高考数学(文)二轮复习教师用书:专题5 突破点12 圆锥曲线的定义、方程、几何性质 Word版含答案

合集下载

(全国通用版)高考数学二轮复习专题五解析几何第2讲圆锥曲线文-2022年学习资料

(全国通用版)高考数学二轮复习专题五解析几何第2讲圆锥曲线文-2022年学习资料
板块三-专题五解析几何-专题突破-核心考点-第2讲圆锥曲线
考情考向分析]-1.以选择题、填空题形式考查圆推曲线的方程、几何性质(特别-是离心率.-2以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等)
内容索引-热点分类突破-真题押题精练
热点分类突破(全国通用版)2019高考数学二轮复习专题五解析几何第2讲圆锥曲线文
2已知双曲线C:广-芳=1c0,>0的焦距为2c,直线/过点,0l日-与双曲线C的一条渐近线垂直,以双曲线C的右焦点为圆心,半焦距为-4V2-半径 圆与直线1交于M,N两点,若MN=3C,-则双曲线C的渐近-线方程为-A.y=±V2x-B=±V3x-C.y=±2x-D.y=±4x-解析-答案
热点三-直线与圆锥曲线-判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法-代数法:联立直线与圆锥曲线方程可得到一个关于x,y的方程组,-消 y或x得一元二次方程,此方程根的个数即为交点个数,方程组的-解即为交点坐标,-2几何法:画出直线与圆锥曲线的图象,根据图象判断公共点个数,
利32018衡水金卷调研已知椭圆+点=1a>b>0的左、右焦点分别-为F1,F2,过F1的直线交椭圆于A,B两点-1若直线AB与椭圆的长轴垂直,A =20,求椭圆的离心率;-解由题意可知,直线AB的方程为x=-C,-2b21-∴.AB1=-a=24,直线AB的斜率为1,AB1=a十,-求椭圆的短轴与长轴的比值.-解答
,2-例112018:乌鲁木齐诊断椭圆的离心率为2,F为椭圆的一个焦-点,若椭圆上存在一点与F关于直线y=x+4对称,则椭圆方程为-x2 y2-A 8+=1-B+的=1-+-1号+-1-解析-答案
22018龙岩质检已知以圆C:x-12+y2=4的圆心为焦点的抛物线C1-与圆C在第一象限交于A点,B点是抛物线C2:x2=8y上任意一点,BM与 直线y=-2垂直,垂足为M,则BMI-AB的最大值为-B.2-C.-1-D.8-解析-答案

高考数学中的圆锥曲线知识

高考数学中的圆锥曲线知识

高考数学中的圆锥曲线知识高考数学中的圆锥曲线是一道重要的考题,也是很多学生容易失分的一道难题。

圆锥曲线是指平面上坐标系中的一种特殊的曲线,也是数学的重要分支之一。

本文将介绍圆锥曲线的基本概念,分类和应用,希望能对广大考生有所帮助。

一、圆锥曲线的基本概念1.圆锥圆锥是一个由一个圆绕着它的直径周而复始地旋转而成的立体物体,其中:该直径是铅锤线,圆锥的底面是这个圆,圆锥的顶点是铅锤线的另一端。

2.圆锥曲线的概念在平面直角坐标系中,将一个固定的点F(称为焦点)与一个固定的直线L(称为直角准线)连接。

在平面上,连结点P到直线L的距离为PF和P到点F的距离的比等于定值e(e>0)。

这样得到的曲线称为圆锥曲线。

圆锥曲线分为三种情况:椭圆、双曲线和抛物线。

二、圆锥曲线的分类1.椭圆椭圆是平面上与两个焦点F1,F2的距离之和等于定值2a(a>0)的点P的轨迹。

椭圆是圆锥曲线中最简单的一种形式。

椭圆可以通过平移、伸缩、旋转对平面上的圆形进行简单的变换。

2. 双曲线双曲线是平面上与两个焦点F1,F2的距离之差等于定值2a (a>0)的点P的轨迹。

双曲线有两条渐进线,即切射线和渐进线。

3. 抛物线抛物线是平面上焦点F到直线L的距离等于点P到焦点F的距离的平方与定值a(a>0)成正比例的点P的轨迹。

抛物线的形状像一个平翻的碗,有上凸抛物和下凸抛物两种。

三、圆锥曲线的应用1. 物理学圆锥曲线在物理学中得到广泛的应用。

例如,在宇宙空间中,行星的轨迹可以用椭圆来描述。

在天体力学中,利用双曲线描绘有关天体的相对运动情况。

抛物线则可用于描述抛体的轨迹。

2. 工程学圆锥曲线在工程学中也有重要的应用,特别是在光学的设计中。

例如,望远镜的光学系统用到的镜面都是椭圆形的;飞机的机翼、车轮和机器的轮子都是利用圆锥的形状进行设计的。

3. 数学研究圆锥曲线在数学研究中的应用也是相当广泛的,例如,利用双曲线求解微积分中的积分问题;还可以用抛物线中的特殊几何性质证明三次方程有一个实根。

高考数学复习考点突破专题讲解12 圆锥曲线的方程与性质

高考数学复习考点突破专题讲解12 圆锥曲线的方程与性质

高考数学复习考点突破专题讲解第12讲圆锥曲线的方程与性质一、单项选择题1.(2022·广东惠州一模)若抛物线y2=2px(p>0)上一点P(2,y0)到其焦点的距离为4,则抛物线的标准方程为()A.y2=2xB.y2=4xC.y2=6xD.y2=8x2.(2022·山东临沂二模)已知双曲线C:=1(a>0,b>0)的焦距为4,实轴长为4,则C的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x3.(2022·广东肇庆二模)已知F1,F2分别是椭圆C:=1(a>b>0)的左、右焦点,A是椭圆上一点,O 为坐标原点,若|OA|=|OF1|,直线F2A的斜率为-3,则椭圆C的离心率为()A. B. C. D.4.(2022·河北保定高三期末)为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)为某双曲线(离心率为2)的一部分,曲线AB与曲线CD中间最窄处间的距离为30 cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=36 cm,则|AD|=()A.12 cmB.6 cmC.38 cmD.6 cm5.(2022·全国甲·文11)已知椭圆C:=1(a>b>0)的离心率为,A1,A2分别为C的左、右顶点,B为C的上顶点.若=-1,则C的方程为()A.=1B.=1C.=1D.+y2=16.(2022·广东执信中学模拟)已知双曲线C的离心率为,F1,F2是C的两个焦点,P为C上一点,|PF1|=3|PF2|,若△PF1F2的面积为,则双曲线C的实轴长为()A.1B.2C.3D.47.(2022·江西宜春期末)已知抛物线E:y2=8x的焦点为F,P是抛物线E上的动点,点Q与点F关于坐标原点对称,当取得最小值时,△PQF的外接圆半径为()A.1B.2C.2D.48.(2022·山东滨州二模)已知椭圆C1和双曲线C2有相同的左、右焦点F1,F2,若C1,C2在第一象限内的交点为P,且满足∠POF2=2∠PF1F2,设e1,e2分别是C1,C2的离心率,则e1,e2的关系是()A.e1e2=2B.=2C.+e1e2+=2D.=2二、多项选择题9.(2022·湖北武昌高三期末)已知双曲线C:=1,下列对双曲线C判断正确的是()A.实轴长是虚轴长的2倍B.焦距为8C.离心率为D.渐近线方程为x±y=010.(2022·新高考Ⅱ·10)已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则()A.直线AB的斜率为2B.|OB|=|OF|C.|AB|>4|OF|D.∠OAM+∠OBM<180°11.(2022·山东临沂三模)2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”,如图,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点F(0,2),椭圆的短轴与半圆的直径重合,下半圆与y轴交于点G.若过原点O的直线与上半椭圆交于点A,与下半圆交于点B,则()A.椭圆的长轴长为4B.线段AB长度的取值范围是[4,2+2]C.△ABF的面积最小值是4D.△AFG的周长为4+412.(2022·江苏南通高三检测)已知椭圆C1:=1(m>n>0)的上焦点为F1,双曲线C2:=1的左、右焦点分别为F2,F3,直线F1F2与C2的右支相交于点A,若AF3⊥F2F3,则()A.C1的离心率为B.C2的离心率为C.C2的渐近线方程为y=±xD.△AF1F3为等边三角形三、填空题13.(2021·全国乙·理13)已知双曲线C:-y2=1(m>0)的一条渐近线为x+my=0,则C的焦距为.14.(2022·河北保定模拟)已知椭圆C的中心为坐标原点,焦点在y轴上,F1,F2为C的两个焦点,C的短轴长为4,且C上存在一点P,使得|PF1|=6|PF2|,写出椭圆C的一个标准方程:.15.(2022·山东威海高三期末)已知抛物线C1:y2=8x,圆C2:x2+y2-4x+3=0,点M(1,1),若A,B分别是C1,C2上的动点,则|AM|+|AB|的最小值为.16.(2022·河北石家庄二模)已知椭圆C1和双曲线C2有公共的焦点F1,F2,曲线C1和C2在第一象限内相交于点P,且∠F1PF2=60°.若椭圆C1的离心率的取值范围是,则双曲线C2的离心率的取值范围是.高考数学复习考点突破专题讲解12圆锥曲线的方程与性质1.D解析∵抛物线y2=2px上一点P(2,y0)到其焦点的距离等于到其准线的距离,∴+2=4,解得p=4,∴抛物线的标准方程为y2=8x.2.C解析由已知得,双曲线的焦点在y轴上,双曲线的焦距2c=4,解得c=2,双曲线的实轴长为2a=4,解得a=2,则b=--=4,故双曲线C的渐近线方程为y=±x=±x.3. D解析如图,由|OA|=|OF1|,得|OA|=|OF1|=|OF2|=c,故∠F1AF2=90°.因为直线F2A的斜率为-3,所以tan∠F1F2A=3,所以|AF1|=3|AF2|.又|AF1|+|AF2|=2a,所以|AF1|=,|AF2|=.又|AF1|2+|AF2|2=|F1F2|2,即a2+a2=4c2,得,所以.4. D解析以双曲线的对称中心为坐标原点,建立平面直角坐标系xOy,因为双曲线的离心率为2,所以可设双曲线的标准方程为=1(a>0),依题意可得2a=30,则a=15,即双曲线的标准方程为=1.因为|AB|=36cm,所以点A的纵坐标为18.由=1,得|x|=3,故|AD|=6cm.5.B解析由题意知,A1(-a,0),A2(a,0),B(0,b),则=(-a,-b)·(a,-b)=-a2+b2=-1,①由e=,得e2=-=1-,即b2=a2.②联立①②,解得a2=9,b2=8.故选B.6.B解析根据双曲线的定义,可得|PF1|-|PF2|=2a,又|PF1|=3|PF2|,解得|PF1|=3a,|PF2|=a.因为双曲线C的离心率为,所以c= a.在△PF1F2中,由余弦定理,可得cos∠F1PF2=-=-,则sin∠F1PF2=.由△PF1F2的面积为,可得|PF1||PF2|sin∠F1PF2=a2=,解得a=1.故双曲线C的实轴长为2.7. C解析过点P作准线的垂线,垂足为M,由抛物线的定义知|PF|=|PM|,所以=cos∠QPM=cos∠PQF,要使取得最小值,则cos∠PQF取得最小值,即tan∠PQF取得最大值0<∠PQF<,此时直线PQ与抛物线相切.设直线PQ的方程为y=k(x+2),由得k2x2+(4k2-8)x+4k2=0,所以Δ=(4k2-8)2-4k2·4k2=64(1-k2)=0,即k2=1,解得k=±1,不妨取k=1,此时直线PQ的倾斜角∠PQF=,且有x2-4x+4=0,所以x=2,所以P(2,4),所以|PF|=4.设△PQF的外接圆半径为R,在△PQF中,由正弦定理知,2R==4.所以此时△PQF的外接圆半径R=2.8. D解析因为∠POF2=∠PF1F2+∠F1PO,∠POF2=2∠PF1F2,所以∠PF1F2=∠F1PO,所以|OF1|=|OP|=|OF2|=c,所以PF1⊥PF2.记椭圆长半轴长为a1,双曲线实半轴长为a2,椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,则由椭圆和双曲线定义可得,m+n=2a1,①m-n=2a2,②①2+②2可得2(m2+n2)=4().由勾股定理知,m2+n2=4c2,代入上式可得2c2=,整理得=2,即=2,所以=2.9.BD解析由双曲线C:=1,可得a2=12,b2=4,则c2=a2+b2=16,所以a=2,b=2,c=4,故A不正确,B正确;e=,故C不正确;易知渐近线方程为y=±x,即x±y=0,故D正确.10.ACD解析选项A,由题意知,点A为FM的中点,设A(x A,y A),则x A=p,所以=2px A=2p·p=p2(y A>0).=2,故选项A正确;所以y A=p,故k AB=-选项B,由斜率为2可得直线AB的方程为x=y+,联立抛物线方程得y2-py-p2=0,设B(x B,y B),则p+y B=p,则y B=-,代入抛物线方程得-=2p·x B,解得x B=.∴|OB|=,故选项B错误;选项C,|AB|=p++p=p>2p=4|OF|,故选项C正确;选项D,由选项A,B知,A p,p,B,-p,所以=p,p·,-p=-p2=-p2<0,所以∠AOB为钝角.又=-p·-,-p=-p2=-p2<0,所以∠AMB为钝角.所以∠OAM+∠OBM<180°.故选项D正确.故选ACD.11. ABD解析由题知,椭圆中b=c=2,则a=2,则2a=4,故A正确;|AB|=|OB|+|OA|=2+|OA|,由椭圆性质可知2≤|OA|≤2,所以4≤|AB|≤2+2,故B正确;若A,B,F能构成三角形,则AB不与y轴重合,此时2≤|OA|<2,记∠AOF=θ,则S△ABF=S△AOF+S△OBF=|OA||OF|sinθ+OB·OF sin(π-θ)=|OA|·sinθ+2sinθ=(|OA|+2)sinθ,取θ=,则S△ABF=1+|OA|<1+×2<4,故C错误;由椭圆定义知,|AF|+|AG|=2a=4,所以△AFG的周长L=|FG|+4=4+4,故D正确.12. ACD解析易知F1(0,-),F2(-,0),F3(,0),将x=代入双曲线C2的方程得=1,可得y2=,则点A.因为O为F2F3的中点,且OF1∥AF3,所以OF1为△F2AF3的中位线,所以-,整理可得m4=4m2n2-4n4,即m2=2n2.椭圆C1的离心率为e1=-,故A正确;双曲线C2的离心率为e2=,故B错误;双曲线C2的渐近线方程为y=±x=±x,故C正确;易知点A(n,2n),F2(-n,0),则,则∠AF2F3=30°,故∠F2AF3=60°.因为|AF3|=2n,|AF1|=|AF2|=(|AF3|+2n)=2n,所以△AF1F3为等边三角形,故D正确.13.4解析由双曲线方程可知其渐近线方程为±y=0,即y=±x,得-=-,解得m=3.可得C 的焦距为2=4.14.=1(答案不唯一)解析因为|PF1|=6|PF2|,所以|PF1|+|PF2|=7|PF2|=2a,则|PF2|=.又因为a-c≤|PF2|≤a+c,所以≥a-c,即.根据题意可设C的标准方程为=1(a>b>0),因为椭圆C的短轴长为4,所以2b=4,b=2.又由,可得--,解得a2≥,所以椭圆C的一个标准方程为=1.15. 2解析由抛物线C1:y2=8x得焦点F(2,0),准线方程为x=-2.由圆C2:x2+y2-4x+3=0,得(x-2)2+y2=1,所以圆C2是以F(2,0)为圆心,以r=1为半径的圆.所以|AM|+|AB|≥|AM|+|AF|-1,所以当|AM|+|AF|取得最小值时,|AM|+|AB|取得最小值.又根据抛物线的定义得|AF|等于点A到准线的距离,所以过点M作准线的垂线,垂足为N,且与抛物线C1:y2=8x相交,当点A为此交点时,|AM|+|AF|取得最小值,最小值为|1-(-2)|=3.所以此时|AM|+|AB|≥|AM|+|AF|-1≥3-1=2,所以|AM|+|AB|的最小值为2.16.解析设椭圆C1:=1(a>b>0),双曲线C2:=1,椭圆与双曲线的半焦距为c,椭圆的离心率e=,双曲线的离心率e1=,|PF1|=s,|PF2|=t,如图,由椭圆的定义可得s+t=2a,由双曲线定义可得s-t=2a1,联立可得s=a1+a,t=a-a1.由余弦定理可得4c2=s2+t2-2st cos∠F1PF2=(a+a1)2+(a-a1)2-2(a+a1)(a-a1)cos60°=a2+3,即4=,解得.-因为e∈,所以≤e2≤,2≤≤3,可得≤3,故≤e1≤.。

第2部分 专题5 第2讲 圆锥曲线的定义、方程及性质 课件(共67张PPT)

第2部分 专题5 第2讲 圆锥曲线的定义、方程及性质 课件(共67张PPT)

2.[双曲线的几何性质]双曲线C:
x2 4

y2 2
=1的右焦点为F,点P在双
曲线C的一条渐近线上,O为坐标原点,则下列说法不正确的是( )
A.双曲线C的离心率为
6 2
B.双曲线y42-x82=1与双曲线C的渐近线相同
C.若PO⊥PF,则△PFO的面积为 2
D.|PF|的最小值为2
D [对于A,因为a=2,b= 2,所以c= a2+b2= 6,所以双
x2 4
+y2=1的
左、右焦点为F1,F2,P是C上的动点,则下列结论正确的是( )
A.离心率e=
5 2
B.|P→F2|的最大值为3
C.△PF1F2的面积最大为2 3
D.|P→F1+P→F2|的最小值为2
D
[由椭圆C:
x2 4
+y2=1,得a=2,b=1,∴c=
a2-b2 =
3
,则e=
c a

3 2
∴2 AE = AC ,
即3+3a=6,
从而得a=1,FC=3a=3.
∴p=FG=21FC=23,因此抛物线方程为y2=3x,故选C.
1234
法二:由法一可知∠CBD=60°, 则由|AF|=1-cpos 60°=3可知p=31-12=32, ∴2p=3, ∴抛物线的标准方程为y2=3x.]
1234
y=± 3x [ba= c2-a2a2= e2-1= 3, 故双曲线C的渐近线方程为y=± 3x.]
3.(2021·新高考卷Ⅰ)已知O为坐标原点,抛物线C:y2=2px(p >0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且
PQ⊥OP.若|FQ|=6,则C的准线方程为________.

圆锥曲线知识点梳理(文科)

圆锥曲线知识点梳理(文科)

高考数学圆锥曲线部分知识点梳理一、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。

(4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交⇔有两个公共点;直线与圆相切⇔有一个公共点;直线与圆相离⇔没有公共点。

②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离22BA C Bb Aa d +++=与半径r 的大小关系来判定。

二、圆锥曲线的统一定义:平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线。

其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率。

当0<e <1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e >1时,轨迹为双曲线。

三、椭圆、双曲线、抛物线:椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0<e<1)1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F 1F2|<2a=点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形方程标准方程12222=+byax(ba>>0) 12222=-byax(a>0,b>0) pxy22=范围─a≤x≤a,─b≤y≤b |x| ≥ a,y∈R x≥0中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b)(a,0), (─a,0) (0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(─c,0) F1(c,0), F2(─c,0) )0,2(pF准线x=±ca2准线垂直于长轴,且在椭圆外.x=±ca2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c (c=22ba-)2c (c=22ba+)离心率)10(<<=e ace )1(>=e ace e=1【备注1】双曲线:⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλby ax .【备注2】抛物线: (1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p ,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p ,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下.(2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设A(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221px AF p x x +==(AF 叫做焦半径).四、常用结论:1.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan2F PFS b γ∆=. 且γcos 12221+=b PF PF2.设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点,记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2).2cot221θb S FPF =∆3.)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.4. 通径为2p ,这是过焦点的所有弦中最短的.px y 22= px y 22-=py x 22= py x 22-=图形▲y xO▲yxO▲yxO▲yxO焦点 )0,2(pF )0,2(p F -)2,0(p F )2,0(p F -准线 2p x -= 2p x = 2p y -= 2p y =范围 R y x ∈≥,0 R y x ∈≤,0 0,≥∈y R x 0,≤∈y R x 对称轴 x 轴y 轴顶点 (0,0)离心率 1=e焦半径 12x pPF +=12x pPF +=12y pPF +=12y pPF +=。

高考数学二轮专题五解析几何第讲 圆锥曲线的定义方程与性质课件

高考数学二轮专题五解析几何第讲 圆锥曲线的定义方程与性质课件

(1)B
(2)B
(3)ACD
第2讲 圆锥曲线的定义、
返回
返回
解题方略
1.圆锥曲线的定义 (1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|); (2)双曲线:||PF1|-|PF2||=2a(2a<|F1F2|); (3)抛物线:|PF|=|PM|(点F不在定直线l上,PM⊥l于点 M).
第2讲 圆锥曲线的定义、 方程与性质
名师解读《普通高中数学课程标准》(2020年修订版)
1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和 解决实际问题中的作用. 2.掌握椭圆的定义、标准方程及简单几何性质. 3.了解抛物线、双曲线的定义、几何图形及标准方程,知道它 们的简单几何性质.
Contents
B.12,0
C.(1,0)
D.(2,0)
(2)(2020·全国卷Ⅰ)设F1,F2是双曲线C:x2-y32=1的两个
焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积

()
7 A.2
B.3
5 C.2
D.2
返回
(3)(多选)已知椭圆C的中心为坐标原点,焦点F1,F2在y
轴上,短轴长等于2,离心率为
返回
(2)(2020·武汉市学习质量检测)已知点P在椭圆Γ:
x2 a2

y2 b2
=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为
A,点P关于x轴的对称点为Q,设
―PD→

3 4
―PQ→
,直线AD与椭
圆Γ的另一个交点为B,若PA⊥PB,则椭圆Γ的离心率e=
()
1
2
A.2
B. 2

高考数学二轮复习解析几何5.5圆锥曲线的定义和标准方程学案理

高考数学二轮复习解析几何5.5圆锥曲线的定义和标准方程学案理

③方程 2x 2 5x 2 0 的两根可分别作为椭圆和双曲线的离心率;
2
2
2
xy
x
2
④双曲线
1与椭圆
y 1有相同的焦点 .
25 9
35
其中真命题的序号为 【课中研讨】 :
(写出所有真命题的序号)
2
2
xy
例 1 、已知双曲线 2 2 1(a 0, b 0) 的两条渐近线均和圆
ab
2
2
C : x y 6 x 5 0 相切,
2. 能否由定义建立适当的平面直角坐标系求出三种圆锥曲线的标准方程? 并体会求曲线方程或轨迹的过程。
二、高考真题再现
( 11 安徽 21)(本小题满分 13 分)
uuur uur

,点 A 的坐标为( 1,1 ),点 B 在抛物线 y x 上运动,点 Q 满足 BQ QA ,经过
Q 点与 M x 轴垂直的直线交抛物线于点
uuur M ,点 P 满足 QM
uuur MP , 求点 P 的轨迹方程。
三、基本概念检测 1、已知直线 L 过双曲线 C 的一个焦点,且与 为 C 的实轴长的 2 倍, C 的离心率为
C 的对称轴垂直, L 与 C 交于 A, B 两点, AB
小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学
二轮复习专题五:解析几何
§ 5.5 圆锥曲线的定义和标准方程
【学习目标】 1、了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用; 2、掌握椭圆的定义、几何图形、标准方程。 【学法指导】 1. 先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识; 2. 限时 30 分钟独立、规范完成探究部分,并总结规律方法; 3. 找出自己的疑惑和需要讨论的问题准备课上讨论质疑; 4. 重点理解的内容:圆锥曲线的定义、几何图形、标准方程。 【高考方向】 1. 圆锥曲线的定义及点在曲线上的认识 2. 求轨迹与轨迹方程 【课前预习】 : 一、知识网络构建 1. 三种圆锥曲线的定义是什么?

圆锥曲线知识点

圆锥曲线知识点

圆锥曲线知识点圆锥曲线是数学中一个重要的概念,它指的是平面上由一个动点P 与一个定点F和一条定直线L确定的一类曲线。

圆、椭圆、抛物线和双曲线都是圆锥曲线的具体例子。

本文将介绍圆锥曲线的定义、特征以及它们在现实生活中的应用。

一、圆锥曲线的定义圆锥曲线是平面几何中的重要概念,它由一个定直线L和一个定点F以及平面上P点的轨迹组成。

其中,定直线L称为准线,定点F称为焦点,而曲线上的点P为动点。

根据焦点与准线之间的距离关系,圆锥曲线可以分为四种类型。

1. 圆:当焦点F与准线L上的点重合时,即F为L的中点时,形成的曲线为圆。

圆锥曲线上的所有点到焦点F的距离都相等,这是圆的特征。

2. 椭圆:当焦点F到准线L的距离小于曲线上点P到焦点F的距离之和时,形成的曲线为椭圆。

椭圆是我们生活中常见到的圆形,特点是离焦点F 越远的点到焦点F的距离与到准线L的距离之和越大。

3. 抛物线:当焦点F到准线L的距离等于曲线上点P到焦点F的距离时,形成的曲线为抛物线。

抛物线可以看作是圆锥曲线的一种极端情况,具有开口向上或向下的特点。

4. 双曲线:当焦点F到准线L的距离大于曲线上点P到焦点F的距离之和时,形成的曲线为双曲线。

双曲线的特点是离焦点F越远的点到焦点F的距离与到准线L的距离之和越大。

二、圆锥曲线的性质圆锥曲线具有许多重要的性质,其中一些性质如下:1. 焦点与准线之间的距离关系:对于椭圆和双曲线而言,焦点F到准线L的距离是一个恒定值。

而对于抛物线而言,焦点F到准线L的距离等于焦距的两倍。

2. 离心率:离心率是一个衡量圆锥曲线形状的重要参数。

对于椭圆而言,离心率介于0和1之间;对于双曲线而言,离心率大于1;而对于抛物线而言,离心率等于1。

3. 对称性:圆锥曲线具有一定的对称性。

例如,椭圆具有关于两个对称轴的对称性,而抛物线具有关于焦点和准线的对称性。

4. 焦点与直线之间的关系:对于给定的圆锥曲线上的一点P,焦点F到点P的连线与准线L之间的夹角相等。

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学的重要知识点,主要包括圆锥曲线的定义、性质、方程和参数方程、焦点、直线和曲线的位置关系等内容。

下面对圆锥曲线的相关知识点进行总结:一、圆锥曲线的定义圆锥曲线是平面上一个点到一定直线上一点的距离与另一定点(称为焦点)到这一定直线上一点的距离的比等于一个常数的几何图形。

根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种。

1. 椭圆:椭圆是平面上到两定点F1和F2的距离之和等于定长2a的点P的轨迹。

即|PF1| + |PF2| = 2a。

椭圆对应的方程为\(\frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\)。

3. 抛物线:抛物线是平面上到一个定点F和一条直线L的距离相等的点P的轨迹。

即|PF| = |PM|,其中M是直线L上的一点。

抛物线对应的方程为\(y^2 = 2px\)。

二、圆锥曲线的性质1. 椭圆的性质:A. 椭圆的长半轴是轴的两焦点的距离的2a,短半轴是2b。

B. 椭圆的离心率e的范围为0<e<1。

C. 椭圆的离心率e与半长轴a和半短轴b的关系为\(e = \frac{\sqrt{a^2 -b^2}}{a}\)。

3. 抛物线的性质:A. 抛物线的焦点为定点F。

B. 抛物线的离心率e=1。

C. 抛物线的焦点F到直线L的垂直距离等于抛物线的焦点到抛物线顶点的距离。

三、圆锥曲线的方程和参数方程1. 椭圆的方程:\( \frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\),参数方程为\(x = a\cos{t}, y = b\sin{t}\)。

2. 双曲线的方程:\(\frac{x^2} {a^2} - \frac{y^2} {b^2}= 1\),参数方程为\(x = a\sec{t}, y = b\tan{t}\)。

3. 抛物线的方程:\(y^2 = 2px\),参数方程为\(x = at^2, y = 2at\)。

圆锥曲线的定义、方程与性质(题型归纳)

圆锥曲线的定义、方程与性质(题型归纳)

圆锥曲线的定义、方程与性质【考情分析】1.考查特点:(1)圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题第(1)问的形式命题,难度中等;(2)直线与圆锥曲线的位置关系是命题的热点,尤其是有关弦长计算及存在性问题,运算量大,能力要求高,突出方程思想、转化化归与分类讨论思想方法的考查.2.关键能力:逻辑思维能力、运算求解能力以及创新能力.3.学科素养:逻辑推理、直观想象、数学运算.【题型一】圆锥曲线的定义及标准方程【典例分析】1(2021·山东省实验中学高三模拟)已知双曲线22525x y -=上一点P 到其左焦点F 的距离为8,则PF 的中点M 到坐标原点O 的距离为()A .9B .6C .5D .4【答案】A【解析】由22525x y -=,得221255x y -=,则2225,5a b ==,所以230c =,所以5,a b c ===,设双曲线的右焦点为1F ,因为P 到其左焦点F 的距离为85a c <+=+P 在双曲线的左支上,所以1210PF PF a -==,所以118PF =,因为M 为PF 的中点,O 为1FF 的中点,所以1192OM PF ==,故选:A 2.已知抛物线()220y px p =>的焦点为F ,准线为l ,若点A 在l 上,点B 在抛物线上,l 与x 轴的交点为C ,ABF是正三角形,且四边形ABFC 的面积是,则p =()A .1B .32C .2D .3【答案】C【解析】由抛物线的定义及ABF 为正三角形,可知//AB x 轴,所以60AFC ︒∠=,从而可知2AB p =,AC =,又因为四边形ABFC 的面积是,所以有22p p+=2p =.故选:C.【提分秘籍】【变式演练】1.(2021·江苏金陵中学高三模拟)以椭圆()2222:10x y C a b a b+=>>的短轴的一个端点和两焦点为顶点的三角形为等边三角形,且椭圆C 上的点到左焦点的最大距离为6,则椭圆C 的标准方程为()A .22143x y +=B .22184x y +=C .2211612x y +=D .2216448x y +=【答案】C【解析】由题意知:短轴端点与焦点形成等边三角形,则2a c =,椭圆上的点到左焦点最大距离为6,即6a c +=,则4a =,2c =,23b =则椭圆的标准方程为:2211612x y +=.故选:C.2.【多选】(2021·福建福州市·高三二模)在ABC 中,4AB =,M 为AB 的中点,且CA CB CM -=,则下列说法中正确的是()A .动点C 的轨迹是双曲线B .动点C 的轨迹关于点M 对称C .ABC 是钝角三角形D .ABC面积的最大值为【答案】BD【解析】以M 为原点,AB 为x 轴建立直角坐标系.设CM =r ,此时C 点在以M 为圆心,r为半径的动圆上.由CA CB r -=,知C 点在以AB 为焦点,2r a =的双曲线22221x y a b -=上且22242AB a b ⎛⎫+== ⎪⎝⎭.对点(),C x y 有222x y r +=,22221444x y r r-=-,从而2223(16)64y r r =-,当28r =时,2y最大,故yABC S ,故D 正确;2r =时,得到另一个C 点'C ,此时ABC 为直角三角形,故C 错误;∵CA CB -非定值,∴C 不以双曲线为轨迹,故A 错误;∵CM CA CB -=,∴一定有C 关于M 的对称点关于原点对称,故B 正确.故选:BD .3.已知抛物线C :x 2=4y 的焦点为F ,M 是抛物线C 上一点,若FM 的延长线交x 轴的正半轴于点N ,交抛物线C 的准线l 于点T ,且FM →=MN →,则|NT |=________.【答案】3【解析】由x 2=4y ,知F (0,1),准线l :y =-1.设点M (x0,y 0),且x 0>0,y 0>0.由FM →=MN →,知点M 是线段FN 的中点,N 是FT 中点,利用抛物线定义,|MF |=|MM ′|=y 0+1,且|FF ′|=2|NN ′|=2.又2(y 0+1)=|FF ′|+|NN ′|=3,知y 0=12.∴|MF |=12+1=32,从而|NT |=|FN |=2|MF |=3.【题型二】圆锥曲线的几何性质【典例分析】1.已知1F ,2F 分别为椭圆E :()222210y x a b a b +=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且2112sin 3sin PF F PF F ∠=∠,则椭圆E 的离心率为()A .102B .4C D .54【答案】B【解析】1F ,2F 分别为椭圆E :()222210y x a b a b+=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且2112sin 3sin PF F PF F Ð=Ð,由正弦定理可得213PF PF =,令1233PF PF n ==,则32n n a +=,22294n n c +=,可得22542a c =,所以椭圆的离心率为:104c e a===.故选:B .2.(2021·天津南开中学高三模拟)已知双曲线()222210,0x y a b a b-=>>的中心为O ,左焦点为F ,左顶点为A ,点P 为双曲线右支上一点,直线OP 交双曲线于另一点Q ,若直线AQ 恰好平分线段PF ,则该双曲线的离心率为__________.【答案】3【解析】设PF 的中点为M ,连接OM ,O 、M 分别为PQ 、PF 的中点,则//OM FQ 且12OM FQ =,所以,12OA OM AF FQ ==,即12a c a =-,3c a =∴,因此,该双曲线的离心率为3ce a ==.故答案为:3.【提分秘籍】【变式演练】1.(2021湖南长沙长郡中学高三模拟)已知抛物线28y x =的焦点为F ,经过点P (1,1)的直线l 与该曲线交于A 、B 两点,且点P 恰好为AB 的中点,则||||+=AF BF ()A .4B .6C .8D .12【答案】B【解析】抛物线28y x =中,4p =,其焦点()2,0F ,准线方程2x =-,如图过点,,A B P 作准线的垂线,垂足为,,M N R ,由抛物线定义可知,||||AF BF AM BN +=+,而P 恰好为AB 的中点,故PR 是梯形ABNM 的中位线,故2AM BN PR +=,又P (1,1),故132pPR =+=,所以||||236AF BF +=⨯=.故选:B.2.已知1F ,2F 分别为双曲线22221x ya b-=(0a >,0b >)的左、右焦点,过点2F 作圆222x y a +=的切线交双曲线左支于点M ,且1260F MF ∠︒=,则该双曲线的渐近线方程为__________.【答案】313y x ⎛⎫=±+⎪ ⎪⎝⎭.【解析】设切点为A ,过1F 作21F B MF ⊥,垂足为B ,由题意可得OA a =,2OF c =,222AF c a b =-=,由OA 为12BF F △的中位线,可得12BF a =,22BF b =,又1260F MF ∠=︒,可得114sin 603BF a MF ==︒,23aMB =,22223aMF MB BF b =+=+,又21242233a a MF MF b a -=+-=,所以313b a ⎛⎫=+ ⎪ ⎪⎝⎭,所以双曲线的渐近线方程为313y x ⎛⎫=±+ ⎪ ⎪⎝⎭.故答案为:313y x ⎛⎫=±+ ⎪ ⎪⎝⎭.3.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________.【答案】3-1.【解析】设椭圆的右焦点为F (c ,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A )23,2(c c,由点A 在椭圆M 上得,c 24a 2+3c 24b2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∵b 2=a 2-c 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),则4a 4-8a 2c 2+c 4=0,e 4-8e 2+4=0,∴e 2=4+23(舍),e 2=4-2 3.由0<e <1,得e =3-1.【题型三】直线与圆锥曲线【典例分析】1.(2021·浙江镇海中学高三模拟)已知直线1y x =-与抛物线24y x =交于A ,B 两点.若点(1,)C m -满足90ACB ∠= ,则m =()A .1-B .1C .2D .3【答案】C【解析】直线1y x =-与抛物线24y x =联立得:2216104y x x x y x=-⎧⇒-+=⎨=⎩,设1122(,),(,)A x y B x y ,所以12126,1x x x x +==,点(1,)C m -满足90ACB ∠= ,所以有:21121121212120(1,)(1,)01()0,CA CB x y m x y m x x x x y y m y y m ⋅=⇒+-+-=⇒++++-++=121212121212,24,(1)(1)()14y y x x y y x x x x x x +=+-==--=-++=-,所以2161440,m m ++--+=解得2m =,故选:C2.已知椭圆22221x y a b +=(0a b >>)的右焦点为F ,离心率为2,过点F 的直线l 交椭圆于A ,B 两点,若AB 的中点为()1,1,则直线l 的斜率为()A .14-B .34-C .12-D .1【答案】A【解析】设()11,A x y ,()22,B x y ,则AB 的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,由题意可得122x x +=,122y y +=,将A ,B 的坐标的代入椭圆的方程:22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,作差可得22221212220x x y y a b--+=,所以221212221212y y x x b b x x a y y a-+=-⋅=--+,又因为离心率2c e a ==,222c a b =-,所以22234a b a -=,所以2214b a -=-,即直线AB 的斜率为14-,故选:A.【提分秘籍】1.求解弦长的4种方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点间的距离公式求解.(3)联立直线与圆锥曲线方程,消元得到关于x 或y 的一元二次方程,利用根与系数的关系得到(x 1-x 2)2或(y 1-y 2)2,代入两点间的距离公式求解.(4)当弦过焦点时,可结合焦半径公式求解弦长.[提醒]利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在,可直接求交点坐标再求弦长.涉及焦点弦长时要注意圆锥曲线定义的应用.2.处理中点弦问题常用的2种方法(1)点差法:设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,2121x x y y --三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解.[提醒]中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.【变式演练】1.(2021·陕西高三模拟)已知抛物线22(0)x py p =>焦点为,F O 为坐标原点,直线l 过点F 与抛物线交于,A B 两点,与x 轴交于()2,0C p ,若17AB =,则OCF △的面积为___________.【答案】32【解析】抛物线22(0)x py p =>焦点(0,)2p F ,而直线l 过点(2,0)C p ,则直线l 的斜率为14k =-,其方程为124p y x -=-,即42x y p =-+,由2422x y px py=-+⎧⎨=⎩消去x 得228920y py p -+=,显然0∆>,设1122(,),(,)A x y B x y ,则1298py y +=,而17AB =,由抛物线定义知,1217||||()()17228p p p AB AF BF y y =+=+++==,解得8p =,即(0,4)F ,()16,0C ,而90FOC ∠= ,于是得1||||322OCF S OC OF =⋅⋅= ,所以OCF △的面积为32.故答案为:322.(2021·湖南长沙长郡中学高三模拟)已知椭圆C :2214x y +=.(1)椭圆C 是否存在以点11,2⎛⎫- ⎪⎝⎭为中点的弦?若存在,求出弦所在的直线l 的方程,若不存在,请说明理由;(2)已知椭圆C 的左、右顶点分别为A ,B ,点P 是椭圆C 上的点,若直线AP ,BP 分别与直线3y =交于G ,H 两点,求线段GH 的长度取得最小值时直线GP 的斜率.【解析】(1)因为22(1)111422-⎛⎫+=< ⎪⎝⎭,所以点11,2⎛⎫- ⎪⎝⎭在椭圆C 的内部,则椭圆C 存在以点11,2⎛⎫- ⎪⎝⎭为中点的弦.设弦所在的直线l 与椭圆C 相交于()11,M x y ,()22,N x y ,则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得22222121044x x y y -+-=,即()()()()2121212104x x x x y y y y -++-+=.又122x x +=-,121y y +=,()()2121(2)104x x y y --∴+-⨯=,整理得212112y y x x -=-.所以直线l 的方程为11(1)22y x =+-,即220x y -+=.(2)因为A ,P ,G 三点共线所以可知当线段GH 的长度取得最小值时,直线AP 的斜率k 显然存在,且0k >,()2,0A -,设直线AP 的方程为(2)y k x =+,从而点32,3G k ⎛⎫- ⎪⎝⎭.联立22(2)14y k x x y =+⎧⎪⎨+=⎪⎩,消y 整理得()222214161640k x k x k +++-=,0∆>设点()00,P x y ,则202164(2)14k x k--⋅=+.所以2022814k x k -=+,从而02414k y k =+,所以222284,1414k k P k k ⎛⎫- ⎪++⎝⎭.又点()2,0B ,则直线PB 的斜率为14k-.由1(2)43y x k y ⎧=--⎪⎨⎪=⎩,得1223x k y =-+⎧⎨=⎩,所以(122,3)H k -+.故332122124GH k k k k=-+-=+-.又0k >,则31212k k +≥=,当且仅当312k k =,即12k =时等号成立所以当12k =时,线段GH 的长度取得最小值.所以此时直线GP 的斜率为12.1.(2021山师大附中高三模拟)“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当0n <时,方程221x ny +=表示焦点在x 轴上的双曲线;当0n >时,221x ny +=可化为2211y x n+=,因为椭圆的焦点在x 轴上,所以11n>即1n >,故方程221x ny +=表示焦点在x 轴上的圆锥曲线时,0n <或1n >,故“1n >”是“方程221x ny +=表示焦点在x 轴上的圆锥曲线”的充分不必要条件,故选:A.2.(2021·浙江镇海中学高三模拟)已知抛物线2y =的准线与双曲线()22210x y a a-=>相交于A ,B 两点,F 为抛物线的焦点,若FAB 为直角三角形,则实数a 的值为()A .19B .29C .13D.3【答案】D【解析】2y =的准线x =,焦点),不妨设A点坐标2a ⎛⎫⎪ ⎪⎝⎭,FAB 为直角三角形,∠AFB =90°,由对称性可知,FAB 为等腰直角三角形,由直角三角形的性质得a a=,解得23a =.故选:D 3.已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F 、2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF =()A .1B .1或9C .3或9D .9【答案】D【解析】由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点P 在双曲线C 的左支上,所以214PF PF -=,所以29PF =,故选:D.4.(2021·山东省淄博市实验中学高三模拟)2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2;③c 1a 2>a 1c 2.④1212c c a a <其中正确式子的序号是()A .①③B .②③C .①④D .②④【答案】B【解析】由图可得1212,a a c c >>,所以1122a c a c +>+,即①错误;因为1122,a c PF a c PF -=-=,所以1122a c a c -=-,即②正确,由1122a c a c -=-,得1221a c a c +=+,即22221212212122a c a c a c a c ++=++,即22221112222122a c a c a c a c -+=-+,即221221122()0b b a c a c -=->,可得2112a c a c >,即③正确,由2112a c a c >,可得1212c c a a >,即④错误;综上所述选项B 正确.故选:B.5.(2021·湖南长沙雅礼中学高三模拟)P 为双曲线2222:1x y C a b-=(0a >,0b >)上一点,1F ,2F 分别为其左、右焦点,O 为坐标原点.若OP b =,且2112sin 3sin PF F PF F ∠∠=,则C 的离心率为()ABC .2D【答案】B【解析】由2112sin 3sin PF F PF F ∠∠=,以及正弦定理可得213PF PF =,因为122PF PF a -=,所以13PF a =,2PF a =,因为2OF c =,OP b =,所以22OPF π∠=,所以2cos a OF P cÐ=,在12F F P 中,()()22212223cos cos 22a c a a F F P OF P a cc+-Ð==Ð=×.化简可得c =,所以C的离心率==ce a.故选:B 6.设1F ,2F 为椭圆1C 与双曲线2C 的公共焦点,1F ,2F 分别为左、右焦点,1C 与2C 在第一象限的交点为M .若12MF F △是以线段1MF 为底边的等腰三角形,且双曲线2C 的离心率72,2e ⎡⎤∈⎢⎥⎣⎦,则椭圆1C 离心率的取值范围是()A .45,99⎡⎤⎢⎥⎣⎦B .70,16⎡⎤⎢⎥⎣⎦C .27,516⎡⎤⎢⎥⎣⎦D .2,17⎡⎤⎢⎥⎣⎦【答案】C【解析】设椭圆长轴长为2a ,双曲线实轴长为2a ',焦点为2c ,2122MF F F c ==,则1MF =2222a c a c '+=-,又c e a =',所以c a e '=,即242c c a e +=,又7[2,2e ∈,所以椭圆的离心率为127,15162c e a e⎡⎤'==∈⎢⎥⎣⎦+.故选:C .7.(2021·重庆南开中学高三模拟)已知曲线C 的方程为()22113x y m R m m+=∈+-,则()A .当1m =时,曲线C 为圆B .当5m =时,曲线C 为双曲线,其渐近线方程为33y x =±C .当1m >时,曲线C 为焦点在x 轴上的椭圆D .存在实数m 使得曲线C【答案】AB【解析】对于A 选项:m =1时,方程为22122x y +=,即222x y +=,曲线C 是圆,A 正确;对于B 选项:m =5时,方程为22162x y -=,曲线C为双曲线,其渐近线方程为3y x =±,B 正确;对于C 选项:m >1时,不妨令m =5,由选项B 知,曲线C 为双曲线,C 不正确;对于D 选项:要曲线C 为双曲线,必有(1)(3)0m m +-<,即m <-1或m >3,m <-1时,曲线C :2213(1)y x m m -=--+,m >3时,曲线C :22113x y m m -=+-,时,它实半轴长与虚半轴长相等,而-(m +1)≠3-m ,m +1≠m -3,D 不正确.故选:AB11.(2021·湖南雅礼中学高三模拟)设抛物线2:4C y x =的焦点为F ,O 为坐标原点,过F 的直线与C 分别交于()1122(),,A x y B x y ,两点,则()A .12y y 为定值B .AOB ∠可能为直角C .以BF 为直径的圆与y 轴有两个交点D .对于确定的直线AB ,在C 的准线上存在三个不同的点P ,使得ABP △为直角三角形【答案】AD【解析】设:1AB l x ty =+,与24y x =联立可得:2124404y ty y y --==-,,故A 对;因为221212116y y x x ==,所以12121OA OBy y k k x x ⋅=≠-,∴2AOB π∠≠,故B 错;设BF 的中点11111,,2222BF x y x M ++⎛⎫=⎪⎝⎭,则以BF 为直径的圆与y 轴相切,故C 错;设AB 的中点1212,22x x y y N ++⎛⎫ ⎪⎝⎭,N 到C 准线的距离为当1212x x ++,因为12122AB x x +=+故有以AB 为直径的圆与C 的准线相切,对于确定的直线AB ,当P ∠为直角,此时P 为切点;当A ∠或B Ð为直角,此时P 为过A (或B )的AB 的垂线与准线的交点,故D 正确.故选:AD12.已知双曲线22:139x y C -=的左、右顶点分别为A ,B ,点P 是C 上的任意一点,则()A .双曲线C 的离心率为233B .焦点到渐近线的距离为3C .点P 到两条渐近线的距离之积为94D .当P 与A 、B 不重合时,直线PA ,PB 的斜率之积为3【答案】BCD【解析】对于A ,,3a b c ===2e ==,故A 错误;对于B ,双曲线的右焦点2F 到渐近线y x ==的距离为3d ==,故B 正确;对于C ,设()00,P x y ,满足2200139x y -=,即220039x y -=,则点P到两条渐近线的距离之积为2200123944x y d d -⋅==,故C 正确;对于D ,设()00,P x y ,由C 得2239x y -=,PAPB k k ==2200220039333PA PB y x k k x x -⋅===--,故D 正确;故选:BCD13.(2021·湖北襄阳五中高三模拟)已知椭圆G:2221(06x y b b+=<<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+,当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②OP 的最小值为2;③存在b 使得椭圆G 上满足条件的点P 仅有两个,其中,所有正确命题的序号是__________.【答案】①②【解析】椭圆(222:106x y G b b+=<<的两个焦点分别为)1F和()2F ,短轴的两个端点分别为()10,B b -和()20,B b ,设(),P x y ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+,由椭圆定义可得,1222PB PB a b +==,即有P 在椭圆222166y x b+=-上,对于①,将x 换为x -方程不变,则点P 的轨迹关于y 轴对称,故①正确.;对于②,由图象可得,当P 满足22x y =,即有226b b -=,即b =时,OP 取得最小值,可得222x y ==时,即有2OP ==取得最小值为2,故②正确;对于③,由图象可得轨迹关于,x y 轴对称,且0b <<,则椭圆G 上满足条件的点P 有4个,不存在b 使得椭圆G 上满足条件的点P 有2个,故③不正确.,故答案为①②.14.(2021·山东滕州一中高三模拟)某中学张燕同学不仅学习认真,而且酷爱体育运动,经过艰苦的训练,终于在校运会的投铅球比赛中创造佳绩.已知张燕所投铅球的轨迹是一段抛物线(人的身高不计,铅球看成一个质点),如图所示,设初速度为定值0v ,且与水平方向所成角为变量θ,已知张燕投铅球的最远距离为10m .当她投得最远距离时,铅球轨迹抛物线的焦点到准线的距离为____m .(空气阻力不计,重力加速度为210m /s )【答案】5【解析】设铅球运动时间为0t ,t 时刻的水平方向位移为x ,则0cos x v t θ=.由001sin 02v gt θ-=知002sin v t g θ=20sin 2v x g θ∴=故当4x π=时,20max 10v x g==,210m /s g =∴解得:0t =,010m /sv =201 2.5m22t h g ⎛⎫∴== ⎪⎝⎭如图建立平面直角坐标系,(5, 2.5)P --,设抛物线方程为22x py=-则抛物线的焦点到准线的距离22(5)5m 22 2.5x p y -===-⨯故答案为:515.(2021·山东枣庄一中高三模拟)已知双曲线2222:1x y C a b-=(0a >,0b >)的左、右焦点分别为1F 、2F ,O为坐标原点,P 是双曲线上在第一象限内的点,直线PO 、2PF 分别交双曲线C 左、右支于另一点M 、N ,213PF PF =,且260MF N ∠=︒,则双曲线C 的离心率为________;渐近线方程为________.【答案】22y x =±【解析】由213PF PF =,122PF PF a -=,解得13PF a =,2PF a =,由题意可得四边形12PF MF 为平行四边形,又260MF N ∠=︒,可得1260F PF ∠=︒,在12PF F △中,可得()22224323cos 607c a a a a a =+-⋅⋅⋅︒=,即有2c a =,则2c e a ==,所以2b a ===,则渐近线方程为2y x =±.故答案为:72;32y x =±.16.(2021•南充模拟)已知椭圆2222:1(0)x y C a b a b +=>>的左,右焦点分别为1(2,0)F -,2(2,0)F ,点15(1,)3P --在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为一1的直线l 与椭圆C 相交于M ,N 两点,使得11||||F M F N =?若存在,求出直线的方程;若不存在,说明理由.【解析】(1)由题意得,2c =,2211519a b +=,222a b c =+,解得:26a =,22b =,所以椭圆的标准方程:22162x y +=;(2)假设存在满足条件的直线l ,设直线l 的方程:y x t =-+,设(,)M x y ,(,)N x y ''与椭圆联立整理:2246360x tx t -+-=,△223644(36)0t t =-->,t -<<,32t x x '+=,2364t xx -'=,由于11||||F M F N =,设线段MN 的中点为E ,则1F E MN ⊥,所以111F E MN k k =-=又3(4t E ,)3t ,所以141324F E tk t ==+,解得4t =-,当4t =-时,不满足t -<<,所以不存在满足条件的直线l .17.(2021·湖南高三模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为72,双曲线上的点到焦点的最小距离为2.(1)求双曲线C 的方程;(2)四边形MNPQ 的四个顶点均在双曲线C 上,且//MQ NP ,MQ x ⊥轴,若直线MN 和直线QP 交于点()4,0S ,四边形MNPQ 的对角线交于点D ,求点D 到双曲线C 的渐近线的距离之和.【解析】(1)由题意,22222c a c a a b c ⎧-=⎪⎪=⎨⎪+=⎪⎩,解得24a =,23b =,所以双曲线C 的方程为22143x y -=;(2)由MQ x ⊥轴,//MQ NP ,可知四边形MNPQ 为等腰梯形,且关于x 轴对称,故四边形MNPQ 的对角线的交点D 在x轴上,如图所示:设点(,0)D t ,则对角线MP 的方程为(0)x my t m =+≠,设1122(,),(,)M x y P x y ,由对称性知1122(,),(,)Q x y N x y --,联立22143x y x my t ⎧-=⎪⎨⎪=+⎩,消去x 得222(34)63120m y mty t -++-=,所以22222(6)4(34)(312)48(34)0mt m t m t ∆=---=-+>,即2234m t +>,由韦达定理得21212226312,3434mt t y y y y m m --+==--,由,,M N S 三点共线知MS NS k k =,即121244y y x x -=--,所以1221(4)(4)0y my t y my t +-++-=,整理得12122(4)()0my y t y y +-+=,所以222(312)(4)(6)034m t t mt m -+--=-,所以224(1)034m t m -=-,即24(1)0,1m t t -==,所以直线MP 过定点()1,0,即D ()1,0,因为双曲线C 20y ±=20y -=时,由点到直线距离公式得217d ==,由对称性知点D 到双曲线C 的渐近线的距离之和为2217.。

2017届高三文科数学二轮复习:第1部分 专题5 突破点12 圆锥曲线的定义、方程、几何性质

2017届高三文科数学二轮复习:第1部分 专题5 突破点12 圆锥曲线的定义、方程、几何性质

突破点12圆锥曲线的定义、方程、几何性质提炼1 圆锥曲线的定义 (1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M (l 为抛物线的准线). 提炼2 圆锥曲线的重要性质 (1)椭圆、双曲线中a ,b ,c 之间的关系 ①在椭圆中:a 2=b 2+c 2;离心率为e =ca =1-b 2a 2; ②在双曲线中:c 2=a 2+b 2;离心率为e =ca =1+b 2a 2.(2)双曲线的渐近线方程与焦点坐标①双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ;焦点坐标F 1(-c,0),F 2(c,0);②双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±ab x ,焦点坐标F 1(0,-c ),F 2(0,c ).(3)抛物线的焦点坐标与准线方程①抛物线y 2=±2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫±p 2,0,准线方程为x =∓p 2; ②抛物线x 2=±2py (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫0,±p 2,准线方程为y =∓p 2. 提炼3 弦长问题 (1)直线与圆锥曲线相交时的弦长斜率为k 的直线与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2或|AB |=1+⎝ ⎛⎭⎪⎫1k 2|y 1-y 2|=1+⎝ ⎛⎭⎪⎫1k 2(y 1+y 2)2-4y 1y 2. (2)抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则①x 1x 2=p 24,y 1y 2=-p 2;②弦长|AB |=x 1+x 2+p =2p sin 2α(α为弦AB 的倾斜角);③1|F A |+1|FB |=2p ;④以弦AB 为直径的圆与准线相切.回访1 圆锥曲线的定义与方程1.(2016·天津高考)已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1D.x 24-y 212=1D 由题意知双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b2x ,解得⎩⎪⎨⎪⎧x =44+b 2,y =2b4+b 2,或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b4+b2,即第一象限的交点为⎝ ⎛⎭⎪⎫44+b 2,2b 4+b 2. 由双曲线和圆的对称性得四边形ABCD 为矩形,其相邻两边长为84+b 2,4b 4+b2,故8×4b 4+b 2=2b ,得b 2=12.故双曲线的方程为x 24-y 212=1.故选D.]2.(2014·全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B.6C.12D.7 3C ∵F 为抛物线C :y 2=3x 的焦点, ∴F ⎝ ⎛⎭⎪⎫34,0,∴AB 的方程为y -0=tan 30°⎝ ⎛⎭⎪⎫x -34, 即y =33x -34.联立⎩⎨⎧y 2=3x ,y =33x -34,得13x 2-72x +316=0.∴x 1+x 2=--7213=212,即x A +x B =212.由于|AB |=x A +x B +p , ∴|AB |=212+32=12.]回访2 圆锥曲线的重要性质3.(2016·全国乙卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B.]4.(2016·北京高考)双曲线x2a2-y2b2=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=________.2不妨令B为双曲线的右焦点,A在第一象限,则双曲线如图所示.∵四边形OABC为正方形,|OA|=2,∴c=|OB|=22,∠AOB=π4.∵直线OA是渐近线,方程为y=ba x,∴ba=tan∠AOB=1,即a=b.又∵a2+b2=c2=8,∴a=2.] 回访3弦长问题5.(2015·全国卷Ⅰ)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=() A.3 B.6C.9D.12B抛物线y2=8x的焦点为(2,0),∴椭圆中c=2,又ca=12,∴a=4,b2=a2-c2=12,从而椭圆方程为x216+y212=1.∵抛物线y2=8x的准线为x=-2,∴x A=x B=-2,将x A=-2代入椭圆方程可得|y A|=3,由图象可知|AB|=2|y A|=6.故选B.]6.(2013·全国卷Ⅰ)O为坐标原点,F为抛物线C:y2=42x的焦点,P为C 上一点,若|PF|=42,则△POF的面积为()A.2 B.2 2C.2 3D.4C设P(x0,y0),则|PF|=x0+2=42,∴x0=32,∴y20=42x0=42×32=24,∴|y0|=2 6.∵F(2,0),∴S△POF =12|OF|·|y0|=12×2×26=2 3.]热点题型1 圆锥曲线的定义、标准方程题型分析:圆锥曲线的定义、标准方程是高考常考内容,主要以选择、填空的形式考查,解题时分两步走:第一步,依定义定“型”,第二步,待定系数法求“值”.(1)(2016·全国乙卷)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3) B.(-1,3) C.(0,3)D.(0,3)(2)(2016·通化一模)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP→=4FQ →,则|QF |=( ) A.72 B.3 C.52D.2(1)A (2)B (1)若双曲线的焦点在x 轴上,则⎩⎨⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎨⎧1+n >0,3-n >0,∴-1<n <3.若双曲线的焦点在y 轴上,则双曲线的标准方程为 y 2n -3m 2-x 2-m 2-n =1,即⎩⎨⎧n -3m 2>0,-m 2-n >0, 即n >3m 2且n <-m 2,此时n 不存在.故选A.(2)如图所示,因为FP→=4FQ →,所以|PQ ||PF |=34,过点Q 作QM ⊥l 垂足为M ,则MQ ∥x 轴,所以|MQ|4=|PQ ||PF |=34,所以|MQ |=3,由抛物线定义知|QF |=|QM |=3.]求解圆锥曲线标准方程的方法是“先定型,后计算”1.定型,就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程.2.计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).变式训练1] (1)(2016·郑州二模)经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( )【导学号:85952050】A.x 2113-y 211=1 B.x 22-y 2=1 C.y 2113-x 211=1 D.y 211-x 2113=1(2)(2016·合肥二模)已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )A .±3 B.±1 C.±34D.±33(1)A (2)A (1)设双曲线的渐近线方程为y =kx ,即kx -y =0,由题意知|-2|k 2+1=1,解得k =±3,则双曲线的焦点在x 轴上,设双曲线方程为x 2a 2-y 2b 2=1,则有⎩⎪⎨⎪⎧22a 2-12b 2=1,ba =3,解得⎩⎪⎨⎪⎧a 2=113,b 2=11,故选A. (2)设M (x 0,y 0),由题意x 0+p2=2p ,则x 0=3p 2,从而y 20=3p 2,则M ⎝ ⎛⎭⎪⎫3p 2,3p 或M ⎝ ⎛⎭⎪⎫3p 2,-3p ,又F ⎝ ⎛⎭⎪⎫p 2,0,则k MF=±3.]热点题型2 圆锥曲线的几何性质题型分析:圆锥曲线的几何性质是高考考查的重点和热点,其中求圆锥曲线的离心率是最热门的考点之一,建立关于a ,c 的方程或不等式是求解的关键.(1)(2016·全国丙卷)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34(2)(2016·西安三模)已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B ,C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3x B.y =±22x C.y =±(3+1)xD.y =±(3-1)x(1)A (2)C (1)如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 由PF ⊥x 轴得P ⎝ ⎛⎭⎪⎫-c ,b 2a .设E (0,m ),又PF∥OE,得|MF||OE|=|AF||AO|,则|MF|=m(a-c)a.①又由OE∥MF,得12|OE||MF|=|BO||BF|,则|MF|=m(a+c)2a.②由①②得a-c=12(a+c),即a=3c,所以e=ca=13.故选A.(2)由题意作出示意图,易得直线BC的斜率为ab,cos∠CF1F2=bc,又由双曲线的定义及|BC|=|CF2|可得|CF1|-|CF2|=|BF1|=2a,|BF2|-|BF1|=2a⇒|BF2|=4a,故cos∠CF1F2=bc=4a2+4c2-16a22×2a×2c⇒b2-2ab-2a2=0⇒⎝⎛⎭⎪⎫ba2-2⎝⎛⎭⎪⎫ba-2=0⇒ba =1+3,故双曲线的渐近线方程为y=±(3+1)x.]1.求椭圆、双曲线离心率(离心率范围)的方法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a,b,c 的等量关系或不等关系,然后把b用a,c代换,求ca的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得.(2)用法:①可得ba或ab的值.②利用渐近线方程设所求双曲线的方程.变式训练2] (1)(2016·全国甲卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D.2(2)(名师押题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )【导学号:85952051】A.22B.2- 3C.5-2D.6- 3(1)A (2)D (1)法一:如图,因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca = 2.法二:如图,因为MF 1⊥x 轴,所以|MF 1|=b 2a.在Rt △MF 1F 2中,由sin ∠MF 2F 1=13得 tan ∠MF 2F 1=24.所以|MF 1|2c =24,即b 22ac =24,即c 2-a 22ac =24, 整理得c 2-22ac -a 2=0,两边同除以a2得e2-22e-1=0.解得e=2(负值舍去).(2)设|F1F2|=2c,|AF1|=m,若△F1AB是以A为直角顶点的等腰直角三角形,∴|AB|=|AF1|=m,|BF1|=2m.由椭圆的定义可知△F1AB的周长为4a,∴4a=2m+2m,m=2(2-2)a.∴|AF2|=2a-m=(22-2)a.∵|AF1|2+|AF2|2=|F1F2|2,∴4(2-2)2a2+4(2-1)2a2=4c2,∴e2=9-62,e=6- 3.]。

年高考数学二轮专题复习与策略第部分专题5解析几何第圆锥曲线的定义、方程与性质教师用书理

年高考数学二轮专题复习与策略第部分专题5解析几何第圆锥曲线的定义、方程与性质教师用书理

第17讲 圆锥曲线的定义、方程及性质题型一| 圆锥曲线的定义及其标准方程(1)设F 1,F 2分别是椭圆E :x 2+y2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.假设AF 1=3F 1B ,AF 2⊥x 轴,那么椭圆E 的方程为________.(2)椭圆C :x 29+y 24=1,点M 及C 的焦点不重合.假设M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,那么AN+BN =________.(1)x 2+32y 2=1 (2)12[(1)不妨设点A 在第一象限,∵AF 2⊥x 轴,∴A (c ,b 2)(其中c 2=1-b 2,0<b <1,c >0).又∵AF 1=3F 1B ,由AF 1→=3F 1B →得B ⎝ ⎛⎭⎪⎪⎫-5c 3,-b 23,代入x 2+y 2b 2=1得25c 29+b 49b 2=1,又c 2=1-b 2,∴b 2=23.故椭圆E 的方程为x 2+32y 2=1.(2)根据条件画出图形,如图.设MN 的中点为P ,F 1,F 2为椭圆C 的焦点,连结PF 1,PF 2.显然PF 1是△MAN 的中位线,PF 2是△MBN 的中位线,∴AN +BN =2PF 1+2PF 2=2(PF 1+PF 2)=2×6=12.]求解圆锥曲线标准方程的方法是“先定型,后计算〞.定型就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程.2.数形结合,画出图形.根据椭圆的定义及几何性质求解.1.在平面直角坐标系xOy 中,方程x 24-m -y 22+m=1表示双曲线,那么实数m 的取值范围为________.(-2,4) [由题意可知(4-m )(2+m )>0,解得-2<m <4. ∴实数m 的取值范围为(-2,4).]2.双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的斜率为2,且右焦点及抛物线y 2=43x 的焦点重合,那么该双曲线的方程为________.x 2-y 22=1 [由双曲线的方程得其渐近线方程为y =b a x ,那么ba=2,b =2a ,又抛物线的焦点为(3,0),那么双曲线的右焦点为(3,0),即c =3,可解得a =1,b =2,故双曲线的方程为x 2-y 22=1.]3.如图17-1,正方形ABCD 与正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,那么ba=________.图17-12+1 [∵正方形ABCD 的正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴C ⎝ ⎛⎭⎪⎪⎫a 2,-a ,F ⎝⎛⎭⎪⎪⎫a 2+b ,b . 又∵点C ,F 在抛物线y 2=2px (p >0)上,∴⎩⎪⎨⎪⎧a 2=pa ,b 2=2p ⎝ ⎛⎭⎪⎪⎫a 2+b ,解得ba=2+1.]题型二| 圆锥曲线的几何性质(1)在平面直角坐标系xOy 中,假设中心在坐标原点上的双曲线的一条准线方程为x =12,且它的一个顶点及抛物线y 2=-4x 的焦点重合,那么该双曲线的渐近线方程为________.(2)过点M (1,1)作斜率为-12的直线及椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,假设M 是线段AB 的中点,那么椭圆C 的离心率等于________.(1)y =±3x (2)22[(1)∵抛物线的焦点为(-1,0),∴a =1.又a 2c =12,∴c =2,b = 3.从而双曲线的渐近线方程为y =±bax ,即y =±3x .(2)设A (x 1,y 1),B (x 2,y 2),那么⎩⎪⎨⎪⎧x 21a 2+y 21b 2=1,x 22a 2+y22b2=1,∴x 1-x 2x 1+x 2a2+y 1-y 2y 1+y 2b2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2. ∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2, ∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.]【名师点评】 1.两类离心率的求法:一是利用定义、方程、性质求出a ,c ,进而求e ;二是运用条件构建关于a ,c 的齐次方程,变形求e .2.两类离心率的变形应用:(1)椭圆的离心率e :e 2=c 2a 2=1-b 2a 2,b a =1-e 2;(2)双曲线的离心率e :e 2=c 2a 2=1+b 2a 2,b a=e 2-1.1.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,那么双曲线C 的渐近线方程为________.【导学号:19592051】y =±12x [双曲线C 的渐近线方程为y =±b a x ,离心率为e =c a =52,所以c 2a 2=54=a 2+b 2a 2,b 2a 2=14, 即b a =12,故渐近线方程为y =±12x .] 2.(2021·苏北三市三模)点F 为抛物线y 2=4x 的焦点,该抛物线上位于第一象限的点A 到其准线的距离为5,那么直线AF 的斜率为________.43[由题意可知F (1,0),又由抛物线的定义可知 AF =x A +1,又AF =5,故x A =4.∴y A =4(y A =-4舍去). ∴k AF =4-04-1=43.]3.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)及抛物线y 2=2px (p >0)相交于A ,B 两点,公共弦AB 恰好过它们的公共焦点F ,那么双曲线C 的离心率为________.2+1 [抛物线的焦点为F ⎝⎛⎭⎪⎪⎫p 2,0,且c =p2,所以p =2c .根据对称性可知公共弦AB ⊥x 轴,且AB 的方程为x =p 2,当x =p2时,y A =p ,所以A ⎝ ⎛⎭⎪⎪⎫p 2,p .又因为双曲线左焦点F 1的坐标为⎝⎛⎭⎪⎪⎫-p 2,0,所以AF 1=⎝ ⎛⎭⎪⎪⎫-p 2-p 22+p 2=2p ,又AF =p ,所以2p -p =2a ,即(2-1)×2c =2a ,所以c a =12-1=2+1.]题型三| 直线及圆锥曲线的位置关系(1)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,那么△OAB 的面积为________.(2)双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,那么实数m 的值为________.(1)94 (2)0或-8 [(1)由得焦点坐标为F ⎝⎛⎭⎪⎪⎫34,0,因此直线AB 的方程为y =33⎝⎛⎭⎪⎪⎫x -34,即4x -43y -3=0.法一:联立抛物线方程化简得4y 2-123y -9=0, 故|y A -y B |=y A +y B2-4y A y B =6.因此S △OAB =12OF |y A -y B |=12×34×6=94.法二:联立方程得x 2-212x +916=0,故x A +x B =212.根据抛物线的定义有AB =x A +x B +p =212+32=12.同时原点到直线AB 的距离为h =|-3|42+-432=38,因此S △OAB =12AB ·h =94.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点为P (x 0,y 0),那么⎩⎪⎨⎪⎧x 21-y 213=1,①x 22-y223=1,②由①-②得x 21-x 22=y 21-y 223,即(x 1-x 2)(x 1+x 2)=13(y 1-y 2)(y 1+y 2),也即2x 0=13·y 1-y 2x 1-x 2·2y 0=13·(-1)·2y 0, ∴y 0=-3x 0,③又P 在直线y =x +m 上, ∴y 0=x 0+m ,④由③④解得P ⎝ ⎛⎭⎪⎪⎫-m 4,34m , 代入抛物线y 2=18x 得,916m 2=18·⎝ ⎛⎭⎪⎪⎫-m 4,∴m =0或-8. 经检验m =0或-8均符合题意.]【名师点评】 及直线与圆锥曲线相交的有关问题的求解策略 在涉及直线及二次曲线的两个交点坐标时,一般不是求出这两个点的坐标,而是设出这两个点的坐标,根据直线方程与曲线方程联立后所得方程的根的情况,使用根及系数的关系进展整体代入,这种设而不求的思想是解析几何中处理直线与二次曲线相交问题的最根本方法.1.在平面直角坐标系xOy 中,椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,假设d 2=6d 1,那么椭圆C 的离心率为________.33 [依题意,d 2=a 2c -c =b 2c .又BF =c 2+b 2=a ,所以d 1=bc a.由可得b 2c =6·bca ,所以6c 2=ab ,即6c 4=a 2(a 2-c 2),整理可得a 2=3c 2,所以离心率e =c a =33.]2.点A (1,0),椭圆C :x 24+y 23=1,过点A 作直线交椭圆C 于P ,Q 两点,AP →=2QA →,那么直线PQ 的斜率为________.±52 [设Q (x 0,y 0),P (x P ,y P ),那么AP →=(x P -1,y P ),QA →=(1-x 0,-y 0),由AP →=2QA →,得⎩⎪⎨⎪⎧x P -1=21-x 0,y P =-2y 0,∴⎩⎪⎨⎪⎧x P =3-2x 0,y P =-2y 0,因为点P ,Q 都在椭圆上,所以⎩⎪⎨⎪⎧x 204+y 203=1,3-2x 024+4y23=1,解得⎩⎪⎨⎪⎧x 0=74,y 0=±358,即Q 为⎝ ⎛⎭⎪⎪⎫74,±358, P 为⎝ ⎛⎭⎪⎪⎫-12,±354, 所以直线PQ 的斜率k =±52.]3.直线3x -4y +4=0及抛物线x 2=4y 与圆x 2+(y -1)2=1从左到右的交点依次为A ,B ,C ,D ,那么ABCD的值为________.116 [由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y ,得x 2-3x -4=0,解得x =-1或4.所以A ⎝⎛⎭⎪⎪⎫-1,14,D (4,4). 直线3x -4y +4=0恰过抛物线的焦点F (0,1),且该圆的圆心为F (0,1),所以AF =y A +1=54,DF =y D +1=5,所以AB CD =AF -1DF -1=116.]。

2020新课标高考数学二轮讲义:第二部分专题五 第2讲 圆锥曲线的定义、方程与性质 Word版含解

2020新课标高考数学二轮讲义:第二部分专题五 第2讲 圆锥曲线的定义、方程与性质 Word版含解

姓名,年级:时间:第2讲圆锥曲线的定义、方程与性质[做真题]题型一圆锥曲线的定义与方程1.(2019·高考全国卷Ⅰ)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点,若|AF2|=2|F2B|,|AB|=|BF1|,则C 的方程为( )A.错误!+y2=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1解析:选B。

由题意设椭圆的方程为错误!+错误!=1(a〉b>0),连接F1A,令|F 2B|=m,则|AF2|=2m,|BF1|=3m。

由椭圆的定义知,4m=2a,得m=错误!,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O 为坐标原点),则sin θ=错误!.在等腰三角形ABF1中,cos 2θ=错误!=错误!,所以错误!=1-2错误!错误!,得a2=3。

又c2=1,所以b2=a2-c2=2,椭圆C的方程为x23+错误!=1.故选B.2.(2019·高考全国卷Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆错误!+错误!=1的一个焦点,则p=()A.2 B.3C.4 D.8解析:选D。

由题意,知抛物线的焦点坐标为错误!,椭圆的焦点坐标为(±错误!,0),所以错误!=错误!,解得p=8,故选D.3.(一题多解)(2017·高考全国卷Ⅲ)已知双曲线C:错误!-错误!=1 (a >0,b>0)的一条渐近线方程为y=错误!x,且与椭圆错误!+错误!=1有公共焦点,则C的方程为()A.错误!-错误!=1 B.错误!-错误!=1C.错误!-错误!=1 D.错误!-错误!=1解析:选B.法一:由双曲线的渐近线方程可设双曲线方程为错误!-错误!=k(k〉0),即错误!-错误!=1,因为双曲线与椭圆错误!+错误!=1有公共焦点,所以4k+5k=12-3,解得k=1,故双曲线C的方程为错误!-错误!=1.故选B.法二:因为椭圆错误!+错误!=1的焦点为(±3,0),双曲线与椭圆错误!+错误!=1有公共焦点,所以a2+b2=(±3)2=9①,因为双曲线的一条渐近线为y=错误!x,所以错误!=错误!②,联立①②可解得a2=4,b2=5,所以双曲线C 的方程为错误!-错误!=1.4.(2017·高考全国卷Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

圆锥曲线的定义与基本性质

圆锥曲线的定义与基本性质

圆锥曲线的定义与基本性质圆锥曲线是仿射空间中的一类特殊曲线,由一个固定点(焦点)到一个固定直线(准线)上所有点的距离与一个常数之比为定值的点构成。

圆锥曲线包括椭圆、双曲线和抛物线三种类型。

在本文中,我们将探讨圆锥曲线的一些基本定义及性质。

一、圆锥曲线的定义圆锥曲线是由一个固定点 p(称为焦点)和一个不包含 p 点的直线 l(称为准线)所确定的曲线。

圆锥体沿着准线 l 延伸,取一个点 r,使得 pr:rd 是定值,其中 d 为点 r 到直线 l 的距离。

设 F1,F2 是焦点,l 为准线,e 为离心率,则 e=PF1/PS,其中 S 是公共焦点。

- 当 e<1 时,得到椭圆;- 当 e=1 时,得到抛物线;- 当 e>1 时,得到双曲线。

例如,下图中,以点 F 为焦点,线段 CD 为准线,且焦距PF/CD=1/2,得到的曲线就是抛物线。

二、圆锥曲线的参数方程对于椭圆而言,可以使用参数方程来描述:x=a cos⁡ty=b sin⁡t其中 a 和 b 分别代表椭圆在 x 轴和 y 轴方向上的半径,t 为变量。

类似的,可以得到双曲线和抛物线的参数方程。

三、圆锥曲线的焦点和直径对于圆锥曲线,焦点和直径是十分重要的性质之一。

对于椭圆而言,每一条直径的中点都会落在坐标系的第一象限中,且椭圆的两个焦点都位于坐标轴上。

对于双曲线而言,每一条直径的中点都会落在 x 轴中线上,且双曲线的两个焦点都位于 x 轴上。

对于抛物线而言,它没有焦点,但总存在一个顶点,即曲线的最高点或最低点,每一条与顶点连线垂直于开口的那一侧的直线都称为该抛物线的一条直径。

四、圆锥曲线的离心率和倾角离心率 e 是一个很重要的度量曲线形状的参数,表示焦点与准线之间距离的比值。

其定义为 e=PF/PS,其中 PF 为焦点到曲线表面上一点的距离,PS 为焦点到准线的距离。

而圆锥曲线的倾角则是准线与 x 轴的夹角。

对于椭圆和双曲线而言,倾角的值随着离心率的增大而减小,对于抛物线而言,则为 45 度。

高三数二轮专题复习课件圆锥曲线

高三数二轮专题复习课件圆锥曲线
理解参数方程与圆锥曲线的关联,掌 握利用参数方程解决圆锥曲线问题的 方法。
极坐标与圆锥曲线
理解极坐标与圆锥曲线的交汇点,掌 握利用极坐标解决圆锥曲线问题的方 法。
05
圆锥曲线解题技巧与策略
代数法求解圆锥曲线问题
利用代数方法进行求解
代数法是解决圆锥曲线问题的一种基本方法,主要通过将问题转化为代数方程, 然后进行求解。这种方法需要掌握圆锥曲线的标准方程和相关性质,以及代数方 程的求解技巧。
抛物线
离心率e为1,因为抛物线是所有点与固定点(焦 点)距离相等的点的集合。
03
圆锥曲线的应用
曲线的切线问题
切线斜率
通过求导数或利用曲线的参数方程,求出切线的斜率,进而求出 切线方程。
切线长
利用切线斜率和点到直线的距离公式,求出切线长。
切线与弦的关系
利用切线与弦的垂直关系,求出弦的中点坐标和长度。
THANKS
感谢观看
关于x轴和y轴都是对称的 。
抛物线
只有一条对称轴,通常为 y=x或y=-x。
曲线的范围
椭圆
在x轴和y轴上都有一定的范围, 确保所有点都在椭圆上。
双曲线
在x轴和y轴上都有一定的范围,确 保所有点都在双曲线上。
抛物线
只关于一个轴有范围,通常为y≥0 或y≤0。
曲线的顶点和焦点
椭圆
有两个顶点和两个焦点,顶点是 曲线的最高和最低点,焦点用于
确定曲线的形状。
双曲线
有一个顶点和两个焦点,顶点是 曲线的最高或最低点,焦点用于
确定曲线的形状。
抛物线
有一个顶点和焦点,顶点是曲线 的最高或最低点,焦点在顶点的
正上方或正下方。
曲线的离心率
椭圆

专题五第2讲圆锥曲线的定义方程与性质课件高考理科数学二轮专题复习

专题五第2讲圆锥曲线的定义方程与性质课件高考理科数学二轮专题复习

D.-32
答案:C
答案:C
考点三 直线与圆锥曲线的关系及应用 ——联立方程,设而不求
考点三 直线与圆锥曲线的关系及应用——联立方程,设而不求 1.弦长公式 设直线斜率为k,直线与圆锥曲线交于A(x1,y1),B(x2,y2)时,|AB|
=_____________=______________________或|AB|=______________
答案:A
答案:B
(3)(多选)[2022·全国乙卷]双曲线 C 的两个焦点为 F1,F2,以 C 的实轴 为直径的圆记为 D,过 F1 作 D 的切线与 C 交于 M,N 两点,且 cos ∠F1NF2=35 , 则 C 的离心率为( )
A.
5 2
B.23
C.
13 2
D.
17 2
答案:AC
对点训练 1.[2023·全国乙卷]设 A,B 为双曲线 x2-y92 =1 上两点,下列四个点中,可 为线段 AB 中点的是( )
C.y=± 6 x D.y=± 7 x
答案:C
2.[2023·河南省开封市杞县等 4 地三模]过抛物线 y2=2px(p>0)的焦点 F 的
直线与抛物线在第一象限、第四象限分别交于 A,B 两点,若||ABFF|| =13 ,则直π
B.π3
C.23π
D.56π
答案:C
定型
确定曲线类型
计算 利用待定系数法,根据条件求出系数a,b,c,p
对点训练
1.[2023·全国甲卷]设 O 为坐标原点,F1,F2 为椭圆 C:x92 +y62 =1 的两个
焦点,点 P 在 C 上,cos ∠F1PF2=53 ,则|OP|=(

A.153

高考数学二轮复习 第2部分 专题5 解析几何 第2讲 圆锥曲线的定义、方程及性质教案 文

高考数学二轮复习 第2部分 专题5 解析几何 第2讲 圆锥曲线的定义、方程及性质教案 文

第2讲 圆锥曲线的定义、方程及性质[做小题——激活思维]1.椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A ,B 两点,则△F 1AB 的周长为( )A .12B .16C .20D .24 C [△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a . 在椭圆x 225+y 216=1中,a 2=25,a =5, ∴△F 1AB 的周长为4a =20,故选C.]2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线D [由已知得|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.]3.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左、右两个焦点,若|PF 1|=9,则|PF 2|=________.17 [由题意知|PF 1|=9<a +c =10,所以P 点在双曲线的左支,则有|PF 2|-|PF 1|=2a =8,故|PF 2|=|PF 1|+8=17.]4.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.209或365 [当k >4时,有e =1-4k =23,解得k =365;当0<k <4时,有e =1-k 4=23,解得k =209.故实数k 的值为209或365.]5.双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.5 [∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.]6.抛物线8x 2+y =0的焦点坐标为________.⎝⎛⎭⎪⎫0,-132[由8x 2+y =0,得x 2=-18y .∴2p =18,p =116,∴焦点为⎝⎛⎭⎪⎫0,-132.][扣要点——查缺补漏]1.圆锥曲线的定义及标准方程(1)应用圆锥曲线的定义解题时,一定不要忽视定义中的隐含条件,如T 3.(2)凡涉及椭圆或双曲线上的点到焦点的距离、抛物线上的点到焦点距离,一般可以利用定义进行转化.如T 1,T 2.(3)求解圆锥曲线的标准方程的方法是“先定型,后计算”. 2.圆锥曲线的几何性质(1)确定椭圆和双曲线的离心率的值及范围,就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b得到a ,c 的关系式,如T 4.(2)要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.圆锥曲线的定义与标准方程(5年4考)[高考解读] 高考对圆锥曲线的定义及标准方程的直接考查较少,多对于圆锥曲线的性质进行综合考查.1.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1 D.x 25+y 24=1切入点:|AF 2|=2|F 2B |,|AB |=|BF 1|.关键点:挖掘隐含条件,确定点A 的位置,求a ,b 的值.B [设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|, ∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又∵|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ), 又F 2(1,0),AF 2→=2F 2B →,∴B ⎝ ⎛⎭⎪⎫32,-b 2.将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B.]2.(2015·全国卷Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.切入点:△APF 的周长最小.关键点:根据双曲线的定义及△APF 周长最小,确定P 点坐标. 126 [由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+662=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去), 所以S △APF =S △AF 1F -S △PF 1F=12×6×66-12×6×26=12 6.] [教师备选题]1.[一题多解](2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.x 24-y 2=1 [法一:∵双曲线的渐近线方程为y =±12x , ∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3), ∴λ=16-4×(3)2=4,∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y=-12x 的上方(如图).∴双曲线的焦点在x 轴上,故可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1.]2.(2018·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 23-y 29=1B.x 29-y 23=1C.x 24-y 212=1 D.x 212-y 24=1 A [设双曲线的右焦点为F (c,0).将x =c 代入x 2a 2-y 2b 2=1,得c 2a 2-y 2b 2=1,∴ y =±b 2a.不妨设A ⎝⎛⎭⎪⎫c ,b 2a ,B ⎝ ⎛⎭⎪⎫c ,-b 2a .双曲线的一条渐近线方程为y =bax ,即bx -ay =0,则d 1=⎪⎪⎪⎪⎪⎪b ·c -a ·b 2a b 2+-a2=|bc -b 2|c =bc(c -b ), d 2=⎪⎪⎪⎪⎪⎪b ·c +a ·b 2a b 2+-a2=|bc +b 2|c =bc(c +b ), ∴ d 1+d 2=bc·2c =2b =6,∴ b =3.∵ c a=2,c 2=a 2+b 2,∴ a 2=3,∴ 双曲线的方程为x 23-y 29=1.故选A.]1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d (d 为M 点到准线的距离).易错提醒:应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误.2.求解圆锥曲线标准方程的方法是“先定型,后计算” (1)定型:就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程;(2)计算:即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线方程常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆方程常设为mx 2+ny 2=1(m >0,n >0,且m ≠n ),双曲线方程常设为mx 2-ny 2=1(mn >0).1.(椭圆的定义)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.59C.49D.513D [如图,设线段PF 1的中点为M ,因为O 是F 1F 2的中点,所以OM ∥PF 2,可得PF 2⊥x 轴,|PF 2|=b 2a =53,|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=513.故选D.]2.(双曲线的标准方程)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为45,渐近线方程为2x ±y =0,则双曲线的方程为( )A.x 24-y 216=1 B.x 216-y 24=1 C.x 216-y 264=1 D.x 264-y 216=1 A [易知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点在x 轴上,所以由渐近线方程为2x ±y =0,得ba=2,因为双曲线的焦距为45,所以c =2 5.结合c 2=a 2+b 2,可得a =2,b =4,所以双曲线的方程为x 24-y 216=1.]3.(抛物线的定义)过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A ,B 两点,若|AF |=2|BF |=6,则p =________.4 [设直线AB 的方程为x =my +p2,A (x 1,y 1),B (x 2,y 2),且x 1>x 2,将直线AB 的方程代入抛物线方程得y 2-2pmy -p 2=0,所以y 1y 2=-p 2,4x 1x 2=p 2.设抛物线的准线为l ,过A 作AC ⊥l ,垂足为C (图略),过B 作BD ⊥l ,垂足为D ,因为|AF |=2|BF |=6,根据抛物线的定义知,|AF |=|AC |=x 1+p 2=6,|BF |=|BD |=x 2+p2=3,所以x 1-x 2=3,x 1+x 2=9-p ,所以(x 1+x 2)2-(x 1-x 2)2=4x 1x 2=p 2,即18p -72=0,解得p =4.]圆锥曲线的性质(5年17考)[高考解读] 高考对圆锥曲线性质的考查主要涉及椭圆和双曲线的离心率、双曲线的渐近线,难度适中.1.(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( )A .2B .3C .4D .8 切入点:抛物线的焦点是椭圆的焦点.关键点:正确用p 表示抛物线和椭圆的焦点. D [抛物线y2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,椭圆x 23p +y 2p=1的焦点坐标为(±2p ,0).由题意得p2=2p ,∴p =0(舍去)或p =8.故选D.]2.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2 D.5切入点:以OF 为直径的圆与圆x 2+y 2=a 2相交且|PQ |=|OF |. 关键点:正确确定以OF 为直径的圆的方程.A [令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c,0),则c =a 2+b 2.如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c2,由|OM |2+|MP |2=|OP |2, 得⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫c 22=a 2,∴c a =2,即离心率e = 2.故选A.]3.[一题多解](2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)切入点:C 上存在点M 满足∠AMB =120°.关键点:求椭圆上的点与椭圆两端点连线构成角的范围建立关于m 的不等式.A [法一:设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0).故tan∠AMB =tan(∠AMN +∠BMN )=3+x |y |+3-x|y |1-3+x |y |·3-x |y |=23|y |x 2+y 2-3. 又tan∠AMB =tan 120°=-3,且由x 23+y 2m =1可得x 2=3-3y 2m,则23|y |3-3y 2m+y 2-3=23|y |⎝⎛⎭⎪⎫1-3m y 2=- 3. 解得|y |=2m3-m.又0<|y |≤m ,即0<2m3-m ≤m ,结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞). 故选A.法二:当0<m <3时,焦点在x 轴上,要使C 上存在点M 满足∠AMB =120°,则a b ≥tan 60°=3,即3m≥3, 解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°,则a b ≥tan 60°=3,即m3≥3,解得m ≥9. 故m 的取值范围为(0,1]∪[9,+∞). 故选A.] [教师备选题]1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( ) A .y =±2x B .y =±3x C .y =±22xD .y =±32xA [因为双曲线的离心率为3,所以c a =3,即c =3a .又c2=a 2+b 2,所以(3a )2=a 2+b 2,化简得2a 2=b 2,所以ba= 2.因为双曲线的渐近线方程为y =±bax ,所以y =±2x .故选A.]2.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF的面积为( )A.13B.12C.23D.32D [因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D.]3.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63 B.33C.23D.13A [由题意知以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2ab a 2+b 2=a ,解得a =3b ,∴b a =13, ∴e =c a =a 2-b 2a=1-⎝ ⎛⎭⎪⎫b a 2=1-⎝⎛⎭⎪⎪⎫132=63.故选A.]1.椭圆、双曲线的离心率(或范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca的值. 2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得.(2)用法:①可得b a 或ab的值.②利用渐近线方程设所求双曲线的方程.1.(椭圆的离心率)[一题多解]直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34B [法一:如图,|OB |为椭圆中心到l 的距离,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b2,所以e=c a =12.故选B. 法二:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),由题意可取直线l的方程为y =ba 2-b2x +b ,椭圆中心到l 的距离为b a 2-b 2a ,由题意知b a 2-b 2a =14×2b ,即a 2-b 2a =12,故离心率e =12.]2.(双曲线的离心率)设F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,M 为双曲线右支上一点,N 是MF 2的中点,O 为坐标原点,且ON ⊥MF 2,3|ON |=2|MF 2|,则C 的离心率为( )A .6B .5C .4D .3B [连接MF 1(图略),由双曲线的定义得|MF 1|-|MF 2|=2a ,因为N 为MF 2的中点,O 为F 1F 2的中点,所以ON ∥MF 1,所以|ON |=12|MF 1|,因为3|ON |=2|MF 2|,所以|MF 1|=8a ,|MF 2|=6a ,因为ON ⊥MF 2,所以MF 1⊥MF 2,在Rt△MF 1F 2中,由勾股定理得(8a )2+(6a )2=(2c )2,即5a =c ,因为e =ca,所以e =5,故选B.]3.(椭圆与抛物线的综合)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12B [抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c =2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b>0),因为离心率e =c a =12,所以a =4,所以b 2=a 2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B.]直线与圆锥曲线的综合问题(5年5考)[高考解读] 直线与圆锥曲线的位置关系是每年高考的亮点,主要涉及直线与抛物线、直线与椭圆的综合问题,突出考查研究直线与圆锥曲线位置关系的基本方法,注意通性通法的应用,考查考生的逻辑推理和数学运算核心素养.角度一:直线与圆锥曲线的位置关系1.(2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .切入点:①直线l 过点A ;②l 与C 交于M ,N 两点;③l 与x 轴垂直.关键点:将问题转化为证明k BM 与k BN 具有某种关系.[解] (1)当l 与x 轴垂直时,l 的方程为x =2,可得点M 的坐标为(2,2)或(2,-2).所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k x -2,y 2=2x得ky 2-2y -4k =0,可知y 1+y 2=2k,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2y 1+y 2x 1+2x 2+2.①将x 1=y 1k +2,x 2=y 2k+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k y 1+y 2k=-8+8k=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .角度二:直线与圆锥曲线的相交弦问题2.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:2|FP →|=|FA →|+|FB →|.切入点:①直线l 与椭圆C 相交;②AB 的中点M (1,m ). 关键点:根据FP →+FA →+FB →=0及点P 在C 上确定m ,并进一步得出|FP →|,|FA →|,|FB →|的关系.[证明] (1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,从而P 1,-32,|FP →|=32.于是|FA →|=x 1-12+y 21=x 1-12+31-x 214=2-x 12.同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|. [教师备选题](2018·北京高考)已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程;(2)若k =1,求|AB |的最大值;(3)设P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若C ,D 和点Q ⎝ ⎛⎭⎪⎫-74,14共线,求k .[解] (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =22,解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1. (2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1,得4x 2+6mx +3m 2-3=0,所以x 1+x 2=-3m 2,x 1x 2=3m 2-34.所以|AB |= x 2-x 12+y 2-y 12= 2x 2-x 12= 2[x 1+x 22-4x 1x 2]=12-3m 22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6. (3)设A (x 1,y 1),B (x 2,y 2), 由题意得x 21+3y 21=3,x 22+3y 22=3. 直线PA 的方程为y =y 1x 1+2(x +2).由⎩⎪⎨⎪⎧y =y 1x 1+2x +2,x 2+3y 2=3,得[(x 1+2)2+3y 21]x 2+12y 21x +12y 21-3(x 1+2)2=0. 设C (x C ,y C ), 所以x C +x 1=-12y 21x 1+22+3y 21=4x 21-124x 1+7. 所以x C =4x 21-124x 1+7-x 1=-12-7x 14x 1+7.所以y C =y 1x 1+2(x C +2)=y 14x 1+7.设D (x D ,y D ),同理得x D =-12-7x 24x 2+7,y D =y 24x 2+7.记直线CQ ,DQ 的斜率分别为k CQ ,k DQ ,则k CQ -k DQ =y 14x 1+7-14-12-7x 14x 1+7+74-y 24x 2+7-14-12-7x 24x 2+7+74=4(y 1-y 2-x 1+x 2). 因为C ,D ,Q 三点共线, 所以k CQ -k DQ =0. 故y 1-y 2=x 1-x 2.所以直线l 的斜率k =y 1-y 2x 1-x 2=1.1.判断直线与圆锥曲线公共点的个数或求交点问题的两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得到一个一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法:画出直线与圆锥曲线,根据图形判断公共点个数. 2.弦长公式设斜率为k 的直线l 与圆锥曲线C 的两交点为P (x 1,y 1),Q (x 2,y 2).则|PQ |=|x 1-x 2|1+k 2=[x 1+x 22-4x 1x 2]1+k2.或|PQ |=|y 1-y 2|1+1k2=[y 1+y 22-4y 1y 2]⎝⎛⎭⎪⎫1+1k 2(k ≠0).3.弦的中点圆锥曲线C :f (x ,y )=0的弦为PQ .若P (x 1,y 1),Q (x 2,y 2),中点M (x 0,y 0),则x 1+x 2=2x 0,y 1+y 2=2y 0.1.(直线与椭圆的综合)已知离心率为12的椭圆x 2a 2+y2b 2=1(a >b>0)的左、右顶点分别为A 1,A 2,上顶点为B ,且BA 1→·BA 2→=-1.(1)求椭圆的标准方程;(2)过椭圆左焦点F 的直线l 与椭圆交于M ,N 两点,且直线l 与x 轴不垂直,若D 为x 轴上一点,|DM →|=|DN →|,求|MN ||DF |的值.[解] (1)A 1,A 2,B 的坐标分别为(-a,0),(a,0),(0,b ),BA 1→·BA 2→=(-a ,-b )·(a ,-b )=b 2-a 2=-1,∴c 2=1. 又e =c a =12,∴a 2=4,b 2=3.∴椭圆的标准方程为x 24+y 23=1.(2)由(1)知F (-1,0),设M (x 1,y 1),N (x 2,y 2), ∵直线l 与x 轴不垂直,∴可设其方程为y =k (x +1).当k =0时,易得|MN |=4,|DF |=1,|MN ||DF |= 4.当k ≠0时,联立⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +1,得(3+4k 2)x 2+8k 2x +4k 2-12=0,∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,∴|MN |=x 1-x 22+y 1-y 22=1+k 2|x 1-x 2|=1+k2x 1+x 22-4x 1x 2=12+12k 23+4k2.又y 1+y 2=k (x 1+x 2+2)=6k3+4k 2,∴MN的中点坐标为⎝ ⎛⎭⎪⎫-4k 23+4k2,3k 3+4k 2,∴MN 的垂直平分线方程为y -3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2(k ≠0), 令y =0得,1k x +k 3+4k 2=0,解得x =-k23+4k2.|DF |=⎪⎪⎪⎪⎪⎪-k 23+4k 2+1=3+3k 23+4k 2,∴|MN ||DF |=4. 综上所述,|MN ||DF |=4.2.(直线与抛物线的综合)过抛物线E :x 2=4y 的焦点F 的直线交抛物线于M ,N 两点,抛物线在M ,N 两点处的切线交于点P .(1)证明点P 落在抛物线E 的准线上;(2)设MF →=2FN →,求△PMN 的面积.[解] (1)抛物线x 2=4y 的焦点坐标为(0,1),准线方程为y =-1.设直线MN 的方程为y =kx +1,代入抛物线方程x 2=4y ,整理得x 2-4kx -4=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 对y =14x 2求导,得y ′=12x ,所以直线PM 的方程为y -y 1=12x 1(x -x 1).①直线PN 的方程为y -y 2=12x 2(x -x 2).②联立方程①②,消去x ,得y =-1. 所以点P 落在抛物线E 的准线上.(2)因为MF →=(-x 1,1-y 1),FN →=(x 2,y 2-1),且MF →=2FN →.所以⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-1,得x 21=8,x 22=2.不妨取M (22,2),N (-2,12),由①②得P ⎝⎛⎭⎪⎪⎫22,-1. 易得|MN |=92,点P 到直线MN 的距离d =322,所以△PMN 的面积S =12×92×322=2728.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破点12 圆锥曲线的定义、方程、几何性质[核心知识提炼]提炼1 圆锥曲线的重要性质(1)椭圆、双曲线中a ,b ,c 之间的关系 ①在椭圆中:a 2=b 2+c 2;离心率为e =ca =1-b 2a 2; ②在双曲线中:c 2=a 2+b 2;离心率为e =ca =1+b 2a 2.(2)双曲线的渐近线方程与焦点坐标①双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ;焦点坐标F 1(-c,0),F 2(c,0);②双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±ab x ,焦点坐标F 1(0,-c ),F 2(0,c ).(3)抛物线的焦点坐标与准线方程①抛物线y 2=±2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫±p 2,0,准线方程为x =∓p 2; ②抛物线x 2=±2py (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫0,±p 2,准线方程为y =∓p 2. 提炼2 弦长问题(1)直线与圆锥曲线相交时的弦长斜率为k 的直线与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2 或|AB |=1+⎝ ⎛⎭⎪⎫1k 2|y 1-y 2|=1+⎝ ⎛⎭⎪⎫1k 2(y 1+y 2)2-4y 1y 2.(2)抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则①x 1x 2=p 24,y 1y 2=-p 2;②弦长|AB |=x 1+x 2+p =2p sin 2α(α为弦AB 的倾斜角);③1|F A |+1|FB |=2p ;④以弦AB 为直径的圆与准线相切.[高考真题回访]回访1 圆锥曲线的定义与方程1.(2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.x 24-y 2=1 [法一:∵双曲线的渐近线方程为y =±12x , ∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3), ∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上,故可设双曲线方程为 x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得 ⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎨⎧a 2=4,b 2=1,∴双曲线的标准方程为x24-y2=1.]2.(2013·全国卷Ⅰ改编)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C,则C的方程为________.x2 4+y23=1(x≠-2)[由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M、N为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x24+y23=1(x≠-2).]回访2圆锥曲线的重要性质3.(2017·全国卷Ⅱ)若a>1,则双曲线x2a2-y2=1的离心率的取值范围是()A.(2,+∞)B.(2,2) C.(1,2) D.(1,2)C[由题意得双曲线的离心率e=a2+1 a.∴e2=a2+1a2=1+1a2.∵a>1,∴0<1a2<1,∴1<1+1a2<2,∴1<e< 2.故选C.]4.(2016·全国卷Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为()A.13 B.12C.23 D.34B[不妨设直线l经过椭圆的一个顶点B(0,b)和一个焦点F(c,0),则直线l的方程为xc+yb=1,即bx+cy-bc=0.由题意知|-bc|b2+c2=14×2b,解得ca=12,即e=12.故选B.]回访3弦长问题5.(2015·全国卷Ⅰ)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=() A.3B.6C.9D.12B[抛物线y2=8x的焦点为(2,0),∴椭圆中c=2,又ca=12,∴a=4,b2=a2-c2=12,从而椭圆方程为x216+y212=1.∵抛物线y2=8x的准线为x=-2,∴x A=x B=-2,将x A=-2代入椭圆方程可得|y A|=3,由图象可知|AB|=2|y A|=6.故选B.]热点题型1圆锥曲线的定义、标准方程题型分析:圆锥曲线的定义、标准方程是高考常考内容,主要以选择、填空的形式考查,解题时分两步走:第一步,依定义定“型”,第二步,待定系数法求“值”.【例1】(1)(2017·哈尔滨模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )【导学号:04024108】A.x 24-y 212=1 B .x 212-y 24=1 C.x 23-y 2=1D .x 2-y 23=1(2)(2016·通化一模)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B .3 C.52D .2(1)D (2)B [(1)根据题意画出草图如图所示,不妨设点A 在渐近线y =ba x 上. 由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线的渐近线y =b a x 上,∴ba =tan 60°= 3. 又a 2+b 2=4,∴a =1,b =3, ∴双曲线的方程为x 2-y 23=1.故选D.(2)如图所示,因为FP →=4FQ →,所以|PQ ||PF |=34,过点Q 作QM ⊥l 垂足为M ,则MQ ∥x 轴,所以|MQ |4=|PQ ||PF |=34,所以|MQ |=3,由抛物线定义知|QF |=|QM |=3.] [方法指津]求解圆锥曲线标准方程的方法是“先定型,后计算”1.定型,就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程. 2.计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[变式训练1] (1)(2016·郑州二模)经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( )【导学号:04024109】A.x 2113-y 211=1 B.x 22-y 2=1 C.y 2113-x 211=1 D.y 211-x 2113=1(2)(2017·衡水模拟)已知A (-1,0),B 是圆F :x 2-2x +y 2-11=0(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为( ) A.x 212+y 211=1 B.x 236-y 235=1 C.x 23-y 22=1D.x 23+y 22=1(1)A (2)D [(1)设双曲线的渐近线方程为y =kx ,即kx -y =0,由题意知|-2|k 2+1=1,解得k =±3,则双曲线的焦点在x 轴上,设双曲线方程为x 2a 2-y 2b 2=1,则有⎩⎪⎨⎪⎧22a 2-12b 2=1,ba =3,解得⎩⎪⎨⎪⎧a 2=113,b 2=11,故选A. (2)由题意得|P A |=|PB |,∴|P A |+|PF |=|PB |+|PF |=r =23>|AF |=2,∴点P 的轨迹是以A 、F 为焦点的椭圆,且a =3,c =1,∴b =2,∴动点P 的轨迹方程为x 23+y 22=1,故选D.]热点题型2 圆锥曲线的几何性质题型分析:圆锥曲线的几何性质是高考考查的重点和热点,其中求圆锥曲线的离心率是最热门的考点之一,建立关于a ,c 的方程或不等式是求解的关键. 【例2】(1)(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13 B.12 C.23D.32(2)(2017·合肥二模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为e .P 是椭圆上一点,满足PF 2⊥F 1F 2,点Q 在线段PF 1上,且F 1Q →=2QP →.若F 1P →·F 2Q →=0,则e 2=( ) A.2-1 B .2- 2 C .2- 3D.5-2(1)D (2)C [(1)因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0). 因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3, 所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32. 故选D.(2)由PF 2⊥F 1F 2可得P ⎝ ⎛⎭⎪⎫c ,±b 2a ,不妨设P ⎝ ⎛⎭⎪⎫c ,b 2a ,又由F 1Q →=2QP →得Q ⎝ ⎛⎭⎪⎫c 3,2b 23a ,则F 1P →·F 2Q →=⎝ ⎛⎭⎪⎫2c ,b 2a ·⎝ ⎛⎭⎪⎫-2c 3,2b 23a =-4c 23+2b 43a 2=0,整理得b 4=2a 2c 2,(a 2-c 2)2=2a 2c 2,整理得c 4-4a 2c 2+a 4=0,即e 4-4e 2+1=0,又椭圆离心率0<e <1,解得e 2=2-3,故选C.] [方法指津]1.求椭圆、双曲线离心率(离心率范围)的方法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca 的值. 2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或ab 的值.②利用渐近线方程设所求双曲线的方程.[变式训练2] (1)(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( ) A. 2 B.32 C. 3D .2(2)(名师押题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )【导学号:04024110】A.22 B .2- 3 C.5-2D.6- 3(1)A (2)D [(1)法一:如图,因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca = 2.法二:如图,因为MF 1⊥x 轴, 所以|MF 1|=b 2a .在Rt △MF 1F 2中,由sin ∠MF 2F 1=13得 tan ∠MF 2F 1=24.所以|MF 1|2c =24,即b 22ac =24,即c 2-a 22ac =24, 整理得c 2-22ac -a 2=0, 两边同除以a 2得e 2-22e -1=0. 解得e =2(负值舍去). (2)设|F 1F 2|=2c ,|AF 1|=m ,若△F 1AB 是以A 为直角顶点的等腰直角三角形, ∴|AB |=|AF 1|=m ,|BF 1|=2m .由椭圆的定义可知△F 1AB 的周长为4a , ∴4a =2m +2m ,m =2(2-2)a . ∴|AF 2|=2a -m =(22-2)a .∵|AF1|2+|AF2|2=|F1F2|2,∴4(2-2)2a2+4(2-1)2a2=4c2,∴e2=9-62,e=6- 3.]。

相关文档
最新文档