华师大版八年级数学下册导学案
b 华师版八年级数学下教学计划
华西版八年级数学的教学计划第1单元:真实数字对于这个单位,我们的目标是帮助学生理解真实数字的概念和真实数字上的操作。
我们首先审查数字的分类,包括自然数,整数,整数,理性数,和不合理的数。
我们将着手处理实际数字的财产,例如关闭财产、共有财产、关联财产和分配财产。
第2单元:代数表达式在这个单位中,我们将专注于代数表达及其简化。
学生将学习类似术语的组合,使用分配属性,并简化涉及责任人的表达方式。
我们还将涵盖多名体的概念,包括单名体,二名体,三名体。
第3单元:线性公式和不平等这个单元向学生介绍线性方程和不平等。
我们将教他们如何利用平等的性质来解决线性方程,以及如何在坐标平面上绘制线性不平等图。
学生也会了解方程式与不平等之间的关系。
第4单元:指标和科学标记在这个单位中,学生们将学习解说员的属性以及如何进行涉及解说员的操作。
我们还将向它们介绍科学标记及其在现实世界中的应用。
第5单元:毕达哥里安定理这个单位专注于毕达哥里安定理及其应用。
学生们将学习如何使用毕达哥里安定理来解决涉及右角三角形的问题,他们还将探索毕达哥里安三重体的概念。
第6单元:职能和图表在这个单位,我们将向学生介绍功能的概念及其图形化的表达。
他们将学习一个函数的域和范围,垂直线测试,以及如何从他们的图表中识别函数。
第7单元:几何在这个单元中,学生将研究形状和固体的特性。
他们将学习角度之间的关系,三角和四边形的属性,以及三维数字的体积和表面面积。
第8单元:统计和概率该年的最后单元将涵盖统计和概率。
学生将学习如何分析和解释数据,包括衡量中心倾向和分散程度。
他们还将探讨概率概念及其在日常生活中的应用。
华东师大版八年级数学下册导学案
第十六章 分式第一课时一、学习目标:1.识记分式、有理式的概念.2.知道分式有意义的条件,分式的值为零的条件;3.能熟练地求出分式有意义的条件,分式的值为零的条件.二、自主预习:自学教材相关内容,并完成以下各题。
1.完成教材“思考1”中的空格。
2.什么叫分式?分式与整式的区别是什么?3.判断下列各式中,哪些是整式?哪些不是整式? ①38n m ++m 2 ; ②1+x +y 2-z 1; ③π213-x ; ④x 1;⑤1222++x x ; ⑥222ab b a +;三、课堂导学:例1 填空:当x 时,分式x 52有意义;当x 时,分式22-x x有意义;当x 时,分式x 252-有意义;当x 、y 满足关系 时,分式y x yx 2-+有意义;例2 当m 为何值时,分式的值为0(1)1-m m (2)32+-m m (3) 112+-m m四、课堂自测:1.判断下列各式哪些是整式,哪些是分式?9x+4, x 7, 209y +, 54-m , 238y y -, 91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3)4、列式表示下列各量:(1)某村有n 个人,耕地40公顷,人均耕地面积为 公顷;(2)ABC ∆的面积为S ,BC 边长为a ,则高AD 为 ;(3)一辆汽车行驶a 千米用b 小时,它的平均车速为 千米/小时;一列火车行驶a 千米比这辆汽车少用1小时,它的平均车速为 千米/小时。
5、下列式子中,哪些是是分式?哪些是整式?两类式子的区别是什么? ①x 1;②3x ;③5342+b ;④352-a ;⑤22y x x -; ⑥n m n m +-;⑦121222+-++x x x x ;⑧)(3b a c -4522--x x x x 235-+23+x x x 57+x x 3217-x x x --221完成课本课后习题16.1.2 分式的基本性质第2课时一、学习目标:1.能辨别分式的基本性质.2.会用分式的基本性质将分式变形.二、自主预习:自学教材P4—P6思考上面,并完成以下各题:1.描述分式的基本性质:2.用式子表示分式的基本性质:3.理解教材P5例2并完成以下各空:(1)3)(32-=-a a a a ;()y x x xy x -=-32422;(2)()2xy xy y x =+三、课堂导学:例1 根据分式的基本性质,回答下列问题:(1)abb a +当分母变为b a 2时,分子变为怎样的因式? (2)22xxy x +当分子变为x+y 时,分母变为怎样的因式?(3)一个分式的分子为a a +2,分式变形后为ca (a+1≠0),则分式变形前分母是怎样的因式?例2 不改变分式的值,使下列分式的分子和分母都不含“-”号.a b56--, y x 3-, n m --2, n m 67--, y x 43---四、课堂自测:1.填空: (1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3)c a b ++1=cn an +)( (4) ()222y x y x +-=)(y x - 2.不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233ab y x -- (2) 2317ba ---(3) 2135x a -- (4) m b a 2)(--3.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)13232-+---a a a a (2)32211xx x x ++--(3)1123+---a a a4.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)b a ba +---2 (2)y x yx -+--32教材P8习题16.1第4、5题16.1.2 分式的基本性质第3课时一、学习目标:会用分式的基本性质将分式变形,正确进行分式的通分和约分。
2018年华师大版八年级数学下册全册教案
16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v-2060小时,所以v +20100=v-2060.3. 以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x xx x --21(1) (2) (3)七、课后练习 1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义? 3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作x x 57+xx 3217-x 802332xx x --21231-+x x为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, y x 3-, n m --2, n m 67--, yx 43---。
华师大版八年级数学下教案全套
第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3)1-m m32+-m m 112+-m m[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式 的值为0?八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s +2. X = 3. x=-1452--x x xx 235-+23+x x x 57+x x3217-xx x --221x 802332x x x --212312-+x x课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1 与 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, yx3-, nm --2, nm 67--,yx 43---。
新版华师大版八年级下数学教案全册
新版华师大版八年级下数学教案全册Revised as of 23 November 2020第十六章 分式16.1分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少 请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v -2060小时,所以v +20100=v-2060. 3. 以上的式子v +20100,v -2060,a s ,sv ,有什么共同点它们与分数有什么相同点和不同点 五、例题讲解 P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0 (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义(1) (2) (3) 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x3. 当x 为何值时,分式的值为0(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是哪些是分式(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义 3. 当x 为何值时,分式 的值为0 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x 80, ba s + 2. X =3. x=-1 课后反思:一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.x x 57+x x 3217-xx x --221x 802332xx x --212312-+x x教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗 与 相等吗为什么 2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变. P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, y x3-, n m --2, n m 67--, yx 43---。
华师大版八年级数学第11章数的开方整章导学案
第11章数的开方导学方案第一课时主备人:焦长续授课人:学习目标:(1) 了解数的平方根的概念,会求某些非负数的平方根。
(2) 会用根号表示一个数的平方根。
学习重点:数的平方根的概念,会求某些非负数的平方根。
学习难点学习指导:一、自主学习:【导学提纲】1.我们已学过哪些数的运算?2.加法与减法这两种运算之间有什么关系?乘法与除法之间呢?3.什么是平方根?一个数的平方根如何表示呢?什么是算术平方根?什么叫开平方?4、一个数的平方根有什么特点?5、要剪出一块面积为25 cm2的正方形纸片,纸片的边长应是多少?【预习填空】★1、如果一个数的等于a,那么这个数叫做a的。
★2、一个正数必定有,它们互为,其中正数a的叫做a的算术平方根;0的平方根(有且只有个);负数;3、一个正数a的平方根记作(符号表示),其中是算术平方根,称为被开方数;4、求一个,叫做开平方,将一个正数开平方,关键是找出它的一个;5、练习:(1)∵()2=25 ∴正数25的平方根是,可表示为± =±5;(2)∵()2=0.09 ∴正数0.09的平方根是,可表示为 = ;(3)∵()2=16/25 ∴16/25的平方根是,可表示为 = ;(4)∵()2=0 ∴0的平方根是,可表示为 = ;(5) ∵负数,∴ -4 。
6、已知一个数的平方等于10000,那么这个数是 .二 ·合作交流1、填空(1) 144的平方根是 ; (2) 0的平方根是 ; (3)254的平方根是 ; (4) -4有没有平方根?为什么? 2、求下列各数的算术平方根。
(1)121 (2)214(3)64 (4)102;(5)0; 3、求下列各数的平方根:(1)81;(2)0.09;(3)1600;(4)49/25;(5)0.0256; 4、下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由. (1)-64; (2)0; (3)(-4)2三、展示点拨:如果我们知道了两个平方根中的一个,那么是否可以得到它的另一个平方根呢?为什么?知识回顾与小结1、平方根的性质:一个正数有 个平方根,它们互为 ;0有一个平方根,它是 ;负数没有 .2.一个非负数a 的平方根的表示法:当a >0时,a 的正的平方根用符号“2a ”表示,a 的负的平方根用符号“-2a ”表示,这两个平方根合起来可以记作“2a ”;其中a 叫做被开方数,2叫做根指数;根指数为2时,一般略去不写. 3.求一个数的平方根,可以通过平方运算来解决四、测评反馈:1、、下列说法正确的个数是( )①0.25的平方根是0.5;②-2是4的平方根;③只有正数才有平方根;④负数没有平方根.A .1B .2C .3D .42.求下列各数的平方根.0,19,17,2564,(-2)2,214,-16.3 ). A .±4 B .4 C .±2 D .2 4.求下列各数的算术平方根. (1)0.0025; (2)(-6)2; (3)0; (4)(-2)×(-8). 5.下列说法中错误的是( )A 是5的平方根B .-16是256的平方根C .-15是(-15)2的算术平方根 D .±27是449的平方根 数的开方 导学方案 第二课时主备人 :焦长续 授课人:学习目标:1、正确理解平方根的概念的意义和平方根的表示方法基础上,进一步掌握算术平方根的概念及其表示方法;2.对于a 表示的算术平方根中的a 的条件和a 的本身的意义作合理性的说明;学习重点:理解平方根的概念的意义学习难点理解平方根的概念的意义学习指导:一、自主学习:【导学提纲】根据下面问题,请勾画出重要内容,把问题写下来1.在(-5)2、-52、52中,哪些有平方根?平方根是多少?哪些没有平方根?为什么?2.求0.49的平方根的运算可记作_ ___=__ __;3.的正的平方根记作36131= ;正的平方根叫做它的 ;4. 正数a 的正的平方根叫做a 的 .记作 ,读作“a 的算术平方根”. 这里强调两点:(1)这里的a 不仅表示开平方运算,而且表示正值的根.(2)这里a 中有两个“正”字,即被开方数必须为正,算术平方根也是正的(0除外). 特别地,0的平方根也叫做0的算术平方根,因此0的算术平方根是0.即00 .从5. 说出平方根的概念和性质.二 ·展示提升1.下列各式中哪些有意义?哪些无意义?为什么?2.求下列各数的平方根和算术平方根:.;;;;;;0169144256101.040025.0121 3.求下列各式的值,并说明它们各表示的意义:4. 解方程 (1)x 2=4(2)25x 2=36. (3)5=x (4)(x-1)2=495、x 为何值时,下列各式有意义: ①x +5 ②x -三、合作交流:【问题1】9的平方根是 ,9的算术平方根是 , 39=表示的意义是什么? 【问题2】根据平方根的性质判断,若42-x 有意义,则x .(取值范围) 练习:1、当x 时, 12-x 有意义。
华师大版八年级数学下册教案
华师大版八年级数学下册教案第1章平行四边形第1节平行四边形的性质一、教学目标1.理解平行四边形的定义,掌握平行四边形的基本性质。
2.能够运用平行四边形的性质解决实际问题。
二、教学重难点重点:平行四边形的性质。
难点:运用平行四边形的性质解决问题。
三、教学过程1.导入新课通过复习四边形的基本概念,引导学生思考平行四边形的特点。
2.探索平行四边形的性质引导学生通过观察、操作、推理等方式,发现平行四边形的性质。
性质1:对边平行。
性质2:对角相等。
性质3:邻角互补。
性质4:对角线互相平分。
4.应用平行四边形的性质举例说明如何运用平行四边形的性质解决实际问题。
学生练习,巩固所学知识。
5.课堂小结强调平行四边形的性质在实际问题中的应用。
四、课后作业1.请同学们结合教材,熟记平行四边形的性质。
2.完成课后练习题,巩固所学知识。
第2节平行四边形的判定一、教学目标1.掌握平行四边形的判定方法。
2.能够运用平行四边形的判定方法判断四边形是否为平行四边形。
二、教学重难点重点:平行四边形的判定方法。
难点:运用平行四边形的判定方法判断四边形。
三、教学过程1.导入新课复习平行四边形的性质,引导学生思考如何判断一个四边形是否为平行四边形。
2.探索平行四边形的判定方法引导学生通过观察、操作、推理等方式,发现平行四边形的判定方法。
判定1:两组对边分别平行。
判定2:两组对边分别相等。
判定3:两组对角分别相等。
判定4:一组对边平行且相等。
4.应用平行四边形的判定方法举例说明如何运用平行四边形的判定方法判断四边形。
学生练习,巩固所学知识。
5.课堂小结强调平行四边形的判定方法在实际问题中的应用。
四、课后作业1.请同学们结合教材,熟记平行四边形的判定方法。
2.完成课后练习题,巩固所学知识。
第3节平行四边形的证明一、教学目标1.掌握平行四边形的证明方法。
2.能够运用平行四边形的证明方法解决实际问题。
二、教学重难点重点:平行四边形的证明方法。
难点:运用平行四边形的证明方法解决问题。
华东华师大版八年级下册数学导学案
A. (1,2) B. (1,-2) C. (-1,2) D. (-1,-2)
2.在平面直角坐标系中,下列坐标所对应的点位于第三象限的是( )
A. (-1,-3) B. (-3,0) C. (1,-4) D. (3,2)
3.直角坐标系中,点 P(2,5)所在的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
(2)(1+ )÷
.
16.3 可化为一元一次方程的分式方程 一、例题学习: 1.下列方程不是分式方程的是()
A.
B.
C.
D.
二、课堂练习
1.分式方程 =1 的解是 x=______.
2.当 x= 三、作业 1 解方程:
时,分式 的值为 1. .
16.4.1 零指数幂与负整数指数幂
一、例题学习:
例 1、下列运算中,正确的是( )
约分: =( )
D. x=1
A.
B. 2abc
C.
D.Байду номын сангаас
例 2:
通分: 1 1 ______, 1 1 ______,
23
ab
二、课堂练习
1、化简 A. ab
结果正确的是( B. .-ab
) C. .a2-b2
D. .b2-a2
113
2、分式 , 的最简公分母是______.
3、化简: =______.
A. a+b B. a C. a-b D. b
114
D. a2 D. D. a2 D.
2、计算
的结果是( )
A. a+2
B.
C.
二、课堂练习
1、计算 - 的结果为( )
新华东师大版八年级数学下册《19章 矩形、菱形与正方形 19.1 矩形 阅读材料 完美矩形》教案_4
《完美矩形》教学设计
一、教学内容:
华师版数学八年级下册第十九章阅读材料:完美矩形。
二、教学目标:
1. 能借助正方形各边之间的关系并利用一元一次方程推算完美矩形各正方形的边长.
2. 经历方程思想解决几何问题的过程,体会数形结合的数学思想方法,积累数学活动经验.
三、教学重点、难点:
重点:探索用方程解决完美矩形的方法与过程。
难点:探索完美矩形时,如何利用设出未知量表示所有正方形的边长。
四、教具、学具准备:
教具:课件、电脑投影、实物展台、导学案等。
学具:大小不一正方形纸片、透明胶、草稿纸等。
五、教学过程:
六、作业布置:
思考并推算两个猜想:
1、存在更高阶的完美矩形吗?你能找到么?能将它在生活中变成现实吗?
2、存在更低阶的完美矩形吗?最低阶的完美矩形是多少阶?
、
七、板书设计:
完美矩形
步骤:1、设:正方形的边长为x
2、表:表其余各正方形的边长
3、列:一边多表。
八年级数学(1232两数和(差)的平方公式)导学案导学案.doc
3、计算(小试牛刀)(1)(。
+ 3们2(2)(-% + 3y)2(4)(2x+3)(-2x-3)⑵(2a+|)2华师大版八年级数学(12. 3.2两数和(差)的平方公式)导学案导学案班级:姓名:学习目标:1、使学生理解两数和(差)的平方的公式,掌握公式的结构特征,并熟练地应用公式进行计算。
2、经历探索两数和(差)的平方公式的过程,进一步发展学生的符号感和推理能力。
3、培养学生探索能力和概括能力,体会数形结合的思想。
学习重点:对两数和(差)的平方公式的理解,熟练完全平方公式运用进行、简单的计算学习难点:对公式(a + b)2 =a2 +2ab + b2的理解,包括它的推导过程,结构特点,语言表述及其几何解释【预习案】1、利用多项式乘多项式的方法计算下列各题:(1) (2x+l) (2y-3) (2). (m + 2)2(3) (p + 3)2(4) (o + 2)22、思考:(10 + 2)2等于IO2+22吗?你有什么结论?你能说明a?+b2与(a+b)2的大小关系吗?【探究案】1、(1)几何探究(整体考虑,分割思考):试一试:先观察图12. 3. 2,你能用一个代数式来表示该大正方形的面积吗?_____________________________________________还有其他不同的表示方法吗?_____________________________________________再用等式表示下图中图形面积的运算:+概括:我们得到了一个非常重要而且十分有用的结果:两数和的平方公式:(a+b)2感悟规律:你发现公式有何特征吗?在代数学习的过程中,常把几何知识运用进来,注意“友情提示:(a+b) 2^a2+b22、例题探究:(计算)(1) (2x + 3j)2今后在应用时应注意什么?+4、两数差的平方公式学习课本34页的想一想,你也能发现:(a-bV=.模仿练习:(2%-3y)2(3m —5尸我能行:计算:(1) (—2m+n)注意:2倍乘积的符号。
新版华师大版新八年级下数学教案全册
第十六章分式16.1分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求五、例题讲解P5例1.当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2.当m 为何值时,分式的值为0? (1)(2)(3)[分析]分式的值为0时,必须同时..满足两个条件:分母不能为零;分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案](1)m=0(2)m=2(3)m=13.当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4,209y +,54-m 分式:x 7,238y y -,91-x2.(1)x ≠-2(2)x ≠(3)x ≠±23.(1)x=-7(2)x=0(3)x=-1七、1.18x,,a+b,ba s +,4yx -;整式:8x,a+b,4y x -;1-m m 32+-m m 112+-m m x8023xx x --21分式:x80,ba s 2.X=3.x=-1 课后反思: 一、教学目标1.理解分式的基本性质.分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入32432015249831.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同(1)x x x 3222+=()3+x (2)32386b b a =()33a(3)c a b ++1=()cn an +(4)()222y x y x +-=()y x - 2.约分:(1)c ab b a 2263(2)2228mn n m (3)532164xyz yz x -(4)x y y x --3)(23.通分: (1)321ab 和c b a 2252(2)xy a 2和23xb(3)223ab c 和28bca-(4)11-y 和11+y 4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)233ab y x --(2)2317b a ---(3)2135x a --(4)m b a 2)(--32ab cb a 3210c b a 225c b a 3210(2)xy a 2=y x ax 263,23xb=y x by 262 (3)223ab c =223812c ab c 28bc a -=228cab ab(4)11-y =)1)(1(1+-+y y y 11+y =)1)(1(1+--y y y4.(1)233ab y x (2)2317b a -(3)2135xa (4)mb a 2)(-- 课后反思:16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小) 四、课堂引入1.出示P13本节的引入的问题1求容积的高nmab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则. 1.P14[观察]从上面的算式可以看到分式的乘除法法则. 3.[提问]P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.六、随堂练习计算(1)ab c 2cb a 22⋅(2)322542n m m n⋅-(3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy xy 52÷(5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y-÷++- 七、课后练习计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y x y x132(2)⎪⎭⎫ ⎝⎛-÷a bc ac b2110352(3)()yx a xy 28512-÷(4)b a ab ab b a234222-⋅-(5))4(12x x x x -÷--(6)3222)(35)(42x y x x y x --⋅- 八、答案:六、(1)ab (2)nm 52-(3)14y -(4)-20x 2(5))2)(1()2)(1(+--+a a a a(6)23+-y y法则是学生学习中重点,也是难点,故补充例题,突破符号问题. 四、课堂引入计算(1))(xy yx xy -⋅÷(2)21(3(43xyx yx -⋅-÷五、例题讲解(P17)例4.计算[分析]是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(398(23232b x b a xy y x ab -÷-⋅=xb xy ab 34)8(3232-⋅-⋅(先把除法统一成乘法运算)x y x y --)(32x xy 七、课后练习计算(1)6(4382642z yx yx y x -÷⋅-(2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+-(4)xyy xyy x xy x xy x -÷+÷-+222)(八、答案:六.(1)c a 432-(2)485c -(3)3)(4y x -(4)-y七.(1)336y xz (2)22-b a (3)122y -(4)x1-课后反思:16.2.1分式的乘除(三)这个难点. 四、课堂引入计算下列各题:(1)2)(b a =⋅b a b a =()(2)3)(b a =⋅b a ⋅b a ba =() (3)4)(ba=⋅b a ⋅b a b a ba⋅=()[提问]由以上计算的结果你能推出nba)((n 为正整数)的结果吗?五、例题讲解 (P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,32(()(c b a b a ((ab ab -八、答案:六、1.(1)不成立,232(a b =264a b (2)不成立,223(a b -=2249ab (3)不成立,3)32(x y -=33278x y -(4)不成立,23(bx x -=22229b bx x x +-2.(1)24925y x (2)936827c b a -(3)24398yx a -(4)43z y - (5)21x(6)2234x y a七、(1)968ab --(2)224+n b a (3)22a c (4)bba +课后反思:16.2.2分式的加减(一)分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R 与各支路电阻R 1,R 2,…,R n 的关系为nR R R R 111121+⋅⋅⋅++=.若知道这个公式,就比较容易地用含有R 1的式子表示R 2,列出5011111++=R R R ,下面的计算就是异分母的分式加法的运算了,得到)50(5021111++=R R R R,再利用倒数的概念得到R 的结果.这道题的数学计算并不难,但是物理的知分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算 (1)2222223223yx yx y x y x y x y x --+-+--+ [分析]第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式. 解:2222223223y x yx y x y x y x y x --+-+--+=22)32()2()3(yx y x y x y x --++-+ =2222y x yx --六、随堂练习计算 (1)b a a b b a b a b a b a 22255523--+++(2)m n mn m n m n n m -+---+22 (3)96312-++a a (4)ba ba b a b a b a b a b a b a ---+-----+-87546563 七、课后练习计算 (1)22233343365cba ba c ba ab bc a b a +--++(2)2222224323ab ba b a b a b a a b ----+--- (3)122+++-+-b a ab a b a b (4)22643461461x y x y x y x ----- 八、答案:四.(1)ba b a 2525+(2)m n n m -+33(3)31-a (4)1解决了应用问题. 四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 五、例题讲解(P21)例8.计算[分析]这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算 (1)x xx x x x x x -÷+----+444122(22 [分析]这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..=))(()(y x y x x y xy +--=yx xy+-六、随堂练习 计算(1)x x x x x 22242(2+÷-+-(2))11()(ba ab b b a a -÷--- (3)2122(41223(2+--÷-+-a a a a 七、课后练习 1.计算 (1))11(yx xy x y +--+二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.三、例、习题的意图分析1.P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3.P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳五、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P34)例2.解方程[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习解方程一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解P35例3分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1P36例4路程.这题分析:是一道行程问题的应用题,基本关系是:速度=时间用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间1,结果于下午4时到达,求原计划行时到达,后来由于把速度加快5军的速度。
新华东师大版八年级数学下册《17章 函数及其图象 小结》教案_24
《一次函数复习课》导学设计一、教材分析1、教材的内容、地位与作用本课的内容是华师大版八年级下册第17章复习课,是对本章关于一次函数基础知识的梳理。
一次函数复习是初中数学的核心内容,也是重要的基础知识和重要的数学思想,不仅与高中数学知识有着密切的联系,而且还与生活中的实际问题极为广泛的应用,是联系数学知识与实际问题间的纽带和桥梁,是学生进一步学习“数形结合”这一数学思想方法的很好素材。
同时本节内容的学习对培养学生的空间观念,增强学生的几何直观,培养学生的模型思想,提高学生的数学应用意识都具有积极作用。
2、学情分析本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,初步了解了如何研究一个具体函数的图象与性质的基础上进行的。
原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探索、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
3、导学目标根据课程标准和教材的特点,结合八年级学生的实际水平,本节课我制定了四个导学目标:(1)提出一个现实问题,从函数图中分离出正比例函数和反比例函数,判断什么函数是一次函数,什么函数是正比例函数;(2)通过填表总结,能根据一次函数的图象和解析式y=kx+b(k≠0)探索并理解相关性质,并会用待定系数法确定一次函数解析式;(3)通过九宫格习题练习,学生进一步体会“数形结合”、“函数与方程”、“函数与不等式”以及“待定系数法”,在小组交流中渗透与他人合作、交流的意识和探究精神;(4)回归最开始的现实情境问题,借助函数图象解决实际问题,体验数与形的内在联系,感受函数图象的简洁美。
4、导学重难点重点:复习巩固一次函数的图象和性质并能简单应用。
难点:在理解的基础上结合数学思想分析、解决问题。
二、导学策略1、导法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
2023年华师大版八年级数学下册第十八章《平行四边形的判定3》导学案
新华师大版八年级数学下册第十八章《平行四边形的判定3》导学案学习目标理解三角形中位线的概念,掌握它的性质.能较熟练地应用三角形中位线性质进行有关的证明和计算学习重点掌握和运用三角形中位线的性质学习难点三角形中位线性质的证明(辅助线的添加方法)学法指导预习案预习质疑1.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补2.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD (B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB探究案合作探疑3.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3 (C)1∶2∶2∶1 (D)1∶2∶1∶24.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个5.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3)(D)(2,-3)交流释疑6.如图,□A BCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条拓展案交流释疑已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.9.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线_______第三边,并且等于________________.达标案检测查疑10.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.11.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC 的周长为______.板书设计作业布置教学反思。
2017-2018华师版八年级下册数学教案导学案及答案全册
第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:107,s a ,20033,v s . 2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为10020v+小时,逆流航行60千米所用时间6020v -小时,所以10020v +=6020v-. 3. 以上的式子10020v +,6020v -,s a ,vs ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0?(1)1m m - (2)23m m -+ (3) 211m m -+[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238yy -,91-x .2. 当x 取何值时,下列分式有意义? (1)32x + (2)532x x +- (3)2254x x --3. 当x 为何值时,分式的值为0?(1)75x x + (2)7213x x - (3)221x x x --七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式2132x x +-无意义?3. 当x 为何值时,分式21x x x--的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, ba s +2. X = 3. x=-1课后反思:x80233216.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:4320152498343201524983[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。
华师大版八年级数学(下册)教(学)案全集
第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3)五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)七、教学后记§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
2018华东师大版八年级下册数学教案全册
2018华东师大版八年级下册数学教案全册(总68页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第16章 分式§ 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式 的意义。
2、过程与方法:使学生能正确地判断一个代数式是否是分式,能通过回忆 分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式哪些是分式(1)x 1; (2)2x ; (3)yx xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?例3例4(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 五、小结:4522--x x x x 235-+23+x x x 57+x x 3217-xx x --221什么是分式什么是有理式六、作业:P5习题第1、2题,第3题(2)(4)七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,为以后的学习打好了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第17章 分式§17.1.1 分式的概念导学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
导学重点:探索分式的意义及分式的值为某一特定情况的条件。
导学难点:能通过回忆分数的意义,探索分式的意义。
导学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3)五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)七、导学后记§17.1.2 分式的基本性质导学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
2、使学生理解分式通分的意义,掌握分式通分的方法及步骤。
导学重点:让学生知道约分、通分的依据和作用,学会分式约分与通分的方法。
导学难点:1、分子、分母是多项式的分式约分;2、几个分式最简公分母的确定。
导学过程:1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是: MB M A B A M B M A B A ÷÷=⨯⨯=, ( 其中M 是不等于零的整式)。
4522--x x x x 235-+23+x x x 57+x x 3217-xx x --221与分数类似,根据分式的基本性质,可以对分式进行约分和通分.2、例3 约分(1)4322016xy y x -; (2)44422+--x x x 分析 分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.解(1)4322016xy y x -=-y xy x xy 544433⋅⋅=-y x 54. (2)44422+--x x x =2)2()2)(2(--+x x x =22-+x x . 约分后,分子与分母不再有公因式. 分子与分母没有公因式称为最简分式..... 3、练习:P5 练习 第1题:约分(1)(3)4、例4 通分(1)ba 21,21ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21 解 (1)ba 21与21ab 的最简公分母为a 2b 2,所以 b a 21=b b a b ⋅⋅21=22b a b , 21ab =a ab a ⋅⋅21=22b a a . (2)y x -1与yx +1的最简公分母为(x -y )(x +y ),即x 2-y 2,所以 y x -1=))((1y x y x y x +-+⋅)(=22y x y x -+, y x +1=))(()(1y x y x y x -+-⋅=22yx y x --. 请同学们根据这两小题的解法,完成第(3)小题。
5、练习P5 练习 第2题:通分6、小结:(1)请你分别用数学语言和文字表述分式的基本性质;(2)分式的约分运算,用到了哪些知识?让学生发表,互相补充,归结为:①因式分解;②分式基本性质;③分式中符号变换规律;约分的结果是,一般要求分、分母不含“-”。
(3)把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分。
分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变。
通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母。
确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母。
7、作业:P5练习 1约分:第(2)(4)题,习题17.1第4题8、课后反思:§17.2 分式的运算§17.2.1 分式的乘除法导学目标:1、让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。
2、使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算3、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力导学重点:分式的乘除法、乘方运算导学难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。
导学过程:一、复习与情境导入1、(1) :什么叫做分式的约分?约分的根据是什么?(2):下列各式是否正确?为什么?2、尝试探究:计算: (1)ab b a 32232⋅; (2)b a b a 232÷. 概括:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(用式子表示如右图所示)二、例题:例1计算:(1)xb ay by x a 2222⋅; (2)222222x b yz a z b xy a ÷. 解 (1)x b ay by x a 2222⋅=x b by ay x a 2222⋅⋅=33ba . (2)222222xb yz a z b xy a ÷=yz a x b z b xy a 222222⋅=33z x . 例2计算:493222--⋅+-x x x x . 解 原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x . 三、练习:P7 第1题四、思考 回忆:如何计算10965⨯、4365÷?从中可以得到什么启示。
怎样进行分式的乘方呢?试计算:(1)(m n )3 (2)(mn )k (k 是正整数) (1)(m n )3 =m n m n m n ⋅⋅=)()(m m m n n n ••••=________; (2)(m n )k =个k m n m n m n ⋅⋅⋅=)()(m m m n n n •••••• =___________. 仔细观察所得的结果,试总结出分式乘方的法则.五、小结:1、怎样进行分式的乘除法?2、怎样进行分式的乘方?六、作业:P9习题19.2第1题 P7练习:第2题:计算七、课后反思:§17.2.2 分式的加减法导学目标:1、使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算。
2、通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式通分,培养学生分式运算的能力。
3、渗透类比、化归数学思想方法,培养学生的能力。
导学重点:让学生熟练地掌握同分母、异分母分式的加减法。
导学难点:分式的分子是多项式的分式减法的符号法则,去括号法则应用。
导学过程:一、实践与探索1、回忆:同分母的分数的加减法法则:同分母的分数相加减,分母不变,把分子相加减。
回忆:如何计算5251+、6141+, 从中可以得到什么启示? 2、试一试:计算:(1)a a b 2+;(2)aba 322- 3、总结一下怎样进行分式的加减法?概括同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.二、例题 1、例3计算:xyy x xy y x 22)()(--+ 2、例4 计算:1624432---x x . 分析.. 这里两个加项的分母不同,要先通分.为此,先找出它们的最简公分母. 注意到162-x =)4)(4(-+x x ,所以最简公分母是)4)(4(-+x x解 1624432---x x =)4)(4(2443-+--x x x =)4)(4(24)4)(4()4(3-+--++x x x x x =)4)(4(24)4(3-+-+x x x =)4)(4(123-+-x x x =)4)(4()4(3-+-x x x =43+x 三、练习:P9第1题(1)(3)、第2题(1)(3)四、小结:1、同分母分式的加减法:类似于同分母的分数的加减法;2、异分母分式的加减法步骤:①. 正确地找出各分式的最简公分母。
求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。
取这些因式的积就是最简公分母。
②. 准确地得出各分式的分子、分母应乘的因式。
③. 用公分母通分后,进行同分母分式的加减运算。
④. 公分母保持积的形式,将各分子展开。
⑤. 将得到的结果化成最简分式(整式)。
五、作业:P9习题17.2第2、3、4题六、课后反思:§17.3 可化为一元一次方程的分式方程(1)导学目标:1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2、使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.3、使学生领会“ 转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解.4、培养学生自主探究的意识,提高学生观察能力和分析能力。
导学重点:使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.导学难点:使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.导学过程:一、问题情境导入轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.分 析设轮船在静水中的速度为x 千米/时,根据题意,得360380-=+x x . (1) 概 括方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.思 考怎样解分式方程呢?有没有办法可以去掉分式方程中的分母把它转化为整式方程呢?试动手解一解方程(1).方程(1)可以解答如下:方程两边同乘以(x +3)(x -3),约去分母,得80(x -3)=60(x +3).解这个整式方程,得x =21.所以轮船在静水中的速度为21千米/时.概 括上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.二、例题:1、例1 解方程:12112-=-x x . 解 方程两边同乘以(x 2-1),约去分母,得x +1=2.解这个整式方程,得x =1.解到这儿,我们能不能说x =1就是原分式方程的解(或根)呢?细心的同学可能会发现,当x =1时,原分式方程左边和右边的分母(x -1)与(x 2-1)都是0,方程中出现的两个分式都没有意义,因此,x =1不是原分式方程的解,应当舍去.所以原分式方程无解.我们看到,在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.2、例2 解方程:730100-=x x . 解 方程两边同乘以x (x -7),约去分母,得100(x -7)=30x .解这个整式方程,得x =10.检验:把x =10代入x (x -7),得10×(10-7)≠0所以,x =10是原方程的解.三、练习:P14第1题四、小结:⑴、什么是分式方程?举例说明;⑵、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.⑶、解分式方程为什么要进行验根?怎样进行验根?五、作业:P14 习题17.3第1题(1)(2)、第2题六、课后反思:§17.3 可化为一元一次方程的分式方程(2)导学目标:1、进一步熟练地解可化为一元一次方程的分式方程。