《相似三角形》复习课件

合集下载

相似三角形复习课件

相似三角形复习课件
面积比等于相似比的平方
相似三角形的面积比等于其相似比的平方,即S1:S2=(a1:a2)^2。
相似三角形的判定条件
定义法
根据相似三角形的定义,如果两个三 角形的对应角相等,对应边成比例, 则这两个三角形相似。
SAS判定
如果两个三角形有两个角相等,且这 两个角所对的边成比例,则这两个三 角形相似。
平行线法
在数学竞赛的最优化问题中,可以 利用相似三角形来找到最优解。
04
相似三角形的变式与拓展
相似三角形的特殊情况
等腰三角形
等腰三角形两腰之间的角相等,可以 利用这一性质来证明两个三角形相似 。
直角三角形
等边三角形
等边三角形的三个角都相等,因此任 意两个等边三角形都是相似的。
直角三角形中,如果一个锐角相等, 则两个三角形相似。
详细描述
如果一个三角形的两个对应角和一个对应边与另一个三角形的对应角和对应边 相等,则这两个三角形相似。
边角判定
总结词
通过比较一个三角形的对应边和一个角的度数与另一个三角 形的对应边和角的度数是否相等来判断三角形是否相似。
详细描述
如果一个三角形的三组对应边和一个对应角与另一个三角形 的三组对应边和对应角相等,则这两个三角形相似。
如果两个三角形分别位于两条平行线 之间,且一个三角形的顶点与另一个 三角形的对应顶点连线与平行线垂直 ,则这两个三角形相似。
ASA判定
如果两个三角形有两个角相等,且其 中一个角的对边成比例,则这两个三 角形相似。
02
相似三角形的判定方法
角角判定
总结词
通过比较两个三角形的对应角是 否相等来判断三角形是否相似。
03
相似三角形的应用
在几何图形中的应用

相似三角形复习课PPT课件

相似三角形复习课PPT课件
∴AN∶CN=BN∶AN,又AN=MN
∴MN2=BN·CN
三、应用
问:河的宽度是多少?
A
解:∵∠ADB=∠EDC, 在河对岸选一个点A,再在河的这
边选点∠BA和B点C=C,∠使ECADB=⊥9B0C°,然
后,∴再选△点ABED,∽使△EECC=DBC,用视 B D C 线确定BC和AE的交点D.此时如
果测∴得ABBD∶=E1C20=米B,D∶DCC=D 60米, E EC=∴50A米B=,B就D可×以EC求÷出C两D 岸间的
大致距离AB. =120×50÷60
你=能1算00(出米来)吗?
答:两岸间的大致距离为100米.
B
Q
P
A
C
1.如图⊿ABC中,AB=8cm, BC=16cm,点P从A点开始沿AB边 向点B以2cm/s的速度移动,点Q从 点B开始沿BC边向点C以4cm/s的速 度移动。若点P、Q从A、B处同时 出发,经过几秒钟后,⊿PBQ与 ⊿ABC相似?
1. 如图,∠CBD=∠EBA,∠D=∠A,
试说明△ABC∽△DBE
E
B C
A 解:∵ ∠CBD=∠EBA ∴ ∠CBD+∠ABD=∠EBA+∠ABD 即∠EBD=∠CBA
D ∵ ∠D=∠A ∴ △ABC∽△DBE
2. 如图,AE2=AD·AB,且∠ABE=∠BCE, 试说明△EBC∽△DEB
A D B
A D B MC
分解析::连结AN,∵DN垂直平分AM ∴AN=MN,且∠AMN=∠MAN ∵ ∠由A于MMNN=,∠BBN+和∠CNBA在M一,条直线上, ∠不M可A能N=组∠成C三A角N 形+,∠CAM
N 而∠所BA以M要=考∠虑CA换M边.
∴∠B=∠CAN, 又∠ANB=∠CAN

第二十四章-相似三角形-复习ppt课件

第二十四章-相似三角形-复习ppt课件
第二十四章 相似三角形 复习课件
1
一、本章知识结构图
放缩与相似形
比例线段

比例线段

三角形一边的平行线
相似三角形
判定 性质
平面向量
实数与向量相乘
向量的线性运算
2
回顾与思考
一、相似形
1. 各角对应相等,各边对应成比例的两个多边形叫相 似多边形. 2. 三个角对应相等,三条边对应成比例的两个三角形 叫相似三角形.两个相似三角形用“∽”表示,读做 “相似于”.
(2) 以连接后的这两个向量为邻边向量 构造平行四边形
(3) 这个平行四边形的对角线向量就是 这两个向量的和向量与差向量
3.向量加法和减法的三角形法则 加法: 一终二起,一起二终 减法: 共起点指向被减
9
五、典例精析,复习新知
2.如图,在△ABC中,AB=AC=27,D在AC上,且 BD=BC=18,DE//BC交AB于E,则DE= 分析:由△ABC∽△BCD,列出比例式,求出CD,再用 △ABC∽△AED A答案:10
称比例线段.此时也称这四条线段成比例.
4
➢ 线段的比要注意以下几点: • 线段的比是正数 • 单位要统一 • 线段的比与线段的长度无关
如果 (b=d=f≠0),
那么
如果,
,那么ad=bc.
如果ad=bc(a、b、c、d都不等于0),那么
.
5
三、相似三角形的判定与性质 方法1:通过定义(不常用)
方法2:平行于三角形一边的直线与其他两边(或延 长线)相交,所构成的三角形与原三角形相似; 方法3:两对应角相等的,两三角形相似. 方法4:两边对应成比例且夹角相等,两三角形相似. 方法5:三边对应成比例的,两三角形相似.

相似三角形完整版PPT课件

相似三角形完整版PPT课件
通过已知条件推导出新的相似关系,逐步 构建完整的相似三角形体系。
强调逻辑推理的严密性和条理性,培养学 生分析问题和解决问题的能力。
分析法证明
从结论出发,逆向分析, 寻找使结论成立的条件。
通过分析已知条件和结论 之间的关系,找到证明相 似三角形的关键步骤。
培养学生的逆向思维能力 和分析问题的能力。
构造法证明
相似三角形在几何变换中的应用
在平移、旋转、轴对称等几何变换中,相似三角形可以保持其形状不变,因此具有一些重要的应用。例 如,在建筑设计、地图制作等领域中,常常需要利用相似三角形进行比例缩放和形状保持。
谢谢您的聆听
THANKS
04
相似三角形在代数中的应用
比例性质在方程求解中应用
利用相似三角形的比例性质,可以建立方 程求解未知数。
通过已知两边比例关系,可以推导出第三 边的长度,进而求解方程。
在复杂几何图形中,利用相似三角形的比 例关系可以简化计算过程。
比例中项在数列求和中应用
比例中项的概念可以 应用于等比数列的求 和问题。
性质
相似三角形的对应边成比例,对 应角相等。
判定方法
预备定理
SSS相似
平行于三角形的一边,并且和其他两边相 交的直线,所截得的三角形的三边与原三 角形三边对应成比例。
如果两个三角形的三组对应边的比相等, 那么这两个三角形相似。
SAS相似
AA相似
如果两个三角形的两组对应边的比相等, 并且夹角相等,那么这两个三角形相似。
在证明两个三角形相似时,要严 格按照相似三角形的判定定理进
行推导,避免出现逻辑错误。
拓展延伸:更高阶相似性质探讨
相似多边形
对应角相等,对应边成比例的两个多边形相似。相似多边形具有与相似三角形类似的性质。

相似三角形ppt课件

相似三角形ppt课件
注意事项
角边判定定理要求一个三角形的两条边与另一个 三角形的两条边成比例,并且这两个三角形有一 个对应的角相等,如果这些条件不满足,则不能 判定两个三角形相似。
03
相似三角形的应用
在几何图形中的应用
解决几何证明问题
相似三角形常被用于证明各种几何关 系和定理,如勾股定理、毕达哥拉斯 定理等。
理解几何图形的性质
面积比等于相似比的平方
两个相似三角形的面积比等于它们的相似比的平方,即 (AB:DE)^2=(BC:EF)^2=(CA:FD)^2。
相似三角形的分类
根据用途分类
根据相似三角形在几何学中的应 用,可以将相似三角形分为标准 型、等腰型、直角型等类型。
根据形状分类
根据两个相似三角形的形状,可 以将它们分为锐角三角形、直角 三角形和钝角三角形。
△ABC∽△A'B'C'。
边边判定定理的证明
总结词
通过比较两个三角形的对应边,如果两个三角形有三组对应边成比例,则这两个三角形相 似。
详细描述
在两个三角形ABC和A'B'C'中,如果AB/A'B'=BC/B'C'=AC/A'C',则根据边边判定定理, △ABC∽△A'B'C'。
证明过程
首先,由于AB/A'B'=AC/A'C',根据交叉相乘性质,我们可以得到∠BAC=∠B'A'C'。再由 于BC/B'C'=BA/B'A',根据交叉相乘性质,我们可以得到∠ACB=∠A'C'B'。因此,根据 AA相似判定定理,△ABC∽△A'B'C'。

相似三角形专题复习(共66张PPT)

相似三角形专题复习(共66张PPT)
8
3.右图中, DE∥BC,S△ADE:S四边形DBCE = 1:8,则AE:AC=_____
1:3
课堂训练:
E
B
D
C
4. 在△ABCAC=4,AB=5.D是AC上一动点,且∠ADE=∠B,设AD=x,AE=y,写出y与x之间的函数关系式.试确定x的取值范围.
A
解: ∵∠A=∠A ∵∠ADE=∠B ∴△ADE∽△ABC ( ) ∴AD:AB=AE:AC ∴x:5=y:4 ∴y=0.8x
相似三角形
DE∥BC
△ ADE∽ △ ABC
∠DAE= ∠CAB
△ ADE∽ △ ABC
基本图形
判定方法
∠AED= ∠B
∠DAE= ∠BAC
△ADE∽ △ ABC
对应角相等;
性质定理
对应边成比例;
周长的比 等于相似比;
面积的比等于 相似比的平方;
三边对应成比例的 两个三角形相似.
灵感 智慧
M1
A
B
C
P
Q
A
B
C
P
Q
M2
例:如图,在ABC中,∠C=90°,AC=4,BC=3,PQ∥AB,点P在AC上(与点A、C不重合),点Q在BC上。试问:在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长。
灵感 智慧
1.矩形ABCD中,把DA沿AF对折,使D与CB边上的点E重合,若AD=10, AB= 8, 则EF=______
善于在复杂图形中寻找基本型
5
A
D
B
C
E
F
A
B
C
F
E
E
E

相似三角形复习-ppt

相似三角形复习-ppt

相似三角形的性质
相似三角形对应边对应成比例,对应角相等。
相似三角形对应高线、角平分线、中线之比等于相似比,周长之比等于相似比,面积之比等于相似比的平方。
如图,DE∥BC,CD和BE相交于点O, AD:DB=2:3,则△DOE与△BOC的周长之比为 ,面积之比为 .
如图,在△ABC中,AD:DB=1:2,DE∥BC,若△ABC的面积为9,则四边形DBCE的面积为 .
不能用三点定型法确定相似三角形(要用等比代换或等积代换)
变式练习2
如图,▱ABCD中,M是AB上的一点,连接CM并延长交DA的延长线于P,交对角线BD于N,求证:CN²=MN•NP.
当用三点定型法确定的三角形不想似时,要用等比代换或作辅助线构造相似。
如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:
△AED∽△CBM;
AE•CM=AC•CD.
拓展Байду номын сангаас伸
已知:如图,在梯形ABCD中,AD∥BC,AB=CD=3,点E在BD上,且满足BE•BD=9.求BC的长度。
反 思
谢谢大家 再见
汇报时间
汇报人姓名
精讲点拨
小结
证明等积式时,可以先将等积式变为比例式,确定要证明的相似三角形,然后求证。
有相等的边,有时通过换边来证明相似。
求证第二个问题时,一定要考虑第一个问题的结论。
变式练习1:如图,在△ABC中,已知∠A=90°,AD⊥BC于D,E为直角边AC的中点,过D,E作直线交AB的延长线于F.求证:
母子型
(四)一线三等角型(K子型) 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景
一线三直角型( K子型)

相似三角形复习课件

相似三角形复习课件
使用相似三角形的比例关系计算未知边长。
2 图形分析
仔细观察图形,寻找能够构成相似三角形的线段和角。
3 问题转化
将复杂的相似三角形问题转化为简单的相似三角形问题,减少计算难度。
总结
相似三角形是具有相同形状但大小可以不同的三角形,它们有着对应角相等 和对应边成比例的性质。相似三角形的判定、性质、比例关系以及应用都是 解决实际问题和几何推理的重要工具。
影子问题
相似三角形可以用来解决阴影问题,如计算 树木的高度。
地图比例尺
地图上的比例尺是相似三角形的应用之一, 可以通过相似三角形的边比例关系计算实际 距离。
相似物体放大缩小
通过相似三角形的比例关系,可以进行物体 的放大缩小,如地图的缩放。
相似三角形的解题技巧
解决相似三角形问题的一些技巧:
1 比例关系运用
3 SSS判定法
如果两个三角形的三条 边的比值相等,那么它 们相似。
相似三角形的性质
相似三角形具有以下性质:
1 对应角度相等
相似三角形的内角相等。
2 对应边成比例
相似三角形的对应边的长度成比例。
3 比例关系
相似三角形的任意两条对应边的长度比值相等。
相似三角形的比例关系
相似三角形的对应边的长度比值是相等的。常用的相似比例关系有:
2 大小可以不同
相似三角形的边长可以不相等,但对应边的比值保持一致。
3 比例关系
相似三角形的任意两条对应边的长度比值都是相等的。
相似三角形的判定
有多种方法可以判定两个三角形是否相似:
1 AA判定法
如果两个三角形的两个 角分别相等(对应角相 等),则它们相似。
2 SAS判定法
如果两个三角形的一个 角相等,且两个角对应 的两条边的比值相等, 那么它们相似。

九年级数学相似三角形复习优秀课件

九年级数学相似三角形复习优秀课件

C
A
· OP
B
又 ∵CD⊥AB
D
∴∠CPB=90°
∠PCB+∠B=90° 又∠A=∠CPB ∴△APC∽△CPB
AP PC PC PB
PC 2 AP PB
例3.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2 米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一 竖直平面内.从标杆CD后退2米到点G处,在G处测得建筑物顶端A、标杆 顶端C在同一条直线上;从标杆FE后退4米到点H处在H处测得建筑物顶端A 和标杆顶端E在同一直线上,那么建筑物的高是________米.
A
· OP
B
D
积化比例 AP PC PC PB
小技巧
复杂图形中,可利用比例式 横行或竖行的3个字母寻找、 构造相似三角形
构造相似三角形 △APC∽△CPB
例2. 如图,CD是⊙O的弦,AB是直径,CD⊥AB,垂足为P,
求证:PC2=PA·PB
证明:连结AC,BC ∵AB是直径 ∴∠ACB=90° ∴ ∠A + ∠B = 90°
1.掌握相似三角形的概念,性质和判定 三角形相似的条件;
2.能利用相似比、相似的性质进行计算, 利用相似解决实际问题。
如果两个三角形的各角对应 相等 ,各边对应成比例, 那么这两个三角形相似.
(1)相似三角形的对应角 相等 ,对应边成比例。 (2)相似三角形对应高的比、对应角平分线的比、对应 中线的比都等于 相似比。 (3)相似三角形的周长之比等于 相似比,面积之比
A.4∶21 B.4∶9 C.9∶16 D.2∶3
4.如图,点P是△ABC的边AC上一点,连接BP,以下条件中,
不能判定△ABP∽△ACB的是( B )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.

中,D 是 AB 边上一点,连结 CD.要 使△ADC 与△ABC 相似,应添加的条件是________.
(2010· 陕西)如图,在△ABC
【解析】∠ACD=∠B、∠ADC=∠ACB 或 即可.
AD AC = ,答案不唯一,只需写出一个条件 AC AB
【答案】∠ACD=∠B
C
3
D
4 8
B
如图,DC=3,DB=8,若点P是DB上一动点, 连接CP 过点P作PE⊥CP,交射线BA于点 E,设DP=x,BE=y, 求y关于x的函数关系式.
A C
E
y
B
3
D
x P
8
考点三 相似三角形的应用
例 3(2014· 潍坊)如图,某水平地面上建筑物的高 度为 AB,在点 D 和点 F 处分别竖立高是 2 米的标 杆 CD 和 EF,两标杆相隔 52 米,并且建筑物 AB、
【答案】3
2.(2014· 天津)如图,在▱ABCD 中,点 E 是边 AD 的中点,EC 交对角线 BD 于点 F,则 EF∶FC 等于 ( )
A.3∶2
B.3∶1
C.1∶1
D.1∶2
如图,AB⊥DB于点B ,CD⊥DB于点D,AB=4, CD=3,BD=8. 问:在DB上是否存在P点,使以C、D、P为 顶点的三角形与以P、B、A为顶点的三角形 相似?如果存在,计算出点P的位置;如果 不存在,请说明理由。 A
方法总结: 在实际生活中, 处处存在相似三角形. 相似三角形 的应用体现在:①同一时刻物高与影长的问题;②利 用相似测量无法直接测量的物体; ③利用相似进行图 形设计等.
如图, 为⊙ 的直径, 平分
交⊙ 于点 ,
的延长线于点 ,
交 的延长线于点 ,
(1)求证: 是⊙ 的切线; (2)若 ⊙ 的半径为 5,求 的长.
二、填空题(每小题 4 分,共 16 分)
中, 点 D 在边 AB 上, 满足∠ACD =∠ABC,若 AC=2,AD=1,则 DB=________.
13. (2010· 上海)如图, △ABC
AC AD 【解析】∵∠ACD=∠ABC,∠BAC=∠CAD,∴△ADC∽△ACB,∴ = , AB AC 2 ∴AB· AD=AC ,则 AB=4,所以 BD=AB-AD=3.
如图,抛物线与x轴交A,B两点,A(2,0)B(6,0)与y轴
交于C(0,3)点, (1)求抛物线解析式。 (2)在抛物线上是否有一点P,满足∠PBC=90°,若存 在,求点P的坐标;y源自C O A BP1 E
x
P2
标杆 CD 和 EF 在同一竖直平面内.从标杆 CD 后退 2 米到点 G 处, 在 G 处测得建筑物顶端 A、 标杆顶端 C 在同一条直线上; 从标杆 FE 后退 4 米到点 H 处, 在H 处测得建筑物顶端 A 和标杆顶端 E 在同一直线上,则 建筑物的高是________米.
【点拨】设建筑物的高为x米,根据题意,易得 CD DG △CDG∽△ABG,∴ = ,∵CD=DG=2米, AB BG EF ∴BG=AB=x米.再由△EFH∽△ABH,可得 = AB FH 2 4 ,即 = ,∴BH=2x(米),即BD+DF+FH= BH x BH 2x,即x-2+52+4=2x,解得x=54. 【答案】 54
4.

二、三角形相似的判定方法有哪些?
平行于三角形一边直线截其它两边 (或其延长线),所截得的三角形与原三角形相 似;
1.预备定理
定理 三边对应成比例的两个三角形相似. 3.定理 两边对应成比例,且夹角相等的两个三 角形相似; 4.定理 有两个角对应相等的两个三角形相似
〖知识点〗
1.相似三角形的定义。
2.相似三角形的判定。 3.相似三角形的性质的应用。
4.位似
相似三角形 三个对应角相等、三条对应边成比例的两个三 角形叫做相似三角形.相似三角形对应边的比叫 做相似比(相似比与叙述的顺序有关). 5.相似三角形性质: ①相似三角形的对应角相等,对应边成比例. ②相似三角形对应中线的比,对应角平分线的 比, 对应高的比,对应周长的比都等于相似比. ③相似三角形面积的比等于相似比的平方.
相关文档
最新文档