北师大版八年级数学上册--第一章 1.3 勾股定理的应用—同步练习(含答案)
1.3 勾股定理的应用-勾股定理与最短路径问题 同步练习(含答案)
1.3勾股定理的应用-勾股定理与最短路径问题一、选择题1.如图,圆柱的底面周长是24,高是5,一只在A点的蚂蚁沿侧面爬行,想吃到B点的食物,需要爬行的最短路径是( )A.9B.13C.14D.252.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为( )A.12cm B.14cm C.20cm D.24cm3.如图所示的圆柱体中底面圆的半径是4,高为3,若一只小虫从A点出发沿着圆柱体的侧面π爬行到C点,则小虫爬行的最短路程是( )A.5B.5C.73D.44.今年9月22日是第三个中国农民丰收节,小彬用3D打印机制作了一个底面周长为20cm,高为10cm的圆柱粮仓模型,如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为( )A.20πcm B.40πcm C.102cm D.202cm5.已知长方体的长2cm、宽为1cm、高为4cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是( )A.29cm B.5cm C.37cm D.4.5cm6.某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为4cm,则这圈金属丝的长度至少为( )A.8cm B.10cm C.12cm D.15cm7.小南同学报名参加了南开中学的攀岩选修课,攀岩墙近似一个长方体的两个侧面,如图所示,他根据学过的数学知识准确地判断出:从点A攀爬到点B的最短路径为( )米.A.16B.82C.146D.1788.如图,桌面上的长方体长为8,宽为6,高为4,B为CD的中点.一只蚂蚁从A点出发沿长方体的表面到达B点,则它运动的最短路程为( )A.229B.45C.10D.3149.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是( )A.1089B.505C.120D.13010.如图,圆柱的高为4cm,底面半径为3πcm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径、问:蚂蚁食到食物爬行的最短距离是( )cm.A.5B.5πC.3+4πD.3+8π二、填空题11.如图,一个长方体盒子的长、宽、高分别为5cm、4cm、3cm,有一只甲虫从顶点A沿盒的表面爬到顶点B处,那么它所爬行的最短路线的长是 cm.12.如图所示,一圆柱高AB为2cm,底面直径BC为4cm,一只蚂蚁从点A出发沿圆柱表面爬行到点C,则蚂蚁爬行的最短路程是 cm(π取3).13.如图所示是一个长方体纸盒,纸盒的长为12cm,宽为9cm,高为5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点G,蚂蚁爬行的最短路程是 cm.14.如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为 .15.如图,长方体盒子的长、宽、高分别是9cm,9cm,24cm,一只蚂蚁想从盒底的A点爬到盒顶的B点,它至少要爬行 cm.16.如图所示,有一个正方体盒子,其棱长为2dm,一只虫子在顶点A处,一只蜘蛛在顶点B 处,蜘蛛沿着盒子表面准备偷袭虫子,那么蜘蛛要想最快地捉住虫子,它所走的最短路程是 dm.(结果保留根号)17.如图,圆柱形容器外壁距离下底面3cm的A处有一只蚂蚁,它想吃到正对面外壁距离上底面3cm的B处的米粒,若圆柱的高为12cm,底面周长为24cm.则蚂蚁爬行的最短距离为 cm.18.如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C'处,若长方体的长AB=4cm,宽BC=2cm,高BB'=1cm,则蚂蚁爬行的最短路径长是 .三、解答题19.如图,一个圆柱体高20cm,底面半径为5cm,在圆柱体下底面的A点处有一只蜘蛛,它想吃到上底面与A点相对的B点处的一只已被粘住的苍蝇,这只蜘蛛从A点出发,沿着圆柱体的侧面爬到B点,最短路程是多少?(π取3)20.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程是多少?21.如图所示,有一个圆柱,底面圆的直径AB=16,高BC=12cm,在BC的中点P处有一块π蜂蜜,聪明的蚂蚁总能找到距离食物的最短路径,求蚂蚁从A点爬到P点的最短距离.22.如图,长方体的长为20cm,宽为10cm,高为15cm,点B与点C之间的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖.(1)求出点A到点B的距离;(2)求蚂蚁从点A爬到点B的最短路程是多少?23.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上底面距离为4cm 的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为多少?24.如图所示,一个无盖四棱柱容器,其底面是一个边长为3cm的正方形,高为20cm.现有一根彩带,从底面A点开始缠绕四棱柱,刚好缠绕4周到达B点(假设彩带完美贴合四棱柱).(1)请问彩带的长度是多少?(2)如图所示,一只蚂蚁在容器外A点发现容器的内部距离顶部2cm处有一滴蜂蜜,它想以最短的路程到达C处.请问蚂蚁走的最短路程是多少呢?(注:以上两问均要画出平面展开示意图,再解答)答案一、选择题B.D.A.D.B.D.B.C.B.A.二、填空题11.74.12.6.13.285.14.20cm.15.30.16.25.17.65.18.5cm.三、解答题19.如图所示,将圆柱体侧面展开,连接AB,则AB的长即为蜘蛛爬行的最短路程.根据题意得AC=20cm,BC=πR=5π=5×3=15cm,在Rt△ABC中,由勾股定理得AB2=BC2+AC2=152+202=625,所以AB=25cm,即最短路程是25cm.20.如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN=122+162=20(cm);如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN=182+102=2106(cm).如图3中,MN =222+62=2130(cm ),∵20<2106<2130,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20cm .21.将圆柱体的侧面展开,如图所示:AB =12底面周长=12×π×16π=8(cm ),AP =12BC =6(cm ),所以AP =82+62=10(cm ),故蚂蚁从A 点爬到P 点的最短距离为10cm .22.(1)将长方体沿CF 、FG 、GH 剪开,向右翻折,使面FCHG 和面ADCH 在同一个平面内,连接AB ,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:AB=BD2+AD2=152+152=152cm;将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:AB=BH2+AH2=202+102=105cm,则需要爬行的最短距离是152cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:AB=BB′2+AB′2=252+52=526cm,综上所述,点A到点B的距离为:152cm,105cm,526cm;(2)由(1)知,∵点A到点B的距离为:152cm,105cm,526cm;∴152<105<526,∴则需要爬行的最短距离是152cm.23.如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:A'D=202―162=12(cm),则该圆柱底面周长为24cm.24.(1)如图,将长方体的侧面沿AB展开,取A′B′的四等分点C、D、E,取AB的四等分点C′、D′、E′,连接B′E′,D′E,C′D,AC,则AC+C′D+D′E+E′B′=4AC为所求的最短细线长,∵AC2=AA′2+A′C2,AC=122+52=13,∴AC+C′D+D′E+E′B′=4AC=52,答:彩带的长度是52cm;(2)如图,将四棱柱展开,找到C的对称点C′,连接AC′,则AC′即为蚂蚁走的最段路程,在直角△AMC中,AM=6cm,MC′=20+(20﹣18)=22cm,由勾股定理得:AC′2=AM2+MC′2=62+222=520,则AC′=2130cm,答:蚂蚁走的最短路程是2130cm.。
1.1 勾股定理的证明 北师大版八年级数学上册同步练习(含解析)
1.1 勾股定理的证明同步练习一.选择题(共10小题)1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则EF的长为( )A.9B.C.D.32.在认识了勾股定理的赵爽弦图后,一位同学尝试将5个全等的小正方形嵌入长方形ABCD 内部,其中点M,N,P,Q分别在长方形的边AB,BC,CD和AD上,若AB=7,BC=8,则小正方形的边长为( )A.B.C.D.23.如图是我国古代著名的“赵爽弦图”,大正方形ABCD是由四个全等的直角三角形和一个小正方形拼接而成,连接EC,若正方形ABCD的面积为10,EC=BC,则小正方形EFGH的面积为( )A.2B.2.5C.3D.3.54.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果大正方形的面积是5,小正方形的面积是1,直角三角形的两直角边长分别是a、b(b>a),则(a+b)2的值为( )A.16B.9C.4D.35.如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为( )A.25B.19C.13D.1696.如图是在北京召开的国际数学家大会的会标,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形.若小正方形的面积为8,每个直角三角形比小正方形的面积均小1,则每个小直角三角形的周长是( )A.5+B.9+C.10+D.147.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,若(a+b)2=27,大正方形面积为15,则小正方形面积为( )A.3B.4C.6D.128.如图所示的“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.该图由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=10,大正方形面积为25,则小正方形边长为( )A.B.2C.D.39.我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是( )A.B.C.D.10.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是( )A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab二.填空题(共5小题)11.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形,如果AB=15,AH=9,则四边形GFEH的面积为 .12.“赵爽弦图”是我国古代数学的图腾(如图①).小丽同学深受“赵爽弦图”的启发,设计出一个图形(如图②).已知△ABC和△DEF都是等边三角形,D、E、F分别在线段BE、CF和AD上,且满足EC:EF=1:2,若AC=5,则EF = .13.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是1和2,则小正方形与大正方形的面积之比为 .14.魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为 .15.在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成一个大正方形(如图所示,AB<BC).如果小正方形的面积是25,大正方形的面积为49,那么= .三.解答题(共4小题)16.阅读材料,解决问题:三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明,实际上,该“弦图”与完全平方公式有着密切的关系.如图2,这是由8个全等的直角边长分别为a,b,斜边长为c的三角形拼成的“弦图”.(1)在图2中,正方形ABCD的面积可表示为 ,正方形PQMN的面积可表示为 .(用含a,b的式子表示)(2)请结合图2用面积法说明(a+b)2,ab,(a﹣b)2三者之间的等量关系.(3)已知a+b=7,ab=5,求正方形EFGH的面积.17.如图叫“赵爽弦图”,此图由四个全等的直角三角形(阴影部分)围成一个大正方形,中空的部分是一个小正方形.它是我国汉代的赵爽在注解《周髀算经》时给出的,其巧妙地利用图形的面积证明了“勾股定理”,表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.(1)请你写出“勾股定理”的内容;(2)请你利用图形面积,结合图片完成勾股定理的证明.18.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.19.勾股定理是人类最伟大的科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(如图中图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2直角三角形面积为S3,请判断S1,S2,S3的关系并证明.1.1 勾股定理的证明同步练习参考答案与试题解析一.选择题(共10小题1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则EF的长为( )A.9B.C.D.3【解答】解:由题意可得,a2+b2=25,ab=8,∴(a﹣b)2=a2﹣2ab+b2=(a2+b2)﹣2ab=25﹣2×8=25﹣16=9,由图可知:EF2=(a﹣b)2+(a﹣b)2,∴EF2=9+9,解得EF=3,故选:C.2.在认识了勾股定理的赵爽弦图后,一位同学尝试将5个全等的小正方形嵌入长方形ABCD 内部,其中点M,N,P,Q分别在长方形的边AB,BC,CD和AD上,若AB=7,BC=8,则小正方形的边长为( )A .B .C .D .2【解答】解:将每个小正方形按照如图所示分成四个全等的直角三角形和一个正方形,设每个直角三角形的较大的直角边为x ,较小的直角边为y ,∵AB =7,BC =8,∴,解得,∴小正方形的边长为=.故选A .3.如图是我国古代著名的“赵爽弦图”,大正方形ABCD 是由四个全等的直角三角形和一个小正方形拼接而成,连接EC ,若正方形ABCD 的面积为10,EC =BC ,则小正方形EFGH 的面积为( )A .2B .2.5C .3D .3.5【解答】解:∵四边形EFGH 是正方形,∴CH ⊥BE ,∵EC =BC ,∴HE =HB ,∴BE=2HE,∴HC=2HE,设正方形EFGH的边长为a,则HB=HE=a,HC=2a,∴S正方形ABCD=S正方形EFGH+4S△BHC=a2+4××HB•HC=a2+4××a•2a=5a2=10,∴a2=2,故选:A.4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果大正方形的面积是5,小正方形的面积是1,直角三角形的两直角边长分别是a、b(b>a),则(a+b)2的值为( )A.16B.9C.4D.3【解答】解:由题意可知:大正方形的面积=a2+b2=5,4个直角三角形的面积之和=,所以(a+b)2=a2+b2+2ab=5+4=9.故选:B.5.如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为( )A.25B.19C.13D.169【解答】解:由条件可得:,解之得:.所以(a+b)2=25,故选:A.6.如图是在北京召开的国际数学家大会的会标,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形.若小正方形的面积为8,每个直角三角形比小正方形的面积均小1,则每个小直角三角形的周长是( )A.5+B.9+C.10+D.14【解答】解:设直角三角形的较长直角边是a,较短直角边是b,斜边是c,∴ab=8﹣1=7,∴ab=14,∵小正方形的边长是a﹣b,∴(a﹣b)2=8,∴a2+b2﹣2ab=8,∴a2+b2=36,∵c2=a2+b2=36,∴c=6,∵(a+b)2=a2+b2+2ab=36+2×14=64,∴a+b=8,∴每个小直角三角形的周长是a+b+c=8+6=14,故选:D.7.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,若(a+b)2=27,大正方形面积为15,则小正方形面积为( )A.3B.4C.6D.12【解答】解:∵(a+b)2=27,∴a2+2ab+b2=27,∵直角三角形的较长直角边长为a,较短直角边长为b,∴大正方形的边长为.∵大正方形的面积为15,∴,∴a2+b2=15,∴2ab=27﹣15=12,∴小正方形的面积为15﹣12=3.故选:A.8.如图所示的“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.该图由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=10,大正方形面积为25,则小正方形边长为( )A.B.2C.D.3【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×10=5,从图形中可得,大正方形的面积是4个直角三角形的面积与中间小正方形的面积之和,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣20=5,∵a﹣b>0,∴a﹣b=.故选:C.9.我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是( )A.B.C.D.【解答】解:A、大正方形的面积为:c2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+(b﹣a)2=a2+b2,∴a2+b2=c2,故A选项能证明勾股定理;B、大正方形的面积为:(a+b)2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+c2=2ab+c2,∴(a+b)2=2ab+c2,∴a2+b2=c2,故B选项能证明勾股定理;C、梯形的面积为:(a+b)(a+b)=(a2+b2)+ab;也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:ab×2+c2=ab+c2,∴ab+c2=(a2+b2)+ab,∴a2+b2=c2,故C选项能证明勾股定理;D、大正方形的面积为:(a+b)2;也可看作是2个矩形和2个小正方形组成,则其面积为:a2+b2+2ab,∴(a+b)2=a2+b2+2ab,∴D选项不能证明勾股定理.故选:D.10.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是( )A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab【解答】解:观察图象可知:S1=S2=a2+b2+ab=c2+ab,故选:B.二.填空题(共5小题)11.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形,如果AB=15,AH=9,则四边形GFEH的面积为 9 .【解答】解:∵△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,∴AH=DE=9,AD=AB=15,在Rt△ADE中,AE===12,∴HE=AE﹣AH=12﹣9=3,∵四边形EFGH是正方形,∴四边形GFEH的面积为9,故答案为:9.12.“赵爽弦图”是我国古代数学的图腾(如图①).小丽同学深受“赵爽弦图”的启发,设计出一个图形(如图②).已知△ABC和△DEF都是等边三角形,D、E、F分别在线段BE、CF和AD上,且满足EC:EF=1:2,若AC=5,则EF= .【解答】解:过C作CH⊥AF于H,设CE=x,则EF﹣2x,∵△ABC和△DEF都是等边三角形,∴∠BFD=∠BEF=∠ACB=60°,AC=BC,∴∠DAC+∠ACF=∠ACF+∠BDF,∠AFC=∠CEB,∴∠DAC=∠BCF,∴△ACF≌△CBE(AAS),∴AF=CE=x,在Rt△CFH中,CF=3x,∠CFD=60°,∴CH=CF cos60°=x,FH=CF sin60°=x,∴AC==5,解得:x=,∴EF=2x=,故答案为:.13.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是1和2,则小正方形与大正方形的面积之比为 1:5 .【解答】解:∵直角三角形的两条直角边的长分别是1和2,∴小正方形的边长为1,根据勾股定理得:大正方形的边长=,∴.故答案为:1:5.14.魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为 6 .【解答】解:∵BF=2,CF=4,∴BC=BF+CF=2+4=6,∵AB∥EC,∴=,即=,解得:CE=12,在Rt△ADE中,AD=6,DE=DC+CE=6+12=18,根据勾股定理得:AE==6,故答案为:6.15.在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成一个大正方形(如图所示,AB<BC).如果小正方形的面积是25,大正方形的面积为49,那么= .【解答】解:∵小正方形的面积是25,∴EB=5,∵△HAG≌△BCA,∴AH=CB,∵大正方形的面积为49,∴BH=7,∴AB+AH=7,设AB=x,则AH=7﹣x,在Rt△ABC中:x2+(7﹣x)2=52,解得:x1=4,x2=3,当x=4时,7﹣x=3,当x=3时,7﹣x=4,∵AB<BC,∴AB=3,BC=4,∴=,故答案为:.三.解答题(共4小题)16.阅读材料,解决问题:三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明,实际上,该“弦图”与完全平方公式有着密切的关系.如图2,这是由8个全等的直角边长分别为a,b,斜边长为c的三角形拼成的“弦图”.(1)在图2中,正方形ABCD的面积可表示为 (a+b)2 ,正方形PQMN的面积可表示为 (a﹣b)2 .(用含a,b的式子表示)(2)请结合图2用面积法说明(a+b)2,ab,(a﹣b)2三者之间的等量关系.(3)已知a+b=7,ab=5,求正方形EFGH的面积.【解答】解:(1)正方形ABCD的面积可表示为(a+b)2,正方形PQMN的面积可表示为(a﹣b)2.故答案为:(a+b)2,(a﹣b)2;(2)∵正方形ABCD的面积=正方形MNPQ的面积+直角三角形的面积×8,∴(a+b)2=(a﹣b)2+ab×8,∴(a+b)2=(a﹣b)2+4ab;(3)∵正方形EFGH的面积=正方形ABCD的面积﹣直角三角形的面积×4,∴正方形EFGH的面积=(a+b)2﹣ab×4=(a+b)2﹣2ab=72﹣2×5=39.17.如图叫“赵爽弦图”,此图由四个全等的直角三角形(阴影部分)围成一个大正方形,中空的部分是一个小正方形.它是我国汉代的赵爽在注解《周髀算经》时给出的,其巧妙地利用图形的面积证明了“勾股定理”,表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.(1)请你写出“勾股定理”的内容;(2)请你利用图形面积,结合图片完成勾股定理的证明.【解答】解:(1)在直角三角形中,两条直角边的平方和等于斜边的平方;(2)由图可知:,∴a2﹣2ab+b2+2ab=c2,∴a2+b2=c2.故:在直角三角形中,两条直角边的平方和等于斜边的平方.18.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.【解答】解:(1)在Rt△ABC中,由面积的两种算法可得:,解得:CD=.(2)在Rt△ABD中AD2=42﹣x2=16﹣x2,在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2,所以16﹣x2=﹣11+12x﹣x2,解得=.19.勾股定理是人类最伟大的科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(如图中图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有 3 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2直角三角形面积为S3,请判断S1,S2,S3的关系并证明.【解答】解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)①三个图形中面积关系满足S1+S2=S3的有3个;故答案为:3;②结论:S1+S2=S3.∵S1+S2=π()2+π()2+S3﹣π()2,∴S1+S2=π(a2+b2﹣c2)+S3,∴a2+b2=c2.∴S1+S2=S3.。
北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)
2020-2020学年度北师大版数学八年级上册同步练习1.3 勾股定理的应用(word解析版)学校:___________姓名:___________班级:___________一.选择题(共10小题)1.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为()A.3 B.4 C.5 D.62.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米3.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店()A.880米B.1100米C.1540米D.1760米4.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形5.如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D 为底边BC的中点)的长是()A.6米 B.5米 C.3米 D.2.5米6.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm7.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm8.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2 C.3 D.49.如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A.11cm B.2cm C.(8+2)cm D.(7+3)cm10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题(共6小题)11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长海里.12.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3cm到D,则橡皮筋被拉长了cm.14.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.三.解答题(共4小题)17.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD的长.18.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?19.如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?20.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?2020-2020学年度北师大版数学八年级上册同步练习:1.3 勾股定理的应用(word解析版)参考答案与试题解析一.选择题(共10小题)1.【分析】证明△AEC∽△BED,可得=,由此构建方程即可解决问题;【解答】解:由镜面反射对称可知:∠A=∠B=∠α,∠AEC=∠BED.∴△AEC∽△BED.∴=,又∵若AC=3,BD=6,CD=12,∴=,求得EC=4.故选:B.2.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.【解答】解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=4,∴AC=2,∵BD=0.9,∴CD=2.4.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.42=0.49,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.3.故选:B.【分析】利用勾股定理求出小明家到书店所用的时间,求出小明的速度,再求小明家距离书店的距离.【解答】解:∵小明家到书店所用的时间为=10分钟,又∵小明的速度为=110米/分钟,故小明家距离书店的距离为110×10=1100米.故选:B.4.【分析】根据勾股定理的逆定理即可判断.【解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.5.【分析】首先证明AD⊥BC,再利用勾股定理计算即可;【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在Rt△ADB中,AD===2.5,故选:D.6.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角盒内可放木棒最长的长度是=7cm.故选:B.7.【分析】首先根据题意画出图形,利用勾股定理计算出AC的长【解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),则这只铅笔的长度大于15cm.故选:D.8.【分析】求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP=,故选:C.9.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2cm.故选:B.10.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题(共6小题)11.【分析】首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=2海里.【解答】解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=2海里.故答案为2.12.【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【解答】解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.13.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.15.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.【解答】解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.三.解答题(共4小题)17.【分析】如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长.【解答】解:如图所示.则∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=100海里.在Rt△ACD中,设CD=x海里,则AC=2x海里,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=100+x,解得x=50,∴AD=x=50海里.18.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r 则圆柱型唇膏和纸盒的体积之比为:()(2)易拉罐总体积和纸箱容积的比:=;(3)∵=∴第二种包装的空间利用率大.19.【分析】首先求得线段AB的长,然后利用勾股定理求得线段AC的长,然后除以时间即可得到乙船的速度.【解答】解:根据题意得:AB=12×2=24,BC=30,∠BAC=90°.…(1分)∴AC2+AB2=BC2.∴AC2=BC2﹣AB2=302﹣242=324∴AC=18.…(4分)∴乙船的航速是:18÷2=9海里/时.…(6分)20.【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【解答】解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.。
最新2019-2020年度北师大版八年级数学上册《勾股定理的应用》同步练习题及答案解析-精品试题
八上1.3勾股定理的应用一.选择题(共10小题)1.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m2.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm3.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米4.如图,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cm B.30cm C.40cm D.50cm5.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D 点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm6.已知蚂蚁从长、宽都是3,高是8的长方形纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.8 B.10 C.12 D.167.在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会 B.可能会C.一定会D.以上答案都不对8.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺9.一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里10.如图,一场大风后,一棵与地面垂直的树在离地面1m处的A点折断,树尖B点触地,经测量BC=3m,那么树高是()A.4m B.m C.(+1)m D.(+3)m二.填空题(共10小题)11.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.13.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)14.在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.15.小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?(填“能”或“不能”).16.一艘船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有km.17.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是m/s.18.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.19.如图,一个无盖的长廊体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,AB=7,BC=5,CG=5,求这只蚂蚁爬行的最短距离.20.如图示(单位:mm)的矩形零件上两孔中心A和B的距离为mm.三.解答题(共10小题)21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.22.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?23.一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?24.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?25.八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.26.有一只喜鹊在一棵5m高的小树上觅食,它的巢筑在距该树6m的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声时,立即赶过去,若它飞行速度为5m/s,则它至少需要多少时间才能赶回巢中?27.如图,有一条小路穿过长方形的草地ABCD,若AB=30m,BC=42m,AE=50m,则这条小路的面积是多少?28.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,荡秋千到AB 的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.29.如图,某居民楼A与公路MN相距60m(AB=60m),在公路MN上行驶的汽车在距居民楼A100m的点P处就可使其受到噪音的影响,求在公路上以10m/s的速度行驶的汽车给居民楼A的居民带来多长时间的噪音影响.30.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?八上1.3个勾股定理的应用参考答案与试题解析一.选择题(共10小题)1.(2016春•庐江县期末)如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m【分析】图中为一个直角三角形,根据勾股定理两个直角边的平方和等于斜边的平方.此题要求斜边和直角边的长度,解直角三角形即可.【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13m,所以旗杆折断之前高度为13m+5m=18m.故选D.【点评】本题考查的是勾股定理的正确应用,找出可以运用勾股定理的直角三角形是关键.2.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB 的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.3.(2015•岳池县模拟)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10(m),故小鸟至少飞行10m.故选:B.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.4.(2015•伊宁市校级一模)如图,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cm B.30cm C.40cm D.50cm【分析】先将圆柱的侧面展开为一矩形,而矩形的长就是底面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【解答】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得AB===30cm.故选B.【点评】本题考查了圆柱侧面展开图的运用,两点之间线段最短的运用,勾股定理的运用.在解答时将圆柱的侧面展开是关键.5.(2015秋•滨湖区期末)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选A.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.6.(2015秋•新泰市期末)已知蚂蚁从长、宽都是3,高是8的长方形纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.8 B.10 C.12 D.16【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB 为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故选B.【点评】考查了平面展开﹣最短路径问题,本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.7.(2015春•北流市期中)在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会 B.可能会C.一定会D.以上答案都不对【分析】由题意知树折断的两部分与地面形成一直角三角形,根据勾股定理求出BC的长即可解答.【解答】解:如图所示,AB=10米,AC=6米,根据勾股定理得,BC===8米<9米.故选:A.【点评】此题考查了勾股定理在生活中的应用.善于观察题目的信息是解题以及学好数学的关键.8.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.9.(2014春•台山市校级期末)一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了48,36.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×3=48,12×3=36海里,根据勾股定理得:=60(海里).故选C.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.10.(2013秋•东兴市校级期末)如图,一场大风后,一棵与地面垂直的树在离地面1m处的A点折断,树尖B点触地,经测量BC=3m,那么树高是()A.4m B.m C.(+1)m D.(+3)m【分析】由题意知树枝折断部分、竖直部分和折断部分构成了直角三角形,根据题目提供数据分别求出竖直部分和折断部分,二者的和即为本题的答案.【解答】解:由题意知:AC=1,BC=3,由勾股定理得:AB===,∴树高为:AC+AB=(+1)m,故选C.【点评】本题考查了勾股定理的相关知识,解决本题时,先由勾股定理求得树枝折断部分,然后与竖直部分加在一起即为本题的解.二.填空题(共10小题)11.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm .【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.12.(2016春•潮州期末)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了 2 cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.13.(2016春•武冈市期中)如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是dm .(结果保留根号)【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为25dm,宽为(3+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=252+[(3+3)×3]2=949,解得x=.故答案为dm.【点评】此题主要考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.14.(2015秋•苏州校级期末)在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高15 米.【分析】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【点评】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.15.(2015秋•东明县期末)小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?能(填“能”或“不能”).【分析】在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较.【解答】解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.【点评】本题的关键是求出木箱内木棒的最大长度.16.(2015春•岳池县期末)一艘船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有200 km.【分析】两段航行的路线正好互相垂直,构成直角三角形,利用勾股定理即可解答即可.【解答】解:如图,A为出发点,B为正东方向航行了160km的地点,C为向正北方向航行了120km的地点,故AB=160km,BC=120km,在Rt△ABC中,由勾股定理得:AC===200km.故答案为200.【点评】本题考查直角三角形的性质及勾股定理的应用,关键是要根据题意画出图形即可解答.17.(2015秋•蓝田县期末)如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是20 m/s.【分析】求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC==40(m),故小汽车的速度为v==20m/s.故答案为:20.【点评】本题考查了勾股定理的应用,是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.18.(2015秋•宜兴市校级期中)如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是10 cm.【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.【点评】此题主要考查了立体图形的展开和两点之间线段最短,解题的关键是根据题意画出展开图,表示出各线段的长度.19.(2014秋•平山区校级月考)如图,一个无盖的长廊体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,AB=7,BC=5,CG=5,求这只蚂蚁爬行的最短距离cm .【分析】将长方体盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.【解答】解:如图(1),AG===13cm;(2)AG==cm.故答案为cm.【点评】此题考查了平面展开﹣最短路径问题,解答时要进行分类讨论,利用勾股定理是解题的关键.20.(2012秋•上蔡县校级期中)如图示(单位:mm)的矩形零件上两孔中心A和B的距离为100 mm.【分析】根据图形标出的长度,可以知道AC和BC的长度,从而构造直角三角形,根据勾股定理就可求出斜边A和B的距离.【解答】解:∵AC=120﹣60=60mm,BC=140﹣60=80mm,∴AB===100(mm).故答案为:100.【点评】本题考查了勾股定理的应用,善于观察题目的信息是解题以及学好数学的关键.三.解答题(共10小题)21.(2016春•浠水县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA ⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.22.(2016春•重庆校级期中)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?【分析】设旗杆在离底部x米的位置断裂,在直角三角形中利用勾股定理即可得出关于x的一元二次方程,解方程求出x的值,此题得解.【解答】解:设旗杆在离底部x米的位置断裂,在给定图形上标上字母如图所示.∵AB=x,AB+AC=16,∴AC=16﹣x.在Rt△ABC中,AB=x,AC=16﹣x,BC=8,∴AC2=AB2+BC2,即(16﹣x)2=x2+82,解得:x=6.故旗杆在离底部8米的位置断裂.【点评】本题考查了勾股定理的应用,解题的关键是利用勾股定理得出关于x的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,构建直角三角形,利用勾股定理表示出三边关系是关键.23.(2016春•广州校级期中)一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB 为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?【分析】(1)在Rt△ABO中,根据勾股定理AO=,即可求出梯子顶端距地面的高度;(2)在Rt△A′B′O中,根据勾股定理OB′=,先求出OB′的长,梯子底部在水平方向滑动的长度即是BB′=OB′﹣OB的长,.【解答】解:(1)∵AO⊥DO,∴AO===12(m),(2)∵AA′=3m,∴A′O=AO﹣AA′=9m,∴OB′===,∴BB′=OB′﹣OB=﹣5=2﹣5(m),∴梯子的底端在水平方向滑动了2﹣5米.【点评】本题考查了勾股定理在实际生活中的运用,考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求OB′的长度是解题的关键.24.(2015秋•龙口市期末)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【解答】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2…(3分)在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站多少20千米的地方.【点评】考查了勾股定理的应用,本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.25.(2013秋•亭湖区校级期末)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【解答】解:在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=652﹣252=3600,所以,CD=±60(负值舍去),所以,CE=CD+DE=60+1.6=61.6米,答:风筝的高度CE为61.6米.【点评】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.26.(2014春•江都市校级期中)有一只喜鹊在一棵5m高的小树上觅食,它的巢筑在距该树6m的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声时,立即赶过去,若它飞行速度为5m/s,则它至少需要多少时间才能赶回巢中?【分析】根据题意,构建直角三角形,利用勾股定理解答即可.【解答】解:过A做AE⊥CD,垂足为E,由题意可得AE=6,CE=14﹣1﹣5=8在Rt△ACE中,则t==2秒.答:它至少需要2秒的时间才能赶回巢中.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.27.(2014春•东莞市校级期中)如图,有一条小路穿过长方形的草地ABCD,若AB=30m,BC=42m,AE=50m,则这条小路的面积是多少?【分析】根据勾股定理求得BE的长,即可求得CE的长,则要求的平行四边形的面积即为CE•AB 的值.【解答】解:由长方形性质知:∠B=90°在Rt△ABE中,∵AB=30m,AE=50m,∴BE===40m.∴CE=BC﹣BE=42﹣40=2m.S四边形AECF=CE•AB=2×30=60m2.答:小路的面积为60m2.【点评】此题主要是勾股定理的运用.勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.28.(2014春•禹州市期中)如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,荡秋千到AB的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.【分析】利用已知得出B′E的长,再利用勾股定理得出即可.【解答】解:由题意可得出:B′E=1.4﹣0.6=0.8(m),则AE=AB﹣0.8,在Rt△AEB中,AE2+BE2=AB2,∴(AB﹣0.8)2+2.42=AB2解得:AB=4,答:秋千AB的长为4m.【点评】本题考查了勾股定理的应用,善于观察题目的信息是解题以及学好数学的关键.29.(2014春•台安县期中)如图,某居民楼A与公路MN相距60m(AB=60m),在公路MN上行驶的汽车在距居民楼A100m的点P处就可使其受到噪音的影响,求在公路上以10m/s的速度行驶的汽车给居民楼A的居民带来多长时间的噪音影响.【分析】设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.由勾股定理得到AP的长,然后求得PP′长,利用速度路程时间之间的关系求得时间即可.【解答】解:如图,设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.∵由勾股定理得到:PB===80,∴PP′=2PB=2×80=160米,∴影响时间为160÷10=16秒,答:影响时间为16秒.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中整理出直角三角形.30.(2014秋•兴化市校级月考)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?【分析】(1)在直角三角形ABC中,已知AB,AC根据勾股定理即可求出小汽车2秒内行驶的距离BC;(2)根据小汽车在两秒内行驶的距离BC可以求出小汽车的平均速度,求得数值与70千米/时比较,即可计算小汽车是否超速.【解答】解:(1)在直角△ABC中,已知AC=30米,AB=50米,。
北师大版八年级(上)数学《勾股定理的应用》课堂练习(含答案)
1.3 勾股定理的应用1.若正整数a,b,c是一组勾股数,则下列各组数一定仍然是勾股数的是()A.a+1,b+1,c+1 B.a2,b2,c2C.2a,2b,2c D.a-1,b-1,c-1你能否再多写几组勾股数,从这些勾股数中,你能发现什么规律?2.如图1,有一个底面半径为6cm,高为24cm的圆柱,在圆柱下底面的点A 有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物后再返回到A点处休息,请问它需爬行的最短路程约是多少?(π取整数3)3.有一个长宽高分别为2cm,1cm,3cm的长方体,如图2,有一只小蚂蚁想从点A爬到点C1处,请你帮它设计爬行的最短路线,并说明理由.4.在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?参考答案1.C若a,b,c为一组勾股数,那么ka,kb,kc(k≠0,k为常数)也是勾股数.2.解:如下图:将圆柱沿着过A点的高AC剪开,并将侧面展开.1·2πr=π·r≈18(cm)则AC=24cm,BC=2∴在Rt△ABC中,AB2=AC2+BC2=242+182,∴AB=30(cm)∴它最短的爬行路程约为30×2=60(厘米)3.(1)当蚂蚁在侧面A1ABB1和侧面B1BCC1上爬行时,爬行的最短路线的长设为d1,则d12=(2+1)2+32=18(2)当蚂蚁在侧面A1ABB1和上底面A1B1C1D1上爬行时,由A到C1的最短路线的长设为d2,则d22=22+(3+1)2=20(3)同理可求得蚂蚁在侧面A1ADD1和D1DCC1上爬行时,d32=32+(1+2)2=18,蚂蚁在底面ABCD,侧面D1DCC1上爬行时,d32=22+(1+3)2=20所以,蚂蚁可沿A—M—C1爬行,如下图:或蚂蚁沿A—N—C1爬行,如下图:4.解:设水深为x尺如图,Rt△ABC中,AB=h,AC=h+3,BC=6由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62∴h2+6h+9=h2+36,解得:h=4.5答:水深4.5尺.。
北师大版八年级数学上册同步练习附答案
第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为.3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为.4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm25.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.6.一棵9 m高的树被风折断,树顶落在离树根3 m之处,若要查看断痕,要从树底开始爬多高?7.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8 cm,BC=10 cm,求EC的长.FC参考答案:1.(1)13;(2)8;(3)6,8. 2.2.5m . 3.1360cm . 4.D . 5.25km . 6.4. 7.3 cm .1.2 一定是直角三角形吗1.如图在∆ABC 中, ∠BAC = 90︒, AD ⊥BC 于D , 则图中互余的角有 A .2对 B .3对 C .4对 D .5对2.如果直角三角形的两边的长分别为3、4,则斜边长为3.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:AB CD AD BC 2222+=+。
4. 已知:钝角∆BAC ,CD 垂直BA 延长线于D ,求证:BC AB AC AB AD 2222=++⋅。
D CO ABD AB C5. 已知:AB AC =,且AB AC ⊥,D 在BC 上,求证:BD CD AD 2222+=。
新版北师大版八年级上册数学全册同步练习(全套)【最新】
第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为 __________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是_________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.3cm,c=3 cm,则△ABC中最小的角为______度.4.△ABC中,三边长分别为a=6 cm,b=35.如图,AB⊥BC,且AB=3,BC=2,CD=5,AD=42,则∠ACD=__________,图形ABCD的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ). A.4 cmB.8 cmC.10 cmD.12 cm11.如图,△ABC 中,∠C=90°,AB 垂直平分线交BC 于D 若BC=8,AD=5,则AC 等于 ( ).A.3B.4C.5D.1312.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D ,CD=2,则BC 等于( ).A.210B.6C.8D.513.ABC 中,∠C=90°,∠A=30°,斜边长为2,斜边上的高为( ). A.1 B.3C.23 D.43 14.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ). A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则直角三角形的面积是= . 16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
北师大版八年级上第一章勾股定理(附习题和答案)
第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C点与A 点重合,则EB 的长是( ). A .3 B .4 C 5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBAC A B ED 练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ). A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c ---=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只CABDS 3S 2S 1C B A 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62+,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
2022-2023学年北师大版八年级数学上册《1-3勾股定理的应用》达标测试题(附答案)
2022-2023学年北师大版八年级数学上册《1.3勾股定理的应用》达标测试题(附答案)一.选择题(共8小题,满分32分)1.如图,有一个正方体盒子,棱长为1cm,一只蚂蚁要从盒底点A沿盒的表面爬到盒顶的点B,蚂蚁爬行的最短路程是()A.cm B.3cm C.cm D.2cm2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4≤a≤5B.3≤a≤4C.2≤a≤3D.1≤a≤23.如图所示,ABCD是长方形地面,长AB=20,宽AD=10,中间整有一堵砖墙高MN=2,一只蚂蚁从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()A.20B.24C.25D.264.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14B.15C.16D.175.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.dm B.20dm C.25dm D.35dm6.如图,某公园的一块草坪旁边有一条直角小路,公园管理处为了方便群众,沿AC修了一条近路,已知AB=40米,BC=30米,则走这条近路AC可以少走()米路.A.20B.30C.40D.507.如图,已知树EF(垂直于地面)上的点B处(BE=5米)有两只松鼠,为抢到A处(点A,E在同一水平地面上,AE=10米)的坚果,一只松鼠沿B﹣E﹣A到达点A处,另一只松鼠沿B﹣F﹣A到达点A处.若两只松鼠经过的路程相等,则树EF的高为()A.6.5米B.7.0米C.7.5米D.8米8.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米二.填空题(共5小题,满分20分)9.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间为秒.10.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.11.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶端与岸齐,则芦苇高度是尺.12.小亮用11块高度都是2cm的相同长方体小木块垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD木板,截面如图所示.两木墙高分别为AE与CF,点B 在EF上,求正方形ABCD木板的面积为cm2.13.折竹抵地(源自《九章算术》):“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子处3尺远.则原处还有尺竹子.(1丈=10尺)三.解答题(共7小题,满分68分)14.八年级11班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?15.在综合实践课上王老师带领大家利用所学的知识了解某广告牌的高度,已知CD=3m,经测量,得到其它数据如图所示,其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算广告牌的高度GH.16.如图,有一架秋千,当他静止时,踏板离地的垂直高度DE=0.6m,将他往前推送2.4m (水平距离BC=2.4m)时,秋千的踏板离地的垂直高度BF=1.2m,秋千的绳索始终拉得很直,求绳索AD的长度.17.一架2.5m长的梯子AB斜靠在一竖直的墙AC上,这时BC为0.7m.如果梯子的顶端A 沿墙下滑0.4m,那么梯子底端B在水平方向上滑动了多少米?18.某条道路限速70km/h,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s,小汽车到达B处,此时测得小汽车与车速检测仪间的距离为50m.(1)求BC的长;(2)这辆小汽车超速了吗?19.图1是超市购物车,图2为超市购物车侧面示意图,测得∠ACB=90°,支架AC=4.8dm,CB=3.6dm.(1)两轮中心AB之间的距离为dm;(2)若OF的长度为dm,支点F到底部DO的距离为5dm,试求∠FOD的度数.20.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=600km,BC=800km,又AB =1000km,以台风中心为圆心,周围500km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?参考答案一.选择题(共8小题,满分32分)1.解:如图,将正方体展开,则线段AB即为最短的路线,∵这个正方体的棱长为1cm,∴AB==(cm),∴蚂蚁爬行的最短路程是cm.故选:A.2.解:设b是圆柱形的高,当吸管底部在地面圆心时吸管在罐内部分b最短,此时b就是圆柱形的高,即b=12;∴a=16﹣12=4,当吸管底部在饮料罐的壁底时吸管在罐内部分b最长,b==13,∴此时a=3,所以3≤a≤4.故选:B.3.解:如图所示,将图展开,图形长度增加2MN,原图长度增加4米,则AB=20+4=24,连接AC,∵四边形ABCD是长方形,AB=24,宽AD=10,∴AC====26,∴蚂蚁从A点爬到C点,它至少要走26的路程.故选:D.4.解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故选:B.5.解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25(dm).故选:C.6.解:在Rt△ABC中,∵AB=40米,BC=30米,∴AC==50(米),30+40﹣50=20(米),∴他们踩坏了50米的草坪,只为少走20米的路.故选:A.7.解:设设BF为xm,则EF=(5+x)m,由题意知:BE+AE=15m,∵两只松鼠所经过的路程相等,∴BF+AF=15m,∴AF=(15﹣x)m,在Rt△AEF中,由勾股定理得:102+(x+5)2=(15﹣x)2,解得x=2.5,∴EF=5+2.5=7.5(m),答:这棵树高7.5米.故选:C.8.解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故选:B.二.填空题(共5小题,满分20分)9.解:设卡车开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB==60(m),∴CD=2CB=120(m),则该校受影响的时间为:120÷5=24(s).答:该学校受影响的时间为24秒,故答案为:24.10.解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.11.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故答案是:13.12.解:∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°.∵∠ABC=90°,∴∠ABE+∠CBF=90°.∴∠EAB=∠CBF,∵AB=BC,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF=2×5=10(cm),∵CF=2×6=12(cm).在Rt△BCF中,BC2=BF2+CF2=102+122=244,∴S正方形ABCD=BC2=244cm2,即正方形ABCD木板的面积为244cm2.故答案为:244.13.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.解得:x=4.55.答:原处还有4.55尺高的竹子.故答案为:4.55.三.解答题(共7小题,满分68分)14.解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.6=16.6米,答:风筝的高度CE为16.6米;(2)由题意得,CM=9,∴DM=6,∴BM===10,∴BC﹣BM=7,∴他应该往回收线7米.15.解:延长CD交AH于点E,设DE=x,则BE=x,∵∠A=30°,∴==,∴x=5﹣4.5,∴GH=EC=5﹣1.5(m)答:GH的长为=(5﹣1.5)m.16.解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x+0.6﹣1.2)m,故x2=2.42+(x+0.6﹣1.2)2,5.76﹣1.2x+0.36=0解得:x=5.1,答:绳索AD的长度是5.1m.17.解:∵Rt△OAB中,AB=2.5m,BC=0.7m.∴AC==2.4(m),同理,Rt△CA1B1中,∵A1B1=2.5m,CA1=2.4﹣0.4=2(m),∴B1C==1.5(m),∴BB1=B1C﹣BC=1.5﹣0.7=0.8(m).答:梯子底端B在水平方向上滑动了0.8米.18.解:(1)在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC===40(m),(2)∵BC=40m,∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.19.解:(1)在Rt△ABC中,由勾股定理得:AB===6(dm),故答案为:6;(2)过点F作FH⊥DO,交DO延长线于H,如图所示:则FH=5dm,在Rt△FHO中,由勾股定理得:OH===5(dm),∴OH=FH,∴△FHO是等腰直角三角形,∴∠FOH=45°,∴∠FOD=180°﹣∠FOH=180°﹣45°=135°,∴∠FOD的度数为135°.20.解:(1)∵AC=600km,BC=800km,AB=1000km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴600×800=1000×CD,∴CD=480(km),∵以台风中心为圆心周围500km以内为受影响区域,∴海港C受台风影响;(3)当EC=500km,FC=500km时,正好影响C港口,∵ED==140(km),∴EF=280km,∵台风的速度为28千米/小时,∴280÷28=10(小时).答:台风影响该海港持续的时间为10小时.。
八年级数学北师大版上册课时练第1章《勾股定理的应用》 练习测试卷 含答案解析(1)
课时练第1单元勾股定理的应用一、单选题1.我国古代数学名著《九章算术》中有这样一道题目“勾股定理的应用今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽.问绳索长是多少?”示意图如图所示,设绳索AC的长为x尺,根据题意,可列方程为()A.x2﹣(x+3)2=82B.x2﹣(x﹣3)2=82C.(x+3)2﹣x2=82D.x2﹣(x﹣3)2=82.如图,一个梯子斜靠在一竖直的墙AO上,测得AO=4m,若梯子的顶端沿墙下滑1m,这时梯子的底端也下滑1m,则梯子AB的长度为()A.5m B.6m C.3m D.7m3.如图,有一个圆柱,底面圆的直径AB=16pcm,高BC=12cm,P为BC的中点,一只蚂蚁从A点出发沿着圆柱的表面爬到P点的最短距离为()A.9cm B.10cm C.11cm D.12cm4.如图,正四棱柱的底面边长为10cm,侧棱长为16cm,一只蚂蚁从点A出发,沿棱柱侧面到点C′处吃食物,那么它需要爬行的最短路径的长是()cmA.41B.41C.41D.125.一根竹子高一丈,折断后竹子顶端落在离竹子底端6尺处,折断处离地面的高度是多少?(这是我国古代《九章算术》中的“折竹抵地问题.其中的丈、尺是长度单位,一丈=10尺)设折断处离地面的高度为x尺,则可列方程为()A.x2+62=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2D.x2﹣6=(10﹣x)26.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B,C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B 与船C之间的距离为()A.1500m B.1200m C.1000m D.800m7.如图,要从电线杆离地面3.6m处向地面拉一条长为4.5m的钢缆.则地面钢缆固定点A到电线杆底部点B的距离是()A.2m B.2.2m C.2.4m D.2.7m8.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m9.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?“意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5.45尺D.5.55尺10.某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为4cm,则这圈金属丝的长度至少为()A.8cm B.10cm C.12cm D.15cm11.如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池边,它的顶端恰好到达池边的水面,求水的深度是()尺A.8B.10C.13D.1212.如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB竖直插CD=米.竹竿高出水面的部分AD长0.2到水底,此时竹竿AB离岸边点C处的距离0.8米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD为()A .1.5米B .1.7米C .1.8米D .0.6米二、填空题13.如图,一艘轮船以8海里/时的速度从港口O 出发向东北方向航行,另一轮船以6海里/时O 出发向东南方向航行,离开港口0.5小时后,两船相距_________海里.14.如图,一木杆在离地面9米处断裂,木杆顶部落在离木杆底端12米处,则木杆折断之前高_______米.15.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(1AC =尺),将它往前推进两步(10EB =尺),此时踏板升高离地五尺(5BD =尺),则秋千绳索(OA 或OB )的长度为______尺.16.《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC生长在它的中央,高出水面部分BC为1尺,如果把该芦苇沿与C处(如图),水深和水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的'芦苇长各多少尺?则该问题的水深是___________尺.17.如图,在Rt△ABC中,∠ACB=90°,D、E是边AB上的点,连接CD、CE,先将边AC沿CD折叠,使点A的对称点A′落在边AB上;再将边BC沿CE折叠,使点B的对称点B′落在CA′的延长线上,若AC=15,BC=20,则线段B′E的长为___.三、解答题18.在某段公路的正上方有一摄像头A距离地面7米,一天李叔叔驾驶的汽车正沿公路笔直匀速驶来,当行驶到B点时第一次摄像,此时AB两点相距25米,1.5秒后第二次摄像汽车恰好行驶到A点正下方C点,已知该路段限速60km/h,请判断李叔叔是否超速,说明理由.19.如图,将长为2.5米的梯子AB斜靠在墙AO上,BO长0.7米.如果将梯子的顶端A 沿墙下滑0.4米,即AM等于0.4米,则梯脚B外移(即BN长)多少米?20.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.21.如图,AC BC ^,原计划从A 地经C 地到B 地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B 地直接修建,隧道总长为2公里,已知高速公路一公里造价为300万元,隧道一公里造价为500万元,80AC =公里,60BC =公里,则改建后可省工程费用多少万元?22.如图,A 、B 两点相距14km ,C 、D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =8km ,CB =6km ,现在要在AB 上建一个供水站E ,使得C 、D 两村到供水站E 站的距离相等,则:(1)E 站应建在距A 站多少千米处?(2)DE 和EC 垂直吗?说明理由.参考答案1.B2.A3.B4.B5.A6.A7.D8.C9.B10.D11.D12.A13.514.2415.14.516.1217.418.解:李叔叔不超速,理由如下:如图,Rt△ABC中,AC=7,AB=25,由勾股定理得:BC,v=24÷1.5=16(m/s)=57.6(km/h),∵57.6<60,∴李叔叔不超速.19.解:由题意得:AB=2.5米,BO=0.7米,在Rt△ABO中,由勾股定理得:2.4AO ====(米).∴MO =AO -AM =2.4-0.4=2(米),在Rt △MNO 中,由勾股定理得:1.5NO ===(米).∴NB =ON -OB =1.5-0.7=0.8(米),∴梯脚B 外移(即BN 长)0.8米.20.如图,△ABC 中,AB =AC =10,BC =16,过点A 作AD ⊥BC 于D ,∴BD =CD =12BC =12×16=8∴∠ADB =90°.∴AD∴S ABC =12BC ×AD=12×16×6=48∴这个等腰三角形的面积是4821.解:根据勾股定理得:100AB =原计划建公路费用:300(8060)42000´+=万元,实际打隧道及建公路费用:()50023001002´+´-10002940030400=+=万元,420003040011600-=万元,答:改建后可省工程费11600万元.22.解:(1)∵使得C ,D 两村到E 站的距离相等.∴DE =CE ,∵DA ⊥AB 于A ,CB ⊥AB 于B ,∴∠A =∠B =90°,∴AE 2+AD 2=DE 2,BE 2+BC 2=EC 2,∴AE 2+AD 2=BE 2+BC 2,设AE =x ,则BE =AB -AE =(14-x ),∵DA =8km ,CB =6km ,∴x 2+82=(14-x )2+62,解得:x =6,∴AE =6km .答:E 站应建在距A 站6千米处;(2)DE 和EC 垂直,理由如下:在△DAE 与△EBC 中,86AD BE A B AE BC ==ìïÐ=Ðíï==î,∴△DAE ≌△EBC (SAS ),∴∠DEA =∠ECB ,∠D =∠CEB ,∵∠DEA +∠D =90°,∴∠DEA +∠CEB =90°,∴∠DEC =90°,即DE ⊥EC .。
2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版
2023-2024学年八年级数学上册《第一章勾股定理的应用》同步练习题附带答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题1.梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是()A.6米B.7米C.8米D.9米2.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm3.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m4.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺5.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积41,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.25 B.41 C.62 D.816.如图,斜坡BC的长度为4米.为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4√3米,则原来斜坡的水平距离CD的长度是()米.A.2 B.4 C.2√3D.67.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=√2;再过点P,作P1P2⊥OP1且P1P2=1,得OP2=√3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=()A.√2023B.√2022C.√2021D.√2020二、填空题9.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距海里.10.如图是某路口处草坪的一角,当行走路线是A→C→B时,有人为了抄近道而避开路的拐角∠ACB(∠ACB=90°),于是在草坪内走出了一条不该有的捷径路AB.某学习实践小组通过测量可知,AC的长约为6米,BC的长约为8米,为了提醒居民爱护草坪,他们想在A,B处设立“踏破青白可惜,多行数步无妨”的提示牌.则提示牌上的“多行数步”是指多行米.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.12.如图,一个长方体铁盒的长,宽,高分别是8 cm,6 cm,24 cm,-根长28 cm的木棒完全装进这个盒子里.(填“能”或“不能”)13.如图,山坡上,树甲从点A处折断,其树顶恰好落在另一棵树乙的根部C处,已知AB=4m,BC =10m,已知两棵树的水平距离为6m,则树甲原来高.三、解答题14.如图,小旭放风筝时,风筝挂在了树上,他先拉住风筝线,垂直于地面,发现风筝线多出1米;把风筝线沿直线BC向后拉5米,风筝线末端刚好接触地面,求风筝距离地面的高度AB.15.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).16.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1).如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE点B在DE上,OE的长即为消防车的高3m)17.如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?18.台风是一种自然灾害,它在以台风中心为圆心,一定长度为半径的圆形区域内形成极端气候,有极强的破坏力.如图,监测中心监测到一台风中心沿监测点B与监测点A所在的直线由东向西移动,已知点C为一海港,且点C与A,B两点的距离分别为300km、400km,且∠ACB=90°,过点C作CE⊥AB于点E,以台风中心为圆心,半径为260km的圆形区域内为受影响区域,台风的速度为25km/h.(1)求监测点A与监测点B之间的距离;(2)请判断海港C是否会受此次台风的影响,若受影响,则台风影响该海港多长时间?若不受影响,请说明理由.参考答案1.C2.B3.C4.B5.D6.A7.D8.B9.3010.411.3.7512.不能13.(4+6√5)m14.解:设AB=x米,则AC=(x+1)米由图可得,∠ABC=90°,BC=5米在Rt△ABC中AB2+BC2=AC2即x2+52=(x+1)2解得x=12答:风筝距离地面的高度AB为12米.15.解:如图设旗杆高度为x米,则AC=AD=x(m),AB=(x−2)(m)而BC=8m 在Rt△ABC中AB2+BC2=AC2,即(x−2)2+82=x2解得:x=17(m)即旗杆的高度为17m.16.解:在 Rt △ABO 中∵∠AOB =90° AB =15m ,OB =12−3=9 (m ) ∴AO =√AB 2−OB 2=√152−92=12 (m )在 Rt △COD 中∵∠COD =90°,CD =15m ,OD =15−3=12 (m ) ∴OC =√CD 2−OD 2=√152−122=9 (m )∴AC =OA −OC =3 (m )答:消防车从原处向着火的楼房靠近的距离 AC 为 3m .17.(1)解:∵AC=15km ,BC=20km ,AB=25km152+202=252∴△ACB 是直角三角形,∠ACB=90°∵12AC ×BC=12AB ×CD∴CD=AC ×BC ÷AB=12(km ).故修建的公路CD 的长是12km ;(2)解:在Rt △BDC 中,BD= √BC 2−CD 2=16(km )一辆货车从C 处经过D 点到B 处的路程=CD+BD=12+16=28(km ). 故一辆货车从C 处经过D 点到B 处的路程是28km .18.(1)解:在RtΔABC 中,AC =300km ,BC =400km ∴AB =√AC 2+BC 2=√3002+4002=500(km )答:监测点A 与监测点B 之间的距离为500km ;(2)解:海港C 受台风影响理由:∵∠ACB =90°,CE ⊥AB∴S ΔABC =12AC ⋅BC =12CE ⋅AB ∴300×400=500CE∴CE =240km∵以台风中心为圆心周围260km 以内为受影响区域∴海港C 会受到此次台风的影响以C 为圆心,260km 长为半径画弧,交AB 于D ,F则DE =EF =260km 时,正好影响C 港口在RtΔCDE 中∵ED =√CD 2−CE 2=√2602−2402=100(km )∴DF =200km∵台风的速度为25千米/小时∴200÷25=8(小时).答:台风影响该海港持续的时间为8小时.。
最新版(北师大版)八年级数学上册全册同步练习(含答案)
第一章勾股定理1探索勾股定理第1课时探索勾股定理1.已知直角三角形两直角边的长分别为12,16,则其斜边的长为()A.16 B.18 C.20 D.282.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=________.3.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m.现需要在相对的顶点间用一块木板加固,则木板的长为________.4.如图,在Rt△ABC中,AC=8cm,BC=17cm.(1)求AB的长;(2)求阴影长方形的面积.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=5,AC=12,求AB、CD的长.第2课时验证勾股定理及其简单应用1.从某电线杆离地面8m处拉一根长为10m的缆绳,这条缆绳在地面的固定点到电线杆底部的距离为()A.2m B.4m C.6m D.8m2.图中不能用来证明勾股定理的是()3.如图,小丽和小明一起去公园荡秋千,秋千绳索OA长5m.小丽坐上秋千后,小明在距离秋千3m的点B处保护.当小丽荡至小明处时,试求小丽上升的高度AC.4.如图,在海上观察所A处,我边防海警发现正北方向6km的B处有一可疑船只正在向其正东方向8km的C处行驶,我边防海警即刻派船只前往拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?2一定是直角三角形吗1.下列各组数中不是勾股数的是()A.9、12、15 B.41、40、9C.25、7、24 D.6、5、42.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC 是直角三角形的是()A.∠A=∠C-∠B B.a∶b∶c=2∶3∶4C.a2=b2-c2D.a=3,b=5,c=43.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定4.已知a,b,c是△ABC的三边长,且满足关系式(a2+b2-c2)2+|a-b|=0,则△ABC 的形状为______________.5.在△ABC中,AB=8,BC=15,CA=17,则△ABC的面积为________.6.如图,每个小正方形的边长均为1.(1)直接计算结果:AB2=________,BC2=________,AC2=________;(2)请说明△ABC的形状.3勾股定理的应用1.如图是一个长方形公园的示意图,游人从A景点走到C景点至少要走()A.600m B.800m C.1000m D.1400m2.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条笔直的水管,则水管的长为()A.45m B.40m C.50m D.56m3.在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,如图,量得倒下部分的长是10米.请你帮张大爷分析一下,大树倒下时会砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对4.如图,一个无盖圆柱形纸筒的底面周长是60cm,高是40cm.一只小蚂蚁在圆筒底部的A处,它想吃到上底面上与点A相对的点B处的蜜糖,试问蚂蚁爬行的最短路程是多少?第二章 实 数1 认识无理数1.下列各数中,是无理数的是( )A .0.3333… B.227 C .0.1010010001 D .-π22.下列说法正确的是( )A .0.121221222…是有理数B .无限小数都是无理数C .面积为5的正方形的边长是有理数D .无理数是无限小数3.若面积为15的正方形的边长为x ,则x 的范围是( ) A .3<x <4 B .4<x <5 C .5<x <6 D .6<x <74.有六个数:0.123,(-1.5)3,3.1416,117,-2π,0.1020020002….若其中无理数的个数为x ,整数的个数为y ,则x +y =________.5.下列各数中哪些是有理数?哪些是无理数?|+5|,-789,π,0.01·8·,3.6161161116…,3.1415926,0,-5%,π3,223.6.已知半径为1的圆.(1)它的周长l 是有理数还是无理数?说说你的理由; (2)估计l 的值(结果精确到十分位).2 平方根第1课时 算术平方根1.数5的算术平方根为( )A. 5 B .25 C .±25 D .±52.如果a -3是一个数的算术平方根,那么a 的值可能为( ) A .0 B .1 C .2 D .43.下列有关说法正确的是( ) A .0.16的算术平方根是±0.4 B .(-6)2的算术平方根是-6 C.81的算术平方根是±9 D.4916的算术平方根是744.要切一块面积为0.81m 2的正方形钢板,则它的边长是________. 5.若|a -2|+b +3+(c -5)2=0,则a -b +c =________. 6.求下列各数的算术平方根: (1)0.25; (2)13; (3)⎝⎛⎭⎫-382; (4)179.7.如图,某玩具厂要制作一批体积为100000cm 3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少?第2课时 平方根1.81的平方根是( ) A .9 B .-9 C .±9 D .272.关于平方根,下列说法正确的是( )A .任何一个数都有两个平方根,并且它们互为相反数B .负数没有平方根C .任何一个数都只有一个算术平方根D .以上都不对3.如果一个数的一个平方根是-16,那么这个数是________. 4.计算:(1)( 3.1)2=________; (2)(-8)2=________. 5.求下列各数的平方根:(1)25; (2)1681; (3)0.16; (4)(-2)2.6.若一个正数的平方根为2x +1和x -7,求x 和这个正数.3 立方根1.9的立方根是( )A .3B .±3 C.39 D .±39 2.下列说法中正确的是( )A .-4没有立方根B .1的立方根是±1 C.136的立方根是16D .-5的立方根是3-5 3.已知(x -1)3=64,则x 的值为________. 4.-64的立方根为________. 5.求下列各式的值: (1)3-164; (2)30.001; (3)-3(-7)3.6.已知3x +1的平方根是±4,求9x +19的立方根.7.已知第一个立方体纸盒的棱长是6cm ,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127cm 3,求第二个立方体纸盒的棱长.4估算1.在3,0,-2,-2这四个数中,最小的数是()A.3 B.0C.-2 D.- 22.估计14+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.7的整数部分是________.4.比较大小:35________4 3.5用计算器开方1.用计算器求2018的算术平方根时,下列四个键中,必须按的键是() A.+ B.× C. D.÷2.计算器计算的按键顺序为1·69=,其显示的结果为________.3.用科学计算器计算:36+23≈________(结果精确到0.01).4.在某项工程中,需要一块面积为3平方米的正方形钢板,应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?6 实 数1.2的相反数是( )A .- 2 B. 2 C.12 D .22.下列各数是有理数的是( ) A .π B. 3 C.27 D.383.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示7的点是________.4.计算:(1)38+327-(-2)2; (2)|1-2|-(3)2+(6-π)0.5.在数轴上表示下列各数,并把这些数用“<”连接起来.-145,3,2,π,0.7 二次根式第1课时 二次根式及其性质1.下列式子中,不是二次根式的是( ) A.45 B.-3 C.a 2+3 D.232.下列根式中属于最简二次根式的是( ) A. 6 B.12C.8D.27 3.化简8的结果是( )A. 2 B .2 2 C .3 2 D .4 2 4.下列变形正确的是( )A.(-4)×(-9)=-4×-9B.1614=16×14=4×12=2 C.62=62= 3 D.252-242=25-24=15.3的倒数是________. 6.化简: (1)2581=________; (2)34=________; (3)3116=________. 7.化简:(1)3×25×25; (2)(-12)×(-8).第2课时 二次根式的运算1.下列根式中,能与18合并的是( ) A. 2 B. 3 C. 5 D. 62.计算12×3的结果为( ) A .2 B .4 C .6 D .36 3.下列计算正确的是( ) A .23+32=5 B.8÷2=2 C .53×52=5 6 D.412=2124.计算24-923的结果是( ) A. 6 B .- 6 C .-43 6 D.4365.若a =22+3,b =22-3,则下列等式成立的是( ) A .ab =1 B .ab =-1 C .a =b D .a =-b 6.计算:(1)(3+5)(3-5); (2)212+348; (3)153-8; (4)(3-1)2-2.第3课时二次根式的混合运算1.化简8-2(2-2)得()A.-2 B.2-2C.2 D.42-22.下列计算正确的是()A.6÷(3-6)=2-1B.27-123=9- 4C.2+5=7D.(-6)2=63.估计20×15+3的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.计算:(1)(548+12-627)÷3;(2)(23-1)2+(3+2)(3-2);(3)(25-2)0+|2-5|+(-1)2017-13×45;(4)6÷3+2(2-1).第三章位置与坐标1确定位置1.如果影剧院的座位8排5座用(8,5)表示,那么(4,6)表示()A.6排4座B.4排6座C.4排4座D.6排6座2.下列表述中,位置确定的是()A.北偏东30°B.东经118°,北纬24°C.淮海路以北,中山路以南D.银座电影院第2排3.小明向班级同学介绍自己家的位置时,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处D.在学校东南方向800米处4.生态园位于县城东北方向5公里处,下图表示准确的是()5.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示.这样,棋子①的位置可记为(C,4),棋子②的位置可记为(E,3),则棋子⑨的位置可记为________.6.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示;(2)已知秋千在大门以东400m,再往北300m处,请你在图中标出秋千的位置.2平面直角坐标系第1课时平面直角坐标系1.下列选项中,平面直角坐标系的画法正确的是()2.在平面直角坐标系中,点(6,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(3,-4)C.(-4,-6)D.(-1,3)4.已知点A的坐标为(-2,-3),则点A到x轴的距离为________,到原点的距离为________.5.在如图所示的平面直角坐标系xOy中.(1)分别标出点A(4,2),B(0,6),C(-1,3),D(-2,-3),E(2,-4),F(3,0)的位置;(2)写出点M,N,P的坐标.第2课时平面直角坐标系中点的坐标特点1.下列各点在第四象限的是()A.(-1,2) B.(3,-5)C.(-2,-3) D.(2,3)2.下列各点中,在y轴上的是()A.(0,3) B.(-3,0)C.(-1,2) D.(-2,-3)3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2) B.(-2,0)C.(4,0) D.(0,-2)5.已知M(1,-2),N(-3,-2),则直线MN与x轴、y轴的位置关系分别为() A.相交、相交B.平行、平行C.垂直、平行D.平行、垂直6.已知A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出△ABC;(2)求△ABC的面积.第3课时建立平面直角坐标系描述图形的位置1.如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)2.如图,已知等腰三角形ABC.若要建立直角坐标系求各顶点的坐标,则你认为最合理的方法是()A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴3.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,如果所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么所在位置的坐标为()A.(0,1) B.(4,0)C.(-1,0) D.(0,-1)4.如图,长方形ABCD的长AD=6,宽AB=4.请建立适当的直角坐标系使得C点的坐标为(-3,2),并且求出其他顶点的坐标.3轴对称与坐标变化1.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5) B.(5,3)C.(-3,5) D.(3,5)2.已知点P(a,3)和点Q(4,-3)关于x轴对称,则a的值为()A.-4 B.-3 C.3 D.43.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-54.将△ABC各顶点的横坐标都乘以-1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项中正确表示这种变换的是()5.已知点M(a,-1)和点N(2,b)不重合.当M、N关于________对称时,a=-2,b =-1.6.如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.第四章一次函数1函数1.有下面四个关系式:①y=|x|;②|y|=x;③2x2-y=0;④y=x(x≥0).其中y是x 的函数的是()A.①②B.②③C.①②③D.①③④2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是()3.某学习小组做了一个实验:从一幢100m高的楼顶随手放下一只苹果,测得有关数据如下:下落时间t(s),1,2,3,4下落高度h(m),5,20,45,80则下列说法错误的是()A.苹果每秒下落的高度越来越大B.苹果每秒下落的高度不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒4.一个正方形的边长为3cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,则y与x之间的函数关系式是__________.5.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元.(1)写出y与x之间的函数关系式;(2)当老师带领20名学生参观时,门票的总费用为多少元?2 一次函数与正比例函数1.下列函数中,是一次函数的有( )①y =πx ;②y =2x -1;③y =1x ;④y =2-3x ;⑤y =x 2-1.A .4个B .3个C .2个D .1个2.已知y =x +2-3b 是正比例函数,则b 的值为( ) A.23 B.32C .0D .任意实数 3.若y =(m -2)x +(m 2-4)是正比例函数,则m 的值是( ) A .2 B .-2 C .±2 D .任意实数4.汽车开始行驶时,油箱内有油40升.若每小时耗油5升,则油箱内余油量y (升)与行驶时间t (小时)之间的函数关系式为( )A .y =40t +5B .y =5t +40C .y =5t -40D .y =40-5t5.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩的钱数y (元)与买邮票的枚数x (枚)之间的关系式为____________.6.甲、乙两地相距520km ,一辆汽车以80km/h 的速度从甲地开往乙地.(1)写出汽车距乙地的路程s (km)与行驶时间t (h)之间的函数关系式(不要求写出自变量的取值范围);(2)当行驶时间为4h 时,求汽车距乙地的路程.3 一次函数的图象第1课时 正比例函数的图象和性质1.正比例函数y =3x 的大致图象是( )2.已知直线y =-2x 上有两点(-1,a ),(2,b ),则a 与b 的大小关系是( ) A .a >b B .a <b C .a =b D .无法确定 3.已知正比例函数y =kx (k ≠0),点(2,-3)在该函数的图象上,则y 随x 的增大而( ) A .增大 B .减小 C .不变 D .不能确定4.画出正比例函数y =12x 的图象,并结合图象回答下列问题:(1)点(4,2)是否在正比例函数y =12x 的图象上?点(-2,-2)呢?(2)随着x 值的增大,y 的值如何变化?5.已知正比例函数y =(2-m )x |m -2|,且y 随x 的增大而减小,求m 的值.第2课时一次函数的图象和性质1.函数y=-2x+3的图象大致是()2.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是() A.a>b B.a<bC.a=b D.与m的值有关3.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是() A.0 B.-1 C.-1.5 D.-24.把直线y=-5x+6向下平移6个单位长度,得到的直线的表达式为()A.y=-x+6 B.y=-5x-12C.y=-11x+6 D.y=-5x5.已知一次函数y=(m+2)x+(3-n).(1)当m满足什么条件时,y随x的增大而增大?(2)当m,n满足什么条件时,函数图象经过原点?4 一次函数的应用第1课时 确定一次函数的表达式1.某正比例函数的图象如图所示,则此函数的表达式为( ) A .y =-12x B .y =12x C .y =-2x D .y =2x2.已知y 与x 成正比例,当x =1时,y =8,则y 与x 之间的函数表达式为( ) A .y =8x B .y =2x C .y =6x D .y =5x 3.如图,直线AB 对应的函数表达式是( ) A .y =-32x +2 B .y =32x +3C .y =-23x +2D .y =23x +24.如图,长方形ABCO 在平面直角坐标系中,且顶点O 为坐标原点.已知点B (4,2),则对角线AC 所在直线的函数表达式为____________.5.已知直线y =kx +b 经过点A (0,3)和B (1,5). (1)求这个函数的表达式;(2)当x =-3时,y 的值是多少?第2课时单个一次函数图象的应用1.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(h)之间的函数关系用图象可以表示为()2.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为()A.x=2B.y=2C.x=-3D.y=-33.周末小丽从家出发骑单车去公园,途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用了20分钟B.公园离小丽家的距离为2000米C.小丽在便利店的时间为15分钟D.便利店离小丽家的距离为1000米4.若一次函数y=ax+b的图象经过点(2,3),则关于x的方程ax+b=3的解为________.5.某工厂加工一批零件,每名工人每天的薪金y(元)与生产件数x(件)之间的函数关系如图所示.已知当生产件数x大于等于20件时,y与x之间的函数表达式为y=4x+b.当工人生产的件数为20件时,求每名工人每天获得的薪金.第3课时两个一次函数图象的应用1.如图,图象l甲,l乙分别表示甲、乙两名运动员在校运动会800米比赛中所跑的路程s(米)与时间t(分钟)之间的关系,则()A.甲跑的速度比乙跑的速度快B.乙跑的速度比甲跑的速度快C.甲、乙两人所跑的速度一样快D.图中提供的信息不足,无法判断2.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系.当该公司盈利(收入大于成本)时,销售量()A.小于3t B.大于3t C.小于4t D.大于4t3.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢.如图,现在小明让小强先跑________米,直线________表示小明所跑的路程与时间的关系,大约________秒时,小明追上了小强,小强在这次赛跑中的速度是________.4.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先出发,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分钟)之间的关系(从小强开始爬山时计时).(1)小强让爷爷先出发多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)小强经过多长时间追上爷爷?第五章 二元一次方程组1 认识二元一次方程组1.下列属于二元一次方程的是( ) A .xy +2x -y =7 B .4x +1=y C.1x+y =5 D .x 2-y 2=2 2.下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +y =1,2x +y =5的解的是( )A.⎩⎪⎨⎪⎧x =-1,y =2B.⎩⎪⎨⎪⎧x =-2,y =3C.⎩⎪⎨⎪⎧x =2,y =1D.⎩⎪⎨⎪⎧x =4,y =-3 3.如果⎩⎪⎨⎪⎧x =3,y =-5是方程mx +2y =-2的一组解,那么m 的值为( )A.83 B .-83 C .-4 D.854.一个长方形的长的2倍比宽的5倍还多1cm ,宽的3倍又比长多1cm ,求这个长方形的长与宽.设长为x cm ,宽为y cm ,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧2x -5y =1,x -3y =1B.⎩⎪⎨⎪⎧5y -2x =1,3y -x =1C.⎩⎪⎨⎪⎧2x -5y =1,3y -x =1D.⎩⎪⎨⎪⎧5y -2x =1,x -3y =1 5.为了响应“足球进校园”的口号,某校计划为学校足球队购买一些足球.已知购买2个A 品牌的足球和3个B 品牌的足球共需380元,购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,请根据题意列出相应的方程组;(2)⎩⎪⎨⎪⎧x =40,y =100是(1)中列出的二元一次方程组的解吗?2 求解二元一次方程组第1课时 代入法1.方程组⎩⎪⎨⎪⎧3x -4y =2,x +2y =1用代入法消去x ,所得关于y 的一元一次方程为( )A .3-2y -1-4y =2B .3(1-2y )-4y =2C .3(2y -1)-4y =2D .3-2y -4y =22.方程组⎩⎪⎨⎪⎧y =3x ,x +y =16的解是( )A.⎩⎪⎨⎪⎧x =3,y =9B.⎩⎪⎨⎪⎧x =2,y =6C.⎩⎪⎨⎪⎧x =4,y =12D.⎩⎪⎨⎪⎧x =1,y =3 3.用代入消元法解二元一次方程组⎩⎪⎨⎪⎧3x -y =5①,5x +3y =9②,首先把方程________变形得__________,再代入方程________.4.用代入消元法解下列方程组:(1)⎩⎪⎨⎪⎧y =x +2,4x +3y =13; (2)⎩⎪⎨⎪⎧3x +2y =19,2x -y =1.5.已知|x +y -3|+(x -2y )2=0,求x ,y 的值.第2课时 加减法1.对于方程组⎩⎪⎨⎪⎧4x +7y =-19,4x -5y =17,用加减法消去x ,得到的方程是( )A .2y =-2B .2y =-36C .12y =-2D .12y =-362.方程组⎩⎪⎨⎪⎧x -y =2,2x -y =1的解为( )A.⎩⎪⎨⎪⎧x =-1,y =-3B.⎩⎪⎨⎪⎧x =1,y =-3 C.⎩⎪⎨⎪⎧x =-1,y =3 D.⎩⎪⎨⎪⎧x =1,y =3 3.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .34.用加减消元法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =2,6x -y =5; (2)⎩⎪⎨⎪⎧x +2y =5,x +y =2;(3)⎩⎪⎨⎪⎧2x +y =2,3x -2y =10; (4)⎩⎪⎨⎪⎧3x -4y =14,2x -3y =3.3 应用二元一次方程组——鸡兔同笼1.中国古代第一部数学专著《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A.⎩⎪⎨⎪⎧8y +3=x ,7y -4=xB.⎩⎪⎨⎪⎧8x +3=y ,7x -4=yC.⎩⎪⎨⎪⎧8x -3=y ,7x +4=yD.⎩⎪⎨⎪⎧8y -3=x ,7y +4=x 2.某年级共有学生246人,其中男生人数y 比女生人数x 的2倍多2人,则下面所列的方程组中符合题意的是( )A.⎩⎪⎨⎪⎧x +y =246,2y =x -2B.⎩⎪⎨⎪⎧x +y =246,2x =y +2C.⎩⎪⎨⎪⎧x +y =246,y =2x +2D.⎩⎪⎨⎪⎧x +y =246,2y =x +2 3.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中鸡和兔各有几只?4.小明同学发现他奶奶今年的年龄是他年龄的5倍,12年后,他奶奶的年龄是他年龄的3倍.问小明和他奶奶今年的年龄各是多少?4 应用二元一次方程组——增收节支1.小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,问今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程组为( )A.⎩⎪⎨⎪⎧x +y =50000,85%x +110y =95000B.⎩⎪⎨⎪⎧x +y =50000,85%x -110%y =95000C.⎩⎪⎨⎪⎧x -y =50000,115%x -90%y =95000D.⎩⎪⎨⎪⎧x -y =50000,85%x -110%y =95000 2.在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了10%,乙班比去年多种了12%,结果甲班比乙班还是多种100棵树.设甲班去年植树x 棵,乙班去年植树y 棵,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧x -y =100,10%x -12%y =100B.⎩⎪⎨⎪⎧x -y =100,112%x -110%y =100C.⎩⎪⎨⎪⎧x -y =100,12%x -10%y =100D.⎩⎪⎨⎪⎧x -y =100,110%x -112%y =1003.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组______________.4.某校初三(2)班40名同学为“希望工程”共捐款100元,捐款情况如下表:捐款(元),1,2,3,4人数(人),6,●,●,7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚了,求捐款2元和3元的同学各有多少名.5 应用二元一次方程组——里程碑上的数1.已知两数x 、y 之和是10,x 比y 的2倍大1,则下面所列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =10,y =2x +1 B.⎩⎪⎨⎪⎧x +y =10,y =2x -1 C.⎩⎪⎨⎪⎧x +y =10,x =2y +1 D.⎩⎪⎨⎪⎧x +y =10,x =2y -1 2.通讯员要在规定时间骑车到达某地,若他每小时行驶15千米,则可提前24分钟到达;若他每小时行驶12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( )A.⎩⎨⎧x 15-15=y ,x 12+12=yB.⎩⎨⎧x 15+15=y ,x 12-12=yC.⎩⎨⎧x 15-2460=y ,x 12-1560=yD.⎩⎨⎧x 15+2460=y ,x 12-1560=y 3.一个两位数的数字和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是________.4.甲、乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?6 二元一次方程与一次函数1.已知直线y =3x 与y =-x +b 的交点为(-1,-3),则关于x ,y 的方程组⎩⎪⎨⎪⎧y -3x =0,y +x -b =0的解为( )A.⎩⎪⎨⎪⎧x =1,y =3B.⎩⎪⎨⎪⎧x =-1,y =3C.⎩⎪⎨⎪⎧x =1,y =-3D.⎩⎪⎨⎪⎧x =-1,y =-3 2.以方程2x +y =5的解为坐标的所有点组成的图象与一次函数__________的图象相同.3.若一次函数y =2x -4的图象上有一点的坐标是(3,2),则方程2x -y -4=0必有一组解为__________.4.如图,一次函数y =kx +b 的图象l 1与一次函数y =-x +3的图象l 2相交于点P ,则关于x ,y 的方程组⎩⎪⎨⎪⎧y =kx +b ,y =-x +3的解为__________. 5.用图象法解方程组⎩⎪⎨⎪⎧y =2x -2,x +y =-5.6.已知一次函数y =ax -5与y =2x +b 的图象的交点坐标为A (1,-2).(1)直接写出关于x ,y 的方程组⎩⎪⎨⎪⎧ax -y =5,2x -y =-b 的解; (2)求a ,b 的值.7 用二元一次方程组确定一次函数表达式1.一次函数y =kx +b 的图象如图所示,则( )A.⎩⎪⎨⎪⎧k =-13,b =-1B.⎩⎪⎨⎪⎧k =13,b =1C.⎩⎪⎨⎪⎧k =3,b =1D.⎩⎪⎨⎪⎧k =13,b =-12.已知一次函数y =kx +b ,下表中列出了x 与y 的部分对应值,则( )x,…,-1,1,…y,…,1,-5,…A.⎩⎪⎨⎪⎧k =3,b =-2 B.⎩⎪⎨⎪⎧k =-3,b =2 C.⎩⎪⎨⎪⎧k =-3,b =-2 D.⎩⎪⎨⎪⎧k =3,b =2 3.已知y 是关于x 的一次函数,且当x =3时,y =-2;当x =2时,y =-3,则这个一次函数的表达式为____________.4.若某公司销售人员的个人月收入y (元)与其每月的销售量x (千件)是一次函数关系(如图),则个人月收入y (元)与每月销售量x (千件)之间的函数关系式为____________.5.如图是某长途汽车站旅客携带行李费用示意图.(1)求行李费y (元)与行李质量x (千克)之间的函数关系式;(2)当旅客携带60千克行李时,需付行李费多少元?*8 三元一次方程组1.以下方程中,属于三元一次方程组的是( )A.⎩⎪⎨⎪⎧2x +3y =4,2y +z =5,x 2+y =1B.⎩⎪⎨⎪⎧x +y +z =2,x -2y =3,y -6z =9C.⎩⎪⎨⎪⎧1x +1y +1z =16,3x -4y =3,x +z =2D.⎩⎪⎨⎪⎧x -y =2,2x -3y =4,2x -2y =42.已知三元一次方程组⎩⎪⎨⎪⎧2x -3y +2z =5,x -2y +3z =-6,3x -y +z =3消去未知数y 后,得到的方程组可能是( )A.⎩⎪⎨⎪⎧7x +z =4,5x -z =12B.⎩⎪⎨⎪⎧7x +z =4,x -5z =8C.⎩⎪⎨⎪⎧7x -z =12,x -5z =28D.⎩⎪⎨⎪⎧7x -z =4,x -5z =12 3.三元一次方程组⎩⎪⎨⎪⎧x -y =1,y -z =1,x +z =6的解是( )A.⎩⎪⎨⎪⎧x =2,y =3,z =4B.⎩⎪⎨⎪⎧x =2,y =4,z =3C.⎩⎪⎨⎪⎧x =3,y =2,z =4D.⎩⎪⎨⎪⎧x =4,y =3,z =24.有甲、乙、丙三种货物,如果购买甲3件、乙2件、丙1件共需315元;购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙各1件共需( )A .128元B .130元C .150元D .160元5.解方程组:⎩⎪⎨⎪⎧x +y =1,y +z =5,z +x =6.第六章数据的分析1平均数第1课时平均数1.数据:-2,-1,0,3,4的平均数是()A.0 B.0.8 C.1 D.22.7位评委给一个演讲者打分(满分10分)如下:9,8,9,10,10,7,9.若去掉一个最高分和一个最低分,则这名演讲者的最后平均得分是()A.7分B.8分C.9分D.10分3.若一组数据2,4,3,x,4的平均数是3,则x的值为()A.1 B.2 C.3 D.44.某大学招生考试只考数学和物理,计算综合得分时,按数学占60%、物理占40%计算.如果小明数学得分为95分,物理得分为90分,那么小明的综合得分是________分.5.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:,笔试,面试,体能甲,83,79,90乙,85,80,75丙,80,90,73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%、30%、10%的比例计入总分.根据规定,请你说明谁将被录用.第2课时加权平均数的应用1.小明在七年级第二学期的数学成绩如下表所示.如果按如图所显示的权重计分,那么小明该学期的总评得分为________.姓名,平时,期中,期末,总评小明,90分,90分,85分2.某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:,面试,笔试成绩,评委1,评委2,评委388,90,86,92(1)请计算小王面试的平均成绩;(2)如果将面试的平均成绩与笔试成绩按6∶4的比例确定最终成绩,请你计算出小王的最终成绩.3.学校对王老师和张老师的工作态度、教学成绩及业务学习三个方面做了一个初步评估,成绩如下表所示:,工作态度,教学成绩,业务学习王老师,98,95,96张老师,90,99,98若工作态度、教学成绩、业务学习分别占20%、60%、20%,请分别计算王老师和张老师三个方面的平均分,并以此判断谁应评为优秀.2中位数与众数1.数据21、12、18、16、20、21的众数是()A.21 B.20 C.18 D.162.某区在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81.该数据的中位数是()A.77.3 B.91 C.81 D.783.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了如下统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.30,30B.30,20C.40,40D.30,404.若一组数据6、7、4、6、x、1的平均数是5,则这组数据的众数是________.5.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品每月的生产定额,统计了这15人某月加工的零件个数(如下表).月加工零件数(件),54,45,30,24,21,12人数,1,1,2,6,3,2(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?请说明理由.3 从统计图分析数据的集中趋势1.在一次体育课上,体育老师对九年级(1)班的40名学生进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则该班40名学生这次测试的平均分为( ) A.53分 B.354分 C.403分 D .8分2.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是( )A .98,95B .98,98C .95,98D .95,953.如图是小华同学6次数学测验的成绩统计图,则该同学这6次成绩的众数和中位数分别是____________.4.某校八(4)班共有40人,每位同学都向“希望工程”捐献了图书,捐书情况绘制成了如图所示的扇形统计图,求捐书册数的平均数、众数和中位数.4数据的离散程度第1课时极差、方差和标准差1.在九年级体育中考中,某班一组女生(每组8人)参加仰卧起坐测试的成绩如下(单位:次/分):46,44,45,42,48,46,47,45,则这组数据的极差为()A.2 B.4 C.6 D.82.甲、乙两个样本,甲样本的方差是0.105,乙样本的方差是0.055,那么样本() A.甲的波动比乙大B.乙的波动比甲大C.甲、乙的波动一样大D.甲、乙的波动大小无法确定3.某兴趣小组为了解我市气温的变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,-4,-2,1,-2,2.关于这组数据,下列结论不正确的是() A.平均数是-2 B.中位数是-2C.众数是-2 D.方差是74.已知一组数据:2,4,5,6,8,则它的方差为________,标准差为________.5.甲、乙两名同学进行射击训练,在相同条件下各射靶10次,成绩统计如下(单位:环):甲:9,5,7,8,7,6,8,6,7,7;乙:7,9,6,8,2,7,8,4,9,10.谁的成绩射击成绩较稳定?。
北师大版八年级数学上名校课堂练习1.3勾股定理的应用(含答案)
1.3 勾股定理的应用基础题知识点1立体图形中两点之间的最短距离1.如图,若圆柱的底面周长是30 cm,高是40 cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处作装饰,则这条丝线的最小长度是( )A.80 cm B.70 cmC.60 cm D.50 cm2.如图是棱长为1的正方体木块,一只蚂蚁现在A点,若在B处有一食物,它想尽快吃到食物,设蚂蚁沿正方体表面爬行的最短路程为a,则a2=________.3.如图是一个三级台阶,它的每一级的长、宽、高分别为20 dm、3 dm、2 dm,A和B是这个台阶的两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,问蚂蚁沿着台阶面爬行到B点的最短路程是多少?知识点2勾股定理在生活中的应用4.如图,湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )A.30米B.40米C.50米D.60米5.一个圆柱形的油桶高120 cm,底面直径为50 cm,则桶内所能容下的最长的木棒长为( ) A.5 cm B.100 cmC.120 cm D.130 cm6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6 km处往东拐,仅走了1 km,就找到了宝藏,则门口A到藏宝点B的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在高0.9 m,宽1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需________长.8.一渔船从点A出发,向正北方向航行5公里到B点,然后从B点向正东方向航行12公里至C点,则AC长为________公里.9.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶端A在AC上运动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑竿顶端A 下滑多少米?中档题10.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走________公尺后,他与神仙百货的距离为340公尺( ) A.100 B.180C.220 D.26011.(济南中考)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)为( )A.12 m B.13 mC.16 m D.17 m12.(东营中考)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行________米.13.如图是延安某地一个农家的窑洞的洞门示意图,其上方为半圆形,若长方形的对角线AC=2.5米,AD=1.5米,则洞口的面积为________平方米(π取3).14.如图,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有一苍蝇从A 点出发,沿长方体的表面到达C 点处,则苍蝇所经过的最短距离为________.15.如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是母线BC 上一点,且PC =23BC.一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是多少?综合题16.印度数学家什迦罗(1141年~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.参考答案1.D 2.53.经分析,如图,应把台阶看成是纸片折成的,拉平(没高度)成一张长方形(长为3×3+2×3=15 dm ,宽为20 dm)的纸. 所以AB 2=152+202=625(dm 2).所以AB =25 dm ,即蚂蚁沿着台阶面爬行到B 点的最短路程是25 dm.4.C5.D6.D 7.1.5 m 8.139.因为AB =DE =2.5,BC =1.5,∠C =90°, 所以AC =AB 2-BC 2= 2.52-1.52=2. 因为BD =0.5,所以在Rt △ECD 中,CE =DE 2-CD 2= 2.52-(CB +BD )2= 2.52-(1.5+0.5)2=1.5. 所以AE =AC -EC =0.5. 答:滑竿下滑了0.5米.10.C 11.D 12.10 13.4.5 14.5 cm15.画侧面展开图,如图,因为圆柱的底面周长为6 cm , 所以右图中AC =3 cm , 又因为PC =23BC ,所以PC =23×6=4(cm).在Rt △ACP 中,AP 2=AC 2+CP 2,得AP =5 cm.16.如图,由题意知,AC =2,AD =0.5.在Rt △ACD 中,由勾股定理,得CD 2=AC 2-AD 2=22-0.52=3.75. 设湖水深BD 为x 尺,则BC 为(x +0.5)尺.在Rt △BCD 中,由勾股定理,得BD 2+CD 2=BC 2,即x 2+3.75=(x +0.5)2,解得x=3.5.答:湖水深3.5尺.。
1.3+勾股定理的应用+练习2024-2025学年北师大版八年级数学上册+
1.3勾股定理的应用一、单选题1.如图,在一个高是3m,长是5 m的楼梯表面铺地毯,则地毯长度是()A.5 m B.7 m C.8 m D.9 m2.在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对3.如图所示,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺4.如图,一棵大树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.6米B.8米C.10米D.12米5.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距()A.12海里B.13海里C.14海里D.15海里6.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.30cm7.如图,一轮船以12海里/时的速度从港口A出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后两船相距()A.13海里B.16海里C.20海里D.26海里二、填空题1.如图,某学校(A点)到公路(直线l)的距离为300米,到公交车站(D点)的距离为500米,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,则商店C与车站D之间的距离是米.2.某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子底端A到左墙的距离AE为0.7m,梯子顶端D到地面的距离DE为2.4m,若梯子底端A保持不动,将梯子斜靠在右墙BC上,梯子顶端C到地面的距离CB为1.5m,则这两面直立墙壁之间的安全通道的宽BE为m.3.如今人们锻炼身体的意识日渐增强,但是发现少数人保护环境的意识仍显淡薄,应提醒注意.如图是房山某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=30米,BC=40米,他们踩坏了米的草坪,只为少走米的路.4.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是.5.如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是秒.三、解答题1.如图,将长为6米的梯子AC斜靠在墙上,BC长为2米,求梯子上端A到墙的底端B的距离AB.2.据统计:超速行驶是引发交通事故的主要原因,学完第一章后,李鹏、王军、张力三位同学尝试用自己所学的知识检测车速,他们决定在峨城大道金源山水城路段进行测试汽车速度的实验,并把观测点设在到公路l的距离为30米的点P处,选择了一辆匀速行驶的大众轿车作为观测对象,测得此车从A处行驶到B处所用的时间为3秒,并测得∠PAO=45°,同时发现将∠BPO沿过A点的直线折叠,点B能与点P重合,试判断此车是否超过了每小时60千米的限制速度?并说明理由.3.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B外移多少米?4.如图,北泉路OM和长春路ON相交成30°角;沿公路OM方向离两条公路的交叉处O点160米的A处坐落着向阳桥中学,当拖拉机沿ON方向行驶时,路两旁100米内受到噪声影响,已知有一台拖拉机正沿ON方向行驶,速度为5米秒.(1)向阳桥中学是否受到噪声的影响,并说明理由;(2)若向阳桥中学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给向阳桥中学带来噪声影响的时间是多少?。
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元同步练习题(附答案)
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元同步练习题(附答案)一.选择题1.如图,一木杆在离地面4m的A处折断,木杆顶端落在离木杆底端3m的B处,则木杆折断之前的长度为()A.6m B.7m C.8m D.9m2.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.163.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,AC边上中线BE交AD于点O,则△BCE的面积为()A.8B.7C.6D.54.下列各组数中为勾股数的是()A.1,2,3B.2,3,4C.,,D.3,4,55.下列条件中,不能判定△ABC是直角三角形的是()A.∠A=∠B+∠C B.a:b:c=3:4:5C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=1:1:4二.填空题6.如图,四边形ABCD中,AB⊥BC,AB=4,BC=3,AD=12,CD=13,则四边形ABCD 的面积是.7.如图是“勾股树”的部分图,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积之和为cm2.8.如图,Rt△ABC中,∠ACB=90°,以AC、BC为直径作半圆S1和S2,且S1+S2=2π,则AB的长为.9.如图,《九章算术》中有这样一道古题:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽,则木柱长为尺.10.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于点D,且AB=4,BD=5,则点D到BC的距离为.11.如图,BD是△ABC的角平分线,AB=15,BC=9,AC=12,则BD2的值为.12.如图,圆柱形容器高为22cm,底面周长为30cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm且与蜂蜜相对的点A处,为了吃蜂蜜,蚂蚁从外壁A处沿着最短路径爬到内壁B处,它爬行的最短距离是cm.13.相垂直的四边形叫做“垂美”四边形,如图,“垂美”四边形ABCD,对角线AC、BD 交于点O.若AD=3,BC=5,AB2+CD2=.14.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为.三.解答题15.疫情期间,老师出了一道题让学生交流,请你帮他们完成解答过程.如图,在△EFG中,EF=15,FG=14,EG=13,求△EFG的面积.16.在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求斜边AB上的高;(2)①当点P在BC上时,PC=;(用含t的代数式表示)②若点P在∠BAC的角平分线上,求t的值.17.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒2cm的速度沿折线A→C→B→A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.18.如图,AD=4,CD=3,AB=13,BC=12,求△ABC的面积.19.有一块田地的形状和尺寸如图所示,求出它的面积是多少.20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D 两村到E站的距离相等,则:(1)E站应建在距A站多少千米处?(2)DE和EC垂直吗?说明理由.参考答案一.选择题1.解:∵一棵垂直于地面的大树在离地面4m处折断,树的顶端落在离树杆底部3m处,∴折断的部分长为:=5,∴折断前高度为5+4=9(米).故选:D.2.解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.3.解:∵AB=AC=5,∴△ABC是等腰三角形,∵BC=6,AD⊥BC,∴CD=BC=3,∴AD=4,∴S△ABC==12,∵AC边上中线BE交AD于点O,∴S△BCE=S△ABC=6.故选:C.4.解:A、∵12+22≠32,∴不是勾股数,不符合题意;B、∵22+32≠42,∴不是勾股数,不符合题意;C、∵不是正整数,∴不是勾股数,不符合题意;D、∵32+42=52,∴是勾股数,符合题意.故选:D.5.解:A.∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意;B.∵a:b:c=3:4:5,32+42=52,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C.∵a2=(b+c)(b﹣c),∴a2+c2=b2,∴△ABC是直角三角形,故本选项不符合题意;D.∵∠A:∠B:∠C=1:1:4,∠A+∠B+∠C=180°∴最大角∠C=×180°=120°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.二.填空题6.解:如图,连接AC,在△ABC中,AB⊥BC,AB=4,BC=3,∴AC=5.在△ADC中,AD=12,CD=13,AC=5.∵122+52=132,即AD2+AC2=CD2,∴△ADC是直角三角形,且∠DAC=90°,∴S四边形ABCD=S△ABC+S△ADC=AB•BC+AC•AD=×4×3+×5×12=6+30=36.故答案为:36.7.解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故答案为:49.8.解:由勾股定理得,AC2+BC2=AB2,∴=π(AC2+BC2)=2π,∴AC2+BC2=16,∴AB=4,故答案为:4.9.解:设木柱长为x尺,根据题意得:AB2+BC2=AC2,则x2+82=(x+3)2,解得:x=.答:木柱长为尺.故答案为:.10.解:过点D作DE⊥BC于E,在Rt△ABD中,AB=4,BD=5,则AD=3,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=3,即点D到BC的距离为3,故答案为:3.11.解:∵AB=15,BC=9,AC=12,∴BC2+AC2=92+122=152=AB2,∴∠C =90°,过D 作DE ⊥AB 于E ,∵BD 是△ABC 的角平分线,∴DE =CD ,设DE =CD =x ,∵S △ABC =S △ABD +S △BCD ,∴AC •BC =AB •DE +BC •CD ,∴×12×9=×15x +×9x ,∴x =,∴CD =,∴BD 2=4405, 故答案为:4405.12.解:如图:将杯子侧面展开,作A 关于EF 的对称点A ′,则AF +BF 为蚂蚁从外壁A 处到内壁B 处的最短距离,即A ′B 的长度, ∵A ′B =25(cm ),∴蚂蚁从外壁A 处到内壁B 处的最短距离为25cm ,故答案为:25.13.解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根据勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34.故答案为:34.14.解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DC=DE=4,∴BD=BC﹣CD=9﹣4=5.故答案为:5.三.解答题15.解:如图,过点E作EH⊥FG于点H,在Rt△EFH和Rt△EGH中,由勾股定理可得:EH2=EF2﹣FH2,EH2=EG2﹣GH2,∴EG2﹣GH2=EF2﹣FH2,设FH=x,则GH=14﹣x,∵EF=15,FG=14,EG=13,∴132﹣(14﹣x)2=152﹣x2,解得:x=9,∴EH=12,∴S△EFG=×FG•EH=×14×12=84,∴△EFG的面积为84.16.解:(1)在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=8,设边AB上的高为h,则,∴,∴.答:斜边AB上的高为.(2)①当点P在BC上时,点P的运动长度为AB+BP=2t,∴PC=AB+BC﹣(AB+BP)=10+6﹣2t=16﹣2t.故答案为:16﹣2t.②若点P在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC.由①知:PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,,∴Rt△ACP≌Rt△ADP(HL).∴AD=AC=8,又∵AB=10,∴BD=2.在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:.17.解:(1)连接PB,∵∠ACB=90°,AB=10cm,BC=6cm,∴AC=8(cm),∵CP2+BC2=PB2,∵P A=PB=2tcm,∴(8﹣2t)2+62=(2t)2,∴t=;(2)当点P在∠BAC的平分线上时,如图,过点P作PE⊥AB于点E,此时BP=(14﹣2t)cm,PE=PC=(2t﹣8)cm,BE=10﹣8=2(cm),在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣8)2+22=(14﹣2t)2,解得:t=,当t=12时,点P与A重合,也符合条件,∴当t=或12时,点P恰好在∠BAC的平分线上.18.解:∵AD=4,CD=3,∠ADC=90°,∴AC=5,在△ABC中,AC=5,AB=13,BC=12,∵52+122=132,∴AC2+BC2=AB2,即△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=5×12÷2=30.19.解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC=5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=24,答:该四边形面积为24.20.解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km.∴BE=15km.(2)DE和EC垂直,理由如下:在△DAE与△EBC中,,∴△DAE≌△EBC(SAS),∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即DE⊥EC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 勾股定理的应用—同步练习
一、选择题
1. 现有两根木棒,长度分别为44cm和55cm,若要钉成一个三角形的木架,其中有一个角为直角,所需最短的木棒长度是()cm
A. 55
B. 44
C. 33
D.22
2. 如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为()
A. 45m
B. 40m
C. 50m
D. 56m
题2图题3图题4图
3. 如图,已知雕塑底座的AB边长160cm ,AD为120cm,要使AB垂直于AD,BD的长应为()
A. 180cm
B. 200cm
C. 220cm
D. 240cm
4. 如图,在高为5m,坡长为13m的楼梯表面铺地毯,地毯的长度至少需要()
A. 17m
B. 18m
C. 25m
D. 26m
5.已知立方体的棱长为1,则蚂蚁在表面上从一个顶点爬行到相对顶点的距离的平方为()
A. 8
B. 5
C. 3
D. 2
题5图题6图题7图
6. 放学后,斌斌先去同学小华家玩了一会,再回到家里.已知学校C、小华家B、斌斌家A的两两距离如图所示,且小华家在学校的正东方向,则斌斌家在学校的()
A. 正东方向
B. 正南方向
C. 正西方向
D. 正北方向
7.如图,正方形小方格边长为1,则网格中的△ABC是()
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 以上答案都不对
二、填空题
8. 一透明的圆柱状玻璃杯,底面半径为10cm,高为15cm,一根吸管斜放于杯中,吸管露出杯口外5cm,则吸管长为________cm.
9.轮船在大海中航行,它从A点出发,向正北方向航行20千米,遇到冰山后,又折向正东方向航行15千米,此时轮船与A点的距离为______.
10、如图,某农户有一块直角三角形地,两直角边长分别为15米和36米,靠近这块地
的斜边有一个长方形养鱼塘,已知鱼塘宽5米,则这个鱼塘的面积是_____.
三、解答题
11.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B240m,已知他在水中游了510m,求该河宽度.
12.在一棵树10m高的B处,有两只猴子,一只爬下树走到离树40m处的池塘A处;另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?
13.如图,铁路上A、B两点相距为25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个货运站E,使得C、D两村到E站距离相等,问E站应建在离A 多少千米处?
B
C
A E
D
14.有一圆柱形油罐,如图已知油罐的周长是12米,高AB是5米,要以A点环绕油罐建梯子,正好到A点的正上方B点,问梯子最短需多少米?
1.3 勾股定理的应用—同步练习
参考答案
一、
1、C
2、B
3、B
4、A【思路分析】地毯的两条直角边的和.根据勾股定理可求另一条直角边为12m,故地毯的长度至少为12+5=17m.
5、B【思路分析】把题目中的几何体侧面展开如下平面图形所示,则AB即为所求.由勾股定理,得AB2=12+22=5.本题答案是B.
6、D【思路分析】由于52+122=132,可以确定此三角形是直角三角形,且∠ACB是直角,故AC⊥BC,即点A在点C的正北方向.本题答案是D.
7、A【思路分析】根据勾股定理可知AC2=22+32=13,BC2=12+82=65,AB2=42+62=52, AC2+ AB2=65,可见
AC2+AB2=BC2,所以△ABC是直角三角形.
二、
8、30 【思路分析】设在杯中的吸管的长度为xcm,由半径为10cm可知直径为20cm.根据勾股定理得x2=202+152=625=252,所以x=25,即在杯内的吸管的长度为25cm,故吸管的总长度为30cm.
9、25千米【思路分析】根据题意,画出图形如下,AC即为所求.由勾股定理得,AC2=AB2+BC2=202+152=625=252,所以AC=25.
10、195米2【思路分析】设长方形的长为xm,则根据勾股定理得x2=362+152=1521=392,所以x=39.所以这个鱼塘的面积为39×5=195米2.
三、11.450米
12.设BD =x,则有:(10+x)2+402=(50-x)2,解得x=15米
13、解:在直角三角形ADE中,由勾股定理,得DE2=AD2+AE2.
在直角三角形BEC中,由勾股定理,得EC2=BE2+BC2.
因为DE=EC,因此DE2=EC2,所以AD2+AE2=BE2+BC2.
所以152+AE2=(25-AE)2+102,解得AE=10(km)
14、13米。