最新高中数学必修一集合知识点总结

合集下载

新高一数学必修一知识点梳理

新高一数学必修一知识点梳理

第一章〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集.【1.1.2】集合间的基本关系(6)子集、真子集、集合相等【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义【2.2.2】对数函数及其性质(5)对数函数〖2.3〗幂函数(1)幂函数的定义一般地,函数y=x a叫做幂函数,其中x为自变量,a 是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)③单调性:如果a>0,则幂函数的图象过原点,并且在[0, +∞)上为增函数.如果a<0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴.〖补充知识〗二次函数(1)二次函数解析式的三种形式(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.(3)二次函数图象的性质一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.第三章函数的应用一、方程的根与函数的零点。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

高中数学必修一第一章集合与函数概念课时一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们到这些东 西,并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集称为集。

3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例: 世界上最高的山、中国古代四大美女、⋯⋯ (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{⋯}如:{我校},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A ={我校},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来{a,b,c ⋯⋯} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{xR|x-3>2},{x|x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②V e :画出一条封闭的曲线,曲线里面表示集合。

4、集合: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:aA 注意:常用数集及其记法:(&&&&&) 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R课时二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集。

高一数学必修一集合知识点梳理

高一数学必修一集合知识点梳理

高一数学必修一集合知识点梳理一、集合的概念:1.集合:由一些确定的事物按照一定的规则组成的整体。

2.元素:构成集合的单个事物。

3.集合的表示方法:枚举法、描述法。

4.空集:不包含任何元素的集合,用符号∅表示。

5.集合的相等:两个集合的元素完全相同,则称两个集合相等。

二、集合的运算:1.并集:包含两个集合中的所有元素的集合,用符号∪表示。

2.交集:包含两个集合中共有的元素的集合,用符号∩表示。

3.差集:包含第一个集合中有而第二个集合中没有的元素的集合,用符号\(A-B\)表示。

4.互斥集:两个集合没有相同的元素,即交集为空集。

5.补集:在一个全集中,除去一个集合的元素剩下的元素构成的集合,用符号A'表示。

三、集合的关系:1. 子集:如果集合A的所有元素都是集合B的元素,则称集合A是集合B的子集,用符号\( A \subseteq B \)表示。

2. 真子集:如果集合A是集合B的子集且集合A不等于集合B,则称集合A是集合B的真子集,用符号\( A \subset B \)表示。

3. 幂集:由原集合的所有子集构成的集合,用符号\(\mathcal{P}(A)\)表示。

四、集合的拓展:1.有限集与无限集:元素个数有限的集合称为有限集,元素个数不限的集合称为无限集。

2.嵌套集:集合中的元素本身也是集合的集合。

3.无序对:是由两个元素组成的二元关系,其中元素的顺序是不重要的。

4.索引集:用一个集合的所有元素作为索引的集合。

五、集合的运用:1.列举集合的元素。

2.解集合间的元素关系问题。

3.使用集合运算解决实际问题。

4.使用文氏图表示集合的关系。

六、集合的应用:1. Venn图:用圆形表示集合,用图示的方式描述集合间的关系和运算。

2.元素的分类:将一组事物按其中一种特征分类,构建一个集合。

3.基数计数:通过挑选元素,建立元素与集合间的一一对应关系,测量集合中元素的个数。

4.群体角度问题:确定集合元素满足其中一种性质的条件,并找出集合中所满足不同性质条件的元素个数。

高中数学集合知识点总结8篇

高中数学集合知识点总结8篇

高中数学集合知识点总结8篇篇1一、集合的基本概念集合是数学中的基本概念之一,它是由具有某种共同属性的事物组成的总体。

在数学中,我们常常用集合来表示一些数、点、线等的总体。

集合的基本特性包括确定性、互异性、无序性以及可表示性。

常见的集合表示方法有列举法、描述法以及图像法等。

对于集合的学习,首先要明确集合的概念及其表示方法,这是后续学习的基础。

二、集合的运算集合的运算包括并集、交集、差集和补集等。

并集表示两个或多个集合中所有元素的集合;交集表示两个集合中共有的元素组成的集合;差集表示在一个集合中但不在另一个集合中的元素组成的集合;补集则表示属于某个集合的所有元素之外的所有元素组成的集合。

在解题过程中,要根据题目的要求,选择合适的集合运算方法。

三、集合的基本关系集合之间的关系包括子集、真子集、相等集合等。

子集表示一个集合的所有元素都在另一个集合中;真子集表示一个集合是另一个集合的子集,且两者不相等;相等集合表示两个集合完全相同。

此外,还要了解空集的概念,即不含有任何元素的集合。

掌握集合的基本关系,有助于理解集合的运算及其性质。

四、数列与集合数列是一种特殊的集合,它按照一定规律排列的数序列。

等差数列和等比数列是数列中最常见的两种形式。

等差数列中的任意两项之差相等,等比数列中的任意两项之比相等。

在解决数列问题时,要充分利用数列的性质和公式,简化计算过程。

五、函数的定义域与值域与集合的关系函数的定义域与值域是函数概念的重要组成部分。

函数的定义域是指函数自变量的取值范围,值域则是函数因变量的取值范围。

这两个范围都可以用集合来表示。

在求解函数的定义域和值域时,要充分利用函数的性质,结合数轴或不等式等方法进行求解。

六、总结与应用掌握高中数学集合知识点,首先要明确集合的基本概念、表示方法以及运算性质。

在此基础上,要理解数列与集合的关系,掌握函数的定义域与值域与集合的联系。

在实际应用中,要灵活运用所学知识,解决数学问题。

高一数学必修一必背知识点

高一数学必修一必背知识点

高一数学必修一必背知识点一、集合。

1. 集合的概念。

- 集合是由一些确定的、互不相同的对象所组成的整体。

这些对象称为集合的元素。

- 集合中的元素具有确定性(给定一个集合,任何一个对象是不是这个集合的元素是确定的)、互异性(集合中的元素互不相同)、无序性(集合中的元素没有顺序要求)。

2. 集合的表示方法。

- 列举法:把集合中的元素一一列举出来,写在大括号内。

例如{1,2,3}。

- 描述法:用集合所含元素的共同特征表示集合的方法。

形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述元素x特征的条件。

例如{xx > 0且x∈ R}表示正实数集。

- 区间表示法:对于数集,还可以用区间表示。

- 开区间(a,b)={xa < x < b}。

- 闭区间[a,b]={xa≤slant x≤slant b}。

- 半开半闭区间(a,b]={xa < x≤slant b},[a,b)={xa≤slant x < b}。

3. 集合间的基本关系。

- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。

- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A是B的真子集,记作A⊂neqq B。

- 相等:如果A⊆ B且B⊆ A,那么A = B。

- 空集varnothing是任何集合的子集,是任何非空集合的真子集。

4. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B ={xx∈ A或x∈ B}。

- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

二、函数。

1. 函数的概念。

- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{yy = f(x),x∈ A}叫做函数的值域。

高中数学必修一必修二知识点总结

高中数学必修一必修二知识点总结

高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). (6)子集、真子集、集合相等名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n −个真子集,有21n −个非空子集,它有22n −非空真子集.(8)交集、并集、补集 名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈ (1)AA A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅ 2()U AA U =逻辑语言1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

高一数学必修1集合知识点高一数学必修1知识点

高一数学必修1集合知识点高一数学必修1知识点

高一数学必修1集合知识点高一数学必修1知识点1.集合的有关概念1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(aA和aA,二者必居其一)、互异性(若aA,bA,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N某2.子集、交集、并集、补集、空集、全集等概念1)子集:若对某∈A都有某∈B,则AB(或AB);2)真子集:AB且存在某0∈B但某0A;记为AB(或,且)3)交集:A∩B={某|某∈A且某∈B}4)并集:A∪B={某|某∈A或某∈B}5)补集:CUA={某|某A但某∈U}3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质①A∩A=A,A∩=,A∩B=B∩A;②A∪A=A,A∪=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

7.集合中的元素有三个特征:1)确定性(集合中的元素必须是确定的)2)互异性(集合中的元素互不相同。

例如:集合A={1,a},则a不能等于1)3)无序性(集合中的元素没有先后之分。

)1.用符号“∈”或“∉”填空(1)22________R,22________{某|某<7};(2)3________{某|某=n2+1,n∈N+};(3)(1,1)________{y|y=某2};(1,1)________{(某,y)|y=某2}.【解析】(1)22∈R,而22=8>7,∴22∉{某|某<7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{某|某=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=某2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=某2}.集合{(某,y)|y=某2}表示抛物线y=某2上的点构成的集合(点集),且满足y=某2,∴(1,1)∈{(某,y)|y=某2}.【答案】(1)∈∉(2)∉(3)∉∈2.已知集合C={某|63-某∈Z,某∈N某},用列举法表示C=________.【解析】由题意知3-某=±1,±2,±3,±6,∴某=0,-3,1,2,4,5,6,9.又∵某∈N某,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}3.已知集合A={-2,4,某2-某},若6∈A,则某=________.【解析】由于6∈A,所以某2-某=6,即某2-某-6=0,解得某=-2或某=3.【答案】-2或31.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.。

高一数学集合知识点总结

高一数学集合知识点总结

高一数学集合知识点总结一、集合的基本概念1. 集合是由元素组成的整体,元素是集合的构成要素。

2. 集合的表示方法:列举法和描述法。

3. 集合的基本运算:并集、交集、差集和补集。

二、集合的性质及运算规律1. 交换律:A∪B = B∪A,A∩B = B∩A。

2. 结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。

3. 分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) = (A∩B)∪(A∩C)。

4. 幂等律:A∪A = A,A∩A = A。

5. 吸收律:A∪(A∩B) = A,A∩(A∪B) = A。

6. 对偶律:(A∪B)' = A'∩B',(A∩B)' = A'∪B'。

三、集合的关系和判断1. 包含关系:子集和真子集。

- 子集:若集合A中的每个元素都属于集合B,则A是B的子集,记作A⊆B。

- 真子集:若A是B的子集且A≠B,则A是B的真子集,记作A⊂B。

2. 相等关系:两个集合A和B相等,当且仅当A是B的子集且B是A的子集,记作A=B。

3. 元素关系:属于和不属于。

- 属于:若元素a是集合A的元素,则记作a∈A。

- 不属于:若元素a不是集合A的元素,则记作a∉A。

4. 判断问题:- 空集:空集是任何集合的子集。

- 空集的子集:空集是任何集合的子集。

- 空集与非空集的关系:空集不是任何非空集的子集。

四、集合的应用1. 集合的应用于元素的归类和分类问题。

2. 集合的应用于概率问题,如事件的集合、样本空间等。

3. 集合的应用于数学推理和证明,如集合的运算规律的证明。

五、常见问题及解答1. 如何用集合表示一个范围?- 使用描述法:例如,表示大于1小于10的整数集合可以表示为{x | 1 < x < 10}。

2. 如何求两个集合的并集、交集、差集和补集?- 并集:将两个集合中的元素合并在一起,并去除重复的元素。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

必修一第一章 集合与函数概念一、集合知识点1:集合的含义1》元素的含义:我们把研究对象称为元素,把一些元素组成的总体叫做集合 2》集合的表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C …表示, 而元素用小写的拉丁字母a,b,c …表示。

列举法:A={a,b,c}3》集合相等:构成两个集合的元素完全一样。

知识点2:集合元素的特征以及集合与元素之间的关系 1》集合的元素特征:①确定性:给定一个集合,一个元素在不在这个集合中就确定了。

②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}③无序性:即集合中的元素无顺序,可以任意排列、调换。

2》元素与集合的关系有“属于∈”及“不属于∉两种) ①若a 是集合A 中的元素,则称a 属于集合A a ∈A ; ②若a 不是集合A 的元素,则称a 不属于集合A ,记作a ∉A 。

注意:常见数集 ①非负整数集(或自然数集),记作N ; ②正整数集,记作N *或N +; ③整数集,记作Z ; ④有理数集,记作Q ; ⑤实数集,记作R ;典例分析题型1:判断是否形成集合例1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数; (2)我国的小河流; (3)非负奇数; (4)方程x 2+1=0的解; (5)某校2011级新生; (6)血压很高的人; 题型2:集合中元素的互异性的考察 例1:由实数-a, a,a,a2, -5a5为元素组成的集合中,最多有_______个元素,分别为__________。

题型3:集合与元素之间关系的考察 例1:用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4;(5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A 。

题型4:根据元素互异性确定参数的值: 例1:已知A={ 33,)1(,222+++-a a a a },若1∈A ,则实数a 的值为_________.知识点3:集合的表示方法【1】列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结一、集合相关概念1、集合中元素的特性⑴元素的确定性:组成集合的元素必须是确定的。

⑵元素的互异性:集合中不得有重复的元素。

⑶元素的无序性:集合中元素的排列不遵循某种顺序,是随意排列的。

2、集合的表示方法⑴列举法:将集合中元素一一列出。

⑵描述法:将集合中元素的公共属性用语言描述出来。

⑶解析法:用解析式的方式描述出集合元素的公共属性。

⑷图示法:用韦恩图直观的画出集合中的元素。

3、集中特殊数集的表示方法自然数集: N 正整数集:N+整数集:Z 有理数集:Q实数集:R 空集:&Phi;二、集合间的基本关系子集与真子集1、自反性任何一个集合都是它本身的子集:A?A。

2、如果A?B 且A≠B,则,A是B的真子集。

3、传递性:如果A?B,B?C,则A?C。

4、如果A?B且B?A,则A=B。

5、空集是任何集合的子集,空集是任何非空集合的真子集。

6、有n 个元素的集合,有 2n个子集,有2n-1 个真子集。

四、函数的相关概念1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

★2、函数定义域的解题思路:⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数⑴ 表达式相同:与表示自变量和函数值的字母无关。

⑵ 定义域一致,对应法则一致。

高一数学集合的知识点归纳总结

高一数学集合的知识点归纳总结

高一数学集合的知识点归纳总结一、集合的概念和表示集合是由一些确定的、互不相同的对象组成的整体,这些对象称为集合的元素。

集合的表示方法有三种:描述法、列举法和等价关系法。

二、集合的运算1. 并集:表示由两个或多个集合中所有的元素组成的集合,记作A∪B。

2. 交集:表示两个或多个集合中共有的元素组成的集合,记作A∩B。

3. 差集:表示一个集合中除去与另一个集合共有的元素之外的元素组成的集合,记作A-B。

4. 互补集:表示对于给定的全集U,与某个给定集合A中的元素不相同的元素所组成的集合,记作A'。

三、集合的性质1. 互斥性:两个集合没有共同的元素,即A∩B=∅。

2. 全集性:某个给定集合A的所有元素都是全集U的元素,即A⊆U。

3. 空集性:一个集合中没有任何元素,记作∅。

4. 幂集性:一个集合的所有子集所组成的集合称为幂集,记作P(A)。

四、集合的关系和判定1. 包含关系:若A中的每一个元素都是B中的元素,则称A是B的子集,记作A⊆B。

2. 相等关系:若A是B的子集且B是A的子集,则称A和B相等,记作A=B。

3. 真包含关系:若A是B的真子集(A不等于B),则称A真包含于B,记作A⊂B。

4. 子集数量关系:若集合A和集合B都是有限集合,且A的元素个数小于B的元素个数,则称A的元素个数少于B的元素个数,记作|A|<|B|。

五、常见的数学符号和概念1. 自然数集:{1, 2, 3, 4, ...},用符号N表示。

2. 整数集:{..., -3, -2, -1, 0, 1, 2, 3, ...},用符号Z表示。

3. 有理数集:用两个整数的比表示的数的集合,用符号Q表示。

4. 实数集:包含有理数和无理数的集合,用符号R表示。

5. 空集:没有任何元素的集合,用符号∅表示。

六、集合的应用1. 排列组合:通过对集合的操作和排列组合的方法,可以解决一些计数问题。

2. 概率论:集合论是概率论的重要基础,通过集合的运算和性质,可以推导出概率计算的公式。

高中高一数学必修1各章知识点总结第一章集合与函数概念一

高中高一数学必修1各章知识点总结第一章集合与函数概念一

高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性. 3、集合的表示:(1){ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (2). 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 4.集合的表示方法:列举法与描述法。

常用数集及其记法:非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 5.关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

6、集合的分类:(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合(3).空集不含任何元素的集合例:{x|x2=-5}=Φ 二、集合间的基本关系 1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ①任何一个集合是它本身的子集。

即A?A ②如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A) ③如果A?B, B?C ,那么A?C ④如果A?B 同时B?A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结高中数学必修一集合知识点总结一、集合有关概念1.集合的含义:将一些指定的对象集合在一起形成一个集合,每个对象称为一个元素。

2、集合的中元素的三个特性:①.元素的确定性; ②.元素的互异性; ③.元素的无序性描述:(1)对于给定的集合,集合中的元素是确定的,任何对象要么是给定集合的元素,要么不是。

(2)在任何给定的集合中,任何两个元素都是不同的对象。

当同一对象包含在一个集合中时,它只是一个元素。

(3)集合中的元素相等,没有顺序。

所以判断两个集合是否相同,只需要比较它们的元素是否相同,而不需要考察排列顺序是否相同。

(4)集合元素的三个特征使得集合本身具有确定性和整体性。

3、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{xx2=-5}4、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}2.集合的表示方法:枚举和描述。

注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:N高考数学一轮复习知识点二轮专题性复习目前所有学校都已结束第一轮,进入第二轮。

第一轮一般以技能技巧逐点扫描梳理为主,综合运用为辅,第二轮以专题复习为主。

这个阶段涉及的问题大多是综合题,提高综合题是提高数学成绩的根本保证。

解决好综合题,对于那些想考一等,对数学成绩期望很高的学生来说,是一条救命稻草,而他们在小何那里往往是不及格的。

对于那些二流的人来说,这是一个尝试的好地方。

一、综合题在高考中的位置与作用数学综合往往是大卷中的重点和最后一道题。

它在高考中起着重要的作用,高考的分类等级和选拔任务主要依靠这类题型来完成预设的目标。

现在的高考综合题,已经从单纯的知识叠加,转变为知识、方法、能力,尤其是创新能力的综合。

综合题是NMET数学的精华,具有知识容量大、解题方法多、能力要求高等特点,突出数学思维方法的应用,要求考生具有一定的创新意识和创新能力。

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。

2、空集的含义:不含任何元素的集合叫做空集,记为Ø。

3、集合中元素的三个特性:确定性、互异性、无序性。

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。

集合中的元素互不相同。

例如:集合A={1,a},则a不能等于1。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。

例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。

4、元素与集合之间只能用“∈”或“∉”符号连接。

5、集合的分类:(1)有限集:含有有限个元素的集合。

(2)无限集:含有无限个元素的集合。

(3)空集:不含任何元素的集合。

6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。

在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。

二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。

高中数学必修1知识点总结

高中数学必修1知识点总结

高中数学必修1知识点总结一、集合与函数的概念1. 集合的含义与表示- 集合是具有某种特定性质的事物的全体。

- 常用符号表示集合,如A={x|x满足性质P}。

2. 集合之间的关系- 子集:集合A中的所有元素都属于集合B,则A是B的子集。

- 真子集:A是B的子集,且A不等于B。

- 并集:集合A和集合B中所有元素组成的集合。

- 交集:集合A和集合B中共有的元素组成的集合。

- 补集:集合A在全集U中的补集是全集U中不属于A的元素组成的集合。

3. 函数的概念- 函数是定义在非空数集之间的映射关系。

- 函数的表示方法:f(x)、y=f(x)等。

4. 函数的简单性质- 定义域:函数f(x)的定义域是所有能使函数式有意义的x的集合。

- 值域:函数f(x)的值域是所有f(x)的取值构成的集合。

- 单调性:函数在某个区间内,若x1<x2,则f(x1)≤f(x2),则称函数在该区间单调递增。

- 奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

二、基本初等函数1. 幂函数- y=x^n (n为实数),其中n=0,1,2,3...时分别对应不同的函数。

2. 指数函数- y=a^x (a>0, a≠1),a为底数,x为指数。

3. 对数函数- y=log_a(x) (a>0, a≠1),a为底数,x为真数。

4. 三角函数- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 余切函数:y=cot(x)- 正割函数:y=sec(x)- 余割函数:y=csc(x)三、三角恒等变换1. 同角三角函数的基本关系- sin^2(x) + cos^2(x) = 1- 1 + tan^2(x) = sec^2(x)- 1 + cot^2(x) = csc^2(x)2. 特殊角的三角函数值- sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = √3/3- sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1- sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √33. 和差公式- sin(a±b) = sin(a)cos(b) ± cos(a)sin(b)- cos(a±b) = cos(a)cos(b) ∓ sin(a)sin(b)- tan(a±b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))四、数列的概念与简单表示1. 数列的概念- 数列是按照一定顺序排列的一列数。

数学高一必修一知识点

数学高一必修一知识点

数学高一必修一知识点1. 集合的概念与运算- 集合的定义:集合是由一些确定的、互不相同的元素所组成的整体。

- 元素与集合的关系:属于(∈)和不属于(∉)。

- 集合的表示法:列举法和描述法。

- 集合的分类:有限集合和无限集合,空集。

- 集合的运算:并集(∪)、交集(∩)、差集(-)、补集(C)、子集(⊆)和真子集(⊂)。

2. 函数的概念与性质- 函数的定义:函数是定义域到值域的映射关系。

- 函数的三要素:定义域、值域和对应法则。

- 函数的表示法:解析式、图象和列表。

- 函数的性质:单调性、奇偶性、周期性和有界性。

- 函数的运算:函数的四则运算和复合函数。

3. 指数与对数- 指数的定义:a^n表示a的n次方。

- 指数的性质:指数的乘法法则、指数的幂的乘方、指数的加减法。

- 对数的定义:如果a^x=b,则x是b的以a为底的对数,记作x=log_a(b)。

- 对数的性质:对数的换底公式、对数的四则运算。

- 指数函数和对数函数:指数函数y=a^x和对数函数y=log_a(x)的性质和图象。

4. 三角函数- 三角函数的定义:正弦、余弦、正切、余切、正割、余割。

- 三角函数的性质:周期性、奇偶性、单调性。

- 三角函数的图象:正弦函数、余弦函数的图象。

- 三角恒等式:和差公式、倍角公式、半角公式、和差化积、积化和差。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

5. 不等式- 不等式的概念:表示不等关系的式子。

- 不等式的性质:不等式的基本性质。

- 不等式的解法:一元一次不等式、一元二次不等式、绝对值不等式。

- 一元二次不等式的解集:数轴上的表示法。

- 基本不等式:算术平均数-几何平均数不等式。

6. 数列- 数列的概念:按照一定规律排列的一列数。

- 数列的表示法:通项公式和递推关系式。

- 数列的分类:等差数列、等比数列、递推数列。

- 数列的求和:等差数列求和公式、等比数列求和公式、分组求和法、错位相减法。

高中数学-必修一1.1集合初步-知识点

高中数学-必修一1.1集合初步-知识点

小初高个性化辅导,助你提升学习力! 1 高中数学-必修一1.1集合初步-知识点1、集合中元素的特性:①确定性、②互异性、③无序性.2、集合的分类:按集合中元素类别分,有数集、点集、集合集;按元素个数分,有有限集、无限集、空集;数集又分为自然数N ,整数集Z ,有理数集Q ,实数集R .3、集合的表示方法有:列举法、描述法、区间;关于描述法,要读懂一个描述法,首先第一步是看代表元,弄清楚集合是数集,还是点集,或者其他类型。

4、求集合中字母的取值时,一定要检验集合中的元素是否满足互异性。

解决含有字母的问题,通常要用到分类讨论,分类讨论的要求是:不重复、不遗漏。

5、闭区间a ≤x ≤b 记作[]b a ,,开区间a <x <b 记作(),b a ,半开半闭区间a <x ≤b 记作]b a ,(,a ≤x <b 记作[),b a ;实数集R 可用区间表示为(),+∞∞-. 6、子集的性质:①任何一个子集是它本身的子集;② ∅是任何集合的子集,③若A ⊆B ,且B ⊆A ,则A=B ,④传递性,若A ⊆B,且B ⊆C ,则A ⊆C.7、真包含:若集合A ⊆B ,但集合B 中至少有一个元素∉A ,则A ⊂B .8、一个集合如果有n 个元素,则子集有2n 个,真子集有2n -1个,非空子集有2n -1个,非空真子集有2n -2个。

9、判断两个集合的关系,首先要化简集合,如果是有限集,往往转化成列举法,如果是无限集,通常用区间表示。

10、在解决区间的包含问题时,往往可以借助数轴来表示,这样比较形象直观,再紧扣已知条件,建立参数的关系式,求参数值或范围,特别需要注意端点是否可取,如果分析错误,将前功尽弃。

11、空集在集合的关系中处于非常重要、特殊的地位,在处理集合的包含关系的时候,应遵循“空集优先考虑”的原则,万万不能遗漏了空集的情况。

12、德摩根定律:B A B A =,B A B A =,A A =.13、解决交集并集补集题型时,文氏图是一个好方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一
第一章集合与函数概念
课时一:集合有关概念
1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东
西,并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

3.集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、……
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
例:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来 {a,b,c……}
2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}
①语言描述法:例:{不是直角三角形的三角形}
②Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合例:{x|x2=-5}
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:a∈A
(2)元素不在集合里,则元素不属于集合,即:a A
注意:常用数集及其记法:(&&&&&)
非负整数集(即自然数集)记作:N
正整数集 N*或 N+
整数集Z
有理数集Q
实数集R
课时二、集合间的基本关系
1.“包含”关系—子集
(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,
A⊆(或B⊇A)
称集合A是集合B的子集。

记作:B
A⊆有两种可能(1)A是B的一部分,;
注意:B
(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:①任何一个集合是它本身的子集。

A⊆A
②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)
或若集合A⊆B,存在x∈B且x A,则称集合A是集合B的真子集。

③如果 A⊆B, B⊆C ,那么 A⊆C
④如果A⊆B 同时 B⊆A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ(&&&&&)
规定: 空集是任何集合的子集,空集是任何非空集合的真子集。


◆有n个元素的集合,含有2n个子集,2n-1个真子集。

相关文档
最新文档