广东省2013届高三最新文科试题精选(21套含九大市区的二模等)分类汇编12:常用逻辑用语

合集下载

广东省届高三最新文科试题精选(21套含九大市区的二模等)分类汇编15:复数教学文稿

广东省届高三最新文科试题精选(21套含九大市区的二模等)分类汇编15:复数教学文稿

广东省2013届高三最新文科试题精选(21套含九大市区的二模等)分类汇编15:复数广东省2013届高三最新文科试题精选(21套含九大市区的二模等)分类汇编15:复数姓名____________班级___________学号____________分数______________一、选择题1 .(广东省广州市2013届高三4月综合测试(二)数学文试题(WORD 版))若1i -(是虚数单位)是关于x 的方程220x px q ++=(p q ∈R 、)的一个解,则p q += () A .3-B .1-C .D .32 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学文试题)已知复数z 的实部为,且2z =,则复数z 的虚部是 ()A .BC .D .3 .(广东省茂名市2013届高三4月第二次高考模拟数学文试题(WORD 版))已知,x y R ∈,i是虚数单位,且1xi y i -=-+则(1)x y i ++的值是 () A .2B .2i -C .4-D .2i4 .(广东省汕头市潮阳黄图盛中学2013届高三4月练习数学(文)试题)已知0<a<2,复数z a i =+(i 是虚数单位),则|z |的取值范围是()A .)B .C .(1,3)D .(1,5)5 .(广东省韶关市2013届高三4月第二次调研测试数学文试题)若R b a ∈,,i 为虚数单位,且5()2a i i b i+=+-,则a b += A .0. B .1C . 2D . 2-6 .(广东省深圳市2013届高三第二次调研考试数学文试题)i 为虚数单位,则1i i+= () A .0B .2iC .1i +D .1i -+7 .(广东省肇庆市2013届高三4月第二次模拟数学(文)试题)若(1)(2)a bi i i +=+-(是虚数单位,,a b 是实数),则a b +的值是 () A .B .2C .3D .48 .(广东省湛江一中等“十校”2013届高三下学期联考数学(文)试题)已知复数1z i =+,则3z 的虚部为 () A .2iB .2i -C .2D .2-9 .(广东省珠海一中等六校2013届高三第一次联考数学(文)试题)设复数z 满足2z i i ⋅=-,i为虚数单位,则=z() A .2i -B .12i +C .12i -+D .12i --10.(广东省汕头市2013届高三3月教学质量测评数学(文)试题)设复数i z +=11(其中i 是虚数单位),则在复平面内,复数z 的共轭复数z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限 11.(广东省梅州市2013届高三3月总复习质检数学(文)试题)设i 是虚数单位,复数1i i+对应的点在 ()A .第一象限B .第二象限C .第三象限D .第四象限12.(广东省韶关市2013届高三年级第一次调研测试数学文试题)已知为虚数单位,则2(1)11i i ++-= () A .-B .-1C .D 113.(广东省揭阳市2013届高三3月第一次高考模拟数学(文)试题)已知复数12,z z 在复平面内对应的点分别为(0,1),(1,3)A B -,则21z z =() A .13i -+B .3i --C .3i +D .3i -14.(广东省惠州市2013届高三第一次模拟考试数学(文)试题)已知复数(1)z i i =+ (i 为虚数单位),则复数z 在复平面上所对应的点位于 ()A .第一象限B .第二象限C .第三象限D .第四象限15.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(文)试题)已知i 是虚数单位,则复数1-2i 的虚部为 ()A .2B .1C .1-D .2-16.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(文)试题)设i 为虚数单位,则复数i2i+等于()A .12i 55+B .12i 55-+C .12i 55-D .12i 55--17.(2012年广东省深圳市沙井中学高三(文)高考模拟卷 )复数iiz +=1在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题18.(广东省湛江市2013届高三4月高考测试(二)数学文试题(WORD版))已知i是虚数单位,19.(广东省茂名市实验中学2013届高三下学期模拟(一)测试数学(文)试题)设i是虚数单位,复数12aii+-为纯虚数,则实数a=____________.广东省2013届高三最新文科试题精选(21套含九大市区的二模等)分类汇编15:复数参考答案 一、选择题 1. C 2. D 3. D 4. B.12+=a z ,而20<<a ,即5112<+<a ,51<<∴z .5. D6. A7. D解析:(1)(2)34a bi i i a bi i a b +=+-⇒+=+⇒+=8. C 9. D 10. A 11. A 12. C 13. C14. 【解析】因为(1)1z i i i =+=-+,所以(1)1z i i i =+=-+对应的点在复平面的第二象限. 故选B .15. D 16. A 17. A 二、填空题 18. 1-i 19. 2。

2013广东省高考语文试卷汇总最新考试试题库(完整版)

2013广东省高考语文试卷汇总最新考试试题库(完整版)

1、下列各句中,没有语病的一句是(4分)A.具有自动化生产、智能识别和系统操控等功能的工业机器人,正成为国内不少装备制造企业提高生产效率,解决人力成本上涨的利器。

B.如何引导有运动天赋的青少年热爱并且投身于滑雪运动,从而培养这些青少年对滑雪运动的兴趣,是北京冬奥申委正在关注的问题。

C.要深化对南极地区海冰融化现象和南极上空大气运动过程的认识,就必须扩大科学考察区域,加强科研观测精度,改进实验设计方法。

D.各级各类学校应高度重视校园网络平台建设,着力培养一批熟悉网络技术、业务精湛的教师,以便扎实有效地开展网络教育教学工作。

2、阅读下文,完成22—26题。

(12分)治学(东汉)徐幹①昔之君子成德立行,身没而名不朽,其故何□?学也。

②学也者,所以疏神达思,怡情理性,圣人之上务也。

民之初载,其矇未知。

譬如宝在于玄室①,有所求而不见,白日照焉,则群物斯辩矣。

学者,心之白日也。

③学犹饰也,器不饰则无以为美观,人不学则无以有懿德。

有懿德,故可以经人伦;为美观,故可以供神明。

④夫听黄钟之声,然后知击缶之细;视衮龙之文,然后知被褐之陋;涉庠序之教,然后知不学之困。

故学者如登山焉,动而益高;如寤寐焉,久而愈足。

顾所由来,则杳然其远,以其难而懈之,误且非矣。

⑤倚立而思远,不如速行之必至也;矫首而徇飞,不如修翼之必获也;孤居而愿智,不如务学之必达也。

故君子心不苟愿,必以求学;身不苟动,必以从师;言不苟出,必以博闻。

⑥君子之于学也,其不懈,犹上天之动,犹日月之行,终身亹亹②,没而后已。

故虽有其才而无其志,亦不能兴其功也。

志者,学之帅也;才者,学之徒也。

学者不患才之不赡,而患志之不立。

是以为之者亿兆,而成之者无几,故君子必立其志。

【注】①玄室:暗室。

②亹亹:勤勉不倦的样子。

22、可填入第①段方框处的虚词是()(1分)A、兮B、哉C、夫D、矣23、第②段使用了比喻论证的手法,请结合该段内容加以分析。

(3分)24、对第④段画线句理解正确的一项是()(2分)A、治学不能因为目标过远而松懈。

广东省汕头市2013届高三第二次模拟考试文科综合试题(扫描版,详解)

广东省汕头市2013届高三第二次模拟考试文科综合试题(扫描版,详解)

2013年汕头市普通高中高三教学质量测评(二)文科综合(历史)参考答案一、单项选择题(每小题4分)二、非选择题(评分标准说明:不拘泥于参考答案,考生答背景、原因、意义时,只要言之成理,均可酌情给分)38.答案要点:(共25分)(1)外交观念:天朝上国(或朝贡外交)。

(2分)结果:中国落后于世界潮流。

(2分)(2)背景:①中国是反法西斯四大盟国之一(或反法西斯主力),国际地位提高。

②中国面临战后经济重建的任务,希望能够获得国际援助。

③美国试图建立由其主导的战后世界经济体系。

④经济全球化的趋势。

(每点2分,答出任意3点得6分,其它言之成理的说法也可得分)世界意义:①稳定了世界金融货币秩序,促进世界贸易和经济的发展。

②顺应并推动了经济全球化趋势。

③推动世界经济向着体系化、制度化、民主化方向发展。

(每点2分,答出任意两点给4分,其它言之成理的说法也可得分)(3)原因:两极格局之下,中国属于社会主义阵营,以美国为首的资本主义阵营遏制中国。

(2分)因素:①中国恢复在联合国的合法席位。

②中美关系正常化并建交。

③中国开始改革开放。

④中国综合国力不断提升,国际地位提高。

(每点2分,答出任意3点得6分,其它言之成理的说法也可得分)(4)考生能从全球化潮流、多极化趋势、和平与发展主流等三个角度阐述,即可得满分3分。

其他言之成理的叙述也可酌情给分。

39.答案要点:(共27分)(1)态度:不认同辛亥革命(或反感、反对辛亥革命)。

(2分)理由:①日记日期仍使用“大清宣统”纪年。

②称民国建立为“变乱”。

③认为革命党西化,没能解决中国的民族危机。

(每点2分,答出任意2点得4分,其它言之成理的说法也可得分)(2)问题:政府封锁国外消息(或政府实行愚民政策);(2分)导致国民不了解外部世界的变化,低估资本主义国家实力。

(2分)影响:①无法学习到世界先进的科技文化。

②对斯大林模式盲目乐观。

(每点2分,满分4分,其它言之成理的说法也可得分)(3)趋势:①1958—1978年:变化不大(或基本稳定);②1978—2008年:迅速提高。

2013广东省高考语文试卷及答案最新考试题库(完整版)_图文

2013广东省高考语文试卷及答案最新考试题库(完整版)_图文

1、下列词语中,没有错别字的一项是A.妨碍功夫片钟灵毓秀管中窥豹,可见一斑B.梳妆吊胃口瞠目结舌文武之道,一张一驰C.辐射入场券循章摘句风声鹤唳,草木皆兵D.蜚然直辖市秘而不宣城门失火,殃及池鱼2、写作 70分27、根据以下材料,自选角度,自拟题目,写一篇不少于800字的文章(不要写成诗歌)。

你可以选择穿越沙漠的道路和方式,所以你是自由的;你必须穿越这片沙漠,所以你又是不自由的。

3、下列各句中,没有语病的一项是(3分)A.英国政府计划从今年9月开始,推行4到5岁幼童将接受语文和算术能力的“基准测验”,此政策遭到了教师工会的强烈反对。

B.一种观念只有被人们普遍接受、理解和掌握并转化为整个社会的群体意识,才能成为人们自觉遵守和奉行的准则。

C.批评或许有对有错,甚至偏激,但只要出于善意,没有违犯法律法规,没有损害公序良俗,我们就应该以包容的心态对待。

D.今年5月9日是俄罗斯卫国战争胜利70周年,有近30个国家和国际组织的领导人参加了在莫斯科红场举行的阅兵式。

4、依次填入下列各句横线处的成语,最恰当的一组是(3分)①这正是经验丰富的主教练在战术安排上的之处:下半场比赛中想方设法消耗对方主力队员的体力,终于扭转劣势,赢得比赛。

②经过几天的,又和病人家属做了充分沟通,吴医生最终否定了治疗小组提出的保守治疗方案,决定尽快为病人进行肺部手术。

③早在上个世纪末,当地决策者就,提出了从单一的小农业向大农业转移的战略措施,于是一个个生态经济园区应运而生。

A.老谋深算深谋远虑深思熟虑 B.老谋深算深思熟虑深谋远虑C.深思熟虑老谋深算深谋远虑 D.深谋远虑深思熟虑老谋深算5、依次填入下列各句横线处的成语,最恰当的一组是(3分)①他是一个心地善良的人,但性格懦弱、谨小慎微,做起事来总是,从来不敢越雷池一步。

②当今世界科技突飞猛进,我们更要勇于开拓,不断进取,如果,就会落后甚至被时代潮流所淘汰。

③要想让中国传统戏曲焕发出新的生命力,决不能满足于现状,,唯有创新才是弘扬戏曲文化的康庄大道.A.故步自封墨守成规抱残守缺B.墨守成规故步自封抱残守缺C.抱残守缺故步自封墨守成规D.墨守成规抱残守缺故步自封6、下列词语中加点字的读音,全部正确的一项是A.暂时zàn 埋怨mái 谆谆告诫zhūn 引吭高歌hángB.豆豉chǐ踝骨huái 踉踉跄跄cāng 按图索骥jìC.梗概gěn 删改shān 炊烟袅袅niǎo 明眸皓齿móuD.搁浅gē解剖pōu 鬼鬼祟崇suì不屑一顾xiâ7、在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)自宋元至明清,清明节除了要祭扫家墓,还要在门楣、窗户上插上柳条。

2013年广东省高考语文模拟试卷及答案

2013年广东省高考语文模拟试卷及答案

2013年普通高等学校招生全国统一模拟考试(广东卷)语文本试卷共8页,24小题,满分150分,考试用时150分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、本大题4小题,每小题3分,共12分。

1.下列词语中加点的字,每对读音都不相同...的一组是A.擂.鼓/擂.台慑.服/嗫.嚅跻.身/缉.拿B.矗.立/抽搐.遒.劲/泅.水牌坊./作坊.C.街巷./巷.道惊蛰./桎.梏解.数/解.甲D.消遣./缱.绻挣.扎/挣.钱信笺./签.署2.下面语段中划线的词语,使用不恰当...的一项是2000年悉尼奥运会结束后,白岩松离开了《东方时空》,另外创办一个叫《子夜》的新栏目。

白岩松信心百倍,以为3个月节目就可以出台,但由于种种原因,在长达一年多的时间里,节目一直没有播出。

从一个炙手可热的主持人一下子变成了一个吃闲饭的人,白岩松感到迷茫和失落。

性情温和的他开始在家里发脾气。

妻子想到用母爱的力量来温暖白岩松,她知道最听母亲的话了。

于是,她把白岩松的母亲接到了北京。

母亲的到来让白岩松欣喜若狂,他不想让母亲看到自己的失败,看到他的失意与颓废。

于是,他努力在母亲面前打起精神。

晚上,母亲常常坐在白岩松的身边,和他聊白岩松小时候的趣事,聊母子俩走过的不平凡的人生旅程。

2013年普通高等学校招生全国统一考试(广东卷)文科综合试题参考答案及评分标准

2013年普通高等学校招生全国统一考试(广东卷)文科综合试题参考答案及评分标准

绝密★启用前秘密★启用后2013年普通高等学校招生全国统一考试(广东卷)文科综合试题参考答案及评分标准一、选择题:本大题共35小题,每小题4分,共140分。

在每小题列出的四个选项中,只有一项是符合题目要求的。

36.(28分)(1)①党的领导和执政地位的必然规定。

(3分)②党的性质和宗旨的必然要求。

(3分)③中国特色社会主义的根本保障。

(3分)④实现人民民主专政和人民当家作主的根本保证。

(3分)【评分说明】其它解答若超出答案要点,且言之成理、分析得当,可酌情给分,但该问最高不超过12分。

(2)党和政府为人民服务的价值观对认识世界和改造世界的活动具有重要的导向作用。

(4分)①人民群众是社会历史的主体和创造者,是物质财富和精神财富的创造者,是社会变革的决定力量。

(3分)对根本政治问题和权力的认识,通过广汇民意、广集民智作出决策,着力解决群众的问题,体现了对人民主体地位的尊重和对人民负责的态度。

(3分)②群众路线是党的根本的领导方法和工作方法。

(3分)把群众放在首位、秉持正确权力观、问计于民、帮助再就业等,实践了群众路线,坚持了群众观点,巩固了群众基础。

(3分)【评分说明】必须准确答出原理,且结合材料分析得当,才能给相应分数。

37.(24分)(1)①2008-2012年城镇居民人均可支配收入和社会消费品零售总额均增长。

(2分)②2008-2012年城镇居民人均可支配收入增速总体上扬,社会消费品零售总额增速总体下滑。

(2分)③城镇居民人均可支配收入增速低于社会消费品零售总额增速。

(2分)【评分说明】若答出“人均可支配收入是影响社会消费品零售总额的重要因素”可给2分,但该问最高不超过6分。

(2)①促进生产的发展,拉动经济增长。

带来新的供给,推动产能扩张。

(2分)②对生产的调整和升级起导向作用,推动技术创新,促进产业结构优化升级。

(2分)③带动一个产业的出现和成长。

带动与汽车相关产业的发展。

(2分)④创造新的劳动力。

2013年高考试题及答案广东卷文数

2013年高考试题及答案广东卷文数

掌门1对1教育 高考真题2013年普通高等学校招生全国统一考试(广东卷)B数学(文科)本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:球的体积34=3V R π,其中R 为球的半径.锥体的体积公式为1=3V Sh ,其中S 为锥体的底面积,h 为锥体的高。

一选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =A.|0|B.|02|,C. |2,0|-D.|2,0,2|-2.函数lg(1)1x y x +=-的定义域是A.(1,)-+∞B.[1,)-+∞C.(1,1)(1,)-+∞D.[)1,1(1,)-+∞ 3.若()34,,,i x yi i x y R +=+∈则复数x yi +的模是A.2B.3C.4)D.5 4.已知51sin()25πα+=,那么cos α= 2.5A -1.5B -1.5C 2.5D5.执行如图1所示的程序框图,若输入n 的值为3,则输入s 的值是.1A .2B C.4.7D6.某三棱锥的三视图如图2所示,则该三棱锥的体积是1.6A 1.3B 2.3C .1A 7.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是.0A x y +=.10B x y ++=.10C x y +-=.0D x y ++=8.设l 为直线,,αβ是两个不同的平面.下列命题中正确的是 A 若l ∥α,l ∥β,则α∥β B 若l ⊥α,l ⊥β,则α∥βC 若l ⊥α,l ∥β,则α∥βD 若α⊥β,l ∥α,则l ⊥β 9.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是 22.134x y A +=22.14x B +=22.142x y C +=22.143x y D +=10.设α是已知的平面向量且0α≠.关于向量α的分解,有如下四个命题: ①给定向量b,总存在向量c ,使a b c =+;②给定向量b 和c,总存在实数λ和μ,使a b c λμ=+; ③给定向量b 和正数,总存在单位向量c,使a b c λμ=+.④给定正数λ和μ,总存在单位向量b 和单位向量c,使a b c λμ=+.上述命题中的向量b,c 和a 在同一平面内且两两不共线,则真命题的个数是 A.1 B.2 C.3 D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

2013年高考广东卷文科数学试题及答案

2013年高考广东卷文科数学试题及答案
21.(本小题满分14分)
设函数 .
(1)当 时,求函数 的单调区间;
(2)当 时,求函数 在 上的最小值 和最大值 .
【解析】:
(1)当 时
, 在 上单调递增.
(2)当 时, ,其开口向上,对称轴 ,且过
(i)当 ,即 时, , 在 上单调递增,
从而当 时, 取得最小值 ,
当 时, 取得最大值 .
7.垂直于直线 且与圆 相切于第Ⅰ象限的直线方程是
A. B.
C. D.
【解析】直接法可设所求的直线方程为: ,再利用圆心到直线的距离等于 ,求得 .选A.
8.设 为直线, 是两个不同的平面,下列命题中正确的是
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 , ,则
【解析】借助长方体判断,可知B正确..
分组(重量)
频数(个)
5
10
20
15
(1)根据频数分布表计算苹果的重量在 的频率;
(2)用分层抽样的方法从重量在 和 的苹果中共抽取4个,其中重量在 的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在 和 中各有1个的概率.
【解析】(1)苹果的重量在 的频率为 ;
(2)重量在 的有 个;
【解析】:考查三角函数诱导公式, ,选C.
5.执行如图1所示的程序框图,若输入 的值为3,则输出 的值是
A.1 B.2 C.4 D.7
【解析】根据程序框图,s=1+0+1+2=4.选C.
6.某三棱锥的三视图如图2所示,则该三棱锥的体积是
A. B. C. D.
【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则 ,选B.
(ii)当 ,即 时,令

2013年高考数学广东卷(文科)超详细解析

2013年高考数学广东卷(文科)超详细解析

图 2俯视图侧视图正视图2013年普通高等学校招生全国统一考试(广东卷)数学(文科A 卷)解析本试卷共4页,21小题,满分150分.考试用时120分钟. 锥体的体积公式:13V Sh =.其中S 表示锥体的底面积,h 表示锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T = A .{0} B .{0,2} C .{2,0}- D .{2,0,2}- 【品题】:先解两个一元二次方程,再取交集,选A ,5分到手,妙! 2.函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞ 【品题】:对数真数大于零,分母不等于零,目测C ! 3.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 A .2 B .3 C .4 D .5【品题】:复数的运算、复数相等,目测4,3x y ==-,模为5,选D. 4.已知51sin()25πα+=,那么cos α= A .25- B .15- C .15 D .25【品题】:考查三角函数诱导公式,51sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭,选C. 5.执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是 A .1 B .2 C .4 D .7 【品题】选C.本题只需细心按程序框图运行一下即可. 6.某三棱锥的三视图如图2所示,则该三棱锥的体积是 A .16 B .13 C .23D .1 【品题】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则11=112=323V ⋅⋅⋅⋅,选B. 图 17.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是A .0x y +=B .10x y ++=C .10x y +-=D .0x y +=【品题】本题考查直线与圆的位置关系,直接由选项判断很快,圆心到直线的距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求的直线方程为:()0y x k k =-+>,再利用圆心到直线的距离等于1r =,求得k =8.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 【品题】基础题,在脑海里把线面可能性一想,就知道选B 了. 9.已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是 A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x【品题】基础题,1,2,c a b === D.10.设 a 是已知的平面向量且≠0 a ,关于向量a 的分解,有如下四个命题:①给定向量 b ,总存在向量 c ,使=+a b c ;②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+a b c ;上述命题中的向量 b , c 和a 在同一平面内且两两不共线,则真命题的个数是A .1B .2C .3D .4【品题】本题是选择题中的压轴题,主要考查平面向量的基本定理和向量加法的三角形法则. 利用向量加法的三角形法则,易的①是对的;利用平面向量的基本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须=+λμλμ+≥b c a ,所以④是假命题.综上,本题选B.平面向量的基本定理考前还强调过,不懂学生做得如何.【品味选择题】文科选择题答案:ACDCC BABDB.选择题3322再次出现!今年的选择题很基础,希望以后高考年年出基础题!二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++= 【品题】这题相当于直接给出答案了1512.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a = . 【品题】本题考查切线方程、方程的思想.依题意''1112,210,2x y ax y a a x ==-=-=∴= 13.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是.【品题】画出可行域如图,最优解为()1,4,故填 5 ; (二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为 .【品题】本题考了备考弱点.讲参数方程的时候,参数的意义要理解清楚.先化成直角坐标方程()2211x y -+=,易的则曲线C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩ (θ为参数) 15.(几何证明选讲选做题)如图3,在矩形ABCD中,AB =3BC =,BE AC ⊥,垂足为E ,则ED = . 【品题】本题对数值要敏感,由AB =3BC =,可知60BAC ∠=从而302AE CAD =∠= ,2DE ==. 【品味填空题】选做题还是难了点,比理科还难些.图 3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【解析】(1)133124f ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,4sin 5θ=-,1cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎫∴--=+=- ⎪ ⎪⎪⎝⎭⎝⎭⎭.【品题】这个题实在是太简单,两角差的余弦公式不要记错了.17.(本小题满分13分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 【解析】(1)苹果的重量在[)95,90的频率为20=0.450; (2)重量在[)85,80的有54=15+15⋅个; (3)设这4个苹果中[)85,80分段的为1,[)100,95分段的为2、3、4,从中任取两个,可能的情况有:图 4(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在[)85,80和[)100,95中各有1个的事件为A ,则事件A 包含有(1,2)(1,3)(1,4)共3种,所以31(A)62P ==. 【品题】这个基础题,我只强调:注意格式!18.(本小题满分13分)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F V -【解析】(1)在等边三角形ABC 中,AD AE =AD AEDB EC∴=,在折叠后的三棱锥A BCF -中 也成立,//DE BC ∴ ,DE ⊄ 平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BFCF ==. 在三棱锥A BCF -中,2BC =,222BC BF CF CF BF ∴=+∴⊥②BF CF F CF ABF ⋂=∴⊥ 平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.111111132323323324F DEG E DFG V V DG FG GF --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎝⎭【品题】这个题是入门级的题,除了立体几何的内容,还考查了平行线分线段成比例这个平面几何的内容.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列. (1)证明:2a =(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++< . 【解析】(1)当1n =时,22122145,45a a a a =-=+,20n a a >∴=(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=-- ()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =, 由(1)可知,212145=4,1a a a =-∴=21312a a -=-= ∴ {}n a 是首项11a =,公差2d =的等差数列.∴数列{}n a 的通项公式为21n a n =-. (3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+ 11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦ 【品题】本题考查很常规,第(1)(2)两问是已知n S 求n a ,{}n a 是等差数列,第(3)问只需裂项求和即可,估计不少学生猜出通项公式,跳过第(2)问,作出第(3)问.本题易错点在分成1n =,2n ≥来做后,不会求1a ,没有证明1a 也满足通项公式.20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (3) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【解析】(1)依题意2d ==,解得1c =(负根舍去) ∴抛物线C 的方程为24x y =;(2)设点11(,)A x y ,22(,)B x y ,),(00y x P ,由24x y =,即214y x ,=得y '=12x . ∴抛物线C 在点A 处的切线PA 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=. ∵21141x y =, ∴112y x x y -= . ∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① 同理, 20202y x x y -=. ② 综合①、②得,点1122(,),(,)A x y B x y 的坐标都满足方程 y x xy -=002. ∵经过1122(,),(,)A x y B x y 两点的直线是唯一的, ∴直线AB 的方程为y x xy -=002,即00220x x y y --=; (3)由抛物线的定义可知121,1AF y BF y =+=+, 所以()()121212111AF BF y y y y y y ⋅=++=+++联立2004220x y x x y y ⎧=⎨--=⎩,消去x 得()22200020y y x y y +-+=,2212001202,y y x y y y y ∴+=-= 0020x y --=()222200000021=221AF BF y y x y y y ∴⋅=-++-+++2200019=22+5=2+22y y y ⎛⎫++ ⎪⎝⎭∴当012y =-时,AF BF ⋅取得最小值为92【品题】2013广州模直接命中了这一题,广一模20题解法2正是本科第(2)问的解法,并且广一模大题结构和高考完全一致. 紫霞仙子:我的意中人是个盖世英雄,有一天他会踩着七色云彩来娶我,我只猜中了前头,可是我却猜不中这结局……形容这次高考,妙极!21.(本小题满分14分)设函数x kx x x f +-=23)( ()R k ∈. (1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M . 【解析】:()'2321fx x kx =-+(1)当1k =时()'2321,41280fx x x =-+∆=-=-<()'0f x ∴>,()f x 在R 上单调递增.(2)当0k <时,()'2321fx x kx =-+,其开口向上,对称轴3kx =,且过()01,(i)当(241240k k k ∆=-=≤,即0k ≤<时,()'0f x ≥,()f x 在[],k k -上单调递增,从而当x k =时,()f x 取得最小值()m f k k == , 当x k =-时,()f x 取得最大值()3332M f k k k k k k =-=---=--.(ii)当(241240k k k ∆=-=>,即k <()'23210f x x kx =-+=解得:12x x ==,注意到210k x x <<<,(注:可用韦达定理判断1213x x ⋅=,1223kx x k +=>,从而210k x x <<<;或者由对称结合图像判断) ()(){}()(){}12min ,,max ,m f k f x M f k f x ∴==-()()()()32211111110f x f k x kx x k x k x -=-+-=-+>()f x ∴的最小值()m f k k ==,()()()()()232322222222=[1]0f x f k x kx x k k k k x k x k k --=-+---⋅-+-++<()f x ∴的最大值()32M f k k k =-=--综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=--解法2(2)当0k <时,对[],x k k ∀∈-,都有32332()()(1)()0f x f k x kx x k k k x x k -=-+-+-=+-≥,故()()f x f k ≥32332222()()()(221)()[()1]0f x f k x kx x k k k x k x kx k x k x k k --=-++++=+-++=+-++≤故()()f x f k ≤-,而 ()0f k k =<,3()20f k k k -=--> 所以 3max ()()2f x f k k k =-=--,min ()()f x f k k ==【品题】:看着容易,做着难!常规解法完成后,发现不用分类讨论,奇思妙解也出现了:结合图像感知x k = 时最小,x k =-时最大,只需证()()()f k f x f k ≤≤-即可,避免分类讨论.本题第二问关键在求最大值,需要因式分解比较深的功力,这也正符合了2012年高考年报的“对中学教学的要求——重视高一教学与初中课堂衔接课”.。

2013年广东高考数学文科试题(试卷分析与解析版答案)

2013年广东高考数学文科试题(试卷分析与解析版答案)

2013年广东高考数学文科解析版本试卷共4页,21小题,满分150分.考试用时120分钟. 锥体的体积公式:13V Sh =.其中S 表示锥体的底面积,h 表示锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T = A .{0} B .{0,2} C .{2,0}- D .{2,0,2}- 【解析】:先解两个一元二次方程,再取交集,选A ,5分到手,妙! 2.函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞ 【解析】:对数真数大于零,分母不等于零,目测C ! 3.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 A .2 B .3 C .4 D .5【解析】:复数的运算、复数相等,目测4,3x y ==-,模为5,选D . 4.已知51sin()25πα+=,那么cos α= A .25- B .15- C .15 D .25【解析】:考查三角函数诱导公式,51sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭,选C. 5.执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是 A .1 B .2 C .4 D .7 【解析】选C.本题只需细心按程序框图运行一下即可. 6.某三棱锥的三视图如图2所示,则该三棱锥的体积是 A .16 B .13 C .23D .图 1是否结束输出s i=i +1i ≤ n i=1, s=1输入n 开始s=s+(i-1)图 21俯视图侧视图正视图21【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则111=112=323V ⋅⋅⋅⋅,选B.7.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是 A .20x y +-= B .10x y ++= C .10x y +-= D .20x y ++=【解析】本题考查直线与圆的位置关系,直接由选项判断很快,圆心到直线的距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求的直线方程为:()0y x k k =-+>,再利用圆心到直线的距离等于1r =,求得2k =.8.设为直线,,αβ是两个不同的平面,下列命题中正确的是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 【解析】基础题,在脑海里把线面可能性一想,就知道选B 了. 9.已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是 A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x【解析】基础题,1,2,3c a b ===,选D.10.设 a 是已知的平面向量且≠0 a ,关于向量a 的分解,有如下四个命题:①给定向量 b ,总存在向量 c ,使=+a b c ;②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+a b c ;上述命题中的向量 b , c 和a 在同一平面内且两两不共线,则真命题的个数是A .1B .2C .3D .4【解析】本题是选择题中的压轴题,主要考查平面向量的基本定理和向量加法的三角形法则. 利用向量加法的三角形法则,易的①是对的;利用平面向量的基本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须=+λμλμ+≥b c a ,所以④是假命题.综上,本题选B.平面向量的基本定理考前还强调过,不懂学生做得如何.【品味选择题】文科选择题答案:ACDCC BABDB.选择题3322再次出现!今年的选择题很基础,希望以后高考年年出基础题!二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.设数列{}n a 是首项为,公比为2-的等比数列,则1234||||a a a a +++= 【解析】这题相当于直接给出答案了1512.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a = . 【解析】本题考查切线方程、方程的思想.依题意''1112,210,2x y ax y a a x ==-=-=∴= 13.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是.【解析】画出可行域如图,最优解为()1,4,故填 5 ; (二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为 .【解析】本题考了备考弱点.讲参数方程的时候,参数的意义要理解清楚.先化成直角坐标方程()2211x y -+=,易的则曲线C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩ (θ为参数)15.(几何证明选讲选做题)如图3,在矩形ABCD 中,3,AB =3BC =,BE AC ⊥,垂足为E ,则ED = . 【解析】本题对数值要敏感,由3,AB =3BC =,可知60BAC ∠=ECB从而3,302AE CAD =∠= , 22212cos302DE AE AD AE AD =+-⋅⋅=. 【品味填空题】选做题还是难了点,比理科还难些.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数()2cos ,12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【解析】(1)2cos 2cos 133124f ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,24sin 1cos 5θθ=--=-,1=2cos 2cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎛⎫∴--=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【解析】这个题实在是太简单,两角差的余弦公式不要记错了.17.(本小题满分13分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85) [85,90)[90,95)[95,100)频数(个)5102015(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【解析】(1)苹果的重量在[)95,90的频率为20=0.450; (2)重量在[)85,80的有54=15+15⋅个; (3)设这4个苹果中[)85,80分段的为1,[)100,95分段的为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在[)85,80和[)100,95中各有1个的事件为A ,则事件A 包含有(1,2)(1,3)(1,4)共3种,所以31(A)62P ==. 【解析】这个基础题,我只强调:注意格式!18.(本小题满分13分)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中22BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ;(3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.【解析】(1)在等边三角形ABC 中,AD AE =AD AEDB EC∴=,在折叠后的三棱锥A BCF -中 也成立,//DE BC ∴ ,DE ⊄ 平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BF CF ==. 在三棱锥A BCF -中,22BC =,222BC BF CF CF BF ∴=+∴⊥② 图 4GEF ABCD图 5DGBFCAEBF CF F CF ABF ⋂=∴⊥ 平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.11111131332323323324F DEG E DFGV V DG FG GF --⎛⎫∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎪ ⎪⎝⎭【解析】这个题是入门级的题,除了立体几何的内容,还考查了平行线分线段成比例这个平面几何的内容.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++< . 【解析】(1)当1n =时,22122145,45a a a a =-=+,21045n a a a >∴=+(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =, 由(1)可知,212145=4,1a a a =-∴=21312a a -=-= ∴ {}n a 是首项11a =,公差2d =的等差数列.∴数列{}n a 的通项公式为21n a n =-. (3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦ 【解析】本题考查很常规,第(1)(2)两问是已知n S 求n a ,{}n a 是等差数列,第(3)问只需裂项求和即可,估计不少学生猜出通项公式,跳过第(2)问,作出第(3)问.本题易错点在分成1n =,2n ≥来做后,不会求1a ,没有证明1a 也满足通项公式.20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为322.设P 为直线上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线上的定点时,求直线AB 的方程; (3) 当点P 在直线上移动时,求AF BF ⋅的最小值.【解析】(1)依题意023222c d --==,解得1c =(负根舍去) ∴抛物线C 的方程为24x y =;(2)设点11(,)A x y ,22(,)B x y ,),(00y x P ,由24x y =,即214y x ,=得y '=12x . ∴抛物线C 在点A 处的切线PA 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=. ∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① 同理, 20202y x x y -=. ② 综合①、②得,点1122(,),(,)A x y B x y 的坐标都满足方程 y x xy -=002. ∵经过1122(,),(,)A x y B x y 两点的直线是唯一的, ∴直线AB 的方程为y x xy -=002,即00220x x y y --=; (3)由抛物线的定义可知121,1AF y BF y =+=+, 所以()()121212111AF BF y y y y y y ⋅=++=+++联立2004220x y x x y y ⎧=⎨--=⎩,消去x 得()22200020y y x y y +-+=, 2212001202,y y x y y y y ∴+=-= 0020x y --=()222200000021=221AF BF y y x y y y ∴⋅=-++-+++220019=22+5=2+22y y y ⎛⎫++ ⎪⎝⎭∴当012y =-时,AF BF ⋅取得最小值为92【解析】2013广州模直接命中了这一题,广一模20题解法2正是本科第(2)问的解法,并且广一模大题结构和高考完全一致. 紫霞仙子:我的意中人是个盖世英雄,有一天他会踩着七色云彩来娶我,我只猜中了前头,可是我却猜不中这结局……形容这次高考,妙极!21.(本小题满分14分)设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M . 【解析】:()'2321fx x kx =-+(1)当1k =时()'2321,41280fx x x =-+∆=-=-<()'0f x ∴>,()f x 在R 上单调递增.(2)当0k <时,()'2321f x x kx =-+,其开口向上,对称轴3kx =,且过()01,(i )当()()24124330k k k ∆=-=+-≤,即30k -≤<时,()'0f x ≥,()f x 在[],k k -上单调递增,从而当x k =时,()f x 取得最小值()m f k k == , 当x k =-时,()f x 取得最大值()3332M f k k k k k k =-=---=--.(ii )当()()24124330k k k ∆=-=+->,即3k <-时,令()'23210f x x kx =-+=解得:221233,33k k k k x x +---==,注意到210k x x <<<,(注:可用韦达定理判断1213x x ⋅=,1223kx x k +=>,从而210k x x <<<;或者由对称结合图像判断)()(){}()(){}12min ,,max ,m f k f x M f k f x ∴==-()()()()32211111110f x f k x kx x k x k x -=-+-=-+>()f x ∴的最小值()m f k k ==,()()()()()232322222222=[1]0f x f k x kx x k k k k x k x k k --=-+---⋅-+-++<()f x ∴的最大值()32M f k k k =-=--综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=--解法2(2)当0k <时,对[],x k k ∀∈-,都有32332()()(1)()0f x f k x kx x k k k x x k -=-+-+-=+-≥,故()()f x f k ≥-kk3k x =32332222()()()(221)()[()1]0f x f k x kx x k k k x k x kx k x k x k k --=-++++=+-++=+-++≤故()()f x f k ≤-,而 ()0f k k =<,3()20f k k k -=-->所以 3max ()()2f x f k k k =-=--,min ()()f x f k k ==【解析】:看着容易,做着难!常规解法完成后,发现不用分类讨论,奇思妙解也出现了:结合图像感知x k = 时最小,x k =-时最大,只需证()()()f k f x f k ≤≤-即可,避免分类讨论.本题第二问关键在求最大值,需要因式分解比较深的功力,这也正符合了2012年高考年报的“对中学教学的要求——重视高一教学与初中课堂衔接课”.2013高考数学试卷分析与专家点评(广东卷)(文科)2013年广东高考数学试卷,遵循《2013年普通高等学校招生全国统一考试(广东卷)数学(文科)大纲》的规定:贯彻了有利于中学数学教学与有利于高校选拔人才相结合的原则,贯彻了“总体保持稳定,深化能力立意,积极改革创新”的指导思想.试卷立足现行高中教材,在注重对基础知识和基本方法全面考查的同时,又突出了对数学思想、数学核心能力的综合考查.试卷具有以下鲜明特点: 1.题型稳定,保持风格2013年高考数学试卷(广东卷文科)和2012年高考数学试卷(广东卷文科)犹如双胞胎,其考查的知识内容、题型和整体难易程度与2012年基本一致,保持了高考命题的连续性、稳定性. 2.注重基础,重视教材试卷以考查考生对“双基”的掌握情况为原则,重视基础,紧扣教材,回归课本,无偏题、怪题,这对中学数学教学有很好的导向作用,让战斗在高三第一线的师生从满天飞舞的资料与题海中解脱出来,做到求真务实,抓纲务本.整套试卷中有不少题目可以在教材上找到原型.很多题目考查的都是现行高中教材中最基本且重要的数学知识,所用到的方法也是通性通法,这样考查既体现了高考的公平、公正,也对中学数学教学和复习回归课本,重视对基础知识的掌握起到好的导向作用,这对引导中学数学教学用好教材有一定的助推作用.3.突出重点,考查全面2013年数学试卷所考查知识点的大致分布如下表.《考试说明》所指出的三角函数、平面向量、圆锥曲线、立体几何、概率与统计、数列、函数与导数等是中学数学的主干知识,其中的核心模块概率与统计、三角函数、立体几何、圆锥曲线、数列、函数与导数在今年试卷的解答题部分均得到较高.的体现4.突出能力,稳中求变通览今年的数学试卷,数学思想贯穿始终.整套试卷对函数与方程思想、数形结合思想、分类讨论思想、化归与转化思想以及思维能力、运算能力、空间想象能力都进行了全方位的考查.今年的数学试题在题型结构、题量、各题型分值与内容分布等方面与往年相比稳中有变.整套试卷的试题既保持了整体的难易梯度,又增加了一定的层次感.最后三题压轴,每题的两问之间的难易梯度不大,但是整体难度略有增加.总之,2013年高考数学试卷从数学基础知识、数学思维方法和学科能力出发,多层次、多角度、多视点地考查了考生的数学素养和学习潜能,是一份难得的好试卷.11。

2013广州二模文科数学试卷及答案详细解答

2013广州二模文科数学试卷及答案详细解答

试卷类型:B2013年广州市普通高中毕业班综合测试(二)数学(文科)2013.4 本试卷共4页,21小题, 满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。

用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V31=,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“x ∃∈R ,2450x x ++≤”的否定是A .x ∃∈R ,2450xx ++> B .x ∃∈R ,2450x x ++≤ C .x ∀∈R ,2450x x ++> D .x ∀∈R ,2450x x ++≤2.如果函数()()ln 2f x x a =-+的定义域为(),1-∞,则实数a 的值为A .2-B .1-C .1D .2 3.对于任意向量a 、b 、c ,下列命题中正确的是 A .= a ba b B .+=+a b a b C .()()= a b c a b c D .2= a a a 4.若直线()1y kx =+与圆()2211x y ++=相交于A 、B 两点,则AB 的值为A .2B .1C .12D .与k 有关的数值5.若1i -(i 是虚数单位)是关于x 的方程220xpx q ++=(p q ∈R 、)的一个解,则p q +=A .3-B .1-C .1D .36.执行如图1所示的程序框图,输出的S 值为A .225B .196C .169D .144(注:框图中的赋值符号“=”也可以写成 “←”或“﹕=”)7.若函数cos y xω=()*ω∈N 的一个对称中心是06π⎛⎫ ⎪⎝⎭,,则ω的最小值为 A .2 B .3 C .6 D .98.一个圆锥的正(主)视图及其尺寸如图2所示.若一个平行于 圆锥底面的平面将此圆锥截成体积之比为1﹕7的上、下两 部分,则截面的面积为A .14π B .π C .94π D .4π9.已知01a <<,01x y <<≤,且log log 1aa x y = ,那么xy 的取值范围是A .(20a ⎤⎦, B .(]0a , C .10a ⎛⎤ ⎥⎝⎦,D .210a ⎛⎤ ⎥⎝⎦,10.某校高三(1)班50个学生选择选修模块课程,他们在A 、B 、C 三个模块中进行选择,且至少需要选择1个模块,具体模块选择的情况如下表:则三个模块都选择的学生人数是A .7B .6C .5D .4图2二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.如图3,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M (图中白色部分).若在此三角形内随机取一点P ,则点P 落在区域M 内的概率为 . 12.已知α为锐角,且3cos 45απ⎛⎫+= ⎪⎝⎭,则 sin α= . 13.数列}{n a 的项是由1或2构成,且首项为1,在第k 个1和第1k +个1之间有21k -个2,即数列}{n a 为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列}{n a 的前n 项和为n S ,则20S = ;2013S = .(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)在△ABC 中,D 是边AC 的中点,点E 在线段BD 上,且满足13BE BD =,延长AE 交BC 于点F ,则BF FC 的值为 . 15.(坐标系与参数方程选做题)在极坐标系中,已知点1,2A π⎛⎫⎪⎝⎭,点P 是曲线2sin 4cos ρθθ=上任一点,设点P 到直线cos 10ρθ+=的距离为d ,则P A d+的最小值为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:(1)用上述样本数据估计高三(1)班学生视力的平均值;(2)已知其余五个班学生视力的平均值分别为4.3、4.4、4.5、4.6、4.8.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于...0.2的概率.17.(本小题满分12分)某单位有A 、B 、C 三个工作点,需要建立一个公共无线网络发射点O ,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为80AB =m ,70BC =m ,50CA =m .假定A 、B 、C 、O 四点在同一平面上. (1)求BAC ∠的大小;(2)求点O 到直线BC 的距离.图318.(本小题满分14分)如图4, 在三棱锥P ABC -中,90PAB PAC ACB ∠=∠=∠=. (1)求证:平面PBC ⊥平面PAC ;(2)若1PA =,=2AB ,当三棱锥P ABC -的体积最大时, 求BC 的长. 19.(本小题满分14分)在等差数列{}n a 中,125a a +=,37a =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S .(1)求数列{}n a 的通项公式;(2)是否存在正整数m 、n ,且1m n <<,使得1S 、m S 、n S 成等比数列?若存在,求出所有符合条件的m 、n 的值;若不存在,请说明理由.20.(本小题满分14分)已知函数2()2ln f x x a x =-()0a a ∈≠R 且.(1)若()f x 在定义域上为增函数,求实数a 的取值范围;(2)求函数()f x 在区间[1,2]上的最小值.21.(本小题满分14分)经过点()0,1F且与直线1y =-相切的动圆的圆心轨迹为M .点A 、D 在轨迹M 上,且关于y 轴对称,过线段AD (两端点除外)上的任意一点作直线l ,使直线l 与轨迹M 在点D 处的切线平行,设直线l 与轨迹M 交于点B 、C . (1)求轨迹M 的方程;(2)证明:BAD CAD ∠=∠; (3)若点D 到直线AB AD ,且△ABC 的面积为20,求直线BC 的方程.2013年广州市普通高中毕业班综合测试(二)PAB图4数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题查基本知识和基本运算,体现选择性.共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.第13题第一个空2分,第二个空3分.11.14π-12.10 13.36;3981 14.1415三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题主要考查随机抽样、平均数、古典概型等基础知识,考查数据处理能力,本小题满分12分) 解:(1)高三文科(1)班抽取的8名学生视力的平均值为4.42 4.62 4.82 4.95.14.78⨯+⨯+⨯++=.据此估计高三文科(1)班学生视力的平均值约为4.7.………………………………………………3分(2)因为高三文科六个班学生视力的平均值分别为4.3、4.4、4.5、4.6、4.7、4.8,所以任意抽取两个文科班学生视力的平均值数对有()4.34.4,,()4.34.5,,()4.34.6,,()4.34.7,, ()4.34.8,,()4.44.5,,()4.44.6,,()4.44.7,,()4.44.8,,()4.54.6,,()4.54.7,,()4.54.8,, ()4.64.7,,()4.64.8,,()4.74.8,,共15种情形.…………………………………………………7分其中抽取的两个班学生视力的平均值之差的绝对值不小于0.2的有()4.34.5,,()4.34.6,,()4.34.7,, ()4.34.8,,()4.44.6,,()4.44.7,,()4.44.8,,()4.54.7,,()4.54.8,,()4.64.8,,共10种.……………………10分所以抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率为102=153. ………………12分 17.(本小题主要考查解三角形等基础知识,考查正弦定理与余弦定理的应用,本小题满分12分)解:(1)在△ABC 中,因为80AB =m ,70BC =m ,50CA =m ,由余弦定理得222c o s 2A B A C BCBAC AB AC+-∠=⨯⨯ ………………………………………………………2分2228050701280502+-==⨯⨯. ……………………………………………………3分因为BAC∠为△ABC的内角,所以3BAC π∠=.……………………………………………………4分 (2)方法1:因为发射点O 到A 、B 、C 三个工作点的距离相等,所以点O 为△ABC 外接圆的圆心.……………………………………………………………………5分设外接圆的半径为R ,在△ABC 中,由正弦定理得2sin BCR A=, ……………………………………………………………7分 因为70BC =,由(1)知3A π=,所以sin A .所以23R ==,即3R =.…………………8分过点O 作边BC 的垂线,垂足为D ,…………………………9分在△OBD中,3OB R ==,703522BC BD ===, 所以OD………………………………………………………11分=所以点O到直线BC的距离为3m.……………………………………………………………12分方法2:因为发射点O到A、B、C三个工作点的距离相等,所以点O为△ABC外接圆的圆心.……………………5分连结OB,OC,过点O作边BC的垂线,垂足为D,…………………6分由(1)知3BACπ∠=,所以3BOC2π∠=.所以3B Oπ∠=.…………………………………………………………………………………………9分在Rt△BOD中,703522BCBD===,所以35 t aBDODBOD===∠.…………………………………………………………11分所以点O到直线BC的距离为3m.……………………………………………………………12分18.(本小题主要考查空间直线与平面的位置关系和几何体的体积计算等基础知识,考查空间想象能力等,本小题满分14分)(1)证明:因为90PAB PAC∠=∠= ,所以P A A⊥,PA AC⊥.………………………………1分因为A B=,所以PA⊥平面ABC.…………………………………………………………2分因为BC⊂平面ABC,所以BC PA ⊥.………………………………………………………………3分因为90ACB ∠=,所以B ⊥.……………………………………………………………………4分 因为P A = ,所以BC ⊥平面PAC .…………………………………………………………5分因为BC ⊂平面PBC,所以平面PBC ⊥平面PAC .………………………………………………6分(2)方法1:由已知及(1)所证可知,PA ⊥平面ABC ,BC CA ⊥, 所以PA 是三棱锥P ABC -的高.……………………………7分 因为1PA =,=2AB ,设BC x =()02x <<,……………8分所以AC ==.…………9分 因为13P ABC ABC V S PA -=⨯△16=………………………………………………………………………………10分=()224162x x +-≤⨯…………………………………………………………………………11分 13=.…………………………………………………………………………………………12分当且仅当224x x =-,即x =时等号成立.………………………………………………………13分所以当三棱锥P ABC-的体积最大时,2=BC .…………………………………………………14分方法2:由已知及(1)所证可知,PA ⊥平面ABC , 所以PA是三棱锥P A-的高.………………………………………………………………………7分因为90ACB ∠=,设PABABC θ∠=02πθ⎛⎫<< ⎪⎝⎭,……………………………………………………8分 则cos 2cos BC AB θθ==,sin 2sin AC AB θθ==.……………………………………………9分所以112cos 2sin sin 222ABC S BC AC θθθ=⨯⨯=⨯⨯=△.………………………………………10分所以13P ABC ABC V S PA -=⨯△1sin 23θ=. ………………………………………………………………………………11分 因为02πθ<<, 所以当4πθ=,P ABCV -有最大值13. …………………………………………………………………12分 此时2c 4BC π==.………………………………………………………………………………13分所以当三棱锥P ABC-的体积最大时,2=BC .…………………………………………………14分19.(本小题主要考查等差数列、裂项法求和等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分) 解:(1)设等差数列{}n a 的公差为d ,因为1235,7.a a a +=⎧⎨=⎩即1125,27.a d a d +=⎧⎨+=⎩………………………………………………………………………2分 解得11,3.a d =⎧⎨=⎩ ………………………………………………………………………………………………3分所以()()1113132n a a n d n n =+-=+-=-.所以数列{}n a 的通项公式为32n a n =-*()n ∈N . …………………………………………………4分(2)因为()()111111323133231n n a a n n n n +⎛⎫==-⎪-+-+⎝⎭, ……………………………………………5分所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和1223341111111n n n n n S a a a a a a a a a a -+=+++++1111111111*********737103353233231n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11133131nn n ⎛⎫=-= ⎪++⎝⎭.……………………………………………………………………………7分假设存在正整数m 、n ,且1m n <<,使得1S 、m S 、n S 成等比数列, 则21m n S S S =.……………………………………………………………………………………………8分 即2131431m n m n ⎛⎫=⨯ ⎪++⎝⎭.………………………………………………………………………………9分所以224361m n m m =-++. 因为0n >,所以23610m m -++>.即23610mm --<.因为1m >,所以1133m <<+<. 因为*m ∈N ,所以2m =.…………………………………………………………12分此时22416361m n m m ==-++.……………………………………………………13分 所以存在满足题意的正整数m 、n ,且只有一组解,即2m =,16n =. ………………………14分20.(本小题主要考查函数的单调性和最值等基础知识,考查数形结合思想、分类讨论思想和运算求解能力等,本小题满分14分)数学资源网 解:(1)因为函数2()2ln f x x a x =-,所以函数()f x 的定义域为(0,)+∞.……………………………………………………1分且2()2af x x x'=-.…………………………………………………………………2分 若()f x 在定义域上是增函数,则2()20af x x x'=-≥在(0,)+∞上恒成立.…………………………………………3分 即2a x ≤在(0,)+∞上恒成立,所以0a ≤. ………………………………………4分 由已知0a ≠,所以实数a 的取值范围为(),0-∞.……………………………………5分(2)①若0a <,由(1)知,函数2()2ln f x x a x =-在区间[1,2]上为增函数.所以函数()f x 在区间[1,2]上的最小值为(1)1f =.…………………………6分②若0a >,由于(2222()x x x a f x x x-'==, 所以函数()f x在区间(上为减函数,在区间)+∞上为增函数.……7分1≤,即01a <≤时,)[1,2]⊂+∞,函数2()2ln f x x a x =-在区间[1,2]上为增函数,所以函数()f x 在[1,2]的最小值为(1)1f =.…………………………………9分(ⅱ)若12<≤,即14a <≤时,函数2()2ln f x x a x =-在区间(1为减函数,在)上为增函数,所以函数()f x 在区间[1,2]上的最小值为ln fa a a =-.…………………11分2>,即4a >时,([1,2]⊂,函数()f x 在区间[1,2]上为减函数,数学资源网所以函数()f x 在[1,2]的最小值为(2)42ln2f a =-. ………………………13分综上所述,当1a ≤且0a ≠时,函数()f x 在区间[1,2]上的最小值为(1)1f =.当14a <≤时,函数()f x 在区间[1,2]的最小值为ln fa a a =-.当4a >时,函数()f x 在区间[1,2上的最小值为(2)42ln2f a =-.………………14分21.(本小题主要考查动点的轨迹和直线与圆锥曲线的位置关系、导数的几何意义等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分) 解:(1)方法1:设动圆圆心为(),x y1y =+.………1分整理,得24x y =.所以轨迹M 的方程为24x y =.………………………………2分方法2:设动圆圆心为P ,依题意得点P 到定点()0,1F的距离和点P 到定直线1y =-的距离相等,根据抛物线的定义可知,动点P 的轨迹是抛物线.………………………………1分且其中定点()0,1F为焦点,定直线1y =-为准线.所以动圆圆心P 的轨迹M 的方程为24x y =.…………………………………2分(2)由(1)得24xy =,即214y x =,则12y x '=.设点2001,4D x x ⎛⎫⎪⎝⎭,由导数的几何意义知,直线l 的斜率为012BC k x =.…………3分由题意知点2001,4A x x ⎛⎫- ⎪⎝⎭.设点2111,4C x x ⎛⎫ ⎪⎝⎭,2221,4B x x ⎛⎫⎪⎝⎭,则2212120121114442BCx x x x k x x x -+===-, A B CDOxylE即1202x x x +=.……………4分因为2210101011444ACx x x x k x x --==+,2220202011444AB x x x x k x x --==+.……………5分 由于()120102020444AC AB x x x x x x x k k +---+=+==,即AC AB k k =-.………6分 所以BAD CAD ∠=∠.……………………………………………………………7分 (3)方法1:由点D 到ABAD ,可知BAD ∠45= .………………8分 不妨设点C 在AD 上方(如图),即21x x <,直线AB 的方程为:()20014y x x x -=-+. 由()20021,44.y x x x x y ⎧-=-+⎪⎨⎪=⎩ 解得点B 的坐标为()20014,44x x ⎛⎫-- ⎪⎝⎭.……………………………………………10分 所以)()00042AB x x ---=-.由(2)知C AD ∠=∠45=,同理可得02AC =+.………………………………11分所以△ABC的面积200012244202S x =⨯-⨯+=-=, 解得03x =±.……………………………………………………………………………………………12分当03x =时,点B 的坐标为11,4⎛⎫- ⎪⎝⎭,32BC k =,直线BC的方程为()13142y x -=+,即64x y -+=.…………………………………………13分当03x =-时,点B 的坐标为497,4⎛⎫- ⎪⎝⎭,32BC k =-,直线BC的方程为()493742y x -=-+,即64x y +-=. ……………………………………14分方法2:由点D 到AB 的距离等于AD ,可知BAD ∠45= .…………………………………8分数学资源网由(2)知CAD BAD ∠=∠45= ,所以CAB ∠90= ,即AC AB ⊥.由(2)知104ACx x k -=,204AB x x k -=. 所以1020144AC AB x x x x k k --=⨯=-. 即()()102016x x x x --=-. ①由(2)知1202x x x +=. ②不妨设点C 在AD 上方(如图),即21x x <,由①、②解得10204,4.x x x x =+⎧⎨=-⎩…………………………10分 因为02AB =-,同理02AC =+. …………………………………………………………11分以下同方法1.。

【解析版】广东省汕头市2013届高三第二次模拟考试数学(文)试题

【解析版】广东省汕头市2013届高三第二次模拟考试数学(文)试题

2013年广东省汕头市高考数学二模试卷(文科)
一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
2
.D
是纯虚数,∴
3.(5分)(2010•湖北)已知函数,则=()




2
根据两条直线垂直的性质求得所求的直线的斜率等于
,故所求的直线的斜率等于,
2=
6.(5分)(2013•汕头二模)如图,正六边形ABCDEF中,=()
.D 根据正六边形对边平行且相等的性质,我们可得=,=
本题考查的知识点是向量的加法及其几何意义,其中根据正六边形的性质得到=,=是解
7.(5分)(2013•汕头二模)在△ABC中,内角A,B,C对应的边分别是a,b,c,已知,△ABC的面积,则△ABC的周长为()
的面积==
a+b==4
8.(5分)(2013•汕头二模)如图,某几何体的主视图与左视图都是边长为1的正方形,且其体积为.则该几何体的俯视图可以是()
..D
根据主视图与左视图的形状和几何体的体积是,,
解:根据主视图与左视图的形状和几何体的体积是
知底面积是,。

2013年广东省高考数学试卷(文科)答案与解析

2013年广东省高考数学试卷(文科)答案与解析

2013年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•广东)设集合S={x|x2+2x=0,x∈R},T={x|x2﹣2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{﹣2,0} D.{﹣2,0,2}考点:交集及其运算.专题:集合.分析:根据题意,分析可得,S、T分别表示二次方程的解集,化简S、T,进而求其交集可得答案.解答:解:分析可得,S为方程x2+2x=0的解集,则S={x|x2+2x=0}={0,﹣2},T为方程x2﹣2x=0的解集,则T={x|x2﹣2x=0}={0,2},故集合S∩T={0},故选A.点评:本题考查集合的交集运算,首先分析集合的元素,可得集合的意义,再求集合的交集.2.(5分)(2013•广东)函数的定义域是()A.(﹣1,+∞)B.[﹣1,+∞)C.(﹣1,1)∪(1,D.[﹣1,1)∪(1,+∞)+∞)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:依题意可知要使函数有意义需要x+1>0且x﹣1≠0,进而可求得x的范围.解答:解:要使函数有意义需,解得x>﹣1且x≠1.∴函数的定义域是(﹣1,1)∪(1,+∞).故选C.点评:本题主要考查对数函数的定义域及其求法,熟练解不等式组是基础,属于基础题.3.(5分)(2013•广东)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2B.3C.4D.5考点:复数求模;复数相等的充要条件.专题:数系的扩充和复数.分析:利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.解答:解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选D.点评:熟练掌握复数的运算法则和模的计算公式是解题的关键.4.(5分)(2013•广东)已知,那么cosα=()A.B.C.D.考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin(+α)=sin(2π++α)=sin(+α)=cosα=.故选C.点评:此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.5.(5分)(2013•广东)执行如图所示的程序框图,若输入n的值为3,则输出s的值是()A.1B.2C.4D.7考点:程序框图.专题:算法和程序框图.分析:由已知中的程序框图及已知中输入3,可得:进入循环的条件为i≤3,即i=1,2,3.模拟程序的运行结果,即可得到输出的S值.解答:解:当i=1时,S=1+1﹣1=1;当i=2时,S=1+2﹣1=2;当i=3时,S=2+3﹣1=4;当i=4时,退出循环,输出S=4;故选C.点评:本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.6.(5分)(2013•广东)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.D.1考点:由三视图求面积、体积.专题:空间位置关系与距离;立体几何.分析:由三视图可知:该几何体是一个三棱锥,其中PA⊥底面ABC,PA=2,AB⊥BC,AB=BC=1.据此即可得到体积.解答:解:由三视图可知:该几何体是一个三棱锥,其中PA⊥底面ABC,PA=2,AB⊥BC,AB=BC=1.∴.因此V===.故选B.点评:由三视图正确恢复原几何体是解题的关键.7.(5分)(2013•广东)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A.B.x+y+1=0 C.x+y﹣1=0 D.考点:圆的切线方程;直线的一般式方程.专题:直线与圆.分析:设所求的直线为l,根据直线l垂直于y=x+1,设l方程为y=﹣x+b,即x+y+b=0.根据直线l与圆x2+y2=1相切,得圆心0到直线l的距离等于1,由点到直线的距离公式建立关于b的方程,解之可得b=±,最后根据切点在第一象限即可得到满足题意直线的方程.解答:解:设所求的直线为l,∵直线l垂直于直线y=x+1,可得直线l的斜率为k=﹣1∴设直线l方程为y=﹣x+b,即x+y﹣b=0∵直线l与圆x2+y2=1相切,∴圆心到直线的距离d=,解之得b=±当b=﹣时,可得切点坐标(﹣,﹣),切点在第三象限;当b=时,可得切点坐标(,),切点在第一象限;∵直线l与圆x2+y2=1的切点在第一象限,∴b=﹣不符合题意,可得b=,直线方程为x+y﹣=0故选:A点评:本题给出直线l垂直于已知直线且与单位圆相切于第一象限,求直线l的方程.着重考查了直线的方程、直线与直线位置关系和直线与圆的位置关系等知识,属于基础题.8.(5分)(2013•广东)设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:根据线面平行的几何特征及面面平行的判定方法,可判断A;根据面面平行的判定方法及线面垂直的几何特征,可判断B;根据线面平行的性质定理,线面垂直及面面垂直的判定定理,可判断C;根据面面垂直及线面平行的几何特征,可判断D.解答:解:若l∥α,l∥β,则平面α,β可能相交,此时交线与l平行,故A错误;若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得B正确;若l⊥α,l∥β,则存在直线m⊂β,使l∥m,则m⊥α,故此时α⊥β,故C错误;若α⊥β,l∥α,则l与β可能相交,可能平行,也可能线在面内,故D错误;故选B点评:本题考查的知识点是空间中直线与直线的位置关系,直线与平面的位置关系及平面与平面之间的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.9.(5分)(2013•广东)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A.B.C.D.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由已知可知椭圆的焦点在x轴上,由焦点坐标得到c,再由离心率求出a,由b2=a2﹣c2求出b2,则椭圆的方程可求.解答:解:由题意设椭圆的方程为.因为椭圆C的右焦点为F(1,0),所以c=1,又离心率等于,即,所以a=2,则b2=a2﹣c2=3.所以椭圆的方程为.故选D.点评:本题考查了椭圆的标准方程,考查了椭圆的简单性质,属中档题.10.(5分)(2013•广东)设是已知的平面向量且,关于向量的分解,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数λ和μ,使;③给定单位向量和正数μ,总存在单位向量和实数λ,使;④给定正数λ和μ,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是()A.1B.2C.3D.4考点:命题的真假判断与应用;平面向量的基本定理及其意义.专题:平面向量及应用.分析:选项①由向量加减的几何意义可得;选项②③均可由平面向量基本定理判断其正确性;选项④λ和μ为正数,这就使得向量不一定能用两个单位向量的组合表示出来.解答:解:选项①,给定向量和,只需求得其向量差即为所求的向量,故总存在向量,使,故①正确;选项②,当向量,和在同一平面内且两两不共线时,向量,可作基底,由平面向量基本定理可知结论成立,故可知②正确;选项③,取=(4,4),μ=2,=(1,0),无论λ取何值,向量λ都平行于x轴,而向量μ的模恒等于2,要使成立,根据平行四边形法则,向量μ的纵坐标一定为4,故找不到这样的单位向量使等式成立,故③错误;选项④,因为λ和μ为正数,所以和代表与原向量同向的且有固定长度的向量,这就使得向量不一定能用两个单位向量的组合表示出来,故不一定能使成立,故④错误.故选B点评:本题考查命题真假的判断与应用,涉及平面向量基本定理及其意义,属基础题.二、填空题:本大题共3小题.每小题5分,满分15分.(一)必做题(11~13题)11.(5分)(2013•广东)设数列{a n}是首项为1,公比为﹣2的等比数列,则a1+|a2|+a3+|a4|= 15.考点:等比数列的前n项和.专题:等差数列与等比数列.分析:根据条件求得等比数列的通项公式,从而求得a1+|a2|+a3+|a4|的值.解答:解:∵数列{a n}是首项为1,公比为﹣2的等比数列,∴a n=a1•q n﹣1=(﹣2)n﹣1,∴a1=1,a2=﹣2,a3=4,a4=﹣8,∴则a1+|a2|+a3+|a4|=1+2+4+8=15,故答案为15.点评:本题主要考查等比数列的定义、通项公式,属于基础题.12.(5分)(2013•广东)若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k的值.解答:解:由题意得,∵在点(1,a)处的切线平行于x轴,∴2a﹣1=0,得a=,故答案为:.点评:本题考查了函数导数的几何意义应用,难度不大.13.(5分)(2013•广东)已知变量x,y满足约束条件,则z=x+y的最大值是5.考点:简单线性规划.专题:不等式的解法及应用.分析:先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.解答:解:画出可行域如图阴影部分,由得A(1,4)目标函数z=x+y可看做斜率为﹣1的动直线,其纵截距越大z越大,由图数形结合可得当动直线过点A(1,4)时,z最大=1+4=5.故答案为:5.点评:本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题.选做题(14、15题,考生只能从中选做一题)14.(5分)(2013•广东)(坐标系与参数方程选做题)已知曲线C的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为(θ为参数).考点:圆的参数方程;点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:首先把曲线的极坐标方程化为直角坐标方程,然后化直角坐标方程为参数方程.解答:解:由曲线C的极坐标方程为ρ=2cosθ,得ρ2=2ρcosθ,即x2+y2﹣2x=0.化圆的方程为标准式,得(x﹣1)2+y2=1.令,得.所以曲线C的参数方程为.故答案为.点评:本题考查了圆的参数方程,考查了极坐标与直角坐标的互化,解答此题的关键是熟记互化公式,是中档题.15.(2013•广东)(几何证明选讲选做题)如图,在矩形ABCD中,,BC=3,BE⊥AC,垂足为E,则ED=.考点:余弦定理.专题:解三角形.分析:由矩形ABCD,得到三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,进而得到AB为AC的一半,利用直角三角形中直角边等于斜边的一半得到∠ACB=30°,且利用射影定理求出EC的长,在三角形ECD中,利用余弦定理即可求出ED的长.解答:解:∵矩形ABCD,∴∠ABC=90°,∴在Rt△ABC中,AB=,BC=3,根据勾股定理得:AC=2,∴AB=AC,即∠ACB=30°,EC==,∴∠ECD=60°,在△ECD中,CD=AB=,EC=,根据余弦定理得:ED2=EC2+CD2﹣2EC•CDcos∠ECD=+3﹣=,则ED=.故答案为:点评:此题考查了余弦定理,勾股定理,直角三角形的性质,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.四、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(12分)(2013•广东)已知函数.(1)求的值;(2)若,求.考点:两角和与差的余弦函数;同角三角函数间的基本关系. 专题: 三角函数的图像与性质. 分析:(1)把x=直接代入函数解析式求解. (2)先由同角三角函数的基本关系求出sin θ的值,然后将x=θ﹣代入函数解析式,并利用两角和与差公式求得结果. 解答:解:(1)(2)∵,,∴.点评: 本题主要考查了特殊角的三角函数值的求解,考查了和差角公式的运用,属于知识的简单综合. 17.(13分)(2013•广东)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85) [85,90) [90,95) [95,100) 频数(个) 5 10 20 15 (1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.考点: 古典概型及其概率计算公式;分层抽样方法. 专题: 概率与统计. 分析:(1)用苹果的重量在[90,95)的频数除以样本容量,即为所求. (2)根据重量在[80,85)的频数所占的比例,求得重量在[80,85)的苹果的个数. (3)用列举法求出所有的基本事件的个数,再求出满足条件的事件的个数,即可得到所求事件的概率.解答:解:(1)苹果的重量在[90,95)的频率为.(2)重量在[80,85)的有个.(3)设这4个苹果中,重量在[80,85)段的有1个,编号为1.重量在[95,100)段的有3个,编号分别为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种.设任取2个,重量在[80,85)和[95,100)中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以.点评:本题考查古典概型问题,用列举法计算可以列举出基本事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.本题还考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.18.(13分)(2013•广东)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=.(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=时,求三棱锥F﹣DEG的体积V F﹣DEG.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:空间位置关系与距离;立体几何.分析:(1)在等边三角形ABC中,由AD=AE,可得,在折叠后的三棱锥A﹣BCF 中也成立,故有DE∥BC,再根据直线和平面平行的判定定理证得DE∥平面BCF.(2)由条件证得AF⊥CF ①,且.在三棱锥A﹣BCF中,由,可得BC2=BF2+CF2,从而CF⊥BF②,结合①②,证得CF⊥平面ABF.(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.再由,运算求得结果.解答:解:(1)在等边三角形ABC中,AD=AE,∴,在折叠后的三棱锥A﹣BCF中也成立,∴DE∥BC.又∵DE⊄平面BCF,BC⊂平面BCF,∴DE∥平面BCF.(2)在等边三角形ABC中,F是BC的中点,所以AF⊥BC,即AF⊥CF ①,且.∵在三棱锥A﹣BCF中,,∴BC2=BF2+CF2,∴CF⊥BF②.又∵BF∩AF=F,∴CF⊥平面ABF.(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.∴=.点评:本题主要考查直线和平面平行的判定定理、直线和平面垂直的判定的定理的应用,用等体积法求三棱锥的体积,属于中档题.19.(14分)(2013•广东)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12﹣4n ﹣1,n∈N*,且a2,a5,a14构成等比数列.(1)证明:a 2=;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.考点:数列与不等式的综合;等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(1)对于,令n=1即可证明;(2)利用,且,(n≥2),两式相减即可求出通项公式.(3)由(2)可得=.利用“裂项求和”即可证明.解答:解:(1)当n=1时,,∵(2)当n≥2时,满足,且,∴,∴,∵a n>0,∴a n+1=a n+2,∴当n≥2时,{a n}是公差d=2的等差数列.∵a2,a5,a14构成等比数列,∴,,解得a2=3,由(1)可知,,∴a1=1∵a2﹣a1=3﹣1=2,∴{a n}是首项a1=1,公差d=2的等差数列.∴数列{a n}的通项公式a n=2n﹣1.(3)由(2)可得式=.∴点评:熟练掌握等差数列与等比数列的通项公式、“裂项求和”、通项与前n项和的关系a n=S n ﹣S n﹣1(n≥2)是解题的关键.20.(14分)(2013•广东)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.考点:抛物线的标准方程;利用导数研究曲线上某点切线方程;抛物线的简单性质.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(1)利用焦点到直线l:x﹣y﹣2=0的距离建立关于变量c的方程,即可解得c,从而得出抛物线C的方程;(2)先设,,由(1)得到抛物线C的方程求导数,得到切线PA,PB的斜率,最后利用直线AB的斜率的不同表示形式,即可得出直线AB 的方程;(3)根据抛物线的定义,有,,从而表示出|AF|•|BF|,再由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,将它表示成关于y0的二次函数的形式,从而即可求出|AF|•|BF|的最小值.解答:解:(1)焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离,解得c=1,所以抛物线C的方程为x2=4y.(2)设,,由(1)得抛物线C 的方程为,,所以切线PA,PB 的斜率分别为,,所以PA :①PB :②联立①②可得点P 的坐标为,即,,又因为切线PA 的斜率为,整理得,直线AB 的斜率,所以直线AB 的方程为,整理得,即,因为点P(x0,y0)为直线l:x﹣y﹣2=0上的点,所以x0﹣y0﹣2=0,即y0=x0﹣2,所以直线AB的方程为x0x﹣2y﹣2y0=0.(3)根据抛物线的定义,有,,所以=,由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,所以=.所以当时,|AF|•|BF|的最小值为.点评: 本题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算能力,有一定的综合性. 21.(14分)(2013•广东)设函数f (x )=x 3﹣kx 2+x (k ∈R ). (1)当k=1时,求函数f (x )的单调区间;(2)当k <0时,求函数f (x )在[k ,﹣k ]上的最小值m 和最大值M .考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值. 专题:导数的综合应用. 分析:(1)当k=1时,求出f ′(x )=3x 2﹣2x+1,判断△即可得到单调区间; (2)解法一:当k <0时,f ′(x )=3x 2﹣2kx+1,其开口向上,对称轴,且过(0,1).分△≤0和△>0即可得出其单调性,进而得到其最值.解法二:利用“作差法”比较:当k <0时,对∀x ∈[k ,﹣k ],f (x )﹣f (k )及f (x )﹣f (﹣k ). 解答: 解:f ′(x )=3x 2﹣2kx+1 (1)当k=1时f ′(x )=3x 2﹣2x+1, ∵△=4﹣12=﹣8<0,∴f ′(x )>0,f (x )在R 上单调递增.(2)当k <0时,f ′(x )=3x 2﹣2kx+1,其开口向上,对称轴,且过(0,1)(i )当,即时,f ′(x )≥0,f (x )在[k ,﹣k ]上单调递增,从而当x=k 时,f (x )取得最小值m=f (k )=k ,当x=﹣k 时,f (x )取得最大值M=f (﹣k )=﹣k 3﹣k 3﹣k=﹣2k 3﹣k . (ii )当,即时,令f ′(x )=3x 2﹣2kx+1=0 解得:,注意到k <x 2<x 1<0,∴m=min{f (k ),f (x 1)},M=max{f (﹣k ),f (x 2)}, ∵,∴f (x )的最小值m=f (k )=k , ∵,∴f (x )的最大值M=f (﹣k )=﹣2k 3﹣k .综上所述,当k <0时,f (x )的最小值m=f (k )=k ,最大值M=f (﹣k )=﹣2k 3﹣k 解法2:(2)当k <0时,对∀x ∈[k ,﹣k ],都有f (x )﹣f (k )=x 3﹣kx 2+x ﹣k 3+k 3﹣k=(x 2+1)(x ﹣k )≥0, 故f (x )≥f (k ).f (x )﹣f (﹣k )=x 3﹣kx 2+x+k 3+k 3+k=(x+k )(x 2﹣2kx+2k 2+1)=(x+k )[(x ﹣k )2+k 2+1]≤0, 故f (x )≤f (﹣k ),而 f (k )=k <0,f (﹣k )=﹣2k 3﹣k >0. 所以,f (x )min =f (k )=k .点评: 熟练掌握利用导数研究函数的单调性、二次函数的单调性、分类讨论思想方法、作差法比较两个数的大小等是解题的关键.。

2013年高考真题——文科数学(广东卷)精校版无答案

2013年高考真题——文科数学(广东卷)精校版无答案

2012 年一般高等学校招生全国一致考试(广东卷)B数学(文科)本试卷共 4 页, 21 题,满分 150 分。

考试用时 120 分钟。

注意事项: 1.答卷前,考生务必用黑色笔迹的钢笔或署名笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用 2B 铅笔将试卷种类( B )填涂在答题卡相应地点上。

将条形码横贴在答题卡右上角“条形码粘贴处” 。

2.选择题每题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需变动, 用橡皮擦洁净后,再选涂其余答案, 答案不可以答在试卷上。

3.非选择题一定用黑色笔迹钢笔或署名笔作答, 答案一定写在答题卡各题目指定地区相应地点上;如需变动,先划掉本来的答案,而后再写上新的答案;禁止使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生一定保持答题卡的整齐。

考试结束后,将试卷和答题卡一并交回。

1参照公式: 锥体的体积公式为V = Sh ,此中 S 为锥体的底面积, h 为锥体的高。

3一、选择题:本大题共 10 小题,每题 5 分,共 50 分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .1.设会合 S{ x | x 22x0, x R},T { x | x 2 2x 0, x R} 则 ST =()A. {0}B. {0, 2}C.{ 2,0}D. { 2,0, 2}2.函数 ylg( x1)的定义域是( )x 1A. ( 1, )B. 1, )C.( 1,1)(1, )D. 1,1 (1,)3.若 i (xyi ) 3 4i , x, y R, 则复数 x yi 的模是()A.2B.3C.4D.54.已知 sin(5)12,那么 cos5A.2 B. 1 C . 1D .25 5 555.履行如图 1 所示的程序框图,若输入n 的值为 3,则输入 s 的值是开 始输入 ni 1, s 12否i ≤ n11是俯视图输入s侧视图正视图s s (i 1)结 束i i 1A.1B.2C.3D.76.某三棱锥的三视图如图2 所示,则该三棱锥的体积是A.1B.1C.2D .16337.垂直于直线 yx 1且于圆 x 2 y 21的直线方程是A.x y 2 0B.xy 1C .xy 1 0D .x y2 08.设 l 为直线,,是两个不一样的平面.以下命题中正确的选项是 A.若l , l ,则B.若l , l , 则C.若l,l, 则D.若, l, 则l9.已知中心在原点的椭圆 C 的右焦点为 F ( 1,0),离心率等于1,则 C的方程是2A. x2y21B. x2y21C. x2y 21344342 D. x2y214310.设a是已知的平面向量且a0 .对于向量 a 的分解,有以下四个命题:①给定向量 b ,总存在向量 c ,使 a b c ;②给定向量 b 和 c ,总存在实数和,使 a b c ;③给定向量 b 和正数,总存在单位向量c,使 a b c .④给定正数和,总存在单位向量 b 和单位向量 c ,使 a b c .上述命题中的向量 b 、 c 和 a ,在同一平面内且两两不共线,则真命题的个数是A.1B.2C.3D.4二、填空题:本大题共 5 小题,考生作答 4 小题,每题 5 分,满分20 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省2013届高三最新文科试题精选(21套含九大市区的二模等)分类汇编12:常用
逻辑用语…
1 命题“x ∃∈R ,2
450x x ++≤”的否定是( )
A .x ∃∈R ,2450x x ++>
B .x ∃∈R ,2450x x ++≤
C .x ∀∈R ,2450x x ++>
D .x ∀∈R ,2450x x ++≤
2 .已知命题p :1x ∃>,2
10x ->,那么p ⌝是
( )
A .1x ∀>,210x ->
B .1x ∀>,210x -≤
C .1x ∃>,210x -≤
D .1x ∃≤,210x -≤
3 . “x y =”是“x y =
”的
( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
4 给出如下四个命题:
①若“p 且q ”为假命题,则p 、q 均为假命题;
②命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”; ③“2,11x x ∀∈+≥R ”的否定是“2,11x x ∃∈+≤R ”; ④“0x >”是“1
2x x
+
≥”的充分必要条件 其中正确的命题个数是
.A 4 B .3 C . 2 D . 1
5 .设x y ∈R ,,则“1x ≥且2y ≥”是“3x y +≥”的
( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
6 .如果命题“)(q p ∧⌝”是真命题,则
( )
A .命题p 、q 均为假命题
B .命题p 、q 均为真命题
C .命题p 、q 中至少有一个是真命题
D .命题p 、q 中至多有一个是真命题
7 .下列有关命题的说法正确的是
( )
A .命题“若2
1x =,则1=x ”的否命题为:“若2
1x =,则1x ≠”. B .“6x =”是“2
560x x --=”的必要不充分条件.
C .命题“对任意,R x ∈均有2
10x x -+>”的否定是:“存在,R x ∈使得012
<+-x x ”. D .命题“若x y =,则cos cos x y =”的逆否命题为真命题.
8 . k =4是直线l 1:(k-2)x+ (3-k )y + 1 = 0与l 2:2(k-2)x — 2y + 4 = 0平行的 ( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
9 .下列命题中假命题是
( )
A .x ∀>0,有ln 2
x+lnx+1>0
B .,αβ∃∈R,使cos()cos cos αβαβ+=+
C .“a 2
<b 2
”是“a<b”的必要不充分条件 D .m R ∃∈,使243
()(1)m m f x m x
-+=-是幂函数,且在(0,+∞)上递减
10.集合}{},,4|||
{a x x B R x x x A <=∈<=,则“B A ⊆”是“5>a ”的
( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
11.在四边形ABCD 中,“AB DC =uu u r uuu r ,且0AC BD ⋅=uu u r
”是“四边形ABCD 是菱形”的
( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
12. “2m
<”是“一元二次不等式210x mx ++>的解集为R”的
( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
13.命题“2
,11x x ∀∈+≥R ”的否定是
( )
A .2
,11x x ∀∈+<R B .2
,11x x ∃∈+≤R C .2
,11x x ∃∈+<R
D .2,11x x ∃∈+≥R
14.下列判断错误..
的是 ( )
A .“2
2bm am <”是“a<b”的充分不必要条件
B .命题“01,23≤--∈∀x x R x ”的否定是“01,2
3>--∈∃x x R x ” C .若q p Λ为假命题,则p,q 均为假命题 D .“N M >”是“N M
22
>”的充要条件
15.已知命题p:存在0],2,1[2
≥-∈a x
x 使得,命题q:指数
函数x
a y )(log 2=是R 上的增函数,若命题“p 且q”是真命题,则实数a 的取值范围是____.
广东省2013届高三最新文科试题精选(21套含九大市区的二模等)分类汇编12:常用逻辑用语参考答案 一、选择题 1. C
2. B [来源:]
3. B.因x y =¿x y =但x y =⇒x y =.
4. C
5. A
6. D
7. D 8. A 9. C 10. B
11. C [来源:][来源:] 12. B 13. C 14. C 二、填空题
15. ]4,2((填}42{≤<a a 或42≤<a 亦可).。

相关文档
最新文档