人教版高中数学必修第一册集合( 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合( 1)
教学时间 :第一课时
课题:集合
教学目标: 1、理解集合的概念和性质.
2、了解元素与集合的表示方法.
3、熟记有关数集.
4、培养学生认识事物的能力.
教学重点:集合概念、性质
教学难点:集合概念的理解
教学方法:尝试指导
教具准备:投影片(3张)
教学过程:
(I)引入新课
同学们好!首先,我祝贺大家能升入苍梧第一高级中学进行高中学习。下面我想初步了解一下同学们的情况。请来自××中学的同学站起来。依次询问他们的名字,并板书。同样询问来自另一学校学生情况。××同学你为什么不站起来?来自××中学的三位虽然性别不同,年龄有差异,但他们有一个共同的性质——来自××中学。所以,在数学上可以把他们看作为有3个元素的集合(板书课题:集合,并将其姓名用{ }括起来),同样,××中学的二位同学也可看作有2个元素的集合。显然,刚才抽到的××同学如果作为一个元素就不属于上面这两个集合了。同学们!这节课我们将系统地研究集合的一些概念。讲四个问题:(1)集合和元素;(2)集合的分类;(3)集合的表示方法;(4)为什么要学习集合的表示方法?(II)复习回顾
师生共同回顾初中代数中涉及“集合”提法.
(Ⅲ)讲授新课
通过以上实例,教师指出:
1、定义:
集合:一般地,某些指定的对象集在一起就成为一个集合(集).
师:进一步指出:
元素:集合中每个对象叫做这个集合的元素.
由此上述例中集合的元素是什么?
生:例(1)的元素为1、3、5、7,
例(2)的元素为到两定点距离等于两定点间距离的点,
例(3)的元素为满足不等式3x-2> x+3的实数x,
例(4)的元素为所有直角三角形,
例(5)为高一·六班全体男同学.
师:请同学们另外举出三个例子,并指出其元素.
生:略.(教师给予评议)。
师:一般用大括号表示集合,{ … }如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为……
为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}
2
生:在师指导下一一回答上述问题.
师:由以上四个问题可知,
集合元素具有三个特征:
(1)确定性;(2)互异性;(3)无序性.
3、元素与集合的关系:隶属关系
师:元素与集合的关系有“属于∈”及“不属于∉(∉ 也可表示为 )两种。 如A={2,4,8,16},则4∈A ,8∈A ,32 A.(请学生填充)。
集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记
作 a ∈A ,相反,a 不属于集A 记作 a ∉A (或a A )
注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……
元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……
2、“∈”的开口方向,不能把a ∈A 颠倒过来写。
4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。记作N *或N + 。Q 、Z 、R 等其它数集内排除0的集,也是这
样表示,例如,整数集内排除0的集,表示成Z *
请同学们熟记上述符号及其意义.
请同学回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。[1∈A] (Ⅳ)课堂练习
课本P 5,练习1、2
补充练习:若-3∈{m-1,3m ,m 2+1},求m[m=-1或m=-2]
(Ⅴ)课时小结
1、集合的概念。
2、集合元素的三个特征。
∈∉∈
其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.
“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.
3、常见数集的专用符号.
(Ⅵ)课后作业
一、课本P7,习题1.1 1
二、1、预习内容,课本P5—P6
2、预习提纲:
(1)集合的表示方法有几种?怎样表示,试举例说明.
(2)集合如何分类,依据是什么?