,||5b =r ,则||a b +r r 的最大值为8,当且仅当a r ,b r同向时取到;最小值为2,当且仅当a r ,b r反向时取到.3如图:正六边形ABCDEF 中,BA CD EF ++=u u u r u u u r u u u r( )A .0rB .BE u u u rC .AD u u u r D .CF u u u ru u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r4根如图所示,已知正六边形ABCDEF ,O 是它的中心,若BA u u u r =a r ,BC uuu r =b r ,试用a r ,b r 将向量OE uuu r ,BF u u u r ,BD u u u r,FD u u u r表示出来.u u u r u u u r r r u u u r u u u r u u u r u u u r u u u r r r 在ABCD Y 中,AB a =u u u r r ,AD b =u u u r r ,3AN NC =u u u r u u u r,M 为BC 的中点,则MN =u u u u r_____.u u u r u u u r r r u u u u r u u u r u u u u r u u u r u u u r r r向量共线定理:向量(0)a a ≠r r r与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r . 应用:解决三点共线问题. 重要结论:ABC V ABC V 中,12AM AC =u u u u r u u u r ,29AD mAB AC =+u u u r u u u r u u u r,则m =______.12u u u r u u u r u u u u r u u u r u u u r u u u r u u u r9设D ,E ,F 分别为ABC V 的三边BC ,CA ,AB ,的中点,则EB FC +=u u u r u u u r( )A .AD u u u rB .12AD u u u rC .BC u u u r D .12BC u u u r 11u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r解析:由0MA MB MC ++=u u u r u u u r u u u u r r可知M 为ABC V 的重心,则2211[()]()3323AM AD AB AC AB AC ==+=+u u u u r u u u r u u u r u u u r u u ur u u u r ,即3AB AC AM +=u u u r u u u r u u u u r,则3m =.答案:3练习题:A .0AD BE CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r r D .0BD BE FC --=u u u r u u u r u u u r r平行四边形ABCD 中,E 是AD 中点,BE AC F =I ,AF AC λ=,则λ=______.u u u r r u u u r r 111u u u r u u u r u u u r r r r r r答案:A20设1e u r ,2e u u r 是不共线向量,若向量1235a e e =+r u r u u r 与向量123b me e =-r u r u u r共线,则m 的值等于( )A .95-B .53-C .35-D .59- 解析,a r 与b r 共线,则满足b a λ=r r ,即12123(35)me e e e λ-=+u r u u r u r u u r ,则335m λλ=⎧⎨-=⎩,解得95m =-.答案:A21设a r 与b r 是两个不共线的向量,且向量a b λ+r r 与(2)b a --r r共线,则λ=( )A .0B .-1C .-2D .-0.5 解析:a b λ+r r 与(2)b a --r r共线,则存在μ满足((2))a b b a λμ+=--r r r r,即2a b a b λμμ+=-r r r r ,12μλμ=⎧⎨=-⎩,解得12λ=-.答案:D二、平面向量的基本定理及坐标表示1.平面向量基本定理如果1e u r ,2e u u r是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a r,有且只有一对实数1λ,2λ,使1122a e e λλ=+r u r u u r ,我们把不共线的向量1e u r ,2e u u r叫做表示这一平面内所有向量的一组基底.例1如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM c =u u u u r r ,AN d =u u u r u r ,试用c r,d u r表示AB u u u r ,AD u u u r .解析:设AB a =u u u r r ,AD b =u u u r r ,则1212c AM AD DM b a d AN AB BN a b ⎧==+=+⎪⎪⎨⎪==+=+⎪⎩r u u u ur u u u r u u u u r r r u r u u u r u u u r u u u r r r ,解得2(2)32(2)3a d c b c d ⎧=-⎪⎪⎨⎪=-⎪⎩r ur r r r u r ,所以4233AB d c =-u u u r u r r ,4233AD c d =-u u u r r u r . 答案:4233AB d c =-u u u r u r r ,4233AD c d =-u u u r r u r例2在梯形ABCD 中,AB CD ∥,2AB CD =,M ,N 分别为CD ,BC 的中点,若AB AM AN λμ=+u u u r u u u u r u u u r ,则λμ+=______. 解析:2AB AN NB AN CN AN CA AN AN CM MA =+=+=++=++=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u r u u u r124AN AB AM --u u u r u u u r ,所以8455AB AN AM =-u u u r u u u r u u u u r ,即45λ=-,85μ=,故45λμ+=.答案:452.正交分解及坐标表示正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.坐标表示:在平面直角坐标系中,分别取与x 轴,y 轴正方向相同的两个单位向量i r ,j r 作为基底,对于平面内的一个向量a r,有且只有一对实数x ,y ,使得a xi y j =+r r r,则有序实数对(,)x y 叫做向量a r的坐标,记作(,)a x y =r . 显然:(1,0)i =r ,(0,1)j =r ,0(0,0)=r坐标求法:图形表示文字表示起点在原点,向量坐标就是终点坐标 起点不在原点,向量坐标为终点坐标减去起点坐标坐标表示 (,)OA x y =u u u r2121(,)AB x x y y =--u u u r注意:向量没有位置的概念,表示相等向量的有向线段可以在平面上不同的位置,但向量的坐标是相同的.例如:如图所示,AB CD =u u u r u u u r ,位置不同,但(21,42)(1,2)AB =--=u u u r 和(32,31)(1,2)CD =--=u u u r坐标相同.坐标 设11(,)a x y =r ,22(,)b x y =r加法 1212(,)a b x x y y +=++r r减法1212(,)a b x x y y -=--r r数乘12(,)a x x λλλ=rr r ∥a b1221x y x y =例如:(1,2)a =r ,(3,4)b =r,则: (13,24)(4,6)a b +=++=r r, (13,24)(2,2)a b -=--=--r r, 2(21,22)(2,4)a =⨯⨯=r,若(1,2)a =r 与(,4)b m =r平行,则满足142m ⨯=,得2m =.例3已知向量(2,4)a =r ,(1,1)b =-r ,则2a b -=r r( )A .(5,7)B .(5,9)C .(3,7)D .(3,9) 解析:2(4,8)(1,1)(5,7)a b -=--=r r.答案:A例4已知(1,0)a =r ,(2,1)b =r ,(1)当k 为何值时,ka b -r r 与2a b +r r 共线;(2)若23AB a b =+u u u r r r ,BC a mb =+u u u r r r,且A ,B ,C 三点共线,求m 的值.解析:(1)(,0)(2,1)(2,1)ka b k k -=-=--r r ,2(1,0)(4,2)(5,2)a b +=+=r r,两者共线,则2(2)(1)5k -=-⨯,解得12k =-.练习题:解析:设AB a =u u u r r ,AD b =u u u r r ,则12AE a b =+u u u rr r,12AF a b =+u u u r r r ,则2()3AC a b AE AF =+=+u u u r r r u u u r u u u r ,则43λμ+=.答案:43如图所示,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM c =u u u u r r ,AN b =u u u r r ,则ABu u u r在平行四边形ABCD 中,AC 与DB 相交于点O ,E 是线段OD 的中点,AE 延长线与CD 交于F ,若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r( )A .1142a b +r rB .2133a b +r rC .1124a b +r rD .1233a b +r ru u u r u u u r r如图,平面内有三个向量OA u u u r ,OB u u u r ,OC u u u r ,OA u u u r 与OB u u u r 夹角为120︒,OA u u u r 与OC u u u r夹角为30︒,且||||1OA OB ==u u u r u u u r ,||23OC =u u u r,若OC OA OB λμ=+u u u r u u u r u u u r,则λμ+的值为_____.解析:作平行四边形ODCE ,则OC OD OE OA OB λμ=+=+u u u r u u u r u u u r u u u r u u u r ,4cos30OCOD ==︒,2tan30OCOE ==︒,即4λ=,2μ=,6λμ+=.答案:6r r r r r r r r r如图,在ABC V 中,点O 是B C 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB mAM =u u u r u u u u r,AC nAN =u u u r u u u r,则m n +的值为______.1m n u u u ru u ur u u u ru u u u r u u u r m n4233解析:2PA PC AB PB +=-u u u r u u u r u u u r u u u r 化简可得3PC AP =u u u r u u u r,即P在AC 上,两个三角形高相等,则34S PBC PC S ABC AC ==V V .答案:A如图,设P ,Q 为ABC V 内的两点,且2155AP AB AC =+u u u r u u u r u u u r,2134AQ AB AC =+u u u r u u u r u u u r,则ABP V 与ABQ V 的面积之比为______. 解析:如图作辅助线,EF ,GH 分别为两个三角形的高,15AE AC =u u u r u u u r ,14AG AC =u u u r u u u r ,则45S ABP EF AE S ABQ GH AG ===V V . 答案:45u u u r u u u r u u u r r233解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则OAC V 与OAB V 的面积比为2:3. 答案:Bu u u r u u u r u u u r r解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则面积比为4:3:2. 答案:Ar rr r如图:向量a b -=r r( )A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -u r u u rD .123e e -+u r u u r解析:由图可知12()3a b a b e e -=+-=-+r r r r u r u u r .答案:D如图:向量a b -=r r( )A .213e e -u u r u rB .1224e e --u r u u rC .123e e -u r u u rD .123e e -u r u u r解析:由图可知123a b e e -=-r r u r u u r.答案:C向量a b c ++r r r可表示为( )A .1232e e -u r u u rB .1233e e --u r u u rC .1232e e +u r u u rD .1223e e +u r u u r解析:a b c ++r r r 在图上画出来,可知1232a b c e e ++=+r r r u r u u r.答案:C向量a r ,b r ,c r在正方形网格中的位置如图所示,若c a b λμ=+r r r ,则λμ=______.解析:如图所示建立平面直角坐标系,可得(1,1)a =--r ,(6,2)b =r ,(1,3)c =--r,则(,)(6,2)c a b λμλλμμ=+=-+=r r r(6,2)(1,3)μλλμ-+=--,解得2λ=-,12μ=-,则4λμ=. 答案:4三、平面向量的数量积1.数量积的定义向量夹角:已知两个非零向量a r 和b r ,作OA a =u u u r r ,OB b =u u u r r,则(0180)AOB θθ∠=︒≤≤︒叫做向量a r 与b r的夹角.0θ=︒时,a r 与b r 同向;180θ=︒时,a r 与b r 反向;90θ=︒时,ar与b r 垂直,记作a b ⊥r r .数量积:已知两个非零向量a r 与b r ,我们把||||cos a b θr r叫做a r 与b r 的数量积(或内积),记作a b ⋅r r ,即||||cos a b a b θ⋅=r r r r,其中θ是a r 与b r 的夹角.规定:零向量与任一向量的数量积为0.注意:点乘符号“⋅”不能省略,两个向量的数量积结果为实数,不再是向量.090θ︒≤<︒时,0a b ⋅>r r ;90θ=︒时,0a b ⋅=r r ;90180θ︒<≤︒时,0a b ⋅<r r.例1ABC V 中,||5BC =u u u r ,||8CA =u u u r,60C ∠=︒,求BC CA ⋅u u u r u u u r .解析:设BC u u u r 和CA u u u r 的夹角为θ,则180120C θ=︒-∠=︒,因为||5BC =u u u r ,||8CA =u u u r,则||||cos 58cos12020BC CA BC CA θ⋅==⨯⨯︒=-u u u r u u u r u u u r u u u r.答案:20-投影:||cos (||cos )a b θθr r叫做向量a r 在b r 方向上(b r 在a r 方向上)的投影.常用投影计算公式:||cos ||||||a ba a ab θ⋅==r rr r r r ||a b b ⋅r r r . a b ⋅r r 的几何意义:数量积a b ⋅r r 等于a r 的长度||a r与b r 在a r 方向上的投影||cos b θr 的乘积.类比于物理中的做功||||cos W F s θ=u r r.例2如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC ⋅=u u u r u u u r_____.2.数量积的性质 a r 与b r 同向时,||||a b a b ⋅=r r r r ;a r 与b r 反向时,||||a b a b ⋅=-r r r r.a cbc ⋅=⋅r r r r ,不能得到a b =r r,即数量积不满足消去律. ()()a b c a b c ⋅⋅≠⋅⋅r r r r r r,即数量积不满足结合律.设向量a r 与b r 夹角为θ,11(,)a x y =r ,22(,)b x y =r.练习题:如图,非零向量OA a =u u u r r ,OB b =u u u r r ,且BC OA ⊥u u u r u u u r ,C 为垂足,若OC a λ=u u u r r,则λ=( )A .||||a b a b⋅r rr r B .||||a b a b ⋅r r r rC .2||a b b ⋅r r rD .2||a b a ⋅r rrr r解析:如图,建立坐标系,设AEu u u r与AFu u u r夹角为θ,则||||cosAE AF AE AFθ⋅==u u u r u u u r u u u r u u u r 2212()||cos2AFθ+u u u r,||cosAFθu u u r为AFu u u r在AEu u u r方向上的投影,由投影定义可知,只有点F取点C时,投影有最大值,此时19(2,)(2,1)22AE AF⋅=⋅=u u u r u u u r.答案:C58如图,在等腰直角三角形ABC中,90A∠=︒,22BC=,G是ABCV的重心,P是ABCV内的任意一点(含边界),则BG BP⋅u u u r u u u r的最大值为_____.解析:如图所示,2222225||413333BG BD AB AD==+=+=u u u r,25||||cos||cos3BG BP BG BP BPθθ⋅==u u u r u u u r u u u r u u u r u u u r,则BG BP⋅u u u r u u u r的最大值即||cosBPθu u u r最大,由投影定义可知,当P与C重合时,有最大值,由余弦定理得222581310cos2102522BD BC CDBD BCθ+-+-===⋅⨯,则最大值25310||||cos224310BG BP BG BCθ⋅==⨯⨯=u u u r u u u r u u u r u u u r.数学浪子整理制作,侵权必究。
高一数学平面向量知识点及典型例题解析
高一数学 第八章 平面向量第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念①向量:既有大小又有方向的量。
几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。
向量的模(长度),记作|AB |.即向量的大小,记作|a|。
向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,规定0平行于任何向量。
(与0的区别) ③单位向量|a|=1。
④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b⑤相等向量记为b a=。
大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量叫做a 与b的和,记作a+b ,即 a+b AB BC AC =+=特殊情况:(1)BBabba +AABC C)2()3(向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”。
②向量减法: 同一个图中画出a b a b +-、要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点. (3)实数与向量的积3.两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ。
二.【典例解析】题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确(1)零向量没有方向 (2)ba ==则 (3)单位向量都相等 (4) 向量就是有向线段(5)两相等向量若共起点,则终点也相同 (6)若b a =,c b =,则c a =;(7)若b a //,c b //,则c a// (8) b a =的充要条件是||||b a =且b a //;(9) 若四边形ABCD 是平行四边形,则DA BC CD B ==,A练习. (四川省成都市一诊)在四边形ABCD 中,“AB →=2DC →”是“四边形ABCD 为梯形”的 A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件题型二: 考查加法、减法运算及相关运算律 例2 化简)()(BD AC CD AB ---=练习1.下列命题中正确的是 A .OA OB AB -= B .0AB BA +=C .00AB ⋅=D .AB BC CD AD ++=2.化简AC -BD +CD -AB 得 A .AB B .DA C . D .03.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则( )A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0题型三: 结合图型考查向量加、减法例3在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=,则PBC ∆与ABC ∆的面积之比是( )A .13B .12C .23D .34例4重心、垂心、外心性质练习: 1.如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA →=3a ,CB → =2b ,求CD → ,CE → . 2已知a b a b+-=求证a b ⊥3若O 为ABC ∆的内心,且满足()(2)0OB OC OB OC OA -⋅+-=,则ABC ∆的形状为( )A.等腰三角形B.正三角形C.直角三角形D.钝角三角形4.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( ) A .2OA →-OB → B .-OA →+2OB →C.23OA →-13OB → D .-13OA →+23OB → 5.已知平面上不共线的四点O ,A ,B ,C .若OA →-3OB →+2OC →=0,则|AB →||BC →|等于________.6.已知平面内有一点P 及一个△ABC ,若PA →+PB →+PC →=AB →,则( )A .点P 在△ABC 外部B .点P 在线段AB 上C .点P 在线段BC 上D .点P 在线段AC 上ABDE7.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( ) A.23 B.13 C .-13 D .-23 题型四: 三点共线问题例 4 设21,e e 是不共线的向量,已知向量2121212,3,2e e e e e k e -=+=+=,若A,B,D 三点共线,求k 的值例5已知A 、B 、C 、P 为平面内四点, A 、B 、C 三点在一条直线上 PC → =mPA → +nPB →,求证: m+n=1.练习:1.已知:2121212 ,B),(3e e e +=-=+=,则下列关系一定成立的是( )A 、A ,B ,C 三点共线 B 、A ,B ,D 三点共线 C 、C ,A ,D 三点共线 D 、B ,C ,D 三点共线2.(原创题)设a ,b 是两个不共线的向量,若AB →=2a +k b ,CB →=a +b ,CD →=2a -b ,且A ,B ,D 三点共线,则实数k 的值等于________.第2讲 平面向量的基本定理与坐标表示 一.【要点精讲】1.平面向量的基本定理如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的_单位向量_ i 、j 作为基底a ,有且只有一对实数x 、y ,BC AOM D使得a xi yj =+…………○1,把),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =…………○2其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示与a 相等的向量的坐标也为,(y x 特别地,(1,0)i =,(0,1)j =,0(0,0)=特别提醒:设yj xi +=,则向量的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量的坐标在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示3.平面向量的坐标运算(1)若11(,)a x y =,22(,)b x y =,则a b +=1212(,)x x y y ++,a b -= 1212(,)x x y y --(2) 若),(11y x A ,),(22y x B ,则AB = (3)若(,)a x y =和实数λ,则a λ=(,)x y λλ4.向量平行的充要条件的坐标表示:设a=(x 1, y 1) ,b =(x 2, y 2) 其中b ≠aa ∥b (b≠)的充要条件是12210x y x y -=二.【典例解析】题型一. 利用一组基底表示平面内的任一向量[例1] 在△OAB 中,21,41==,AD 与BC 交于点M ,设OA =a ,OB =b ,用a ,b 表示OM .练习:1.若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( ) A .1e 与—2e B .31e 与22e C .1e +2e 与1e —2e D .1e 与21e 2.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=________.题型二: 向量加、减、数乘的坐标运算 例 3 已知A (—2,4)、B (3,—1)、C (—3,—4)且3=,2=,求点M 、N 的坐标及向量的坐标.练习:1. (2008年高考辽宁卷)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A .(2,72)B .(2,-12) C .(3,2) D .(1,3)2.若M(3, -2) N(-5, -1) 且 12MP =MN , 求P 点的坐标;3.若M(3, -2) N(-5, -1),点P 在MN 的延长线上,且 12MP MN =,求P 点的坐标;4.(2009年广东卷文)已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线5.在三角形ABC 中,已知A (2,3),B (8,-4),点G (2,-1)在中线AD 上,且AG →=2GD →, 则点C 的坐标是( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)6.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)7.已知A (7,1)、B (1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a 等于( ) A .2 B .1 C.45 D.53 题型三: 平行、共线问题例4已知向量(1sin ,1)θ=-a ,1(,1sin )2θ=+b ,若a ∥b ,则锐角θ等于( )A .30︒B . 45︒C .60︒D .75︒例5.(2009北京卷文)已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-, 如果//c d 那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向练习:1.若向量a=(-1,x)与b =(-x, 2)共线且方向相同,求x2.已知点O(0,0),A(1,2),B(4,5)及AB t OA OP +=,求(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限。
空间向量与立体几何知识点和知识题(含答案解析)
§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
高一向量知识点加例题(含答案)
向量复习题知识点归纳一.向量的基本概念与基本运算 1、向量的概念:①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量2、向量加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b的差。
③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a 的方向相反;当0 时,0a ,方向是任意的5、两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6、平面向量基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 ,分别为与x 轴,y 轴正方向相同的单位向量 1平面向量的坐标表示:平面内的任一向量a r 可表示成a xi yj r rr,记作a r=(x,y)。
2平面向量的坐标运算:(1)若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr (2)若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3)若a r =(x,y),则 a r =( x, y) (4)若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (4)若 1122,,,a x y b x y r r ,则1212a b x x y y rr ,若a b r r ,则02121 y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定00a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r的长度与b r 在a r 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a r rr r5乘法公式成立:2222a b a b a b a b r r r r r r r r ;2222a ba ab b r r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r 或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r ,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r 与b r ,作OA uu u r =a r , OB uuu r =b r ,则∠AOB= (001800 )叫做向量a r 与b r 的夹角cos =cos ,a ba b a b • •r r r r r r当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r 与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件:a ⊥b a ·b=O2121 y yxx 平面向量数量积的性质11 注意取等条件(共线)一、选择题(本大题共12小题,每小题5分,共60分)1.已知两点 3,2M , 5,5N ,12MP MN u u u r u u u u r,则P 点坐标是 ( )A . 8,1B .31,2C .31,2D . 8,1 2.下列向量中,与向量(1,1)a r平行的向量是( )A .(0,2)b rB .(2,0)c rC .(2,2)d u rD .(2,2)f u r3.a (2,1) ,b 3,4 ,则向量a 在向量b 方向上的投影长度为 ( ) A .25 B .2 C .5 D .10 4.在三角形ABC 中,C=450, a=5 ,b=4, 则 CA BC( )A .102B .202C .210D .-2025.已知b a b a ,),5,2(),3,( 的夹角为钝角,则 的范围是 ( )A .215B .215C .56D .566.一只鹰正以水平方向向下300角飞行直扑猎物,太阳光从头上直射下来,鹰在地面上影子的速度为40m/s ,则鹰飞行的速度为 ( ) A .20m/s B .3380m/s C .20m/s D .80m/s 7.O 为平面中一定点,动点P 在A 、B 、C 三点确定的平面内且满足(OA OP )·(AC AB ) =0,则点P 的轨迹一定过△ABC 的 ( ) A.外心B.内心C.重心D.垂心8.已知OA a,OB b u u u r r u u u r r ,C 为AB u u u r上距A 较近的一个三等分点,D 为CB u u u r 上据C 较近的一个三等分点,用a,b r r 表示OD的表达式为 ( )A.4a 5b 9 r rB.9a 7b 16 r rC.2a b 3 r rD.3a b 4r r9.已知ABC 的三个顶点A 、B 、C 及平面内一点P ,且AB PC PB PA ,则点P 与ABC 的位置关系是( )A .P 在ABC 内部B .P 在ABC 外部C .P 在AB 边上或其延长线上D .P 在AC 边上或其延长线上10. 若i = (1,0), j =(0,1),则与2i +3j 垂直的向量是 ( )A .3i +2jB .-2i +3jC .-3i +2jD .2i -3j11.对于菱形ABCD ,给出下列各式:①AB BC u u u r u u u r ;②||||AB BC u u u r u u u r ;③||||AB CD AD BC u u u r u u u r u u u r u u u r ;④22||||4||AC BD AB u u u r u u u r u u u r 2其中正确的个数为 ( ) A .1个 B .2个 C .3个 D .4个12.在平面直角坐标系中,已知两点A (cos80o ,sin80o ),B(cos20o ,sin20o),则|AB |的值是( )A .12BC D .1二、填空题13.已知A(2,1),B(3,2),C(-1,5),则△ABC 的形状是 .14.已知实数x,y ,向量,a b r r不共线,若(x+y-1)a r +(x-y )b r =0r ,则x= ,y=15.若三点(1,2),(2,4),(,9)P A B x 共线,则x =16.在ABC 中,有命题:①AB AC BC u u u r u u u r u u u r ;②AB BC CA u u u r u u u r u u u r0;③若()()0AB AC AB AC u u u r u u u r u u u r u u u r ,则ABC 为等腰三角形;④若0AC AB u u u r u u u r,则ABC 为锐角三角形.其中正确的命题序号是 .(把你认为正确的命题序号都填上) 三、解答题17.(满分12分)设两个非零向量1e u r 和2e u u r不共线.(1)如果2121212,3,2e e e e e k e ,若A 、B 、D 三点共线,求k 的值.(2) 若||1e =2,||2e =3,1e u r 与2e u u r 的夹角为60o,是否存在实数m ,使得m 1e u r 2e u u r 与1e u r 2e u u r 垂直?并说明理由. 18.(12分)已知向量)1,0(),0,1(,4,23212121e e e e b e e a 其中;求(1)b a b a ;的值;(2)a 与b 的夹角的正弦值.19.(本小题满分12分)在,中ABC 设,,AB a BC b AC c u u u r r u u u r r u u u r r , 060,3,4 ABC BC AB ,求:(1)2a b r r ; (2)2a b a b r r r r ; (3)cos ,;20. (本小题满分12分)已知a 、b 、c 是同一平面内的三个向量,其中a 1,2 .(1) 若 c c //a ,求c 的坐标;(2) 若b 1,m 0m 且a +2b 与a -2b 垂直,求a 与b 的夹角 .21.(本小题满分12分) 已知向量(2,1),(1,7),(5,1),OP OA OB X OP u u u r u u u r u u u r 设是直线上的一点(O 为坐标原点),求XA XB u u u r u u u r 的最小值.22.(本小题满分14分)已知点A 、B 、C 的坐标分别为A(3,0)、B(0,3)、C(cos α,sin α),α∈(2 ,23). (I )若||=||,求角α的值;(II )若·=-1,求tan 12sin sin 22 的值.BDBCA BDA DC CD 4.CCABC 0135cos 45,cos 2105.Ab a ,为钝角,0 b a 且b a ,不反向.6.B设鹰飞行的速度为v ,其在地面上的影子的速度为1v4030cos 03380. 二.填空13.锐角三角形 14. 0.5,0.5 15.17616.③三.解答17. 证明:(1)Q AD u u u r AB +BC +CD =(1e u r +2e u u r )+(128e u r 2e u u r )+(133e u r 2e u u r)=6(1e u r +2e u u r)=6 (2分)//AD u u u r AB 且AD u u u r与AB 有共同起点 (3分) A 、B 、D 三点共线 (4分)(2)假设存在实数m ,使得m 1e u r 2e u u r 与1e u r 2e u u r垂直,则(m 1e u r 2e u u r ) (1e u r 2e u u r)=0221122(1)0me m e e e u r u r u u r u u r (6分)Q ||1e =2,||2e =3,1e u r 与2e u u r的夹角为60o22114e e u r u r ,22229e e u u r u u r ,1212cos 23cos603e e e e o u r u u r u r u u r43(1)90m m 6m故存在实数6m ,使得m 1e u r 2e u u r 与1e u r 2e u u r垂直.18.解:显然a =3(1,0)—2(0,1)=(3,—2),b =4(1,0)+(0,1)=(4,1);易得:①b a =3×4+(—2)×1=10; b a =(3,—2)+(4,1)=(7,—1),b a =22)1(7 =25。
高中 空间向量及其运算 知识点+例题+练习
教学内容空间向量及其运算教学目标.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.重点.掌握空间向量的数量积及其坐标表示,运用向量的共线与垂直证明直线、平面的平行和垂直关系难点.掌握空间向量的数量积及其坐标表示,运用向量的共线与垂直证明直线、平面的平行和垂直关系教学准备教学过程自主梳理1.空间向量的有关概念及定理(1)空间向量:在空间中,具有________和________的量叫做空间向量.(2)相等向量:方向________且模________的向量.(3)共线向量定理对空间任意两个向量a,b(a≠0),b与a共线的充要条件是________________________.(4)共面向量定理如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在有序实数对(x,y),使得p=x a+y b,推论的表达式为MP→=xMA→+yMB→或对空间任意一点O有,OP→=________________或OP→=xOA→+yOB→+zOM→,其中x+y+z=____.(5)空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一的有序实数组(x,y,z),使得p=________________________,把{e1,e2,e3}叫做空间的一个基底.2.空间向量的坐标表示及应用(1)数量积的坐标运算若a=(a1,a2,a3),b=(b1,b2,b3),则a·b=________________________________________________.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),若b≠0,则a∥b⇔________⇔__________,________,______________,a⊥b⇔__________⇔________________________(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=a·a=________________________________,cos〈a,b〉=a·b|a||b|=__________________________.若A(a1,b1,c1),B(a2,b2,c2),则|AB→|=______________________________.教学效果分析教学过程3.利用空间向量证明空间中的位置关系若直线l,l1,l2的方向向量分别为v,v1,v2,平面α,β的法向量分别为n1,n2,利用向量证明空间中平行关系与垂直关系的基本方法列表如下:平行垂直直线与直线l1∥l2⇔v1∥v2⇔v1=λv2(λ为非零实数)l1⊥l2⇔v1⊥v2⇔v1·v2=0直线与平面①l∥α⇔v⊥n1⇔v·n1=②l∥α⇔v=x v1+y v2其中v1,v2为平面α内不共线向量,x,y均为实数l⊥α⇔v∥n1⇔v=λn1(λ为非零实数)平面与平面α∥β⇔n1∥n2⇔n1=λn2(λ为非零实数)α⊥β⇔n1⊥n2⇔n1·n2=0 自我检测1.若a=(2x,1,3),b=(1,-2y,9),且a∥b,则x=_________,y=________.2.如图所示,在平行六面体ABCD—A1B1C1D1中,M为AC与BD的交点,若A1B1→=a,A1D1→=b,A1A→=c,则B1M→用a,b,c表示为________.3.在平行六面体ABCD—A′B′C′D′中,已知∠BAD=∠A′AB=∠A′AD=60°,AB=3,AD=4,AA′=5,则|AC′→|=________.4.下列4个命题:①若p=x a+y b,则p与a、b共面;②若p与a、b共面,则p=x a+y b;③若MP→=xMA→+yMB→,则P、M、A、B共面;④若P、M、A、B共面,则MP→=xMA→+yMB→.其中真命题是________(填序号).5.A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17)这四个点________(填共面或不共面).教学效果分析教学过程探究点一空间基向量的应用例1已知空间四边形OABC中,M为BC的中点,N为AC的中点,P为OA的中点,Q为OB的中点,若AB=OC,求证:PM⊥QN.变式迁移1如图,在正四面体ABCD中,E、F分别为棱AD、BC的中点,则异面直线AF和CE所成角的余弦值为________.教学效果分析教学过程探究点二利用向量法判断平行或垂直例2两个边长为1的正方形ABCD与正方形ABEF相交于AB,∠EBC=90°,点M、N分别在BD、AE上,且AN=DM.(1)求证:MN∥平面EBC;(2)求MN长度的最小值.变式迁移2如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥面BDF.教学效果分析教学过程探究点三利用向量法解探索性问题例3如图,平面P AC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为P A,PB,AC的中点,AC=16,P A=PC=10.(1)设G是OC的中点,证明FG∥平面BOE;(2)在△AOB内是否存在一点M,使FM⊥平面BOE?若存在,求出点M到OA,OB的距离;若不存在,说明理由.变式迁移3已知在直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.(1)求直线BE与A1C所成的角的余弦值;(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出AF;若不存在,请说明理由.1.向量法解立体几何问题有两种基本思路:一种是利用基向量表示几何量,简称基向量法;另一种是建立空间直角坐标系,利用坐标法表示几何量,简称坐标法.2.利用坐标法解几何问题的基本步骤是:(1)建立适当的空间直角坐标系,用坐标准确表示涉及到的几何量.(2)通过向量的坐标运算,研究点、线、面之间的位置关系.(3)根据运算结果解释相关几何问题.教学效果分析教学过程(满分:90分)一、填空题(每小题6分,共48分)1.下列命题:①若A、B、C、D是空间任意四点,则有AB→+BC→+CD→+DA→=0;②|a|-|b|=|a+b|是a、b共线的充要条件;③若a、b共线,则a与b所在直线平行;④对空间任意一点O与不共线的三点A、B、C,若OP→=xOA→+yOB→+zOC→(其中x、y、z∈R)则P、A、B、C四点共面.其中不正确命题的序号为________.2.若A、B、C、D是空间中不共面的四点,且满足AB→·AC→=0,AC→·AD→=0,AB→·AD→=0,则△BCD的形状是______________三角形.3. 如图所示,在三棱柱ABC—A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角等于________.4.设点C(2a+1,a+1,2)在点P(2,0,0)、A(1,-3,2)、B(8,-1,4)确定的平面上,则a=____________.5.在直角坐标系中,A(-2,3),B(3,-2),沿x轴把直角坐标系折成120°的二面角,则AB的长度为________.6. (2010·信阳模拟)如图所示,已知空间四边形ABCD,F为BC的中点,E为AD的中点,若EF→=λ(AB→+DC→),则λ=________.7.(2010·铜川一模)在正方体ABCD—A1B1C1D1中,给出以下向量表达式:①(A1D1→-A1A→)-AB→;②(BC→+BB1→)-D1C1→;③(AD→-AB→)-2DD1→;④(B1D1→+A1A→)+DD1→.其中能够化简为向量BD1→的是________.(填所有正确的序号) 8.(2010·丽水模拟) 如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈DP→,AE→〉=33,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________.二、解答题(共42分)9.(14分) 如图所示,已知ABCD—A1B1C1D1是棱长为3的正方体,点教学效果分析E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E 、B 、F 、D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.10.(14分)(2009·福建)如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.11. (14分)如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M 、N 分别是AB 、CD 的中点.(1)求证:MN⊥AB,MN⊥CD;(2)求MN的长;(3)求异面直线AN与CM所成角的余弦值.。
向量经典例题及解析
向量经典例题及解析一、向量的基本概念与线性运算例题例1:已知向量→a=(1,2),→b=(3, - 4),求→a+→b,→a-→b。
解析:1. 对于向量的加法,如果→a=(x_1,y_1),→b=(x_2,y_2),则→a+→b=(x_1+x_2,y_1+y_2)。
- 已知→a=(1,2),→b=(3,-4),那么→a+→b=(1 + 3,2+( - 4))=(4,-2)。
2. 对于向量的减法,如果→a=(x_1,y_1),→b=(x_2,y_2),则→a-→b=(x_1-x_2,y_1-y_2)。
- 所以→a-→b=(1 - 3,2-( - 4))=(-2,6)。
例2:设→e_1,→e_2是两个不共线向量,已知→AB=2→e_1+k→e_2,→CB=→e_1+3→e_2,→CD=2→e_1-→e_2,若A,B,D三点共线,求k的值。
解析:1. 首先求→BD,因为→BD=→CD-→CB。
- 已知→CB=→e_1+3→e_2,→CD=2→e_1-→e_2,则→BD=(2→e_1-→e_2)-(→e_1+3→e_2)=→e_1-4→e_2。
2. 因为A,B,D三点共线,所以存在实数λ,使得→AB=λ→BD。
- 即2→e_1+k→e_2=λ(→e_1-4→e_2)=λ→e_1-4λ→e_2。
- 由向量相等的定义,可得<=ft{begin{array}{l}2=λ k = - 4λend{array}right.。
- 把λ = 2代入k=-4λ,得k=-8。
二、向量的数量积例题例3:已知向量→a=(3,4),→b=( - 2,1),求→a·→b,|→a|,|→b|以及cos〈→a,→b〉。
解析:1. 对于向量的数量积,如果→a=(x_1,y_1),→b=(x_2,y_2),则→a·→b=x_1x_2+y_1y_2。
- 已知→a=(3,4),→b=(-2,1),则→a·→b=3×(-2)+4×1=-6 + 4=-2。
高中 空间向量的应用 知识点+例题 分类全面
[例1] 若直线1l 与2l 的方向向量分别为)4,4,2(-=a 与)6,9,6(-=b ,则两条直线的位置关系是_________.垂直[巩固1] 已知直线l 的一个方向向量为)2,1,1(--=a ,平面α的一个法向量为)4,2,2(--=b ,则直线l 与平面α的位置关系是____________.垂直[巩固2]两个不重合平面的法向量分别为)1,0,1(1-=v 与)2,0,2(2-=v ,则这两个平面的位置关系是___________.平行[巩固3]已知直线l 的方向向量是e ,平面α,β的法向量分别是1n 与2n ,若a =βα ,且1n e ⊥,2n e ⊥,则l 与a 的关系是_______.平行或重合[例2] 已知平面α,β的法向量分别是(-2,3,m ),(4,λ,0),若α∥β,则λ+m 的值_________.-6[巩固1] 已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α//β,则λ的值为_______.6[巩固2] 若平面α,β的法向量分别是(-1,2,4),(x ,-1,-2)并且α⊥β,则x 的值为_________.-10[例3] 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .精典例题透析[巩固]在边长是2的正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为AB ,A 1C 的中点.应用空间向量方法求解下列问题. (1)求EF 的长(2)证明:EF ∥平面AA 1D 1D ; (3)证明:EF ⊥平面A 1CD.1.求异面直线所成角设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=><21,cos m m .(]2,0(πθ∈)[例]已知直三棱柱ABC —A 1B 1C 1,∠ACB =90°,CA =CB =CC 1,D 为B 1C 1的中点,求异面直线BD 和A 1C 所成角的余弦值.如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系. 设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),知识模块3空间向量的应用∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.[巩固]如图所示,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求异面直线BA 1和AC 所成的角.解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →,∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a=-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.2.求线面所成角设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=><n m ,cos .(]2,0[πθ∈)[例]如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正弦值.设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2). 又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成角的正弦值为|cos 〈MN →,DA →〉|=63.[巩固]如图所示,在几何体ABCDE 中,△ABC 是等腰直角三角形,∠ABC =90°,BE 和CD 都垂直于平面ABC ,且nmαlnmαlBE =AB =2,CD =1,点F 是AE 的中点.求AB 与平面BDF 所成角的正弦值. 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴, 建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →,∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23,即sin θ=23,故AB 与平面BDF 所成角的正弦值为23.3.求二面角(],0[πθ∈)如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=><CD AB ,.如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=><21,cos n n 或><-21,cos n n .[例]如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12,求面SCD 与面SBA 所成角的余弦值大小.建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63.[巩固]如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ;(2)求二面角A —SC —B 的余弦值.(1)证明 由题设AB =AC =SB =SC =SA .连接OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA ,且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC .(2)解 以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系Oxyz ,如右图. 设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.4.异面直线间距离的求法与两条异面直线均垂直、相交的直线叫两条异面直线的公垂线,两条异面直线的公垂线有且只有一条. 两条异面直线的公垂线段的长度,叫两条异面直线的距离.设l 1,l 2是两条异面直线,n 是l 1,l 2的公垂线段AB 的方向向量,又C 、D 分别是l 1,l 2上的任意两点,则nn DC AB ⋅=[例]正四面体ABCD ,棱长均为a 求异面直线AD 、BC 的距离。
高中数学向量专项练习(含答案)
高中数学向量专项练习一、选择题1. 已知向量若则()A. B. C. 2 D. 42. 化简+ + + 的结果是()A. B. C. D.3.已知向量, 若与垂直, 则()A. -3B. 3C. -8D. 84.已知向量, , 若, 则()A. B. C. D.5.设向量, , 若向量与平行, 则A. B. C. D.6.在菱形中, 对角线, 为的中点, 则()A. 8B. 10C. 12D. 147.在△ABC中, 若点D满足, 则()A. B. C. D.8.在中, 已知, , 若点在斜边上, , 则的值为().A. 6B. 12C. 24D. 489.已知向量若, 则()A. B. C. D.10.已知向量, , 若向量, 则实数的值为A. B. C. D.11.已知向量, 则A. B. C. D.12.已知向量, 则A. B. C. D.13.的外接圆圆心为, 半径为, , 且, 则在方向上的投影为A. 1B. 2C.D. 314.已知向量, 向量, 且, 则实数等于()A. B. C. D.15.已知平面向量, 且, 则实数的值为()A. 1B. 4C.D.16.是边长为的等边三角形, 已知向量、满足, , 则下列结论正确的是()A. B. C. D.17.已知菱形的边长为, , 则()A. B. C. D.18.已知向量, 满足, , 则夹角的余弦值为( )A. B. C. D.19.已知向量=(1, 3), =(-2, -6), | |= , 若(+ )·=5, 则与的夹角为()A. 30° B. 45° C. 60° D. 120°20.已知向量, 则的值为A. -1B. 7C. 13D. 1121.如图, 平行四边形中, , 则()A. B. C. D.22.若向量 , , 则 =( )A. B. C. D.23.在△ 中, 角 为钝角, , 为 边上的高, 已知 , 则 的取值范围为(A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424. 已知平面向量 , , 则向量 ( )A. B. C. D.25.已知向量 , , 则A. (5,7)B. (5,9)C. (3,7)D.(3,9) 26.已知向量 , 且 , 则实数 =( )A. -1B. 2或-1C. 2D. -227.在 中, 若 点 满足 , 则 ( )A. B. C. D.28.已知点 和向量 , 若 , 则点 的坐标为( )A. B. C. D.29.在矩形ABCD 中, 则 ( )A. 12B. 6C.D.30. 已知向量 , ,则 ( ).A. B. C. D.31.若向量 与 共线且方向相同, 则 ( )A. B. C. D.32.设 是单位向量, 且 则 的最小值是( )A. B. C. D.33.如图所示, 是 的边 上的中点, 记 , , 则向量 ( )A. B. C. D.34.如图, 在 是边BC 上的高, 则 的值等于 ( )ADCB35.已知平面向量的夹角为, ()A. B. C. D.36.已知向量且与共线, 则()A. B. C. D.二、填空题37. 在△ABC中, AB=2, AC=1, D为BC的中点, 则=_____________.38.设, , 若, 则实数的值为()A. B. C. D.39.空间四边形中, , , 则()A. B. C. D.40. 已知向量, , 满足, , 若, 则的最大值是 .41. 化简: = .42. 在中, 的对边分别为, 且, , 则的面积为 .43. 已知向量=(1, 2), •=10, | + |=5 , 则| |= .44.如图, 在中, 是中点, , 则.45. 若| |=1, | |=2, = + , 且⊥, 则与的夹角为________。
高一向量试题及答案详解
高一向量试题及答案详解一、选择题1. 已知向量\( \overrightarrow{a} \)和向量\( \overrightarrow{b} \)不共线,且\( \overrightarrow{a} + \overrightarrow{b} =\overrightarrow{c} \),则下列说法正确的是:A. \( \overrightarrow{c} \)与\( \overrightarrow{a} \)共线B. \( \overrightarrow{c} \)与\( \overrightarrow{b} \)共线C. \( \overrightarrow{c} \)与\( \overrightarrow{a} \)和\( \overrightarrow{b} \)都不共线D. \( \overrightarrow{c} \)与\( \overrightarrow{a} \)和\( \overrightarrow{b} \)都共线答案:C2. 若向量\( \overrightarrow{a} \)和向量\( \overrightarrow{b} \)的夹角为90°,则下列说法正确的是:A. \( \overrightarrow{a} \)和\( \overrightarrow{b} \)共线B. \( \overrightarrow{a} \)和\( \overrightarrow{b} \)垂直C. \( \overrightarrow{a} \)和\( \overrightarrow{b} \)平行D. \( \overrightarrow{a} \)和\( \overrightarrow{b} \)既不共线也不垂直答案:B二、填空题3. 已知向量\( \overrightarrow{a} = (3, 4) \),向量\( \overrightarrow{b} = (-2, 1) \),求向量\( \overrightarrow{a} \)与向量\( \overrightarrow{b} \)的数量积。
高一向量知识点例题
高一向量知识点例题向量是数学中一个重要的概念,广泛应用于几何、物理等领域。
在高一数学学习中,向量作为一个重要的知识点,需要我们掌握其相关的概念、性质和运算法则。
下面将通过例题的形式,来进一步了解高一向量知识点。
例题1:设向量a=3i-2j,向量b=5i+4j,求向量a和向量b的和向量c。
解析:向量的加法运算是指将两个向量对应的分量相加,得到一个新的向量。
对于向量a=3i-2j,向量b=5i+4j,它们的和向量c的i、j分量分别为:c的i分量:3+5=8c的j分量:-2+4=2因此,向量a和向量b的和向量c为8i+2j。
例题2:已知向量a和向量b的模分别为|a|=3,|b|=4,且向量a与向量b的夹角为60°,求向量a与向量b的数量积。
解析:向量的数量积是指将两个向量对应分量相乘后相加所得到的一个数值。
根据向量的数量积公式和已知条件,我们可以得到:|a·b|=|a|·|b|·cosθ其中,θ为向量a与向量b夹角的余弦值。
由题意可知,θ=60°,并且|a|=3,|b|=4,代入公式中,我们可以得到:|a·b|=3·4·cos60°=3·4·(1/2)=6因此,向量a与向量b的数量积为6。
例题3:已知有向线段AB的坐标分别为A(1,2)和B(3,4),求线段AB的向量表示。
解析:线段AB的坐标表示为A(1,2)和B(3,4),我们可以根据坐标的差值来表示线段的向量。
线段的向量表示为终点减去起点,即向量AB=B-A。
根据已知条件,我们可以得到:向量AB=(3-1)i+(4-2)j=2i+2j因此,线段AB的向量表示为2i+2j。
通过以上例题的介绍,我们对高一向量的知识点有了更深一步的了解。
向量的加法、数量积以及向量的表示是高一向量知识点的重点内容。
希望同学们能够通过不断的练习和思考,掌握好这些知识点,为接下来的学习打下坚实的基础。
高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案
1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
高一平面向量知识点+例题+练习 含答案
1.向量的有关概念 名称 定义备注向量 既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量 长度为0的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a|a |平行向量 方向相同或相反的非零向量共线向量 方向相同或相反的非零向量又叫做共线向量0与任一向量平行或共线 相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量 长度相等且方向相反的向量0的相反向量为02.向量的线性运算 向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a +b =b +a(2)结合律:(a +b )+c =a +(b +c ).减法 求两个向量差的运算三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa=0(1)λ(μa )=(λμ)a ;(2)(λ+μ)a =λa +μa ; (3)λ(a +b )=λa +λb3.共线向量定理对空间任意两个向量a ,b (a ≠0),a 与b 共线的充要条件是存在实数λ,使得b =λa . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).( √ )1.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等 .则所有正确命题的序号是________. 答案 ①解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误.2.如图所示,向量a -b =________(用e 1,e 2表示).答案 e 1-3e 2解析 由题图可得a -b =BA →=e 1-3e 2.3.(2015·课标全国Ⅰ改编)设D 为△ABC 所在平面内一点,BC →=3CD →,则AD →=______________(用AB →,AC →表示). 答案 -13AB →+43AC →解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.4.(教材改编)已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案 -13解析 由已知得a +λb =-k (b -3a ),∴⎩⎪⎨⎪⎧λ=-k ,3k =1.解得⎩⎨⎧λ=-13,k =13.题型一 平面向量的概念例1 下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④两个向量不能比较大小,但它们的模能比较大小.答案 ④解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量; ②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行;④正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小. 思维升华 (1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是________. 答案 3解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.题型二 平面向量的线性运算命题点1 向量的线性运算例2 (1)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=________. (2)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=______________(用b ,c 表示).答案 (1)AD →(2)23b +13c解析 (1)EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →. (2)∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →), ∴3AD →=2AC →+AB →,∴AD →=23AC →+13AB →=23b +13c .命题点2 根据向量线性运算求参数例3 (1)在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=____________.(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是______________. 答案 (1)23(2)⎝⎛⎭⎫-13,0 解析 (1)∵AD →=2DB →,即CD →-CA →=2(CB →-CD →), ∴CD →=13CA →+23CB →,∴λ=23.(2)设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝⎛⎭⎫0,13, ∵AO →=xAB →+(1-x )AC →, ∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 思维升华 平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且交对角线AC 于K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为________. 答案 29解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知, AC →=AB →+AD →, ∴AK →=λAC →=λ(AB →+AD →) =λ⎝⎛⎭⎫52AE →+2AF → =52λAE →+2λAF →, 由E ,F ,K 三点共线,可得λ=29.题型三 共线定理的应用例4 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →、BD →共线,又∵它们有公共点B , ∴A 、B 、D 三点共线. (2)解 ∵k a +b 和a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b . ∵a 、b 是两个不共线的非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a 、b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a 、b 不共线.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB→+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →) =-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,故λ1+λ2=12.10.方程思想在平面向量线性运算中的应用典例 (14分)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.思维点拨 (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去求解.(2)既然OM →能用a 、b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. 规范解答解 设OM →=m a +n b ,则AM →=OM →-OA →=m a +n b -a =(m -1)a +n b .AD →=OD →-OA →=12OB →-OA →=-a +12b .[3分]又∵A 、M 、D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →, 即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .[5分] ∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t 得,m -1=-2n , 即m +2n =1.① [8分]又∵CM →=OM →-OC →=m a +n b -14a =⎝⎛⎭⎫m -14a +n b , CB →=OB →-OC →=b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM →与CB →共线.[11分] ∴存在实数t 1,使得CM →=t 1CB →, ∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b , ∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1. 消去t 1得,4m +n =1. ②由①②得m =17,n =37,∴OM →=17a +37b .[14分]温馨提醒 (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A 、M 、D 三点共线和B 、M 、C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[方法与技巧]1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.3.对于三点共线有以下结论:对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1. [失误与防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.A 组 专项基础训练 (时间:40分钟)1.给出下列四个命题,其中所有正确命题的序号是___________________.①a 与b 共线,b 与c 共线,则a 与c 也共线;②任意两个相等的非零向量的始点与终点是一个平行四边形的四顶点;③向量a 与b 不共线,则a 与b 都是非零向量;④有相同起点的两个非零向量不平行. 答案 ③解析 由于零向量与任一向量都共线,所以命题①中的b 可能为零向量,从而不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,更不可能是一个平行四边形的四个顶点,所以命题②不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以命题④不正确;对于命题③,其条件以否定形式给出,所以可从其逆否命题入手考虑,假若a 与b 不都是非零向量,即a 与b 至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b 共线,其逆否命题正确,故命题③正确.综上所述,正确命题的序号是③.2.在△ABC 中,CA →=a ,CB →=b ,M 是CB 的中点,N 是AB 的中点,且CN 、AM 交于点P ,则AP →可用a 、b 表示为______________. 答案 -23a +13b解析 如图所示,AP →=AC →+CP →=-CA →+23CN →=-CA →+23×12(CA →+CB →)=-CA →+13CA →+13CB →=-23CA →+13CB →=-23a +13b . 3.如图,在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE →=________(用AB →,AD →表示). 答案 23AB →+12AD →解析 BC →=BA →+AD →+DC →=-23AB →+AD →,AE →=AB →+BE →=AB →+12BC →=AB →+12⎝⎛⎭⎫AD →-23AB → =23AB →+12AD →. 4.已知平面内一点P 及△ABC ,若P A →+PB →+PC →=AB →,则有关点P 与△ABC 的位置关系判断正确的是________(填序号).①点P 在线段AB 上; ②点P 在线段BC 上; ③点P 在线段AC 上; ④点P 在△ABC 外部. 答案 ③解析 由P A →+PB →+PC →=AB →得P A →+PC →=AB →-PB →=AP →,即PC →=AP →-P A →=2AP →,所以点P 在线段AC 上.5.已知点O 为△ABC 外接圆的圆心,且OA →+OB →+OC →=0,则△ABC 的内角A 等于________. 答案 60°解析 由OA →+OB →+OC →=0,知点O 为△ABC 的重心,又∵O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.6.已知O 为四边形ABCD 所在平面内一点,且向量OA →,OB →,OC →,OD →满足等式OA →+OC →=OB →+OD →,则四边形ABCD 的形状为________. 答案 平行四边形解析 由OA →+OC →=OB →+OD →得OA →-OB →=OD →-OC →,所以BA →=CD →.所以四边形ABCD 为平行四边形.7.设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.答案 2解析 由|AB →+AC →|=|AB →-AC →|可知,AB →⊥AC →,则AM 为Rt △ABC 斜边BC 上的中线,因此,|AM →|=12|BC →|=2. 8.(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.答案 12 -16解析 如图,MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →) =12AB →-16AC →,∴x =12,y =-16. 9.如图,在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解 AD →=12(AB →+AC →)=12a +12b . AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →) =23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b . 10.设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A 、C 、D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A 、C 、D 三点共线,求k 的值.(1)证明 ∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,∴AC →=AB →+BC →=4e 1+e 2=-12(-8e 1-2e 2)=-12CD →,∴AC →与CD →共线. 又∵AC →与CD →有公共点C ,∴A 、C 、D 三点共线.(2)解 AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴AC →与CD →共线,从而存在实数λ使得AC →=λCD →,即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43. B 组 专项能力提升(时间:15分钟)11.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是________.答案 -1解析 ∵BC →=a +b ,CD →=a -2b ,∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD →共线.设AB →=λBD →,∴2a +p b =λ(2a -b ),∴2=2λ,p =-λ,∴λ=1,p =-1.12.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=____________(用a ,b 表示).答案 12a +b 解析 连结CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a . 13.设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则B 的大小为________.答案 60°解析 ∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA →+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线,∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知b =a =c , ∴△ABC 是等边三角形,则角B =60°.14.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=____________.(用a ,b 表示)答案 -14a +14b 解析 由AN →=3NC →得AN →=34AC →=34(a +b ), AM →=a +12b ,所以MN →=AN →-AM → =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 15.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________. 答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即n b -m a =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧ -m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.。
高一数学向量知识点以及典型例题
平面向量知识点回顾一、 向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法AB ;字母表示:a ;坐标表示法(,)x i y j x y α→→=⋅+⋅=. (3)向量的长度:即向量的大小,记作2a x y =+(4)特殊的向量:零向量a =O|a |=O . 单位向量a 为单位向量|a |=1.(5)相等的向量:大小相等,方向相同12112212(,)(,)x x x y x y y y =⎧=⇔⎨=⎩(6) 相反向量:0a b b a a b =−⇔=−⇔+=(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量.二、向量的运算法则(1)加法a b b a +=+()()a b c a b c ++=++AB BC AC +=注:向量的加法口诀:首尾相连,首连尾,方向指向末向量。
(2)减法()a b a b −=+− (减法可以变成加法来计算,因此加法的相关运算法则减法也适用)AB BA =− OB OA AB −=注:向量的减法口诀:首首相连,尾连尾,方向指向被减向量。
(3)数乘()()a a λμλμ=()a a a λμλμ+=+()a b a b λλλ+=+//a b a b λ⇔=注:1.a λ是一个向量,满足:a a λλ=;2.λ>0时, a λ与a 同向; λ<0时, a λ与a 异向; λ=0时,0a λ=.(4)数量积a b b a ⋅=⋅()()()a b a b a b λλλ⋅=⋅=⋅()a b c a c b c +⋅=⋅+⋅()22a a =a b a b ⋅≤注:1.a b ⋅是一个数;2.00a b ==或时,0a b ⋅=;3. 00a b ≠≠且时,()cos ,,a b a b a b θθ⋅=是之间的夹角三、向量的直角坐标系运算法则 ()11,a x y =,()22,b x y =(1) 加法()1212,a b x x y y +=++(2) 减法()1212,a b x x y y −=−−(3) 数乘()11,a x y λλλ=(4) 数量积1212a b x x y y ⋅=+21a x y =+四、重要的定理以及公式(应用)(1)平面向量基本定理1e ,2e 是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数12,λλ,使112a e e λλ=+.注:1.我们把不是共线的1e ,2e 叫做表示这一平面内所有向量的一组基底;2.基底不是唯一的,关键是不是共线;3.由定理可以将平面内任一a 在给出基底1e ,2e 的条件下进行分解;4.基底给定时,分解形式是唯一的,12,λλ是被a 、1e ,2e 唯一确定的数量。
高一向量知识点总结及例题
高一向量知识点总结及例题一、向量的概念1. 向量的定义:有向线段叫做向量向量的定义:具有大小和方向的量称为向量2. 向量的表示:一般用小写英文字母加上上方有箭头的符号表示向量,如a→(读作“a矢”)表示一个向量3. 特殊向量:零向量,单位向量零向量:方向任意,但模长为零的向量称为零向量,用0→表示单位向量:模长为1的向量称为单位向量4. 向量的性质:平行向量,共线向量二、向量的运算1. 向量的加法:平行四边形法则平行四边形法则:以向量的起点为顶点,则向量和为以这些向量为对角线的平行四边形的对角线。
2. 向量的减法:a-b=a+(-b)为a的负向量3. 向量的数乘:数c与向量a的积c倍c→4. 向量的夹角:若两向量a→和b→不共线,那么定义a→与b→的夹角α为0°≤α≤180°5. 向量的数量积:a•b=|a|•|b|•cosα6. 向量的数量积性质:(1)交换律:a•b=b•a(2)数量积的分配律:a•(b+c)=a•b+a•c(3)数量积的数乘结合律:(ca)•b=c(a•b)(4)|a•b|=|a|•|b|•cosα三、向量的坐标表示1,平面直角坐标系中的向量:(x1,y1)和(x2,y2)两点的向量为向量(x2-x1,y2-y1)2,向量的坐标与分解3,向量的坐标方向四、向量的应用1. 向量的应用:力,速度,位移2. 大小及方向的确定3. 用向量平行四边形的基本性质判定四边形的形状4. 向量的共线和共面例题:例1. 设向量a=(3,5)和向量b=(-2,4),求向量a-b和向量b-a的坐标。
解:a-b=a+(-b)=(3,5)+(-2,-4) =(3-(-2),5-4)=(5,1)同理,b-a=b+(-a)=(-2,4)+(3,5)=(-2-3,4-5)=(-5,-1)例2:设a和b是非零向量,若|a•b|=|a|•|b|,则a、b的夹角取值为()。
A. 45°B. 90°C. 135°D. 180°解:|a•b|=|a|•|b|cosα ,|a•b|=|a|•|b|时,cosα=1,所以α=0°。
空间向量知识点总结及典型题
空间向量知识点总结及典型题一、空间向量知识点总结。
(一)空间向量的概念。
1. 定义。
- 在空间中,具有大小和方向的量叫做空间向量。
2. 表示方法。
- 用有向线段表示,如→AB,其中A为起点,B为终点;也可以用字母→a,→b,→c·s表示。
3. 向量的模。
- 向量的大小叫做向量的模,对于向量→AB,其模记为|→AB|;对于向量→a,其模记为|→a|。
(二)空间向量的运算。
1. 加法。
- 三角形法则:→AB+→BC=→AC;平行四边形法则:对于不共线的向量→a 和→b,以→a和→b为邻边作平行四边形,则这两个向量之和为平行四边形的对角线所对应的向量。
- 运算律:→a+→b=→b+→a(交换律);(→a+→b)+→c=→a+(→b+→c)(结合律)。
2. 减法。
- →a-→b=→a+(-→b),其中-→b是→b的相反向量。
3. 数乘向量。
- 实数λ与向量→a的乘积λ→a仍是一个向量。
- 当λ> 0时,λ→a与→a方向相同;当λ<0时,λ→a与→a方向相反;当λ = 0时,λ→a=→0。
- 运算律:λ(μ→a)=(λμ)→a;(λ+μ)→a=λ→a+μ→a;λ(→a+→b)=λ→a+λ→b。
(三)空间向量的坐标表示。
1. 坐标定义。
- 在空间直角坐标系O - xyz中,设→i,→j,→k分别是x,y,z轴正方向上的单位向量。
对于空间向量→a,若→a=x→i+y→j+z→k,则(x,y,z)叫做向量→a的坐标,记为→a=(x,y,z)。
2. 坐标运算。
- 设→a=(x_1,y_1,z_1),→b=(x_2,y_2,z_2),则→a+→b=(x_1+x_2,y_1+y_2,z_1+z_2);→a-→b=(x_1-x_2,y_1-y_2,z_1-z_2);λ→a=(λx_1,λ y_1,λ z_1)。
- 向量的模|→a|=√(x^2)+y^{2+z^2}。
- 设A(x_1,y_1,z_1),B(x_2,y_2,z_2),则→AB=(x_2-x_1,y_2-y_1,z_2-z_1)。
高中数学第六章平面向量及其应用知识点总结归纳(带答案)
高中数学第六章平面向量及其应用知识点总结归纳单选题1、给出下列物理量:①密度;②温度;③速度;④质量;⑤功;⑥位移.正确的是( ) A .①②③是数量,④⑤⑥是向量B .②④⑥是数量,①③⑤是向量 C .①④是数量,②③⑤⑥是向量D .①②④⑤是数量,③⑥是向量 答案:D分析:根据向量的定义即可判断.密度、温度、质量、功只有大小,没有方向,是数量; 速度、位移既有大小又有方向,是向量. 故选:D .2、已知向量a ⃗,b ⃗⃗ 满足|a |⃗⃗⃗⃗⃗⃗=1,a ⃗⊥b ⃗⃗,则向量a ⃗−2b ⃗⃗在向量a ⃗方向上的投影向量为( ) A .a ⃗B .1 C .-1D .−a ⃗ 答案:A分析:根据给定条件,求出(a ⃗−2b ⃗⃗)⋅a ⃗,再借助投影向量的意义计算作答.因|a |⃗⃗⃗⃗⃗⃗=1,a ⃗⊥b ⃗⃗,则(a ⃗−2b ⃗⃗)⋅a ⃗=a ⃗2−2b ⃗⃗⋅a ⃗=1,令向量a ⃗−2b ⃗⃗与向量a ⃗的夹角为θ, 于是得|a ⃗−2b⃗⃗|cosθ⋅a ⃗⃗|a⃗⃗|=(a⃗⃗−2b ⃗⃗)⋅a ⃗⃗|a⃗⃗|⋅a ⃗⃗|a⃗⃗|=a ⃗,所以向量a ⃗−2b ⃗⃗在向量a ⃗方向上的投影向量为a ⃗. 故选:A3、若|AB ⃗⃗⃗⃗⃗⃗|=5,|AC ⃗⃗⃗⃗⃗⃗|=8,则|BC ⃗⃗⃗⃗⃗⃗|的取值范围是( ) A .[3,8]B .(3,8) C .[3,13]D .(3,13) 答案:C分析:利用向量模的三角不等式可求得|BC⃗⃗⃗⃗⃗⃗|的取值范围.因为|BC ⃗⃗⃗⃗⃗⃗|=|AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗|,所以,||AC ⃗⃗⃗⃗⃗⃗|−|AB ⃗⃗⃗⃗⃗⃗||≤|BC ⃗⃗⃗⃗⃗⃗|≤|AC ⃗⃗⃗⃗⃗⃗|+|AB ⃗⃗⃗⃗⃗⃗|,即3≤|BC ⃗⃗⃗⃗⃗⃗|≤13. 故选:C.4、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( ) A .向东南走3√2km B .向东北走3√2km C .向东南走3√3km D .向东北走3√3km 答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km , 再向北走3km ,即向东北走3√2km . 故选:B.5、在平行四边形ABCD 中,点E ,F 分别满足BE ⃗⃗⃗⃗⃗⃗=12BC ⃗⃗⃗⃗⃗⃗,DF ⃗⃗⃗⃗⃗⃗=13DC ⃗⃗⃗⃗⃗⃗.若BD ⃗⃗⃗⃗⃗⃗⃗=λAE ⃗⃗⃗⃗⃗⃗+μAF ⃗⃗⃗⃗⃗⃗,则实数λ+μ的值为( )A .−15B .15C .−75D .75答案:B解析:设AB ⃗⃗⃗⃗⃗⃗=a →,AD ⃗⃗⃗⃗⃗⃗=b →,由BE ⃗⃗⃗⃗⃗⃗=12BC ⃗⃗⃗⃗⃗⃗,DF ⃗⃗⃗⃗⃗⃗=13DC ⃗⃗⃗⃗⃗⃗,得到AE ⃗⃗⃗⃗⃗⃗=a →+12b →,AF ⃗⃗⃗⃗⃗⃗=13a →+b →,结合平面向量的基本定理,化简得到−a →+b →=(λ+13μ)a →+(12λ+μ)b →,即可求解. 由题意,设AB ⃗⃗⃗⃗⃗⃗=a →,AD ⃗⃗⃗⃗⃗⃗=b →,则在平行四边形ABCD 中,因为BE ⃗⃗⃗⃗⃗⃗=12BC ⃗⃗⃗⃗⃗⃗,DF ⃗⃗⃗⃗⃗⃗=13DC ⃗⃗⃗⃗⃗⃗,所以点E 为BC 的中点,点F 在线段DC 上,且CF =2DF , 所以AE ⃗⃗⃗⃗⃗⃗=a →+12b →,AF⃗⃗⃗⃗⃗⃗=13a →+b →, 又因为BD ⃗⃗⃗⃗⃗⃗⃗=λAE ⃗⃗⃗⃗⃗⃗+μAF ⃗⃗⃗⃗⃗⃗,且BD ⃗⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗−AB⃗⃗⃗⃗⃗⃗=b →−a →, 所以−a →+b →=λAE ⃗⃗⃗⃗⃗⃗+μAF ⃗⃗⃗⃗⃗⃗=λ(a →+12b →)+μ(13a →+b →)=(λ+13μ)a →+(12λ+μ)b →, 所以{λ+13μ=−112λ+μ=1,解得{λ=−85μ=95,所以λ+μ=15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量复习题知识点归纳一.向量的基本概念与基本运算 1、向量的概念:①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量2、向量加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b的差。
③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a 的方向相反;当0 时,0a ,方向是任意的5、两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6、平面向量基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 j i ,分别为与x 轴,y 轴正方向相同的单位向量1平面向量的坐标表示:平面内的任一向量a r 可表示成a xi yj r r r ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr (2)若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3)若a r =(x,y),则 a r =( x, y) (4)若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (4)若 1122,,,a x y b x y r r ,则1212a b x x y y rr ,若a b r r ,则02121 y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定00a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r的长度与b r 在a r 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a r rr r5乘法公式成立:2222a b a b a b a b r r r r r r r r ;2222a ba ab b r r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r 或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y 8向量的夹角:已知两个非零向量a r 与b r ,作OA uu u r =a r , OB uuu r =b r ,则∠AOB= (001800 )叫做向量a r 与b r 的夹角cos =cos ,a ba b a b • •r r r r r r当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r 与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件:a ⊥b a ·b=O 2121 y yxx 平面向量数量积的性质11 注意取等条件(共线)一、选择题(本大题共12小题,每小题5分,共60分)精品文档1.已知两点 3,2M , 5,5N ,12MP MN u u u r u u u u r,则P 点坐标是 ( )A . 8,1B .31,2C .31,2D . 8,1 2.下列向量中,与向量(1,1)a r平行的向量是( )A .(0,2)b rB .(2,0)c rC .(2,2)d u rD .(2,2)f u r3.a (2,1) ,b 3,4 ,则向量a 在向量b 方向上的投影长度为 ( ) A .25 B .2 C .5 D .10 4.在三角形ABC 中,C=450, a=5 ,b=4, 则 CA BC( )A .102B .202C .210D .-2025.已知b a b a ,),5,2(),3,( 的夹角为钝角,则 的范围是 ( )A .215B .215C .56D .566.一只鹰正以水平方向向下300角飞行直扑猎物,太阳光从头上直射下来,鹰在地面上影子的速度为40m/s ,则鹰飞行的速度为 ( ) A .20m/s B .3380m/s C .20m/s D .80m/s 7.O 为平面中一定点,动点P 在A 、B 、C 三点确定的平面内且满足(OA OP )·(AC AB ) =0,则点P 的轨迹一定过△ABC 的 ( ) A.外心B.内心C.重心D.垂心8.已知OA a,OB b u u u r r u u u r r ,C 为AB u u u r上距A 较近的一个三等分点,D 为CB u u u r 上据C 较近的一个三等分点,用a,b r r 表示OD的表达式为 ( )A.4a 5b 9 r rB.9a 7b 16 r rC.2a b 3 r rD.3a b 4r r9.已知ABC 的三个顶点A 、B 、C 及平面内一点P ,且AB PC PB PA ,则点P 与ABC 的位置关系是( )A .P 在ABC 内部B .P 在ABC 外部C .P 在AB 边上或其延长线上D .P 在AC 边上或其延长线上10. 若i = (1,0), j =(0,1),则与2i +3j 垂直的向量是 ( )A .3i +2jB .-2i +3jC .-3i +2jD .2i -3j11.对于菱形ABCD ,给出下列各式:①AB BC u u u r u u u r ;②||||AB BC u u u r u u u r ;③||||AB CD AD BC u u u r u u u r u u u r u u u r ;④22||||4||AC BD AB u u u r u u u r u u u r 2其中正确的个数为 ( ) A .1个 B .2个 C .3个 D .4个12.在平面直角坐标系中,已知两点A (cos80o ,sin80o ),B(cos20o ,sin20o),则|AB |的值是( )A .12BC D .1二、填空题13.已知A(2,1),B(3,2),C(-1,5),则△ABC 的形状是 .14.已知实数x,y ,向量,a b r r不共线,若(x+y-1)a r +(x-y )b r =0r ,则x= ,y=15.若三点(1,2),(2,4),(,9)P A B x 共线,则x =16.在ABC 中,有命题:①AB AC BC u u u r u u u r u u u r ;②AB BC CA u u u r u u u r u u u r0;③若()()0AB AC AB AC u u u r u u u r u u u r u u u r ,则ABC 为等腰三角形;④若0AC AB u u u r u u u r,则ABC 为锐角三角形.其中正确的命题序号是 .(把你认为正确的命题序号都填上) 三、解答题17.(满分12分)设两个非零向量1e u r 和2e u u r不共线.(1)如果2121212,3,2e e e e e k e ,若A 、B 、D 三点共线,求k 的值.(2) 若||1e =2,||2e =3,1e u r 与2e u u r 的夹角为60o,是否存在实数m ,使得m 1e u r 2e u u r 与1e u r 2e u u r 垂直?并说明理由. 18.(12分)已知向量)1,0(),0,1(,4,23212121e e e e b e e a 其中;求(1)b a b a ;的值;(2)a 与b 的夹角的正弦值.19.(本小题满分12分)在,中ABC 设,,AB a BC b AC c u u u r r u u u r r u u u r r , 060,3,4 ABC BC AB ,求:(1)2a b r r ; (2)2a b a b r r r r ; (3)cos ,;20. (本小题满分12分)已知a 、b 、c 是同一平面内的三个向量,其中a 1,2 .(1) 若 c c //a ,求c 的坐标;(2) 若b 1,m 0m 且a +2b 与a -2b 垂直,求a 与b 的夹角 .21.(本小题满分12分) 已知向量(2,1),(1,7),(5,1),OP OA OB X OP u u u r u u u r u u u r 设是直线上的一点(O 为坐标原点),求XA XB u u u r u u u r 的最小值.22.(本小题满分14分)已知点A 、B 、C 的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(2 ,23).(I )若||=||,求角α的值;(II )若·=-1,求tan 12sin sin 22 的值.BDBCA BDA DC CD 4.CCA BC 0135cos 45,cos 2105.Ab a ,为钝角,0 b a 且b a ,不反向.6.B设鹰飞行的速度为v ,其在地面上的影子的速度为1v 4030cos 03380. 二.填空13.锐角三角形 14. 0.5,0.5 15.17616.③三.解答17. 证明:(1)Q AD u u u r +BC +CD =(1e u r +2e u u r )+(128e u r 2e u u r )+(133e u r 2e u u r)=6(1e u r +2e u u r)=6AB (2分)//AD u u u r 且AD u u u r与有共同起点 (3分) A 、B 、D 三点共线 (4分)(2)假设存在实数m ,使得m 1e u r 2e u u r 与1e u r 2e u u r垂直,则(m 1e u r 2e u u r ) (1e u r 2e u u r)=0221122(1)0me m e e e u r u r u u r u u r (6分)Q ||1e =2,||2e =3,1e u r 与2e u u r的夹角为60o22114e e u r u r ,22229e e u u r u u r ,1212cos 23cos603e e e e o u r u u r u r u u r43(1)90m m 6m故存在实数6m ,使得m 1e u r 2e u u r 与1e u r 2e u u r垂直.18.解:显然a =3(1,0)—2(0,1)=(3,—2),b =4(1,0)+(0,1)=(4,1);易得:①b a =3×4+(—2)×1=10; b a =(3,—2)+(4,1)=(7,—1),b a =22)1(7 =25。