管城二中八年级数学导学案5

合集下载

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案

人教版初二数学八年级下册教案导学案一、教学目标1. 知识与技能:- 熟练掌握平行线及其性质;- 掌握平行线与交错线的性质;- 能应用平行线性质解决问题。

2. 过程与方法:- 培养学生观察、发现和解决问题的能力;- 通过引入问题,激发学生学习数学的兴趣。

3. 情感态度价值观:- 培养学生严谨求实的科学态度;- 培养学生合作学习的意识。

二、教学重难点1. 重点:- 平行线及其性质的理解和应用;- 平行线与交错线的性质的理解和应用。

2. 难点:- 平行线与交错线的性质的应用。

三、教学准备- 教师:教案、导学案、课件、学生练习册- 学生:学习用具、练习册四、教学过程1. 导入(5分钟)- 引入平行线的概念:请同学们在笔记本上用直尺和铅笔画一个平行四边形,观察并描述它的特点。

2. 探究(30分钟)- 向学生提出以下问题:如果平行线与交错线相交,有什么特点?请同学们自行探究并记录下来。

3. 总结(10分钟)- 整理学生的探究结果,引出平行线与交错线的性质,并向学生讲解和确认。

4. 练习(15分钟)- 请同学们打开练习册,完成相关练习题。

5. 拓展(10分钟)- 提出一些与平行线性质相关的拓展问题,鼓励学生进行讨论和解答。

6. 小结(5分钟)- 对本节课所学内容进行小结,强调学习重点和难点。

五、作业- 完成练习册中相关练习题。

六、教学反思本节课通过提出问题和引导学生自主探究的方式,激发了学生的学习兴趣和主动性。

学生在观察和记录中逐渐理解了平行线与交错线的性质,并能够灵活应用于解决问题。

通过小组合作,培养了学生的合作学习和相互帮助的意识。

然而,在练习环节,部分学生存在理解上的困惑,需要进一步强化巩固。

在今后的教学中,我将更加注重练习环节的设计,以加深学生对知识的理解和熟练应用。

数学2023版教与学课时导学案八年级

数学2023版教与学课时导学案八年级

数学2023版教与学课时导学案八年级全文共5篇示例,供读者参考数学版教与学课时导学案八年级1一、学情分析本班学生学习情况较好,学习积极性高。

全班总体成绩在全乡排名靠前,大部分学生独立解决问题的能力强,对基础知识接受和掌握比较快。

不足:少数学生书写格式混乱,对稍难的题目不愿意动脑筋解决。

二、教材分析1、教学内容本册内容:分数乘、除法,分数四则混合运输和应用题。

圆,百分数。

2、教材的结构体系和编排意图在前册已有的基础上重点教学分数四则混合运算,培养学生分数四则混合运算的能力。

认识曲线图形—圆,认识轴对称图形,进一步发展学生的空间观念。

开始教学百分数及应用。

结合所学数学知识进一步发展学生抽象思维能力,培养思维品质。

提高学生解答比较容易的分数应用题的能力,综合运用所学知识解决比较简单的实际问题。

3、教材特点(1)适当调整分数乘、除法的内容,改进分数乘除法的编排。

(2)降低分数四则、运算的难度,删去分数、小数四则运算。

(3)改进分数应用题的编排(4)认识圆和轴对称图形,发展学生的空间观念。

(5)适当加强百分数的应用(6)加强实践活动,培养学生用数学知识解决实际问题的能力。

4、应注意的问题:注重学生学习能力的培养,增强实践活动,培养学生用数学知识解决实际问题的能力和意识。

三、学习目标1、理解分数乘、除法的意义,掌握分数四则混合运算。

2、理解比的意义和性质,会求比值和化简比。

3、认识曲线图形—圆,认识轴对称图形,掌握圆周长和圆的面积公式,会画圆。

4、百分数及应用。

抽象思维能力,培养思维品质。

提高解答比较容易的分数应用题的能力,灵活地选用算术解法和方程解法。

四、教学策略1、认真备课、上课。

2、在教学中多让学时进行小组实践活动。

3、及时纠正在学习中出现的错误现象。

4、有针对性地课后练习。

数学版教与学课时导学案八年级2一、学生情况三年级共有17名学生,其中男生10人,女生7人。

同学们基本上对学习和常规等各方面的习惯转入正规。

人教版八年级数学下册导学案(全册)

人教版八年级数学下册导学案(全册)

第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。

理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。

(2)被开方数必须是 数。

判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。

(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。

巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。

2.若1213-+-x x 有意义,则x 的取值范围是 。

3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。

八年级数学下册导学案导学案1-6

八年级数学下册导学案导学案1-6

八年级数学下导学案
第6课时
年级八班级学科数学课题 1.6直角三角形(2)
总 6
第1周
编制人审核人使用时间
使用者
星期5
【学习目标】
1、记住“斜边、直角边”或“HL”定理(重点)。

2、会运用“HL”定理解决与直角三角形有关的问题(难点)。

【学习过程】
一、知识回顾引入新课
1、判断三角形全等的方法有几种?
公理:推论:
2、为什么两边及其中一边的对角对应相等的两个三角形(SSA不一定全等。


图:)
由图⑴和图⑵可知,这两个三角形全等吗?
由图⑴和图⑶可知,这两个三角形全等吗?;因此,两边及其中一边的对角对
应相等的两个三角形不一定全等。

二、自主学习
问题1:(做一做)已知一条直角边和斜边,求作一个直角三角形。

作直角三角形:(用直尺和圆规完成)
与教材第19页小明作的直角三角形进行比较,你们俩个作直角三角形的是全等的吗?
得出定理:
三、合作探究
证明这个定理。

已知:
求证:
证明:
四、自我挑战
例如图,有两个长度相等的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?
【当堂检测】
点D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF,求证:BF=CE.
【课堂小结】
1、直角三角形全等的判定定理及运用。

2、如何作一个直角三角形?
【作业设计】课本第21页知识技能第1、2题。

【教学反思】。

新苏科版八年级数学上册导学案:5.2平面直角坐标系(1)

新苏科版八年级数学上册导学案:5.2平面直角坐标系(1)

新苏科版八年级数学上册导学案:5.2平面直角坐标系(1)学习目标:1.认识并能画出平面直角坐标系,知道点的坐标及象限的含义2.能在给定的直角坐标系中,由点的位置写出它的坐标和由点的坐标指出它的位置.学习过程:一、自学内容一:1.复习:(1)什么是数轴?______________________________________________(2)数轴上的点与_______一一对应.(3)写出数轴上A 、B 、C 各点表示的数.A :_____ B :_____ C :____ 2.探究活动(1)说一说:在教室里怎样确定一个同学的位置?(2)到电影院看电影,电影票上至少要有几个数字才能确定你的位置? (3)议一议:怎样表示平面内的点的位置? 找一找 小亮说:公安局在中山路南边20米,解放路西边50米. 你能根据小亮的提示从右图中找出公安局的位置吗? 想一想: (1)小亮是怎样描述公安局的位置的?(2)小亮可以省去“南边”和“西边”这几个字吗?(3)若小亮说在“中山路南边、解放路东边”,你能找到公安局吗?(4)若小亮只说在“中山路南边20米”或只说在“解放路西边50米“,你能找到公安局吗?3.归纳新知:(1)平面内两条 的数轴构成平面直角坐标系.水平方向的数轴称为_______,竖直方向的数轴称为_______,两轴的交点称为_______.(2)写出某点的坐标时,_________应写在_______的前面.二、例题学习: 例1.在直角坐标系中,描出下列各点的位置:A C B-2-1中山路 中山路 解放路解放路A (4,1),B(-1,4),C (-4,-2),D (3,-2),E ( 0, 1 ),F ( -4, 0 ) .例2.写出右图中A、B、C 各点的坐标.(例1)(例2)结论:坐标平面内的点一一对应。

3.概念:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别记作第一、二、三、四象限。

八年级数学导学案

八年级数学导学案

八年级数学导学案一、一元二次方程1. 一元二次方程的定义一元二次方程是指最高次数为2的一元方程,一般形式为$ax^2 + bx + c = 0$,其中$a、b$和$c$为实数且$a ≠ 0$。

2. 一元二次方程的解一元二次方程的解可以通过求解方程$ax^2 + bx+ c = 0$来找到。

根据一元二次方程的求根公式$x = \frac{-b ± \sqrt{b^2 - 4ac}}{2a}$,可以求得方程的根为两个实数、两个相等的实数或两个复数。

3. 实际问题中的应用一元二次方程可以用来解决很多实际问题,比如抛物线的运动轨迹、物体自由下落的时间等。

通过建立数学模型,可以将现实问题转化为一元二次方程,然后求解方程来得出答案。

二、二次根式1. 二次根式的概念二次根式是指形如$\sqrt{a}$的数,其中$a$为一个非负实数。

二次根式的运算包括化简、加减、乘除等。

2. 二次根式的化简化简二次根式就是将根号内的数化为最简形式,不能再约分的形式。

如$\sqrt{75} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$。

3. 二次根式的加减二次根式的加减需要先化简,然后根据同类项进行合并。

如$2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$。

4. 二次根式的乘法和除法二次根式的乘法和除法同样需要化简后进行计算。

如$(2\sqrt{3})(3\sqrt{3}) = 6\sqrt{9} = 18$。

三、函数概念1. 函数的定义函数是一种对应关系,对于每个自变量$x$,对应唯一的因变量$y$。

函数可以用方程$y = f(x)$表示。

2. 函数的图像函数的图像是在平面直角坐标系中表示的,横轴为自变量$x$,纵轴为因变量$y$。

函数的图像可以是一条曲线、直线、抛物线等。

3. 函数的性质函数可以是奇函数或偶函数,也可以是增函数或减函数。

奇函数的图像关于原点对称,偶函数的图像关于$y$轴对称;增函数的函数值随着自变量的增加而增加,减函数则相反。

八年级下(初二下)数学全册导学案

八年级下(初二下)数学全册导学案

目录序号章节起始页码1 学习目标 22 16.1二次根式 53 16.2二次根式的乘除154 16.3二次根是的加减295 17.1勾股定理376 17.2勾股定理的逆定理537 18.1平行四边形638 18.2特殊的平行四边形899 19.1函数11510 19.2一次函数14311 19.3课题学习选择方案18612 20.1数据的集中趋势19513 20.2数据的波动程度222 备注学习目标第十六章二次根式备注1、了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算第十七章勾股定理备注2、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

第十八章平行四边形备注3、理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。

4、探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

5、了解两条平行线之间距离的意义,能度量两条平行线之间的距离。

6、探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。

正方形具有矩形和菱形的一切性质7、探索并证明三角形的中位线定理。

学习目标第十九章一次函数备注8、探索简单实例中的数量关系和变化规律,了解常量、变量的意义。

9、结合实例,了解函数的概念和三种表示法,能举出函数的实例。

10、能结合图像对简单实际问题中的函数关系进行分析11、能确定简单实际问题中函数自变量的取值范围,并会求出函数值。

12、能用适当的函数表示法刻画简单实际问题中变量之间的关系13、结合对函数关系的分析,能对变量的变化情况进行初步讨论14、结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式15、会利用待定系数法确定一次函数的表达式。

新人教版八年级数学下导学案(全册)

新人教版八年级数学下导学案(全册)

新人教版八年级数学下导学案(全册)导学目标1.了解八年级数学下学期的学习内容和重点。

2.掌握学习方法和技巧,提高自主学习能力。

3.激发兴趣,增强学习动力,达到学以致用的目的。

课章安排本课程共分为以下 9 章:1.有理数的加减运算2.有理数的乘除运算3.整式的加减4.一元一次方程5.一元一次方程的应用6.几何图形的认识7.平面图形的性质8.空间图形的认识9.统计图表的制作和分析学习方法指导1. 每节课前预习在开始上课前,先预习本节课的内容。

预习时要重点阅读所学内容的目的、重点、难点等,对照教材和导学资料,理清思路,确定自己需要掌握的知识点和技能。

2. 记笔记,做好知识点概念的总结在学习和预习过程中,要及时记录下来遇到的问题、困惑和需要加强的知识点等要点,做好知识点的概念总结。

笔记可以在课后补充和完善。

3. 练习题目,加强练习认真完成教材和导学资料中的例题和练习题,加强练习,熟练掌握所学知识,做到理论联系实际。

4. 交流讨论,相互帮助在学习中,可以结伴学习、交流讨论,相互帮助、提高互动性和学习效果。

5. 总结复习,强化记忆及时总结复习所学知识点和技能,对个人掌握程度进行自我评估,找出不足之处进一步加强练习,强化记忆。

学习注意事项1.学习时要耐心细心,认真思考和分析问题,不急不躁,遇到困难要针对性地加以解决。

2.课上所学知识要及时总结、前瞻下节课程的内容,尽量形成自己的思维导图和学习笔记,方便课后回顾。

3.做题时不要死记硬背,要结合实际情况,理解原理和逻辑,并联系实际问题进行练习。

4.学习过程中要不断提高自己的自主学习能力和学习动力,积极探索、创新,促进自己的全面发展。

结语通过本次导学,相信大家对八年级数学下学期的课程安排和学习方法已经有了更全面的认知。

在学习过程中,我们一起努力、相互支持,一定能够理清思路、掌握技巧,取得更好的学习成果!。

八年级下册数学导学案全册

八年级下册数学导学案全册

八年级(下)数学导学案目录第一章因式分解1.1多项式的因式分解 4 1.2.1提公因式法因式分解(一) 6 1.2.2提公因式法因式分解(二)8 1.3.1公式法因式分解(一)10 1.3.2公式法因式分解(二)12 1.3.3十字相乘法因式分解14 1.4 小结与复习16 第一章单元测试卷18第二章分式2.1 分式和它的基本性质(一) 20 2.1 分式和它的基本性质(二) 22 2.2.1分式的乘法与除法 24 2.2.2 分式的乘方 26 2.3.1 同底数幂的除法 28 2.3.2 零次幂和负整数指数幂 30 2.3.3 整数指数幂的运算法则 32 2.4.1 同分母的分式加、减法 34 2.4.2异分母的分式加、减(一) 36 2.4.3异分母的分式加、减(二) 38 2.5.1 分式方程(一) 40 2.5.2 分式方程(二) 42 2.5.2分式方程的应用(一) 44 2.5.2分式方程的应用(二) 46 《分式》单元复习(一) 48 《分式》单元复习(二) 50 分式达标检测52第三章四边形3.1.1平行四边形的性质(一)56 3.1.1平行四边形的性质(二)58 3.1.2 中心对称图形(续)60 3.1.3 平行四边形的判定(一)62 3.1.3 平行四边形的判定(二)64 3.1.4 三角形的中位线66 3.2.1 菱形的性质68 3.2.2 菱形的判定703.3矩形(一)72 3.3矩形(二)74 3.4 正方形76 3.5 梯形(一)78 3.5 梯形(二)80 3.6 多边形的内角和与外角和(一)82 3.6多边形的内角和与外角和(二)84 第三章总复习单元测试(一)86 第三章总复习单元测试(二)90第四章二次根式4.1.1 二次根式94 4.1.2 二次根式的化简(一)96 4.1.2 二次根式的化简(二)98 4.2.1 二次根式的乘法100 4.2.2 二次根式的除法102 4.3.1 二次根式的加、减法104 4.3.2 二次根式的混合运算106 二次根式的复习课108 第四章二次根式测试卷110第五章概率的概念5.1概率的概念112 5.2概率的含义 114 第五章概率单元测试1161.1多项式的因式分解学习目标:1.了解分解因式的意义,以及它与整式乘法的相互关系.2.感受因式分解在解决相关问题中的作用.3.通过因式分解培养学生逆向思维的能力。

【初中数学导学案】八年级数学初二数学下册全套精品导学案

【初中数学导学案】八年级数学初二数学下册全套精品导学案
(五)作业
(六)反思
第2课时 分式——分式乘除法(1)
一、学习目标:
1、能说出分式约分的意义
2、掌握分式约分的方法,了解并能进行简单的分式乘法的运算
二、教学重点难点
分式约分的方法,了解并能进行简单的分式乘法的运算
三、教学过程
(一)复习导入
(1) 的公因式是
(2)因式分解下列各式:
① =② =
③ =④ =
一、学习目标:
1、使学生了解同分母、异分母的分式加减法法则。
2、使学生能熟练地进行同分母、异分母的分式加减法运算。
二、练习A组:
1、计算:
(1) (2)解:原式 = Nhomakorabea(3) (4)
(5) (6)
(7) (8)
(9) (10)
三、练习B组:
1、计算:
(1) (2)
解:原式 =
(3) (4)
(5) (6)
(4) = (5) = (6) =
7、把分式 中的a、b都有扩大2倍,则分式值( )
(A)不变 (B)扩大2倍 (C) 缩小2倍 (D)扩大4倍
8、当x取何值时,分式 的值为正数?
9、数m使得 为正整数,m的值是多少?
10、式子 的值为整数的整数x的值是多少?
(四)课堂小结
这节课我们学习了什么内容?有什么收获?你还有什么疑问吗?
1能说出分式约分的意义2掌握分式约分的方法了解并能进行简单的分式乘法的运算二教学重点难点分式约分的方法了解并能进行简单的分式乘法的运算三教学过程一复习导入的公因式是2因式分解下列各式
【初中数学导学案】八年级数学初二数学下册全套精品导学案
八年级数学下册导学案
第16章 分式
第1课时 分式——分式基本性质

新人教版八年级下册数学导学案(总)

新人教版八年级下册数学导学案(总)

0.2 1-2a⑶(a-1)2⑸(-65)2a新人教版八年级下册数学导学案(总)③从运算结果来看:(a)2=,a2==第一周导学案编号001【课题】二次根式(1课时) 4.归纳,二次根式的性质有:①a≥0,a≥(双重非负性)②(a)=a(a≥0)【学习目标】1、使学生理解二次根式的概念2、使学生掌握二次根式的化简和计算【重点难点】重点:二次根式有意义的条件难点:算术平方根的意义课前准备:1、什么叫做一个数的平方根?如何表示?一般地,若一个数的等于a,则这个数就叫做a的平方根,a的平方根是2、什么是一个数的算术平方根?如何表示?③【二、合作交流】小组内交流完成教材P4练习1、2题(组内核对答案,不懂的才问)【三、展示评价】对学生自主学习和合作交流部分学习困难较大的知识点进行点评。

【四、再认重构】(请同学们静下心来认真独立完成下面的检测)1.当a是怎么样的实数时,下列各式在实数范围内有意义?若一个的平方等于a,则这个数就叫做a的算术平方根,表示为3、认真完成教材P2思考的三个小题:⑴-a+2⑵1⑷-5a⑴,⑵⑶观察以上结果,它们都有什么特点?【一、自主学习】阅读教材P2–P4,结合教材完成下面问题:1.二次根式的定义:注意:定义包含三个内容①1.必需含有二次根号“”②被开方数a≥0③a可以是数,也可以是含有字母的式子判断:2-234a m(m≥0)n2+1是二次根式的有(被开方数或者字母的取值必须大于等于零)2.二次根式有意义的条件:练习:当a是怎样的实数时,下列各式在实数范围内有意义?⑴a-2⑵5-2a⑶-2a⑷a2+23.(a)2和a2的区别:①从运算顺序来看,(a)2是而a2是;②从取值范围来看,(a)2中a而a2中a;2.计算:⑴(7)2⑵(-23)2⑶(3)2⑷(-7)253⑹(-)2⑺-(-m)2653.思维拓展:⑴若a.b为实数,且2-a+b-2=0,求2+b2-2b+1⑵已知24n是整数,求正整数n的最小值。

二中八年级数学下册 平行四边形导学案

二中八年级数学下册 平行四边形导学案

正方形菱形矩形平行四边形19.4 平行四边形考点透视1.平行四边形与特殊的平行四边形的关系:正方形用集合表示为:3.三角形中位线定理.4.梯形、等腰梯形、直角梯形的性质与判定. 例题选讲类型一、平行四边形的性质与判定例1.如图,ABCD 为平行四边形,E 、F 分别为AB 、CD 的中点,①求证:AECF 也是平行四边形;②连接BD ,分别交CE 、AF 于G 、H ,求证:BG =DH ;③连接CH 、AG ,则AGCH 也是平行四边形吗?A BCDEFGH类型二、矩形、菱形的性质与判定例3. 如图,在矩形ABCD中,对角线交于点O,DE平分∠ADC,∠AOB=60°,则∠COE =.AB CDEO例4. 如图,矩形ABCD中的长AB=8cm,宽AD=5cm,沿过BD的中点O的直线对折,使B与D点重合,求证:BEDF为菱形,并求折痕EF的长.OFED CBA类型三、正方形的性质与判定例6. 如图,已知E、F分别是正方形ABCD的边BC、CD上的点,AE、AF分别与对角线BD 相交于M、N,若∠EAF=50°,则∠CME+∠CNF= .FED CBAMN类型四、与三角形中位线定理相关的问题例7. 如图,BD=AC,M、N分别为AD、BC的中点,AC、BD交于E,MN与BD、AC分别交于点F、G,求证:EF=EG.NMGFEDCBA类型五、梯形、等腰梯形、直角梯形的相关问题例8. 如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则你可得到哪些结论?4321FEDC BA例9. 如图,在梯形ABCD 中,AD ∥BC ,BD =CD ,AB <CD ,且∠ABC 为锐角,若AD =4,BC =12,E 为BC 上一点.问:当CE 分别为何值时,四边形ABED 是等腰梯形?请说明理由.ABCDE3.如图,设M 、N 分别是正方形ABCD 的边AB 、AD 的中点,MD 与NC 相交于点P ,若△PCD 的面积是S ,则四边形AMPN 的面积是 .4.如图,M 为边长为2的正方形ABCD 对角线上一动点,E 为AD 中点,则AM +EM 的最小值为 .5.边长为1的正方形ABCD 绕点A 逆时针旋转30 o到正方形AB C D ''',图中阴影部分的面积为 .6.在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC =8cm ,BD =8cm ,则此梯形的高为 cm第6题图第9题图第8题图第7题图ABCD EABCDABCDEFDCBAN MPG7.如图,正方形ABCD 的对角线长82E 为AB 上一点,若EF ⊥AC 于F ,EG ⊥BD 于G ,则EF +EG = .8.如图所示,梯形ABCD 中,AD ∥BC ,AB =CD =AD =1,∠B =60°,•直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PC +PD 的最小值为________.9.如图,菱形ABCD 中,AB =2,∠BAD =60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE +PB 的最小值是 .ABCDE10.菱形的两条对角线长为6和8,则菱形的边长为______,面积为_______.11.如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是___________度.12. 如图,梯形ABCD 中,AD ∥BC .C =∠90 o,且AB =AD .连结BD ,过A 点作BD 的垂线,交BC 于E .如果EC =3cm ,CD =4cm ,那么,梯形ABCD 的面积是_______________cm 2.13.在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AF ⊥BD ,CE ⊥BD ,垂足分别为E 、F ;连结AE 、CF ,得四边形AFCE ,求证:AFCE 是平行四边形.14. □ABCD 中,AE 、CF 、BF 、DE 分别为四个内角平分线,求证:EGFH 是矩形.HG F EDCBA15. 如图,∠BAC =90 o,BF 平分∠ABC 交AC 于F ,EF ⊥BC 于E ,AD ⊥BC 于D ,交BF 于G .求证:四边形AGEF 为菱形.ABCDEFG16. 如图(1),在正方形ABCD 中,M 为AB 的中点,E 为AB 延长线上一点,MN ⊥DM ,且交∠CBE 的平分线于点N .(1)DM 与MN 相等吗?试说明理由.(2)若将上述条件“M 为AB 的中点”改为“M 为AB 上任意一点”,其余条件不变,如图2,则DM 与MN 相等吗?为什么?AB CDEMN图1NMEDCB A图217. 如图,正方形ABCD 中,E 为BC 上一点,DF =CF ,DC +CE =AE ,求证:AF 平分∠DAE .ABCD EF18.如图,AB =CD ,BA 、CD 延长线交于点O ,且M 、N 分别为BD 、AC 的中点,MN 分别交AB 、CD 于E 、F 求证:OE =OF .O F E D C BA20题图A BCDEFMNO19.△ABC 为等边三角形,D 、F 分别是BC 、AB 上的点,且CD =BF ,以AD •为边作等边△ADE . (1)求证:△ACD ≌△CBF ;(2)当D 在线段BC 上何处时,四边形CDEF 为平行四边形,且∠DEF =30°?•证明你的结论.ABCDEF。

新版人教版八年级下册初二第二学期数学全册教案导学案及答案

新版人教版八年级下册初二第二学期数学全册教案导学案及答案

第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3) 1-m m32+-m m 112+-m m 4522--x x x x 235-+23+x3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s +2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分x x 57+xx 3217-x x x --221x 802332xx x --212312-+x x母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, yx 3-, nm --2, nm 67--, yx 43---。

(直打版)新人教版八年级数学下导学案(全册)

(直打版)新人教版八年级数学下导学案(全册)

二、学习重点、难点
重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质 a 0(a 0) 和 ( a )2 a(a 0) .
三、学习过程
(一)复习回顾:
(1)已知 x2 a ,那么 a 是 x 的_____; x 是 a 的____, 记为____, a 一定是____数。
(2)4 的算术平方根为 2,用式子表示4为 =______;正数 a 的算术平方根为_____,0
3
③ 1
2x
2、(1)若 a 3 3 a 有意义,则 a 的值为___________. (2)若 x 在实数范围内有意义,则 x 为( )。
(直打版)新人教版八年级数学下导学案(全册)(word 版可编辑修改)
A。正数 B。负数 C。非负数
D。非正数
1 2x 3、(1)在式子 1 x 中, x 的取值范围是____________。
x2
A、 2 x B、 x 2 C、 2 x D、 x 2 6、 若二次根式 2x 6 有意义,化简│x-4│—│7—x│。
二次根式的乘法
一、学习目标
(直打版)新人教版八年级数学下导学案(全册)(word 版可编辑修改)
理解 a · b = ab (a≥0,b≥0), ab = a · b (a≥0,b≥0),并利用它们 进行计算和化简
16 × 25 __ 16 25
(二)、探索新知
交流总结规律:一般地,对二次根式的乘法规定为
a · b = ab .(a≥0,b≥0 反过来: 例 1、计算
ab = a · b (a≥0,b≥0)
(1) 5 × 7 (2) 1 × 9 (3)3 6 ×2 10 (4) 5a · 1 ay
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管城二中八年级数学导学案
创编:刘玲 审核:八年级数学组姓名 班级 时间:2012年 月 日 课题:3.3分式的加减法(第2课时) 学习目标
1.进一步掌握通分的步骤,并且能熟练地进行通分.
2.总结归纳出异分母分式的加减法法则. 学习重点
异分母分式的加减法的运算。

学习难点
异分母分式的加减法的运算。

学习过程
一、预习导学
1. 异分母分数的加减法。

2、做一做○1、
=-
a
a
142

2、=+
b a
11
○3、
=+-
+bc
c b ab
b a ○
4、=+b
a a
b
23
二、学习研讨
活动一:阅读课本82-83页回答: 1、 异分母分式的加减法法则是什么?
2、 你认为异分母分式的加减法转化为同分母分式的加减法的关键是什么?
3、 完成课本83页例3后你有什么感想?
活动二: 1、通分(1)
;41,
3,
22
xy
y
x
x y
(2)
,
5
y x -2
)
(3
x y -;
(3);3
1
,
31
-+x x (4)
2
1
,
41
2
--a a
解:
2、计算:(1);3
13
1+-
-x x (2)
、;2
14
12
--
-a a
解:
三、当堂检测 1、计算(1)b
a a
b 23+
(2)
2
121
1a
a --
- (3)
bc
c b ab
b a +-
+ (4)
x
x x x --
-3)
3(32
解:
2、用两种方法计算:x
x x x x x 4)2
2
3(2
-∙
+-
-
解:
四、延伸拓展
甲乙两位采购员现将去同一家饲料公司购买同种饲料,这家公司每次卖给他们的饲料价格
相同,两次的单价分别是m 元/kg 和n 元/kg (m≠n );但是他们购物的方式不同,甲每次购买1000kg 饲料,乙每次只购买800元的饲料. (1)甲乙两人两次购买饲料的平均单价分别是多少? (2)谁的购买方式更合算?
五、总结反思
1、本节课你有哪些收获?
2、预习时的疑难解决了吗?你还有哪些疑惑?
3、你认为老师上课过程中还有哪些须要注意或改进的地方。

相关文档
最新文档