人教A版高中数学必修一1.1.2集合间的基本关系
人教A版高中数学必修一第一章2集合间的基本关系
第2讲 集合间的基本关系一、教学目标1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;2.空集是任何集合的子集,是任何非空集合的真子集;3.注意区别“包含于”,“包含”,“真包含”,“不包含”;4.注意区别“∈”与“⊆”的不同涵义。
二、知识点梳理知识点一:韦恩图用平面上封闭曲线的内部代表集合,这种图叫做韦恩图。
例1、求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}.知识点二:集合间的基本关系子集的概念:对于两个集合A 与B,如果集合A 的任意一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。
记作A),B B(A ⊇⊆或也可用维恩(Venn )图(如下图)表示,这时我们就说集合A 是集合B 的子集。
推敲引申:(1)A 是B 的子集的含义是:集合A 中的任意一个元素都是集合B 中的元素,数学表达式为:B x ∈⇒∈A x B A(2)若集合A 中有元素不是集合B 中的元素,我们就称“A 不包含于B”(或B 不包含A ),记作B ⊄A(3)空集是任何集合的子集,即对于任意给定的集合A ,始终有A ⊆φ(4)任何一个集合A 都是它本身的子集,因为对于任何一个集合A ,它的每一元素肯定属于集合A 本身,记作A ⊆A例2、用符号“⊆”、“⊇”、“∈”或“∉”填空:(1){},,,a b c d {},a b ; (2) ∅ {}1,2,3; (3) N Q ; (4) 0 R ; (5) d {},,a b c ; (6) {}|35x x << {}|06x x <. 例3、写出集合{a ,b }的所有子集,例4、说出下列每对集合之间的关系.(1)A ={1,2,3,4,},B ={3,4}.(2)N ,N*.(3)A=}{1,1-,B=}{)1,1(),1,1(),1,1(),1,1(----(4)A=}{6,3,2,B=}{的约数是12x x(5)A=}{是等边三角形x x ,B=}{是等腰三角形x x例5、设集合}{12A x x =<<,}{B x x a =<,且A B ⊆,则实数a 的范围是( ).2A a ≥ B.2a > C.1a > D.1a ≤ 变式训练若A={x|x2-3x+2=0},B={x|x2-a x+a -1=0},且B⊆A,则a 的值为如果B A ⊆且B A ≠,就说集合A 是集合B 的真子集,记作B A ≠⊂(或A B ≠⊃) B A ≠⊂亦可以用维恩图表示,如右图所示。
新人教A版高中数学必修一1.1.2《集合间的基本关系》Word精品教案
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用V enn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
人教A版高中数学必修1子集、全集、补集
满足 M 是 条由 件 3 ,1 ,5 集 的 ,2 ,4 中 合的.元
例4、写出不等式x-3>2的解集并进行化简。 解:不等式x-3>2的解集是 {x|x-3>2}={x|x>5}
例5、以下写法错误写法的个数( D )
① {0} ∈ {0,1}
CSB-1,0,用 2 列举法写 B出 . 集
{-3,1,3,4,6}
3、设全集U={2,3,5,7,11},A={2,|a-5|,7},
CUA={5,11},则a的值是( C )
A.2 B.8
C.2或8 D.12
三、小结:
1、子集的概念; 2、集合相等;
3、真子集;
4、空集;
5、子集、真子集的一些简单性质;
6、元素个数与集合子集个数的关系; 7、全集、补集的概念; 8、补集的一些简单性质。
四、作业:
P7 3 P12 3、4、5
2、集合相等
一般地,对于两个集合A与B,如果集合A的 任何一个元素都是集合B的元素,同时集合B的任 何一个元素都是集合A的元素,就说集合A等于集 合B,记作:A=B
数学语言表示形式:
A B 且 B A A B
3、真子集
对于两个集合A与B,如果集合A⊆B,但存在元
素 xB,且xA,就说集合A是集合B的真子集.
a 1 1
a
4
1
3a2
二、全集与补集
1、全集、补集的概念
一般地A⊆,S设S是一个集合,A是S的一个子集 (即 ),由S中所有不属于A的元素组 成的集合,叫做S中子集A的补集(或余集)
记作CSA
即 C S A = x |x S 且 x ,A
人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件
回到目录
三、教师点拨
1.集合的相等
回到目录
三、教师点拨
2.真子集定义
一般地,若集合A中的元素都是集合B的元素, B中至少有一个元素不属于A。我们称集合A是 集合B的真子集。记作:
AÞ B
回到目录
三、教师点拨
2.真子集定义
回到目录
三、教师点拨
3.子集定义 如果集合A的任何一个元素都是集合B的元素, 那么,集合A就叫做集合B的一个子集.记作:
A B
说明:(1)子集包含相等与真子集两种情况, 任何一个集合都是它自身的子集; (2)空集是任何集合的子集,包括它本身;
回到目录
பைடு நூலகம்
三、教师点拨
3.子集的定义
回到目录
四、课堂小结
(1)集合相等定义 (2)真子集的定义 (3)子集的定义 (4)体会类比发现新结论与数形结合的思想
回到目录
自主探究 时间15分钟 (完成所有探究与练习) 集中全部精力!提升自学能力!
回到目录
三、教师点拨
1.集合的相等
一般地,如果集合A的每一个元素都是集合B的元素, 反过来集合B的每一个元素也都是集合A的元素,我们 就说集合A等于集合B。记作:
AB
这里的符号“=”是借用了数学中的等号,它表示两 个集合中的元素完全相同 ( 即两个集合中的元素个数 相等且相应的元素都相同).
标题
§1.1.2集合间的基本关系
§1.1.2集合间的基本关系
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景 山东人组成的集合为A,中国人组成的集 合为B, 某人说:“我是一个山东人”,
那我们马上能反应出这个人也是一个中 国人,集合A与集合B有什么关系呢?
人教A版高中数学必修一《1.1.2集合间的基本关系》课件
2.a与{a}的区别:一般地,a表示一个元素, 而{a}表示只有一个元素的一个集合,我们常称之为 单元素集.1∈{1},不能写成1⊆{1}.
3.关于空集∅:空集是不含任何元素的集合, 它既不是有限集又不是无限集,不能认为∅={0}, 也不能认为{∅}=∅或{空集}=∅.
高中数学课件
(金戈铁骑 整理制作)
1.1.2集合间的基本关系
冠县一中 姚增珍
2012.9.7
1.理解集合之间包含与相等的含义,能识别给 定集合的子集.
2.在具体情境中,了解空集的含义.
自学导引
1.一般地,对于两个集合A、B,如果集合A中 _任__意__一__个__元素都是集合B中的元素,我们就说这两 个集合有包含关系,称集合A为集合B的子集,记作 _A_⊆__B_(或_B__⊇_A_),读作“_A_含__于__B_”(或“_B_包__含__A__”).
误区解密 因忽略空集而出错
【例4】设A={x|2≤x≤6},B={x|2a≤x≤a+ 3},若B⊆A,则实数a的取值范围是( )
A.{a|1≤a≤3}B.{a|a>3} C.{a|a≥1}D.{a|1<a<3}
错解:∵B⊆A,∴2aa+≥32≤6 , 解得 1≤a≤3,故选 A.
错因分析:空集是任何集合的子集,忽视这一 点,会导致漏解,产生错误结论.对于形如 {x|a<x<b}一类的集合,当a≥b时,它表示空集,解 题中要引起注意.
解析:(1)为元素与集合的关系,(2)(3)(4)为集 合与集合的关系.
易知a∈{a,b,c}; ∵x2+1=0在实数范围内的解集为空集, 故∅={x∈R|x2+1=0}; ∵{x|x2=x}={0,1}, ∴{0} {x|x2=x}; ∵x2-3x+2=0的解为x1=1,x2=2. ∴{2,1}={x|x2-3x+2=0}. 答案:(1)∈ (2)= (3) (4)=
第一章-1.2-集合间的基本关系高中数学必修第一册人教A版
集合A中,故 ⫋ .
2
1
4
方法2 (特征法) 集合A中的元素为 = + =
4
1
2
= + =
+2
4
2+1
(
4
∈ Z),集合B中的元素为
∈ ,而2 + 1 ∈ 为奇数, + 2 ∈ 为整数,故 ⫋ .
例12 [多选题]已知集合 = {1,2,3}, = {| ⊆ },则下列结论正确的是
例3-5 (2024·福建省福州超德中学段考)若集合 = {−1,1}, = {| = 2},且
⊆ ,则实数的值是 ( D
A.−2
B.2
)
C.2或−2
D.2或−2或0
【解析】当 = ⌀ 时(【明易错】在遇到 ⊆ 的情况时,一定要讨论B是否为⌀ ,
为⌀ 的情况易被忽视), = 0,符合题意,
33 + 73 + 08,153,370},
所以真子集个数为23 − 1 = 7.
例15 (2024·福建省厦门十中段考)已知集合 = {1,3,5},则集合的所有非空子集的
36
元素之和为____.
【解析】集合的非空子集分别是:{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.
当 = {−1}时, = −2,
当 = {1}时, = 2.
知识点4 有限集合的子集、真子集的个数
例4-6 (2024·广东省惠州市期中)若集合满足 ⫋ {1,2},则满足题意的的个数为
( B
A.2
)
B.3
C.4
【解析】集合满足 ⫋ {1,2},集合{1,2}的元素个数为2,
高中数学人教A版(2019)必修第一册素材:1.2集合间的基本关系
1.写出集合{a,b,c}的所有子集.
2.用适当的符号填空:
(1)a
{a ,b c, ;} (2)0
x∣x2 0 ; (3)
xR∣x2 1 0 ;
(4){0,1}
N ; (5){0}
x∣ x2 x ; (6){2,1}
x∣x2 3x 2 0 .
3.判断下列两个集合之间的关系: (1)A={x|x<0},B={x|x<1}; (2)A={x|x=3k,k∈N},B={x|x=6z,z∈N); (3)A={x∈N+|x是4与10的公倍数},B={x|x=20m,m∈N+}.
例 1 写出集合{a,b}的所有子集,并指出哪些是它的真子集. 解:集合{a,b}的所有子集为∅,{a},{b},{a,b}.真子集为∅,{a},{b}. 例 2 判断下列各题中集合 A 是否为集合 B 的子集,并说明理由: (1)A={1,2,3},B={x|x 是 8 的约数); (2)A={x|x 是长方形),B={x|x 是两条对角线相等的平行四边形)。 解:(1)因为 3 不是 8 的约数,所以集合 A 不是集合 B 的子集. (2)因为若 x 是长方形,则 x 一定是两条对角线相等的平行四边形,所以集合 A 是集合 B 的子集.
(3)C={0};
(4)D={x∈Z|3<x<30).
4.在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合
D
(
x,
y∣) 2xx4
y y
1 5
表示什么?集合C,D之间有什么关系? 5.(1)设a,b∈R,P={1,a},Q={-1,-6}.若P=Q,求a-b的值; (2)已知集合A={x |0<x<a},B={x | 1<x<2),若 B A ,求实数a的取值范围.
高一数学(人教A版)必修1-集合间的基本关系
(2)判断下列两个集合之间的关系: A={x|x 是 4 与 10 的公倍数,x∈N*}, B={x|x=20m,m∈N*}. [答案] A=B
4.正确区别各种符号的含义. (1)∈与⊆的区别 ∈表示元素与集合之间的关系,因此有 1∈N,-1∉N 等; ⊆和 表示集合与集合之间的关系,因此有 N⊆R,∅ R 等, 要正确区分属于和包含关系. (2)a 与{a}的区别 一般地,a 表示一个元素,而{a}表示只有一个元素 a 的 集合,因此有 1∈{1,2,3},0∈{0},{1} {1,2,3},a∈{a,b,c}, {a} {a,b,c}.
(4)集合 A 不包含于集合 B(A B)包括如下图所示几种情 况:
通过以上所学,完成下面练习.
下列各组集合中,集合 A 是集合 B 的子集的有( )
①A={1,3,5},B={1,2,3,4,5,6};
②A={1,3,5},B={1,3,6,9};
③A={0},B={x∈R|x2+1=0};
④A={a,b,c,d},B={d,b,c,a}.
值得说明的是: (1)集合 A 是集合 B 的真子集,即 A 是 B 的子集,并且 B 中至少存在一个元素 不是 A 的元素; (2)子集包括真子集和相等两种情况; (3)空集∅是任何非.空.集合的真子集; (4)对于集合 A、B、C,如果 A B,B C,那么 A C;如 果 A B,B⊆C,那么 A C;如果 A⊆B,B C,那么 A C.
自主预习 1.子集: 观察下面几组集合,集合A与集合B具有什么关系? (1)A={1,2,3},B={1,2,3,4,5}. (2)A={x|x>3},B={x|3x-6>0}. (3)A={正方形},B={四边形}.
高中数学人教A版必修1课件:1.1.2 集合间的基本关系
题型一
题型二
题型三
题型四
题型五
【变式训练1】 已知集合A={x|x2-3x+2=0},B={x|0<x<5,x∈N}, 则满足A⊆C⫋B的集合C的个数是 ( ) A.1 B.2 C.3 D.4 解析:由已知可得集合A={1,2},B={1,2,3,4},又因为A⊆C⫋B,所以 集合C可以是{1,2},{1,2,3},{1,2,4}. 答案:C
)
1
2
3
4
【做一做4-2】 有下列命题:①空集没有子集;②任一集合至少有 两个子集;③空集是任何集合的真子集;④若⌀⫋A,则A≠⌀.其中正确 的个数为( ) A.0 B.1 C.2 D.3 解析:对于①,空集是任何集合的子集,故⌀⊆⌀,①错;对于②,⌀只有 一个子集,是其自身,②错;对于③,空集不是空集的真子集,③错;空 集是任何非空集合的真子集,④正确. 答案:B
【例3】 已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且 B⊆A,B≠⌀,求实数m的取值范围. 分析:先在数轴上表示出集合A.由于B⊆A,故集合B只能在集合A 的内部. 解:由题意,在数轴上表示出集合A,B,如图所示,
-3 ≤ 2������-1, 则有 ������ + 1 ≤ 4, 解得-1≤m<2. 2������-1 < ������ + 1,
1
2
3
4
【做一做3-1】 已知M={1,2,3,4,5},N={1,4},则有 ( ) A.M>N B.N⫋M C.N∈M D.M=N 答案:B 【做一做3-2】 下列集合与集合{x|x2-x=0}相等的是( ) A.{0} B.{1} C.{0,1} D.{1,2} 解析:集合{x|x2-x=0}是方程x2-x=0的解集,解方程x2-x=0,得x=0或 x=1,则{x|x2-x=0}={0,1}. 答案:C
人教A版高中数学必修第一册第一章《1.2集合间的基本关系》
新课
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
1.子 集
一般地,对于两个集合,如果A中 任意一个元素都是B的元素,称集合A 是集合B的子集(subset)
记作: A B(或B A)
读作“A包含于B”,或“B包含A”.
注意集.即:Φ A
④空集是任何非空集合的真子集.
即Φ A (A ≠ Φ)
⑤. N___ N ___ Z ___ Q ___ R
还可以写为:. N ___ N ___ Z ___ Q ___ R
例2在以下六个写法中
① ③ ④③①判{{{Φ断A001,,} ∈下2-}{列A01A,写,√√1{法11}}}④,②是{{否-2AΦ}②正1,{,1确,AAAA02,{}0××1}}
2.集合相等 示例(3):
C={ x|x是两边相等的三角形}, D={ x|x是等腰三角形}, 有CD,DC,则C=D.
若AB,BA,则A=B.
3.真子集
A={1, 2, 7},B={1, 2, 3, 7},
如果AB,但存在元素x∈B,且
x A,称A是B的真子集.
BA
Venn图
子集、真子集有何区别与联系?
图中A是否为B的子集?
B
A
(1)
BA (2)
练一练:
判断集合A是否为集合B的子集,若是则在 ( )打√,若不是则在( )打×:
①A={1,3,5}, B={1,2,3,4,5,6} (√ ) ②A={1,3,5}, B={1,3,6,9} (×) ③A={0}, B={x x2+2=0} ×( ) ④A={a,b,c,d}, B={d,b,c,a} (√ )
人教版高中数学必修一课件含例题1.2集合间的基本关系
A
=
B
⇔
A B
⊆ ⊆
B A
一个集合有多种表达形式.
牛刀小试:A x x 1 x 2 0 ,B 1, 2。集合A与B什么关系?
A=B
探究三 真子集
观察以下几组集合,并指出它们元素间的关系: (1)A={1,3,5}, B={1,2,3,4,5,6}
(2)A={四边形}, B={多边形}
3.集合相等:A=B AB且BA.
4.性质: ①A,若A非空, 则 A.
②AA. ③AB,BCAC.
解:集合的所有子集为 ,a,b,c, a,b, a,c,b,c,a,b, c
.
所有真子集为 ,a,b,c, a,b, a, c,b, c.
例2.判断下列各题中集合A是否为集合B的子集,并说明理由。 (1)A {1,2,3},B {x | x是8的约数}; (2)A {x | x是长方形},B {x | x是两条对角线相等的平行四边形}。
思考1:实数有相等,大小关系,如5=5,5<7,5>3等等,类比 实数之间的关系,你会想到集合之间有什么关系呢?
子集定义:
一般地,对于两个集合A、B,如果集合A中任 意一个元素都是集合B中的元素,我们就说这两个 集合有包含关系,称集合A为集合B的子集.
记作: A B (或B A )
读作:“A含于B” (或“B包含A”)
解:(1)因为3不是8的约数,所以集合A不是集合B的子集。
(2)因为若 x是长方形,则 x一定两条对角线相等的 平行四边形, 所以集合 A是集合B的子集。
回顾本节课你有什么收获?
1.子集:A B 任意x∈A x∈B.
2.真子集: A B A B,但存在 x0∈B且 x0 A.
{1,2}
高中数学人教版(新教材)必修1:1.2 集合间的基本关系
1.2 集合间的基本关系课标要求素养要求理解集合之间包含与相等的含义,能识别给定集合的子集.会用三种语言(自然语言、图形语言、符号语言)表示集合间的基本关系,并能进行转换,重点提升数学抽象素养和直观想象素养.教材知识探究草原上,蓝蓝的天上白云飘,白云下面马儿跑.如果草原上的枣红马组成集合A,草原上的所有马组成集合B.问题(1)集合A中的元素与集合B中的元素的关系是怎样的?(2)集合A与集合B又存在什么关系?提示(1)集合A中的元素都是B的元素.(2)A是B的子集.1.子集的相关概念(1)子集、真子集、集合相等概念都是很重要的概念,一定要认真理解①子集的概念文字语言符号语言图形语言一般地,对于两个集合A ,B,如果集合AA B(或B A)中任意一个元素,都是集合B中的元素,就称集合A为集合B的子集Venn图:我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图.②集合相等一般地,如果集合A中的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B,也就是说,若A B,且B A,则A=B.③真子集的概念如果集合A B,但存在元素x∈B,且x A,就称集合A是集合B的真子集,记作A B(或B A).(2)空集注意区分与空集有关的符号:,0,{},{0}一般地,我们把不含任何元素的集合叫做空集,记作.规定:空集是任何集合的子集.空集是任何非空集合的真子集2.集合间关系的性质(1)任何一个集合都是它本身的子集,即A A.(2)对于集合A,B,C:①若A B,且B C,则A C;②若A B,B C,则A C;③若A B,A≠B,则A B.教材拓展补遗『微判断』1.1{1,2,3}.(×)提示“”表示集合与集合之间的关系,而不是元素和集合之间的关系.2.任何集合都有子集和真子集.(×)提示空集只有子集,没有真子集.3.和{}表示的意义相同.(×)提示是不含任何元素的集合,而集合{}中含有一个元素.『微训练』1.已知集合A={-2,3,6m-6},若{6}A,则m=________.解析∵{6}A,∴6m-6=6,∴m=2.答案 22.若A={1,a,0},B={-1,b,1},且A=B,则a=________,b=________.解析由两个集合相等可知b=0,a=-1.答案-1,03.若{1,2}B{1,2,4},则B=________.解析由条件知B中一定含有元素1和2,故B可能是{1,2}或{1,2,4}.答案{1,2}或{1,2,4}『微思考』1.A B能否理解为子集A是B中的“部分元素”所组合的集合?提示A B不能理解为集合A是B中的“部分元素”所组成的集合.因为若A =,则A中不包含任何元素;若A=B,则A中含有B中的所有元素,而此时可以说集合A是集合B的子集.2.符号“∈”与“”的区别是什么?提示符号“∈”用于表示元素与集合之间的关系;而符号“”用于表示集合与集合之间的关系.3.集合A中有n(n∈N*)个元素,则A的子集、真子集、非空子集、非空真子集的个数分别是多少?提示①由n个元素组成的集合有2n个子集;②由n个元素组成的集合有(2n-1)个真子集;③由n个元素组成的集合有(2n-1)个非空子集;④由n个元素组成的集合有(2n-2)个非空真子集.题型一集合关系的判断『例1』指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解(1)集合A的元素是数,集合B的元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(4)由列举法知M={1,3,5,7,…},N={3,5,7,9,…},故N M.规律方法判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.『训练1』 (1)集合A ={x |(x -3)(x +2)=0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x x -3x +2=0,则A 与B 的关系是( ) A.ABB.A =BC.A BD.B A(2)已知集合A ={x |x <-2或x >0},B ={x |0<x <1},则( ) A.A =B B.A B C.B AD.AB解析 (1)∵A ={-2,3},B ={3},∴B A .(2)在数轴上分别画出集合A ,B ,如图所示,由数轴知B A .答案 (1)D (2)C题型二 子集、真子集个数问题 通常采用一一列举的办法求解『例2』 (1)集合{a ,b ,c }的所有子集为________________,其中它的真子集有________个.解析 集合{a ,b ,c }的子集有:,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c },其中除{a ,b ,c }外,都是{a ,b ,c }的真子集,共7个. 答案,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c } 7(2)写出满足{3,4}P{0,1,2,3,4}的所有集合P .解 由题意知,集合P 中一定含有元素3,4,并且是至少含有三个元素的集合,因此所有满足题意的集合P 为:{0,3,4},{1,3,4},{2,3,4},{0,1,3,4},{0,2,3,4},{1,2,3,4},{0,1,2,3,4}. 规律方法 1.假设集合A 中含有n 个元素,则有: (1)A 的子集有2n 个;(2)A 的非空子集有(2n -1)个; (3)A 的真子集有(2n -1)个; (4)A 的非空真子集有(2n -2)个. 2.求给定集合的子集的两个注意点:(1)按子集中元素个数的多少,以一定的顺序来写; (2)在写子集时要注意不要忘记空集和集合本身.『训练2』 已知集合A ={(x ,y )|x +y =2,x ,y ∈N },试写出A 的所有子集. 解 ∵A ={(x ,y )|x +y =2,x ,y ∈N },∴A ={(0,2),(1,1),(2,0)}. ∴A 的子集有:,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.题型三 由集合间的包含关系求参数 此类题型中空集是常见的“雷区”『例3』 (1)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且BA .求实数m 的取值范围.(2)已知集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B A ,求实数m 的取值集合. 解 (1)∵B A ,①当B =时,m +1≤2m -1,解得m ≥2. ②当B ≠时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.(2)由x 2-4x +3=0,得x =1或x =3. ∴集合A ={1,3}.①当B =时,此时m =0,满足B A .②当B ≠时,则m ≠0,B ={x |mx -3=0}=⎩⎨⎧⎭⎬⎫3m .∵BA ,∴3m =1或3m =3,解之得m =3或m =1.综上可知,所求实数m 的取值集合为{0,1,3}.规律方法 由集合间的关系求参数问题的注意点及常用方法 (1)注意点:①不能忽视集合为的情形;②当集合中含有字母参数时,一般需要分类讨论.(2)常用方法:对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.『训练3』 已知集合A ={x |1≤x ≤2},集合B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围; (2)若BA ,求a 的取值范围.解 (1)若A B ,由图可知a >2.(2)若BA ,由图可知1≤a ≤2.一、素养落地1.通过本节课的学习,重点提升数学抽象和直观想象素养.2.对子集、真子集有关概念的理解(1)集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A ,能推出x ∈B ,这是判断AB 的常用方法.(2)不能简单地把“AB ”理解成“A 是B 中部分元素组成的集合”,因为若A=时,则A 中不含任何元素;若A =B ,则A 中含有B 中的所有元素.(3)在真子集的定义中,A,B首先要满足A B,其次至少有一个x∈B,但xA.二、素养训练1.集合A={-1,0,1},A的子集中,含有元素0的子集共有()A.2个B.4个C.6个D.8个解析根据题意,在集合A的子集中,含有元素0的子集有{0},{0,1},{0,-1},{-1,0,1}, 四个;故选B.答案 B2.已知集合M={x|-5<x<3,x∈Z},则下列集合是集合M的子集的为()A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤3,x∈Z}解析集合M={-2,-1,0,1},集合R={-3,-2},集合S={-1,0,1},不难发现集合P中的元素-3M,集合Q中的元素2M,集合R中的元素-3M,而集合S={-1,0,1}中的任意一个元素都在集合M中,所以S M.故选D.答案 D3.①0∈{0},②{0},③{0,1}={(0,1)},④{(a,b)}={(b,a)},上面关系中正确的个数为()A.1B.2C.3D.4解析①正确,0是集合{0}的元素;②正确,是任何非空集合的真子集;③错误,集合{0,1}含有两个元素0,1;{(0,1)}含有一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含有一个元素点(a,b),集合{(b,a)}含有一个元素点(b,a),这两个元素不同,所以集合不相等.∴正确的个数是2.故选B.答案 B4.设集合A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}解析画出数轴可得a≥2.答案 D5.已知集合A={x|x-7≥2},B={x|x≥5},试判断集合A,B的关系.解A={x|x-7≥2}{x|x≥9},又B={x|x≥5},∴A B.。
高中-数学-人教A版-必修(第一册)-1.1.2集合间的基本关系_教案
1.1.2集合间的基本关系一、教学目标:.1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系二、教学重难点:教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.三、教学课时:1课时四、教学过程:课题引入:实数有相等关系,大小关系,元素与集合之间有属于与不属于关系,那类比他们的关系,集合之间是否具备类似的关系?思考:例1:观察下面三个集合, 找出它们之间的关系:A={1,2,3},B={1,2,7},C={1,2,3,4,5}子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B 的元素,称集合A是集合B的子集,记作A B.读作“A包含于B”或“B 包含A”.韦恩图:思考: A= {x | x 是两条边相等的三角形} B= {x | x 是等腰三角形} 有A ⊆B ,B ⊆A ,则A =B.集合相等:若A ⊆B ,B ⊆A ,则A =B.思考:A ={1, 2, 7},B ={1, 2, 3, 7},真子集:如果A ⊆B ,但存在元素x ∈B 且x ∉A ,称A 是B 的真子集. 记作A B(或B A).读作A 真包含于B ,或B 真包含A 。
思考:指出{}01|2=+=x x B 的元素空集:不含任何元素的集合为空集,记作∅规定:空集是任何集合的子集,是任何非空集合的真子集思考:2.若A B ⊆,B C ⊆,则A C ⊆. 即:子集的传递性例(1)写出集合{a 、b }的所有子集;(2)写出集合{a 、b 、c }的所有子集;(3)写出集合{a 、b 、c 、d }的所有子集;一般地:集合A 含有n 个元素则A 的子集共有2n 个.A 的真子集共有2n – 1个. AB R ___Q ___Z ___N ___N .1*课题总结:子集:A B⊆⇔任意x∈A⇒x∈B真子集:A B⇔任意x∈A⇒x∈B,但存在x0∈B,且x0∉A. 集合相等:A = B⇔A B⊆且B A⊆空集∅:不含任何元素的集合性质:①A∅⊆,若A非空,则A≠⊂φ②A A⊆.③A B⊆,B C A C⊆⇒⊆. 课堂作业:8页练习。
高中数学 1.1.2 集合间的基本关系知识点归纳素材 新人教A版必修1
1.1.2集合间的基本关系(6)子集、真子集、集合相等 记号B A ⊆ (7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集. 精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂; 幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在数学中我们经常用平面上封闭曲线的内部 代表集合,这种图称为venn图,那么,集合 A是集合B的子集用图形如何表示?
B
A
观察以下两个集合,这两个集合之间是什 么关系?
设C={x|x是两条边相等的三角形}, D={x|x是等腰三角形}. C和D是相等集合,同时C是D的子集, D也是C的子集。
集合相等
空集是任何非空集合的真子集.
集合之间的基本关系.
()任何一个集合是它本 1 身的子集,即 A A ()对于集合A、B、C,如果A B,B C,那么 2 A C.
⑵设A为新华中学高一(2)班女生的全体组成的集合,
B为这个班学生的全体组成的集合;
思考:上述各组集合中A与B有包含关系,我 们把集合A叫做集合B的子集. 一般地,如何 定义集合A是集合B的子集? 对于两个集合A,B,如果集合A中任意 一个元素都是集合B中的元素,则称集合A为 集合B的子集.记做 A B (或 B A ),读 作“A含于B”(或“B包含A”)
如果集合 是集合B的子集(A B) A ,且集合B是 集合A的子集(B A),此时,集合 与集合B中 A 的元素是一样,因此, 集合A与集合B相 等, 记作 =B A
考察下列两组集合: (1)集合A={1,2,3,4}与 B {x N || x | 5} (2)集合A={0,1,2,3,4}与 B {x N || x | 5}
1பைடு நூலகம்1.2 集合间的基本关系
复习:
1、元素与集合有哪几种关系? 2、集合的三种表示方法?各种表示法有什么 特征?
思考
实数间有相等关系、大小关系, 如 5=5,5<7,5>3,等等,类 比实数之间的关系,你会想到集 合之间的什么关系?
观察下面几个例子,你能发现两个集合之间 的关系吗?
⑴ A={1,2,3} , B={1,2,3,4,5};
真子集 如果集合 A B ,但存在元素 x B且x A 我们称集合A是集合B的真子集,记做 A B(或B A)
思考:
以下两个集合有什么共同点 A={x|x是边长相等的直角三角形} B= {x R|x +1=0}
2
空集
我们把不含任何元素 的集合叫做空 集,记为 并规定:空集 是任 何集 合的子 . 集