五年级上册奥数讲义
五年级奥数知识点上册
五年级奥数知识点上册五年级奥数知识点上册涵盖了多个数学领域的高级概念,旨在培养学生的逻辑思维能力和解决复杂问题的能力。
以下是一些关键的知识点:一、数论基础- 质数与合数:理解质数和合数的概念,掌握质数的判定方法。
- 因数与倍数:学习如何找出一个数的因数和倍数,理解它们之间的关系。
- 最大公约数和最小公倍数:掌握求两个或多个数的最大公约数和最小公倍数的方法。
二、分数与小数- 分数的加减乘除:学习分数的四则运算,包括通分和约分。
- 分数的比较:掌握如何比较分数的大小。
- 小数的运算:熟悉小数的加减乘除运算,以及小数点的移动规律。
三、几何图形- 面积与周长:学习计算不同几何图形的面积和周长,如三角形、矩形、圆形等。
- 几何变换:了解平移、旋转和反射等基本几何变换。
- 相似与全等:理解相似图形和全等图形的概念和判定方法。
四、排列组合与概率- 排列组合:掌握排列和组合的基本概念,学会计算排列数和组合数。
- 简单概率:了解概率的基本概念,学会计算简单事件的概率。
五、逻辑推理- 逻辑推理题:通过解决逻辑推理问题,培养学生的逻辑思维和推理能力。
- 数列问题:学习数列的基本概念,掌握等差数列和等比数列的性质。
六、应用题- 速度、时间与距离:解决与速度、时间和距离相关的问题。
- 工程问题:理解工作效率和工作时间的关系,解决相关的应用题。
- 经济问题:学习基本的经济概念,如成本、利润和折扣等。
七、数学思维训练- 枚举法:学习如何通过列举所有可能的情况来解决问题。
- 归纳法与演绎法:理解归纳推理和演绎推理的区别,学会应用这两种方法解决问题。
结语五年级奥数的学习不仅能够提高学生的数学素养,还能锻炼他们的逻辑思维和解决问题的能力。
通过掌握这些知识点,学生将能够在数学竞赛和日常生活中更加自信地应对各种挑战。
五年级奥数上册讲义
五年级奥数上册:第一讲
数的整除问题 习题
五年级奥数上册:第二讲
质数、合数和分解质因数习题
五年级奥数上册:第三讲
最大公约数和最小公倍数 习题
五年级奥数上册:第四讲 带余数的除法 习题
五年级奥数上册:第六讲能被30以下质数整除的数的特征
习题
五年级奥数上册:第七讲行程问题习题
五年级奥数上册:第八讲流水行船问题习题五年级奥数上册:第九讲“牛吃草”问题习题
五年级奥数上册:第十讲
列方程解应用题 习题
五年级奥数上册:第十一讲 简单的抽屉原理习题
五年级奥数上册:第十二讲 抽屉原理的一般表达习题
五年级奥数上册:第十三讲染色中的抽屉原理习题
五年级奥数上册:第十四讲
面积计算习题
五年级奥数上册:第十五讲综合题选讲习题。
五年级上册秋季奥数培优讲义——5-02-小数应用3-讲义-学生
第2讲小数应用题【学习目标】1、进一步学习小数乘除计算;2、熟悉小数的常见应用题。
【知识梳理】1、分段计费:找准价格区间,分区间计算;2、错中求解:倒推还原;3、倍数问题:同整数倍数问题相同;4、平均问题:和整数平均方法相同;5、排列消去:和整数排列消去方法相同。
【典例精析】【例1】某市出租车的收费标准如下:路程不超过3km收8元;超过3km的部分,每千米1.9元(不足1km按1km计算)。
小明从家乘出租车去奶奶家花了23.2元,小明家距奶奶家最远有多少千米?【趁热打铁-1】刘老师到文化用品商店为三学生买日记本,正赶上文化用品商店搞促活动,若买日记本的数量不超过10本,则本2.5元;若超过10本,则超过的部分每2.1元。
刘老师买日记本共花了37.6元,买了多少本日记本?【例2】强强计算一道除法题,把被除数88.8错看成了8.88,结果所得的商比正确的商少3.33。
求正确的商?【趁热打铁-2】小马虎在计算16.2除以一个小数时,忘记把除数转化为整数,他却按照除数是整数的除法计算,结果得0.45。
原来的除数有一位小数,它应该是多少?【例3】一个小数,如果把小数点向右移动两位,所得的数比原来增加了314.82。
这个小数是多少?【趁热打铁-3】一个小数,如果把它的小数点向右移动一位,就比原数多25.2,原来这个小数是多少?【例4】有一个四位整数,在它的某位数字前面加上一个小数点,再和这个四位数相加,得数是 2041.21,求这个四位整数。
【趁热打铁-4】一个数的整数部分与小数部分的值相差88.11,整数部分的值恰好是小数部分的100倍,这个数是_____。
【例5】实验小学统计五(1)班数学考试成绩,平均分是87.26分.复查试卷时,发现把明明的成绩98分误看成89分计算,经重新计算后,该班平均成绩是87.44分,问该班有多少学生?【趁热打铁-5】几位裁判员为一位体操运动员评分,去掉一个最高分后,平均成绩为8.82分。
五年级上册数学培优奥数讲义-第15讲 余数定理
第15讲余数定理知识与方法余数在计算时有三个主要性质,也被称为三个定理,余数问题中非常重要的同余问题以及中国剩余定理,其实就是根据这三个性质来解决问题的,所以这三个性质非常重要。
余数主要有以下三个性质:(1)可加性:a与b的和除以c的余数,等于a、b分别除以c的余数之和。
(2)可减性:a与b的差除以c的余数,等于a、b分别除以c的余数之差。
(3)可乘性:a与b的乘积除以c的余数,等于a、b分别除以c的余数之积(或这个积除以c的余数)。
初级挑战1(1)23÷5=4……()(2)108÷4=2716÷5=3……() 214÷4=53……()39÷5=7……() 322÷4=80……()(3)155÷3=51……()230÷3=76……()385÷3=128……()观察以上每组算式中的被除数和余数,你发现了什么?思维点拨:余数定理一:a与b的和除以c的余数,等于a、b分别除以c的余数之()。
如果余数之和大于除数,那么可以继续除以这个除数得到余数。
答案:(1)3、1、4;(2)2、2;(3)2、2、1发现:三个数除以一个相同的数,如果一个数是其它两个数的和,那么所得的余数也是其它两个数除得的余数的和。
能力探索11、快速计算:(234+123+732)÷3的余数。
2、甲数除以9,商12余3;乙数除以9,商28余6;丙数除以9,商31余5。
(甲数+乙数+丙数)÷9的余数是多少?答案:1、0 2、(3+6+5)÷9=1……5,所以余数是5。
初级挑战2(1)129÷7=18……3 (2)237÷5=47……() 71÷7=10……1 200÷5=4058÷7=8……2 37÷5=7……()(3)93÷4=23……()30÷4=7……()63÷4=15……()观察以上每组算式中的被除数和余数,你发现了什么?思维点拨:余数定理二:a与b的差除以c的余数,等于a、b分别除以c的余数之()。
数学讲义(五年级奥数)
2 因数和倍数(2) 【题型概述】 今天, 我们学习因数的运用, 解决这种问题主要是根据问题的要求, 寻找因数的个数。 【典型例题】 29÷( )=( )· · · · · ·5,在括号内填上适当的数,使等式成立,共有多少种 不同的填法? 思路点拨 根据有余数除法各部分之间的关系,可以知道除数与商的积是 29-5=24. 两个自然数相乘的积是 24 的有四种情况:1×24,2×12,3×8,4×6,再根据“除 数比余数大”可以知道除数只能是 24,12,8,6. 所以,共有 4 种不同的填法。 【举一反三】 1.37÷( )=( ) · · · · · ·5,在括号内填上适当的数,使等式成立,共有多少 种不同的填法?
6. 有 50 张卡片,分别写着 1~50 这 50 个数,正反两面写的数字相同,卡片一面是 红,一面是蓝,某班有 50 名学生,老师把 50 张卡片中蓝色的一面都朝上摆在桌 子上,对同学说: “请你们按学号顺序逐个到前面来翻卡片,规则是:凡是卡片上 的数是自己学号的倍数,就把它翻过来,蓝翻成红,红翻成蓝。 ”那么当每个学生 都翻完以后,红色朝上的卡片有几张?
4. 五个连续奇数的和是 35,这 5 个奇数中最大的一个是多少?
5. 有三个不同的自然数组成一个等式: ■+△+○=■×△-○ 这三个数中最多有多少个奇数?
4,奇数和偶数(2) 【题型概述】 奇数和偶数有一些有趣而常用的性质: 1. 奇数≠偶数,连续自然数中的奇数和偶数时相间排列的。 2. 偶数个奇数相加的和是偶数,奇数个奇数相加的和是奇数,任意个偶数相加的 和是偶数。 3. 奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数 偶数±奇数=奇数 4. 奇数×偶数=偶数,奇数×奇数=奇数,偶数×偶数=偶数 运用这些性质可以解决很多问题。 【典型例题】
五年级上册秋季奥数培优讲义——5-03-倍数因数4-讲义-教师
第3讲倍数和因数【学习目标】1、掌握三类数字整除特征;2、掌握公因数、公倍数和其实际应用。
【知识梳理】1、如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的约数)。
2、一些特殊的数的倍数的特征:(1)尾数系:2、5 / 4、25 / 8、125①末一位:个位上是0,2,4,6,8的数是2的倍数;个位上是0或5的数是5的倍数;②末两位:末两位组成的数是4或者25的倍数;③末三位:末三位组成的数是8是125的倍数。
(2)和系:3、9①看数字之和是否为3或9的倍数;②划数法:弃3、弃9。
(3)差系:7、11、13①把这个数的末三位与末三位之前的数作差(大减小),看这个差是否为7、11、13的倍数;②11:从右边开始,奇数位数字和与偶数位数字和的差值,能否被11整除。
3、公因数:就是几个数公共的约数,其中最大的一个称为最大公因数;4、公倍数:就是几个数公共的倍数,其中最小的一个称为最小公倍数.5、记法:两个数A、B的最因大公因数记做(A、B);两个数A、B的最小公倍数记做[A、B]。
6、结论:A×B=最大公因数×最小公倍数。
【典例精析】【例1】下面6个自然数:136、990、522、6375、9063、1125中:(1)哪些能被2整除? 哪些能被4整除? 哪些能被8整除?(2)哪些能被5整除?哪些能被25整除整除? 哪些能被125整除整除?(3)哪些能被3整除? 哪些能被9整除?(1)2:136、990、522;4:136;8:136(2)5:990、6375、1125;25:6375、1125;125:6375、1125(3)3:990、522、6375、9063、11259:990、522、9063、1125【趁热打铁-1】下面五个自然数:238224、95147、75163哪些能被7整除? 哪些能被11整除? 哪些能被13整除?7:23822411:7516313:95147【例2】从0、5、6、7四个数中任意选出三个数,组成一个是3的倍数的三位数。
五年级数学 奥数精品讲义1-34讲
五年级数学奥数精品讲义1-34讲第一讲消去问题(一)第二讲消去问题(二)第三讲一般应用题第四讲盈亏问题(一)第五讲盈亏问题(二)第六讲流水问题第七讲等差数列第八讲找规律能力测试(一)第九讲加法原理第十讲乘法法原理第十一讲周期问题(一)第十二讲周期问题(二)第十三讲巧算(一)第十四讲巧算(二)第十五讲数阵问题(一)第十六讲数阵问题(二)能力测试(二)第十七讲平面图形的计算(一)第十八讲平面图形的计算(二)第十九讲列方程解应用题(一)第二十讲列方程解应用题(二)第二十一讲行程问题(一)第二十二讲行程问题(二)第二十三讲行程问题(三)第二十四讲行程问题(四)能力测试(三)第二十五讲平均数问题(一)第二十六讲平均数问题(二)第二十七讲长方体和正方体(一)第二十八讲长方体和正方体(二)第二十九讲数的整除特征第三十讲奇偶性问题第三十一讲最大公约数和最小公倍数第三十二讲分解质因数(一)第三十三讲分解质因数(二)第三十四讲牛顿问题能力测试(四)第一讲消去问题(一)在有些应用题里;给出了两个或者两个以上的未知数量间的关系;要求出这些未知数的数量.我们在解题时;可以通过比较条件;分析对应的未知数量变化的情况;想办法消去其中的一个未知量;从而把一道数量关系较复杂的题目变成比较简单的题目解答出来.这样的解题方法;我们通常把它叫做“消去法”.例题与方法在学习例题前;我们先进行一些基本数量关系的练习;为用消去法解题作好准备.(1)买1个皮球和1个足球共用去40元;买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克;1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵;照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯;一共用去172元;每个水瓶18元;每个茶杯多少元?例1 学校第一次买了3个水瓶和20个茶杯;共用去134元;第二次又买了同样的3个水瓶和16个差杯;共用去118元.水瓶和茶杯的单价各是多少元?例2 买3个篮球和5个足球共、用去480元;买同样的6个篮球和3个足球共用去519元.篮球和足球的单价各是多少元?练习与思考1、 1袋黄豆和1袋绿豆共重50千克;同样的7袋黄豆和7袋绿豆共重()千克.2、买5条毛巾和5条枕巾共用去90元;买1条毛巾和1条枕巾要()元.3、买4本字典和4本笔记本共、用去了68元;买同样的9本字典和9本笔记本一共要()元.4、9筐苹果和9筐梨共重495千克;找这样计算;2筐苹果和2筐梨共重()千克.5、妈妈买了5米画布和3米白布;一共用去102元.花布每米15元;白布每米多少元?6、果园里有14行桃树和20行梨树;桃树和梨树一共有440棵.每行梨树15棵;每行桃树多少棵?8、食堂第一次运来6袋大米和4袋面粉;一共重400千克;第二次又运来9袋大米和4袋面粉;一共重550千克.每袋大米和每袋面粉各重多少千克?9、3豹味精和7包糖共重3800克;同样的3包味精和14包糖共重7300克.每包味精和每包糖各重多少克?10、育新小学买了8个足球和12个篮球;一共用去了984元;青山小学买了同样的16个足球和10个篮球;一共用去1240元.每个足球和每个篮球各多少元?11、买15张桌子和25把椅子共用去3050元;买同样的 5张桌子和20张椅子;需要1600元.买一张桌子和一把椅子需要多少元?12、3头牛和6只羊一天共吃草93千克;6头牛和5只羊一天共吃草130千克.每头牛每天比每只羊多吃多少千克?第二讲消去问题(二)例1、7袋大米和3袋面粉共重425千克同样的3袋大米和7袋面粉共重325千克.求每袋大米和每袋面粉的重量.3..三头牛和8只羊每天共吃青草93千克;5头牛和15只羊每天吃青草165千克.一头牛和一只羊每天各吃青草多少千克?练习与思考1.3个皮球和5个足球共245元;同样的6个皮和10个足球共()元.2.5盒铅笔和9盒钢笔共190支;同样的2盒铅笔和6盒钢笔共100支.3盒铅笔和3盒钢笔共()支;1盒铅笔和1支钢笔共()支.3.育才小学体育组第一次买了4个篮球和3个排球;共用去了141元;第二次买了5个篮球和4个排球;共用去180元.每个篮球和每个排球各多少元?4.3筐苹果和5筐梨共重138千克;5筐同样的苹果和3筐同样的共重134千克.;每筐苹果和每筐梨各重多少千克?5.某食堂第一次运进大米5袋;面粉7袋;共重1350千克;第二次运进大米3袋;面粉5袋;共重850千克.一袋大米和一袋面粉各重多少千克?6.3件上衣和7条裤子共430元;同样的7件上衣和3条裤子共470元.每件上衣和每条棵子各多少元?7.2千克水果糖和5千克饼干共64元;同样的3千克水果糖和4千克饼干共68元.每千克水果糖和每千克饼干各多少元?8.5包科技书和7包故事书共620本;6包科技书和3包故事书共420本.每包科技书比每包故事书少多少本?9.3个水瓶和8个茶杯共92元;5个水瓶和6个茶杯共102元.每个水瓶和每个茶杯各多少元?10.甲有5盒糖;乙有4盒糕共值44元.如果甲、乙两人对换一盒;则每人所有物品的价值相等.一盒糖、一盒糕各值多少元?第三讲一般应用题在小学里;通常把应用题分为“一般应用题”和“典型应用题|”两大类.“典型应用题”有基本的数量关系、解题模式;较复杂的问题可以通过“转化”;向基本的问题靠拢.我们已经学过的“和差问题”、和“倍差问题”等等;都是“典型应用题”.“一般应用题|”没有各顶的数量关系;也没有可以以来的解题模式.解题时要具体问题具体分析;在认真审题;理解题意的基础上;理清一知条件与所求问题之间的数量关系;从而确定解题的方法.对于比较复杂的问题;可以借助线段图、示意图、直观演示等手段帮助分析.例题与方法例 1、把一条大鱼分成鱼头、鱼身、鱼尾三部分;鱼尾重4千克;鱼头的重量等于鱼尾的重量加身一般的重量;而鱼身体、的重量等于鱼头的重量加上鱼尾的重量.这条鱼重多少千克?例2、一所小学的五年级有四个班;其中五(1)班和五(2)班共有81人;五(2)班和五(3)班共有83人五(3)班和五(4)班共有86人;五(1)班比五(4)班多2人.这所学校五年级四个班各有多少人?例 3、甲、乙两位渔夫在和边掉鱼;甲钓了5条;乙钓了3条;吃鱼时;来了一位客人和甲、乙平均分吃这条鱼.吃完后来客付了8角钱作为餐费.问:甲、乙两为渔夫各应得这8角钱中的几角?例 4、一个工地用两台挖土机挖土;小挖土机工作6小时;大挖土机工作8小时;一共挖土312方.已知小挖土机5小时的挖土量等于大挖土机2小时的完土量;两种挖土机每小时各挖土多少方?例 5、甲、乙、丙三人用同样多的钱合买西瓜.分西瓜时;甲和丙都比乙多拿西瓜7.5千克.结果甲和丙各给乙1.5元钱.每千克西瓜多少元|?例 6、小红有一个储蓄筒;存放的都是硬币;其中2分币比5分币多22个.而按钱数算;5分币比2分币多4角.已知这些硬币中有36个1分币.问:小红的储蓄筒里共存了多少钱?练习与思考(第1~4题13分;其余每题12分;共100分.)1.有一段木头;不知它的长度.用一根绳子俩量它;绳子多15米;如果将绳子对折以后再来量;又不够04米.问:这段绳子长多少米?2.甲、乙两人拿出同样多的钱合买一段花布;原约定各拿花布同样多.结果甲拿了6米;乙拿了14米.这样;乙就要给甲12元钱.每米花布的单价是多少元?3.甲、乙丙合三人各出同样多的钱合买苹果若干千克.分苹果时;甲和丙都比乙多拿7.8千克苹果;这样甲和丙各应给乙6元钱.每千克苹果多少钱?4.学校买了2张桌子和5把椅子;共付了330元 .每张桌子的价钱是每把椅子的3倍.每张桌子多少元?5.某校六年级有甲、乙、丙丁四个班;不算甲班;期于三个班的总人数是131人;不算丁班;期于三个班的总人数是134人.已知乙、丙两个班的总人数比甲、丁两个班的总人数少1人;甲、乙丙、丁四个班共有多少人?6.李大伯买了15千克特制面粉和35千克大米;共用去31.2元.已知1千克特特制面粉的价格是1千克大米的 2倍.李大伯买特制面粉和大米各用去多少元?7.14千克大豆的价钱与8千克花生的价钱相等;已知1千克花生比1千克大豆贵12元;大豆和花生的单价各是多少元?8.某车间按计划每天应加工50个零件;实际每天加工56个零件.这样;不仅提前3天完成原计划加工凌驾的任务;而求多加工了120个零件.这个车间实际加工了多少个零件?9.用8千克丝可以织6分米宽的绸4米;现在有10千克的丝;要织75分米宽的绸;可以织几米?|第四讲盈亏问题(一)盈亏问题又叫盈不足问题;是指把一定数量的物品平均分给固定的对象;如果按某种标准分;则分配后会有剩余(盈);按另一种标准分;又会不足(亏);求物品的数量和分配对象的数量.例如:小朋友分苹果;如果每人分2个;就多余16个;如果每人分5个;就缺少14个.小朋友有多少个?苹果有多少个?比较两次分的结果;第一次余16个;第二次少14个;两次相差1+14=30(个).这是因为第二次比第一次每人多分了5-2=3(个)苹果.相差30个;就说明有30÷3=10(个)小朋友.请小读者自己算出苹果的个数.例题与方法例1、将一些糖果分给幼儿园小班的小朋友;如果每人分3 粒;就会余下糖果17粒;如果每人分5粒;就会缺少糖果13粒.问:幼儿园下班有多少个小朋友|这些糖果共有多少粒?例 2、学生搬一批砖;每人搬4块;其中5人要搬两次;如果么人搬5块;就有两人没有砖可搬.搬砖的学生有多少人?这批砖共有多少块?例3某校在植树活动中;把一批树苗分给各班;如果每班分18棵;就会有余下24棵;如果每班分20棵;正好分完.这个学校有多少个班?这批树苗共有多少棵?练习与思考1.小朋友分糖果若每人分4粒则多9粒;若每人呢分5粒则少6粒.问:有多少小朋友?有多少粒糖果?2.小朋友分糖果;每人分10粒正好分完;若每人呢分16粒;则有3个小朋友分不到糖果.问:有多少粒糖果?3.在桥上测量桥高.把绳长对折后垂到水面;还余4米;把绳长3折后垂到水面;还余1米.桥高多少米?绳长多少米?4.某校安排新生宿舍;如果每间住12人;就会有34人没有宿舍住;如果每间住14人就会有空出4间宿舍.这个学校有多少间?要安排多少个新生?5.在依次大扫除中;有一些同学被分配擦玻璃;他们当中如果有2人擦4块;其余的人各擦5块;就会多下12块玻璃没有人擦;如果么人擦6块;刚好擦完.擦玻璃的同学有多少人?玻璃共有多少块?6.有一个数;减去3所的差的4倍;等于它的2倍加上36.这个数是多少?7.体育老师和一个朋友一起上街买足球.他发现自己身边的钱;如果买10个“冠军”牌足球;还差42元;后来他向朋友借了1000元;买了31个“冠军”牌足球;结果多了13元.体育老师原来身边带了多少元?8.某小学生乘汽车去春游;如果每辆车坐65人;就会有15人不能乘车;如果每辆车多坐5人恰好多余了一辆车.一共有多少辆汽车?有多少个学生?第五讲盈亏问题(二)上一讲;我们讲了盈亏问题的一般情形;也就是在量词分配中恰好洋盈(多余);一次亏(不足).事实上;在许多问题里;也会出现两次都是盈(多余);或者两次都是亏(不足)的情况.例 1、学校将一批铅笔奖给三好学生;每人9支缺15支;每人7支就缺7支.问:三好学生有多少人;铅笔有多少支?例2、某小学的部分同学外出参观;如果每辆车坐55人就会余下30个座位;如果每辆车坐50人;就还可以坐10人.有多少辆车?去参观的学生多少人?例3、学校规定上午8时到校.王强上学去;如果每分钟走60米;可以提早10分钟到校;如果每分钟作呕50米可以提早8分钟到校.问:王强什么时候离开家?他家离学校多远?练习与思考(第1~4题13分;其余每题12分;共100分.)1.同学们打羽毛球;每两人一组.每组分6个羽毛球;少10个球;每组分4个羽毛球;少2个球.问:共、有多少个同学打球?有多少个羽毛球?2.学校将一批钢笔奖给三好学生;每人8支缺11支;每人7支缺7支.问:三好学生有多少人?钢笔有多少支?3.某小学的部分学生去春游;如果每辆车坐50人;就会余下30个座位;如果每辆车坐40个人;还可以坐10人.问有多少辆车?去春游的学生多少人?4.一筐苹果分给一个小组;每人5个剩16个;每人7个缺12个.这个小组有多少人?共有多少苹果?5.一些学生分练习本.其中两人每人分6本;其余每人分4本;就会多4本;如果有一人分10本;其余每人分6本;就会少18本.学生有多少人?练习本多少本?6.一个学生从家到学校;先用每分50米的速度走了2分;如果这样走下去;他会迟到8分;后来他改用每分60米的速度前进;结果早到学校5分.这个学生家到学校的路程是多少米?7.筑路对计划每天筑路720米;实际每天比原计划多筑802米;这样;在规定完成任务时间的前3天;就只剩下1160米未筑.这条路多长?8.老师给幼儿园小朋友分苹果.每2人3个苹果;多2个苹果;每3人5个苹果;少4个苹果.问:有多少小朋友?多少苹果?第六讲流水问题想一想:从南京长江逆流而上去长江三峡;与从长江三峡顺水而下回南京;哪个花的时间少?哪个花的时间多?为什么?原因很简单.在长江行船与在一个平静的湖这行船是不一样的;因为长江的水是一直从西向东(也就是从上游向下游)流着的;船的速度会受到江水的影响.而在平静的湖水中行船时;船的速度不会受到水流的影响.考虑船在水流速度的情况下行驶的问题;就是我们这一讲要讲的流水问题.船在顺水航行时(比方说;从长江三峡顺流而下到南京);船一方面按照自己本身的速度即船速(船在静水中行驶的速度)行驶;同时整个水面又按照水的流动速度在前进;水推动着船向前;所以;船顺水时的航行速度应该等于船本身的速度与水流速度的和.也就是顺水速度=船速+水速比方说;船在静水中行驶10千米;水流速度是每小时5千米;那么;船顺水航行的速度就是每小时10+5=15(千米).同学们可以想一想;上面的问题中;如果是问“船逆水航行的速度是多少?”答案又该怎么样呢?船逆水行驶;情况恰好相反.本来船每小时行驶10千米;但由于水每小时又把它往回推了5千米;结果船每小时只向上游行驶了10—5=5(千米).也就是船在逆水中的速度等于船速度与水速之差.即逆水速度=船速—水速例1、一艘每小时行驶30千米的客轮;在一河水中顺水航行165千米;水速每小时3千米.问:这艘客轮需要航行多少小时?例2、一艘船顺水行320千米需要8小时;水流速度是每小时15千米;这艘船逆水每小时行多少千米?这艘船逆水行这段路程;需要多少小时?例3、甲船逆水航行360千米需要18小时;返回原地需要10小时;乙船逆水航行同样的异端水路需要15小时;返回原地需要多少小时?练习与思考1.一只小船以每小时30千米的速度在176千米长的河中逆水而行;用了211小时.这只小船返回原处需要用多少小时?2.船在静水中的速度是每小时25千米;河水流速位每小时5千米;一只船往返甲、乙两港共花了9小时;两港相距多少千米?3.两地距280千米;一艘轮船在期间航行;顺流用去14小时;逆流用去20小时.求这艘轮船在静水中的速度和水流的速度.4.一架飞机所带的燃料;最多可以用6小时;飞机去是顺风;每小时可以飞1500千米;飞回时逆风;每小时可以飞1200千米.这架飞机最多飞出多少千米;就需要往回飞?5.乙船顺水航行2小时;行了120千米;返回原地用了4小时.甲船顺水航行同一段水路;用了3小时.甲船返回原地比去时多用多少小时?第七讲等差数列(1)1;2;3;4;5;6;7;8;…(2)2;4;6;8;10;12;14;16;…(3)1;4;9;16;25;36;49;…上面三组数都是数列.数列中称为项;第一个数叫第一项;又叫首项;第二个数叫第二项……以此类推;最后一个数叫做这个数列的末项.项的个数叫做项数.一个数列中;如果从第二项起;每一项与它前面一项的差都相等;这样的数列叫等差数列.后项与前项的差叫做这个等差数列的公差.如等差数列:4;7;10;13;16;19;22;25;28.首项是4;末项是28;共差是3.这一讲我们学习有关等差数列的知识.例题与方法例1、在等差数列1;5;9;13;17;…;401中401是第几项?例2、100个小朋友排成一排报数;每后一个同学报的数都比前一个同学报的数多3;小明站在第一个位置;小宏站在最后一个位置.已知小宏报的数是300;小明报的数是几?例3、有一堆粗细均匀的圆木;堆成梯形;最上面的一层有5根圆木;每向下一层增加一根;一共堆了28层.最下面一层有多少根?例4、1+2+3+4+5+6+…+97+98+99+100=?例5、求100以内所有被5除余10的自然数的和.例6、小王和小胡两个人赛跑;限定时间为10秒;谁跑的距离长谁就获胜.小王第一秒跑1米;以后每秒都比以前一秒多跑0.1米;小胡自始至终每秒跑1.5米;谁能取胜?练习与思考(每题10分;共100分.)1.数列4;7;10;……295;298中298是第几项?2.蜗牛每小时都比前一小时多爬0.1米;第10小时蜗牛爬了1.9米;第一小时蜗牛爬多少米?3.在树立俄;10;13;16;…中;907是第几个数?第907个数是多少?4.求自然数中所有三位数的和.5.求所有除以4余1的两位数的和.6.0.1+0.3+0.58.+0.7+0.9+0 11+0 13+0 15+…0 99的和是多少?7.梯子最高一级宽32厘米;最底一级宽110厘米;中间还有6级;各级的宽度成等差数列;中间一级宽多少厘米?8.有12个数组成等差数列;第六项与第七项的和是12;求这12个数的和.9.一个物体从高空落下;已知第一秒下落距离是4.9米;以后每秒落下的距离是都比前一秒多9.8米50秒后物体落地.求物体最初距地面的高度.10.求下面数字方阵中所有数的和.1;2;3;…;98;99;1002;3;4;…99;100;1013;4;5;…;100;101;102……100,101,102, …197,198,199第八讲找规律你能找出下面各数列暴烈的规律吗?请在括号内填上合适的数》(1)8;15;22;();36;…;(2)17;1;15;1;13;1;();();9;1;…;(3)45;1;43;3;41;5;();();37;9;…;(4)1;2;4;8;16;();64;…;(5)10;20;21;42;43;();();174;175;…;(6)1;2;3;5;8;13;21;();55.例1. 1;2;3;2;3;4;3;4;5;4;5;6;6;7;…从第一个数算起;前100个数的和是多少?.练习与思考(第1题30分;其余每题10分;共100分.)(1)找规律;在括号内填上合适的数.(1)1,3,9,27,( ),243;(2)2,7,12,17,22,( ),( ),37;(3)1,3,2,4,3,( ),4;(4)0,3,8,15,24,( ) ,.48;(5)6,3,8,5,10,7,12,9,( ),11;(6)2,3,5,( ),( ),17,23;(7)81,64,();36;();16;9;4;1;(8)21;26;19;24;();();15;20;(9)1;8;9;17;26;();69;(10)4;11;18;25;();39;46;2.一串数按下面规律排列:1;3;5;2;4;6;3;5;7;4;6;8;5;7;9;…从第一个数算起;前100个数的和是多少?3.有一串黑白相间的珠子(如下图);第100个黑珠前面一共有多少个白珠?4.在平面中任意作100条直线;这些直线最多能形成多少个交点?5.在平面中任意作20条直线;这些直线最多可把这个平面分成多少个部分?6.序号 1 2 3 4 5算式1+1 2+3 3+5 1+7 2+9序号 6 7 8 9 …算式3+11 1+13 2+15 3+17 …根据上面的规律;第40个序号的算式是什么?算式‘1+103“的序号上多少?7.小正方形的边长是1厘米;依次作出下面这些图形.已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周长是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周厂是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?8在方格纸上画折线(如本讲例4图);小方格的边长是1;图中的1;2;3;4;…分别表示折线扩大第1;2;3;4;…段.求折线中第100段的长度.长度是30的是第几段?能力测试(一)一、填空题(每空3分;工39分).1.在下面的括号里按照规律填上适当的数字.(1)1;2;3;4;8;16;();64;128.(2)5;10;15;20;25;();35;40.(3)4;7;10;13;16;();22;25.(4)1;1;2;3;5;8;13;21;()(5)1024;512;256;();64;32;16;8;4.(6)2;5;11;20;32;();65;86.(7)1;3;2;4;3;5;();6;5.(8)1;4;9;16;25;();49;64.1.9个人9天共读书1620页;平均1个人1天共读书()页;照这样计算;5个同学5天读书()页.2.如果平均1个同学1天植树()棵;那么;3个同学4天共植树120棵.3.买3只足球和9只篮球共用了570元;买9只足球和27只篮球要用()元.二、计算题(每小题5分;共10分).1.2+4+6+8+10+ … +22+24+262.1+2+3+4+5+6+ … +1996+1997+1998三、应用题(第1~4题10其余每题10分;第5题11分;共51分).1.李老师将一叠练习本分给第一组的同学;如果每人分7本;还多7本.如果每人分9;那么有一个同学译本也分不到.第一组有多少同学?这叠练习本一共有多少本?2.一只小船在河中逆流航行176千米;用了11小时.一知水流速度是每小时4千米;这只小船返回原处要用多少小时?3.4只篮球和8只足球共买560元;6只篮球和3只足球共买390元.问:一只篮球和一只足球各买多少元?4.有10元钞票与5元钞票共128张;其中10元比5元多260元.两种面额的钞票各是多少张?5.下面是一种特殊数列的求和方法.要求数列2;4;8;16;32;64;…;1024;2048的和;方法如下:S= 2+4+8+16+32+64+ … +1024+204822S = 4+8+16+32+64+ … +1024+2048+4096用下面的式子减去上面的式子;就得到S =4096 – 2 = 4094即数列2;4;8;16;32;64;…;1024;2048的和是4094.仔细阅读上面的求和方法;然后利用这种方法求下面数列的和.1;3;9;27;81;243;…;177147;531441.第九讲加法原理在日常生活与实践中;我们经常会遇到分组、计数的问题.解答这一类问题;我们通常运用加法与那里与乘法原理这两个基本的计数原理.熟练掌握这两个原理;不仅可以顺利解答这类问题;而求可以为今后升入中学后学习排列组合等数学知识打下好的基础.什么叫做加法原理呢?我们先来看这样一个问题:从南京到上海;可以乘火车;也可以乘汽车、轮船或者飞机.假如一天中南京到上海有4班火车、6班汽车;3班轮船、2班飞机.那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法;那么从南京到上海;乘火车有4种走法;乘汽车有6种走法;乘轮船有3种走法;乘坐飞机有2种走法.因为每一种走法都可以从南京到上海;因此;一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法.我们说;如果完成某一种工作可以有分类方法;一类方法中又有若干种不同的方法;那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和.即N = m1 + m2 + … + m n (N代表完成一件工作的方法的总和;m1,m2, … m n 表示每一类完成工作的方法的种数).这个规律就乘做加法原理.例1 书架上有10本故事书;3本历史书;12本科普读物.志远任意从书架上取一本书;有多少种不同的取法?例2一列火车从上上海到南京;中途要经过6个站;这列火车要准备多少中不同的车票?例3在4 x 4的方格图中(如下图);共有多少个正方形?例4 妈妈;爸爸;和小明三人去公园照相:共有多少种不同的照法?练习与思考1.从甲城到乙城;可乘汽车;火车或飞机.已知一天中汽车有2班;火车有4班;甲城到乙城共有()种不同的走法.2.一列火车从上海开往杭州;中途要经过4个站;沿途应为这列火车准备____种不同的车票.3.下面图形中共有____个正方形.4.图中共有_____个角.5.书架上共有7种不同的的故事书;中层6本不同的科技书;下层有4钟不同的历史书.如果从书架上任取一本书;有____种不同的取法.6.平面上有8个点(其中没有任何三个点在一条直线上);经过每两个点画一条直线;共可以画_____条直线.7.图中共有_____个三角形.8.图中共有____个正方形.9.从2;3;5;7;11;13;这六个数中;每次取出两个数分别作为一个分数的分子和分母;一共可以组成_____个真分数.10.某铁路局从A站到F站共有6个火车站(包括A站和F站)铁路局要为在A站到F站之间运行的。
(完整word版)五年级上册奥数讲义
↑↑↑↑↑优才家教 优等生同步奥数提高 五年级(下)↑↑↑↑↑第一讲 整数问题 第1课 数的整除一、知识要点1. 整除——因数、倍数2. 相关基础知识点回顾(1)0是任何整数的倍数. (2)1是任何整数的因数。
3. 数整除的性质例如:如果2|10,2|6,那么2|(10+6),并且2|(10-6).必要条件:(1)a 、b 、c 三个数是整数 (2)b ≠0 (3)a ÷b=c结论:整数a 能被整数b 整除,或b 能整除a,则a 叫做b 的倍数,b 叫做a 的因数。
记作:b|a例如:如果6|36,9|36,那么[6,9]|36.例如:如果2|72,9|72,且(2,7)=1,那么18|72.例:如果7|14,14|28,那么7|28。
4.数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数(即个位数是2、4、6、8、0),那么它必能被2整除。
(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除。
(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.例:1864能否被4整除?解:1864=1800+64,因为4|64,4是1864的因数,1864是4的倍数,所以4|1864。
(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除。
例:29375能否被125整除?解:29375=29000+375,因为125|375,125是375的因数,375是125的倍数,所以125|29375。
(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。
(奇数位指:这个数的个位、百位、万位……;偶数位指:这个数的十位、千位、十万位……)例:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
2020~2021学年五年级上册课外奥数经典培训讲义——盈亏问题(一)
2020-2021学年五年级上册课外奥数经典培训讲义——盈亏问题(一)学校:___________姓名:___________班级:___________考号:___________一、解答题1.几个小朋友分梨子,如果每人分4个,则多9个,如果每人分5个,则少6个。
问有多少个小朋友?有多少个梨子?2.老师将一批练习本发给班上的学生。
如果每人发6本,则少94本;如果每人发4本,则少2本。
问有多少个学生?有多少练习本。
3.给参加美术活动小组的同学分若干支彩色笔。
如果每人分5支则多12支;如果每人分8支还多3支。
问有多少个同学?有多少支彩色笔?4.在桥上测量桥高,把绳子对折垂到水面,还余4米,把绳子3折垂到水面,还余1米,桥高多少米?绳长多少米?5.实验小学进行团体操表演。
如果每行排8人,则多出7人;如果每行排14人,则有一排少5人。
问排成多少排?有多少学生?6.有一堆螺丝和螺母。
如果一个螺丝配两个螺母,则多10个螺母;如果一个螺丝配三个螺母,则少6个螺母,螺丝、螺母各多少个?7.某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?8.学习里有铅笔若干支,奖给三好学生,若每人9支,缺15支;若每人7支缺7支。
三好学生有多少人?铅笔有多少支?9.同学们乘车去春游,若每车坐55人,则还可再坐30人;若每车坐50人,则还可再坐10人,问共有车几辆?共有学生多少人?10.某校学生参加劳动,分成若干组,每组8人,觉得每组人数太少,把每组改为12人,因此减少2组,参加劳动的学生共有多少人?11.学校给住宿的新生安排宿舍,如果按7人一间安排比按8人一间多用两间宿舍,有多少住宿的新生?12.某校有一些学生寄宿在校,若每间宿舍住6人,多出34人;若每间宿舍住7人,则多出4间宿舍。
问寄宿的学生和宿舍各有多少?13.同学们去划船,如果每只船坐4人,则少3只船;如果每只船坐6人,还有2人留在岸边。
五年级上学期奥数讲义
第一讲解简易方程我们把含有未知数的等式叫做方程。
解方程是用方程解应用题的基础。
解方程时首先要对方程进行仔细观察,能够先算的部分应该先进行计算,使方程简化。
再把含有未知数的式子看作一个数,然后根据加、减、乘、除法各部分的关系求出方程的解。
最后,将方程的解代入原方程进行检验。
在解方程的过程中,有些基本技巧能帮助我们迅速而正确地解题:1.把方程中任意一个数(或式子)移到等号的另一边时,这个数(或式子)原来是加号就要变成减号,原来是减号就要变成加号。
2.方程等号的两边可以同时加上或减去同一个数。
3.方程等号的两边可以同时乘或除以同一个不为零的数。
4.去括号时,括号前面是加号时,去掉括号后,里面的各项运算符号都不改变;括号前面是减号时,去掉括号后,里面的运算符号都要改变,即加号变减号,减号变加号。
例1 解方程8x-15=3x+5分析与解:我们可以给方程的两边同时加上15,这时方程变为:8x-15+15=3x+5+15,8x=3x+5+15。
再给这个方程的两边同时减去3x,那么得到:8x-3x=3x+5+15-3x,8x-3x=5+15。
这里,把含x的项都移到了方程的左边,已知的数字都移到了方程的右边,我们把这一步叫做“移项”。
然后把方程的两边分别相加减,得到:5x=20,把这一步叫做“合并”。
最后给方程的两边同时除以未知数的系数5,这样得到x=4,这就是方程的解。
8x-15=3x+5移项 8x-3x=5+15合并 5x=20求解 x=4检验:把x=4代入原方程的左右两边左边=8×4-15=32-15=17右边=3×4+5=12+5=17左边=右边所以x=4是原方程的解。
例2 解方程8x-3+2x+1=7x+6-5x分析与解:移项8x+2x-7x+5x=6+3-1合并 8x=8求解 x=1检验:把x=1代入原方程的左右两边左边=8×1-3+2×1+1=8-3+2+1=8右边=7×1+6-5×1=7+6-5=8左边=右边所以x=1是原方程的解。
五年级上册秋季奥数培优讲义——5-09-等积模型4-讲义-教师
第9讲 等积模型【学习目标】1、熟悉等积模型的几种类型;2、会根据底高的关系求面积。
【知识梳理】1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积比等于它们的底之比;3、两个三角形底相等,面积比等于它们的高之比。
【典例精析】【例1】如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。
(1)求三角形ABC 的面积是三角形ADC 面积的多少倍?(2)求三角形ABD 的面积是三角形ADC 面积的多少倍?(1)(12+4)÷4=4(2) 12÷4=3【趁热打铁-1】如图,E 在AD 上,AD 垂直BC ,AD =12厘米,DE =3厘米。
求三角形ABC 的面积是三角形EBC 面积的几倍?12÷3=4【例2】如图,在△ABC 中,4 CDE S △,CE=2AE,BD=3CD ,求△ABC 的面积。
连接AD 或BE.4+4÷2=66×(3+1)=24【趁热打铁-2】如图:CE=2BE ,AC=3CD ,10 CDE S △平方厘米,求△ABC 的面积。
10×3÷2×(2+1)=45(cm ²)【例3】如图,三角形ABC 的面积是40,D 、E 和F 分别是BC 、AC 和AD 的中点。
求:三角形DEF 的面积。
40÷2÷2÷2=5【趁热打铁-3】如图,在三角形ABC 中,BC =8厘米,高是6厘米,E 、F 分别为AB 和AC 的中点,那么三角形 EBF 的面积是多少平方厘米?8×6÷2÷2÷2=6(cm²)【例4】如图所示,在平行四边形ABCD中,E为AB的中点,AF=2CF,三角形AFE(图中阴影部分)的面积为10平方厘米。
平行四边形ABCD的面积是多少平方厘米?连接BF或CE。
10×3×2=60(cm²)【趁热打铁-4】如图,三角形ABC的面积为1,其中AE=3AB,BD=2BC,三角形BDE的面积是多少?连接AD或CE.1×2×(3-1)=4【例5】如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。
五年级数学奥数辅导讲义一
五年级数学奥数辅导讲义一第一课时整数与小数四则混合运算示例:在以下五个0.5之间,添加适当的运算符号+、-×、÷和括号,使以下等式为真。
0.50.50.50.50.5=2【思路导航】:我们可以很难解决上述问题,但通常很难做到,也很难找到解决问题的规律。
这个问题可以通过逆向思考来解决。
解:(0.5+0.5)÷0.5-0.5+0.5=2(0.5+0.5)÷0.5+0.50.5=2(0.5+0.5+0.5-0.5)÷0.5=2(0.5+0.5)÷(0.5×0.5)×0.5=2注:上述问题中使用的分析方法是从公式的最后一个数字逐步向前推断。
这种方法称为反向外推。
倒转问题是解决数学问题的一种常用方法,特别是在条件很难启动的情况下,这种方法可以帮助我们找到问题的突破口。
试试:在下面的式子里添上运算符号,使等式成立。
⑴0.50.50.50.50.5=0⑵0.50.50.50.50.5=1⑶0.50.50.50.50.5=3⑷0.50.50.50.50.5=4⑸0.50.50.50.50.5=5平均第二学时数(I)解决平均数问题的关键是根据已知条件确定“总数”和“份数”。
它们之间具有下列数量关系:平均份数=总份数÷总份数=平均份数×份数=总份数÷平均份数例1:某商店将4千克水果糖和6千克奶糖混合成什锦糖,已知水果糖每千克4.2元,奶糖每千克5.6元,那么什锦糖每千克多少元?溶液(4.2)×4+5.6×6)÷(4+6)=50.4÷10=5.04元答什锦糖每千克5.04元。
例2:公共汽车在a和B之间来回行驶,行驶速度为30公里/小时,返回速度为60公里/小时。
找出汽车的平均往返速度。
解设甲、乙两地的路程是120千米。
120×2÷(120÷30+120÷60)=240÷(4+2)=40(千米)两地之间的平均速度是每小时40公里。
小学五年级上学期数学培优奥数讲义(全国通用)-第25讲 组合图形的面积(含答案)
第25讲组合图形的面积知识装备平面组合图形是由两个或两个以上简单的几何图形组合而成,与平面组合图形相关的计算应看清所求图形是由哪几个基本图形组合而成,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
在实际问题中,常采用数据推导、割补、平移、巧添辅助线、旋转、组合等方法,将复杂问题简单化。
初级挑战1如下图,空白部分是两个平行四边形,求图中阴影部分的面积。
思路引领:图中空白部分是两个(),可将它们转化成与之等底等高的(),再平移到图形的一侧,那么阴影部分的面积就变成了规则的()。
答案:28×20=560(平方米)能力探索1下图是一块长10米,宽8米的长方形草坪,中间有两条走道,求草地的面积。
答案:(10-1)×(8-1)=63(平方米)初级挑战2求四边形ABCD的面积。
(单位:厘米)思路引领:如下图延长BA、CD交于E,△BEC中,S四边形ABCD =S△EBC-S△ADE。
根据∠C=45°可知,BE=BC=7,因此S△BEC=()。
∠E=(),那么△ADE中,DE=AD=3,S△ADE=()。
答案:S△BCE :7×7÷2=24.5(平方厘米);S△ADE:3×3÷2=4.5(平方厘米);S四边形ABCD:24.5-4.5=20(平方厘米)。
能力探索2计算下面图形的面积(单位:厘米)答案:将图形分割成一个三角形和长方形,再计算面积。
三角形面积:(12-8)×(10-5)÷2=4×5÷2=10(平方厘米);长方形面积:8×10=80(平方厘米);图形面积:10+80=90(平方厘米)。
中级挑战1下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。
思路引领:长方形的面积=()×()①两个长方形的长相等,它们面积的倍数等于对应宽的倍数②两个长方形的宽相等,它们面积的倍数等于对应长的倍数。
小学五年级上学期数学培优奥数讲义(全国通用)-第24讲 行船问题(含答案)
第24讲行船问题2知识与方法行船问题我们在前面的学习中已有所了解,并掌握了其基本数量关系,我们先来复习概括:顺水速度=船速+水速逆水速度=船速-水速并推得:船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2本讲中我们进一步探索,掌握稍复杂的行船问题。
解答稍复杂的行船问题必须把下面的数量关系弄清楚。
(1)顺水速度=逆水速度+2个水速(水速×2)(2)逆水速度=顺水速度-2个水速(水速×2)初级挑战1一只油轮,逆流而行, 7小时可以到达84千米远的乙港。
已知当时的水流速度是每小时2千米,求船在静水中的速度?思维点拨:油轮的逆水速度是()千米/时。
答案:逆水速度:84÷7=12(千米/时)船速:12+2=14(千米/时)能力探索1某河有相距120千米的上下两个码头,水流速度是每小时3千米,客船从上码头到下码头需要5小时,那么:(1)客船在静水中的速度是多少?(2)客船返回的速度是多少?答案:顺水速度:120÷5=24(千米/时)(1)船速:24-3=21(千米/时)(2)逆水速度:21-3=18(千米/时)初级挑战2一艘渔船顺水航行每小时行20千米,逆水航行每小时行16千米。
求水流速度和该渔船在静水中航行的速度各是多少?思维点拨:已知顺水速度和逆水速度求水速和船速。
可通过作图寻找几个速度之间的关系,再求解。
答案:船速:(20+16)÷2=18(千米/时)水流速度:(20-16)÷2=2(千米/时)能力探索2一艘航船在海中航行,顺风时每小时航行15千米,逆风时每小时航行11千米。
求这艘航船在无风时每小时航行多少千米?风速是每小时多少千米?答案:船速:(15+11)÷2=13(千米/时)风速:(15-11)÷2=2(千米/时)中级挑战1有一艘船往返于相距240千米的两地,逆水而行用了10小时,顺水而行用了6小时。
小学五年级上学期数学培优奥数讲义(全国通用)-第21讲 抽屉原理(含答案)
第21讲抽屉原理2知识与方法桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现,至少我们可以找到一个抽屉里面至少放两个苹果。
这一现象就是我们所说的抽屉原理。
抽屉原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
抽屉原理2:把多于mn个物体放到n个抽屉里,则至少有一个抽屉里有m +1个或多于m+1个物体。
初级挑战1某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?思路引领:一年最多有()天(闰年),假设每个学生分别在不同的日期出生,则有()人,最后剩下的()名学生的出生日期必与其中一人相同。
答案:有两个学生的生日是同一天。
因为一年最多有366天,假设每个学生分别在不同的日期出生,则有366人,最后剩下的1名学生的出生日期必与其中一人相同。
能力探索11、15个小朋友中,至少有()个小朋友在同一个月出生。
2、学前班有40名小朋友,老师最少拿()本书随意分给小朋友,才能保证至少有一个小朋友能得到两本或两本以上的书。
答案:1、一年有12个月,至少有2个小朋友在同一个月出生。
2、41。
初级挑战2在一个口袋里有10个黑球,6个白球,4个红球,至少取出()个球才能保证其中有白球?思路引领:考虑最不利的情况是之前取出的全是()球和()球,共有()个,那么只有第()个才能取到白球。
答案:10+4+1=15(个)能力探索21、有红色、白色、黑色的筷子各8根混放在一起,让你闭上眼睛去摸,至少要摸出()根才敢保证一定能摸到白色筷子。
答案:8×2+1=17(根)2、有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出()只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
答案:3×3+1=10(只)中级挑战1把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少有( )个苹果。
五年级上册数学 火车行程问题 思维奥数讲义
五年级上册数学思维奥数讲义火车行程问题知识梳理1、车头上桥到车尾下桥:路程=火车长+桥长2、车尾上桥到车头下桥:路程=桥长-火车长3、火车与人相遇:路程和=火车长4、火车与人追及:路程差=火车长5、火车与火车相遇(车头相遇到车尾相离):路程和=甲车长+乙车长6、火车与火车追及(快车车头追上慢车车尾到快车车尾离开慢车车头):路程差=快车长+慢车长知识精讲小热身(1)甲乙两人相距50米,相向而行,速度分别为3米/秒和2米/秒,多久后两人相遇?(2)甲乙两人相距50米,同向而行,速度分别为3米/秒和2米/秒,多久后甲追上乙?典例1 (1)一列高铁长180米,每秒钟行驶60米,这列高铁通过一座300米长的大桥时,从车头开始上桥到车尾完全过桥需要多少时间?(2)一列高铁以每秒钟70米的速度行驶,通过一条400米长的隧道时,从车头开始进入隧道到车尾完全通过隧道共用时8秒钟,请问这列高铁车长多少米?变式1 (1)一列动车以每秒钟60米的速度通过一条长1000米的隧道,从车头开始进入隧道到车尾完全通过隧道共用时20秒,请问这列动车的长度是多少米?(2)一列动车长150米,每秒钟行驶70米,这列动车通过一座200米长的大桥时,从车头开始上桥到车尾完全过桥需要多少时间?典例2 同一列动车完全通过(从车头进入到车尾离开)一条490米长的隧道需要10秒,完全通过一条370米长的大桥需要8秒,那么这列动车的速度是每秒钟多少米?车长多少米?变式2 同一列高铁完全通过(从车头进入到车尾离开)一条长800米的大桥需要14秒,完全通过一条长540米深的隧道时需要10秒钟,请问高铁的速度是多少米?车长多少米?典例3 某铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分,整列火车完全在桥上的时间为40秒。
求火车的长度和速度。
变式3某条隧道长900米,现有一列100米长的火车从隧道中通过,测得火车从开始进入隧道到完全通过隧道共用20秒,则整列火车完全在隧道里的时间是多长?典例4 (1)一名行人沿着与铁路平行的公路散步,每秒走1米,迎面过来一列长120米的动车,已知动车每秒钟行驶59米,请问:从动车头与行人相遇到动车尾离开他共用了多长时间?(2)一人以每分钟60米的速度沿着与铁路平行的公路散步,一列长180米的动车从他身后开来,动车的速度是每秒钟61米,动车从他身边经过用了多长时间?变式4 (1)一人以每分钟60米的速度沿着与铁路平行的公路散步,一列长180米的动车从对面开来,从他身边经过用了3秒钟,动车的速度是每秒钟多少米?(2)小明在铁路旁边沿着与铁路方向平行的公路散步,他散步的速度是2米/秒,这时背后开来一列火车,从车头追上他到车尾离开他一共用了3秒,已知火车速度是42米/秒,请问:火车的车长多少米?典例5 (1)一列火车车长180米,每秒行驶40米,另一列火车长200米,每秒行驶36米,两车相向而行,它们从车头相遇到车尾相离要经过多长时间?(2)甲火车长420米,每秒钟行驶30米,乙火车在甲火车后,长300米,每秒钟行驶42米,两车同向行驶,请问:乙车从追上甲车到完全超过共需要多长时间?变式5 (1)已知快车长240米,每秒钟行驶38米,慢车长360米,两车相向而行,它们从车头相遇到车尾相离共用时10秒,请问:慢车速度是多少?(2)已知快车长240米,每秒钟行驶66米,慢车长360米,两车同向而行,它们从快车追上到完全超越慢车共用时20秒,请问:慢车速度是多少?课后训练1、一列火车长200米,以每分钟500米的速度通过一座长1300米的大桥,从车头上桥到车尾离开桥需要多少分钟?2、一列高铁车长120米,通过一条长720米的大桥时,从车头开始上桥到车尾完全过桥需要14秒,这列高铁完全通过(从车头进入隧道到车尾离开隧道)一条长360米长的隧道时需要多少秒?3、一列高铁车长100米,通过一条长700米的大桥时,高铁完全在桥上(车尾上桥到车头离开桥)的时间是10秒钟,这列高铁的速度是多少?4、一人以每分钟60米的速度沿着与铁路平行的公路散步,一列动车从他身后开来,动车的速度是每秒钟61米,3秒钟后动车从他身边经过,请问这列动车长多少米?5、有两列火车,一列长360米,每秒行驶36米,另一列长240米,每秒行驶60米,两车同向而行,快车赶超慢车(从追上到完全超过)需要多少秒?6、甲火车每秒行驶50米,乙火车每秒行驶30米,两列火车相向而行时,它们从车头相遇到车尾相离要经过4秒,请问:如果两列火车同向行驶时,甲火车从追上乙火车到完全超过共需要多长时间?7、现在有两列火车同时同方向齐头行进,快车每秒行驶18米,慢车每秒行驶10米,行驶12秒后快车超过慢车。
2020~2021学年五年级上册课外奥数经典培训讲义——相遇问题(三)
9.甲乙两车的速度分别是每小时62千米和42千米,他们同时从甲地出发到乙地去,出发后5小时,甲车遇到一辆迎面开来的货车,1小时后乙车也遇到这辆货车,求这辆货车的速度?
2020-2021学年五年级上册课外奥数经典培训讲义——相遇问题(三)
学校:___________姓名:___________班级:___________考号:___________
一、解答题
1.A、B两地相距1000千米,甲列车从A地开出驶往B地,2小时后,乙列车从B地开往A地,经过4小时后与甲列车相遇。已知甲列车比乙列车每小时多行10千米。甲列车每小时行多少千米?
6.一辆汽车和一辆摩托车同时从甲地出发背向而行,摩托车行驶2小时到达乙地,汽车行驶3小时后到达丙地,已知丙地和乙地相距255千米,摩托车比汽车每小时多行15千米,汽车每小时行多少千米?
7.两艘军舰同时从相距405海里的两港口对开,一艘军舰每小时行21海里,另一艘军舰每小时行24海里,相遇后又继续行驶,各到达对方的港口立即返回,途中第二次相遇,从出发到第二次相遇经多少时间?
2.小李由乡里到城里办事,每小时行4千米,到预定到达时间时,离县城还有1.5千米。如果小李每小时行5.5千米,到预定到达时间时,又会多走4.5千米。乡里距城里相距多少千米?
3.两个游泳队同时从相距2040米的AB两地相向出发,甲队从A地下水,每分钟游40米,乙队从B地下水,每分钟游45米。一艘汽艇负责两队安全,同时从B地出发,每分钟行驶1200米,遇到甲队就立即返回,返回遇到乙队又向甲队开去,这样不断地往返下去,汽艇行多少千米两队才能相遇?
五年级奥数第一讲讲义和答案
第一讲一、复习巩固二、例题讲解例1、某学校原来参加室外活动的人数比室内活动的人数多480人,现在把室内活动的50人改为室外活动,这样室外活动的人数正好是室内活动人数的5倍,参加室内、室外活动的一共有多少人?例2、用144分米长的铁丝围成一个长方体框架(如图:11-2).一只蚂蚁从顶点A出发,沿棱爬行,经顶点B、C,到达D.已知蚂蚁每分钟爬行6分米,经BC比AB多用1分钟,经CD比BC少用2分钟。
这个长方体框架的长、宽、高各是多少分米?例3、我国古代有许多有趣的数学问题,著名的鸡兔同笼问题就是其中的一个.“鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?”例4、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?例5、有一个牧场,草量匀速生长,已知养牛27头,6天把草吃净,养牛23头,9天把草吃净。
如果养牛21头,那么几天能把草吃净呢?例6、由于天气变冷,牧场上的草每天以均匀的速度减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?三、自我总结四、课后作业练习1、王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?练习2、已知祖孙三人,祖父和父亲年龄的差与父亲和孙子年龄的差相同,祖父和孙子年龄之和为82岁,明年祖父年龄恰好等于孙子年龄的5倍,求祖孙三人各多少岁。
练习3、现准备将一池塘水全部抽干,但同时有水匀速流入池塘,若用8台抽水机10天可以抽干,用6台抽水机20天能抽干。
问若要5天抽干水,需要多少台同样的抽水机来抽水?练习4、一片草地每天长得草一样多,现有牛、羊、鹅各一只,且羊和鹅吃草的总量正好是牛吃草的总量,如果草地放牛和羊,可以吃45天;如果放牛和鹅,可以吃60天;如果放羊和鹅,可以吃90天,这片草地放牛、羊、鹅,可以供它们吃多少天?练习5、一河流北面有一块牧场2000平方米,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者27头牛吃8天,在该河流南面有一块牧场6000平方米,可供多少头牛吃6天?练习6、甲对乙说:当我的岁数是你现在的岁数的时候,你才5岁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
↑↑↑↑↑优才家教 优等生同步奥数提高 五年级(下)↑↑↑↑↑第一讲 整数问题 第1课 数的整除一、知识要点1. 整除——因数、倍数2. 相关基础知识点回顾(1)0是任何整数的倍数。
(2)1是任何整数的因数。
3. 数整除的性质例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
例如:如果6|36,9|36,那么[6,9]|36。
例如:如果2|72,9|72,且(2,7)=1,那么18|72。
必要条件:(1)a 、b 、c 三个数是整数 (2)b ≠0 (3)a ÷b=c结论:整数a 能被整数b 整除,或b 能整除a ,则a 叫做b 的倍数,b 叫做a 的因数。
记作:b |a例:如果7|14,14|28,那么7|28。
4.数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数(即个位数是2、4、6、8、0),那么它必能被2整除。
(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除。
(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除。
(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除。
例:1864能否被4整除?解:1864=1800+64,因为4|64, 4是1864的因数,1864是4的倍数,所以4|1864。
(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除。
例:29375能否被125整除?解:29375=29000+375,因为125|375,125是375的因数,375是125的倍数,所以125|29375。
(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。
(奇数位指:这个数的个位、百位、万位……;偶数位指:这个数的十位、千位、十万位……)例:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。
因为0是任何整数的倍数,所以11|0。
因此13574是11的倍数。
例:判断123456789这九位数能否被11整除?解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为11 5,所以11 123456789。
(7)能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
例:判断1059282是否是7的倍数?解:把1059282分为1059和282两个数。
因为1059-282=777,又因为7|777,所以7|1059282。
因此1059282是7的倍数。
例:判断3546725能否被13整除?解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725。
二、典型例题详解猜猜会是什么数?【例1】:一个856五位数,能被3、4、5整除,这样的五位数中,最小的一个是多少?解:先将856,看做856ab。
∵3|856ab,则3|8+5+6+a+b,3|19+a+b,∴a+b=2或a+b=5或a+b=8。
∵4|856ab,则4|ab,∴ab=偶数∵5|856ab,则b=0或b=5,又∵ab为偶数,∴b=0∵a+b=2或a+b=5或a+b=8,且b=0,∴a=2或a=5或a=8当a=2,b=0时,这个数为85620;当a=5,b=0时,这个数为85650;当a=8,b=0时,这个数为85680。
答:五位数中最小的一个是85620。
【例2】:一本老账本上记着:72只桶,共67.9元,其中□处是被虫蛀掉的数字,请把这笔账补上。
解:先将67.9,看做整数a679b。
∵72=8×9,且(8,9)=1,∴8|a679b,且9|a679b。
若8|a679b,则8|79b,所以b=2。
若9|a679b,b=2,则9|a6792,9|a+6+7+9+2,9|a+24,所以a应是3。
所以这个数应是答:这笔账应是元。
【例3】:173是一个四位数,在其中的方框中先后填入三个数字,所得到的三个四位数,依次可以被9、11、6整除。
先后填入的三个数字的和是多少?[方法一] 试商法解:[方法二] 倍数特征解:三、课后作业1. 在中填入适当的数字,使所组成的数能够被4整除。
78 4 7653 8633. 一个六位数2356是22的倍数,那么这样的六位数中,最大的一个是多少?2. 71450至少加上多少后就能被4整除?4. 如果两个数的和是64,这两个数的积可以整除4875,那么这两个数的差是多少?5.一位采购员买了同样的72只热水杯,可是发票不慎弄湿,单价无法辨认,总价数字也不全,只元。
你能算出热水杯的单价吗?第一讲整数问题第2课倍数与因数(一)一、知识要点1.质数与合数质数:一个数除了1和它本身,不再有别的因数,这个数叫做质数。
(素数)合数:一个数除了1和它本身,还有别的因数,这个数叫做合数。
1不是质数,也不是合数。
2.质因数与分解质因数质因数:如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例:30分解质因数。
解:30=2×3×5 答:2、3、5是30的质因数。
分解质因数的方法:可以用短除式来求质因数100以内的质数(要会背的):2、3、5、7、11、13、 17、19、23、29、31、37、41、43、 47、53、59、61、67、71、73、 79、83、89、97.3.公因数与公倍数公因数:几个自然数公有的因数,叫做这几个自然数的公因数。
公倍数:几个自然数公有的倍数,叫做这几个自然数的公倍数。
一个数的因数的个数是( )的,倍数的个数是( )的。
几个数的公因数的个数是()的,公倍数的个数是()的。
4. 最大公因数与最小公倍数最大公因数:在几个自然数的公因数中,最大的一个称为这几个数的最大公因数。
a 、b 的最大公因数=(a ,b)最小公倍数:在几个自然数的公倍数中,除零外最小的一个称为这几个数的最小公倍数。
a 、b 的最小公倍数=[a 、b](18,30)=2×3=6 [18,30]=2×3×3×5=90 二、典型例题详解【例1】五年级三个班分别有30、24、42人参加课外科技活动,现在要把参加的人分成人数相等的小级,并且各班同学不能打乱,那么每组最多多少人?一共可以分成多少个小组?解: 30=2×3×5 24=2×3×2×2 42=2×3×7(30,24,42)=2×3=6(人) 30÷6=5(个)24÷6=4(个) 42÷6=7(个) 5+4+7=16(个)答:每组最多可以分6人,一共可以分16个组。
【例2】有一种长16厘米,宽12厘米的塑料扣板,如果用这种扣板拼成一个正方形,最少需要多少块?1 8 3 02 9 335用公有的质因数2除 用公有的质因数3除 除到两个商是互质数为止15 用短除法计算:12=2×2×3[16,12]=2×2×2×2×3=48(厘米)48÷16=3(块)48÷12=4(块)3×4=12(块)答:最少需要12块扣板。
【例3】甲对乙说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”求出甲、乙现在的年龄。
解:∵甲现在的年龄是乙的7倍,则甲的年龄比乙大6倍;∵当甲的年龄是乙的6倍时,则甲的年龄比乙大5倍;∵当甲的年龄是乙的5倍时,则甲的年龄比乙大4倍;∵当甲的年龄是乙的4倍时,则甲的年龄比乙大3倍;∵当甲的年龄是乙的3倍时,则甲的年龄比乙大2倍;∵当甲的年龄是乙的2倍时,则甲的年龄比乙大1倍;∴甲、乙的年龄差是6、5、4、3、2的公倍数。
[6,5,4,3,2]=6×5×4×3×2=60(岁)60÷(7-1)=10(岁)10+60=70(岁)答:甲的年龄是70岁,乙的年龄是10岁。
【例4】写出三个小于20的自然数,它们的最大公因数为1,但两两均不互质,共有几组?解:假设这三个数分别是a、b、c∵a、b、c两两不互质,且a<20,b<20,c<20,则两两间的质因数互不相同且乘积小于20(a,b)=2或(a,b)=3 或(a,b)=5;(a,c)=2或(a,c)=3 或(a,c)=5;(b,c)=2或 (b,c)=3 或 (b,c)=5;∴a,b,c三数有可能是2×3=6,2×5=10,3×5=15,2×6=12,3×6=18。
又∵(a,b,c)=1;(6,10,15)=1;(10,15,12)=11;(10,15,18)=答:共有三组,分别是(6、10、15),(10、12、15),(10、15、18)。
三、课后习题1. 求56,36,284的最小公倍数。
3. 三个人绕环行跑道练习骑自行车,他们骑一圈的时间分别为半分钟、45秒钟、1分15秒。
三人同时从起点出发,最少需要多长时间才能再次在起点相会?5. 把一张长120cm,宽80cm的长方形纸裁成同样大小的正方形(纸不能有剩余),至少能裁成多少张这样的正方形纸,每张裁成的纸是多大?2. 有336个苹果、252个梨子、210个桔子,用这三种水果最多可以分成多少份相同的礼物?每份礼物中,三种水果各占多少?4. 有一个表,每走9分钟亮一次灯,每到整点时响一次铃。
中午12点时既亮灯又响铃。
下次既亮灯又响铃在几点?6. 用一个数去除31,61,76都余1,这个数最大是多少?第3课倍数与因数(二)一、知识要点1.最小公倍数与最大公因数之间的关系二、典型例题详解【例1】甲数是36,甲、乙两数的最大公因数是4,最小公倍数是288,求乙数。
解:设乙数是a36×a=4×288a=4×288÷36a=32答:乙数是32。
【练一练】甲数和乙数的最大公因数是6,最小公倍数是90,且小数不能整除大数,求这两个数。
【例2】已知两数的最大公因数是21,最小公倍数是126,求这两个数的和是多少?解:设这两个数分别为a、b126÷21=66=3×2 或6=1×6a=3×21=63 a=1×21=21b=2×21=42 b=6×21=12663+21=84 21+126=147答:这两个数的和是84或147。