数学系书单(en)

合集下载

高等数学书单

高等数学书单

高等数学是大学数学的基础课程,对于理工科学生来说尤为重要。

以下是一些经典的高等数学书单,供大家参考:1. 《高等数学》(上、下册)- 同济大学数学系编著这是一本非常经典的高等数学教材,内容全面,讲解详细,适合初学者入门。

书中包含了微积分、解析几何、线性代数等多个方面的内容,是学习高等数学的必备教材。

2. 《数学分析》(上、下册)- 陈纪修编著这本书是一本更加深入的数学分析教材,内容更加抽象和严谨。

书中介绍了实数系统、极限、连续性、微分学、积分学等多个方面的内容,适合对数学有一定基础的学生进一步学习和提高。

3. 《高等代数与解析几何》- 王萼芳编著这本书是一本综合性的高等数学教材,内容包括线性代数、解析几何等多个方面。

书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步提高。

4. 《微积分》(上、下册)- 斯图尔特编著这本书是一本国际知名的微积分教材,内容全面,讲解清晰。

书中包含了微积分的基本概念、定理和应用,适合对微积分有一定基础的学生进一步学习和提高。

5. 《概率论与数理统计》- 陈希孺编著这本书是一本关于概率论和数理统计的经典教材,内容涵盖了概率论和数理统计的基本概念、方法和应用。

书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。

6. 《离散数学》- 耿素云编著这本书是一本关于离散数学的经典教材,内容包括集合论、图论、逻辑等多个方面。

书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。

7. 《数值分析》- 黄皮书编著这本书是一本关于数值分析的经典教材,内容包括数值逼近、数值解方程、数值积分等多个方面。

书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。

8. 《复变函数》- 阿姆斯特朗编著这本书是一本关于复变函数的经典教材,内容包括复数、解析函数、级数等多个方面。

书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。

9. 《常微分方程》- 阿诺尔德编著这本书是一本关于常微分方程的经典教材,内容包括常微分方程的基本概念、解法和应用。

数学老师看的书

数学老师看的书

数学老师看的书
作为一名数学老师,我喜欢阅读与数学相关的书籍。

以下是我最喜欢的数学书籍:
1.《数学之美》——吴军
这本书是一本科普书,讲述了数学的美妙之处,以及它在各个领域中的重要作用。

书中涵盖了数学的历史、发展和应用,让读者了解到数学是如何构建我们的世界的。

2.《数学思维导论》——芝加哥大学数学系
这本书是一本介绍数学思维和方法的书籍,适合所有对数学感兴趣的人。

书中讲述了如何用数学的方法解决问题,以及数学在科学研究和工程设计中的应用。

3.《微积分的本质》——西蒙·西尼克
这本书是一本介绍微积分的书籍。

作者用通俗易懂的语言讲解了微积分的基本概念和方法,帮助读者更好地理解微积分的本质。

4.《线性代数及其应用》——吉尔伯特·斯特兰
这本书是一本介绍线性代数的书籍,适合所有对数学感兴趣的人。

书中涵盖了线性方程组、线性变换和矩阵等基本概念,以及线性代数在各个领域中的应用。

总的来说,这些书籍都是我推荐给学生和对数学感兴趣的人的。

它们不仅能够增强数学思维和方法,还能够让读者更好地理解数学的应用和价值。

- 1 -。

数学系高等数学教材推荐

数学系高等数学教材推荐

数学系高等数学教材推荐高等数学是大学数学课程中的重要一环,对学生的数学基础和综合能力有很高的要求。

选择一本好的高等数学教材对于学生的学习起到至关重要的作用。

下面我将为大家推荐几本经典的高等数学教材。

1. 《数学分析教程》(第三版)这是一本经典的高等数学教材,由清华大学数学教研室编写。

该教材主要分为微积分和无穷级数两部分。

它的特点是理论与实践相结合,系统性强,适合用作提高学生数学分析能力的课程辅助教材。

2. 《高等数学》(第七版)这是一本全面系统的高等数学教材,由中国人民大学数学教研室编写。

该教材内容丰富,涵盖了高等数学的各个分支,如微积分、数列、级数、多元函数等。

它的特点是注重基本概念和定理的讲解,同时穿插了大量的例题和习题,有助于学生巩固基础知识和强化练习能力。

3. 《高等数学》(上下册)这是清华大学数学系的教材,由李建国等人编写。

该教材内容结构合理,逻辑严谨,各个章节之间的衔接性强。

它的特点是突出数学的逻辑性和抽象性,将重点放在原理和性质的证明上,有助于学生形成系统化的数学思维。

4. 《高等数学》(第九版)这是北京大学数学系的经典教材,由吴军、严加安等人编写。

该教材内容丰富,重点讲解了微积分的理论和方法,同时也涉及了数列、级数、多元函数等内容。

它的特点是细致入微地介绍了许多数学概念,并配以大量的图表和例题,便于学生理解和掌握难点。

以上是我为大家推荐的几本高等数学教材,每本教材都有自己独特的特点和优势,具体选择应根据自己的实际情况和学习需求来决定。

希望以上推荐对大家在高等数学学习中有所帮助!。

数学强基书单

数学强基书单

数学强基书单数学是一门重要的学科,它是自然科学的基础,也是现代科技的支柱。

而要建立数学的强大基础,一个好的书单是必不可少的。

以下是一些内容生动、全面且有指导意义的数学强基书单,供大家参考。

1.《数学分析教程》(通用):这本经典教材涵盖了数学分析的基本概念和理论,包括极限、导数、积分等重要内容。

它的全面性和深入性会帮助读者建立起扎实的数学基础。

2.《高等代数教程》(通用):代数是数学的一个重要分支,它研究的是数和符号的关系。

这本教程覆盖了线性代数、矩阵理论以及群论等内容,对于培养读者的抽象思维能力非常有帮助。

3.《概率论与数理统计教程》(通用):概率论和数理统计是应用数学的重要组成部分。

这本教程详细介绍了基本概率论的概念、性质和应用,以及统计学中的抽样理论、参数估计和假设检验等内容,为读者打下了坚实的数理统计基础。

4.《微分几何与偏微分方程》(通用):微分几何是研究曲线、曲面及其高维推广的几何学分支,而偏微分方程是通过数学建模来描述自然界中的各种现象。

这本教程系统介绍了微分几何和偏微分方程的基本理论和方法,对于培养读者的几何直观和物理感觉非常有帮助。

5.《实变函数与泛函分析》(通用):实变函数和泛函分析是数学分析的两个重要分支。

这本教程讲解了实数、实变函数、泛函分析的基本概念、性质和方法,对于理解数学分析的深层结构有很大帮助。

6.《代数拓扑学》(通用):代数拓扑学是代数学和拓扑学的交叉学科,它研究的是代数结构与空间的关系。

这本教程详细介绍了拓扑空间、群、环以及拓扑群等内容,对于培养读者的几何直观和抽象思维能力非常有帮助。

7.《数论导引》(通用):数论是研究整数性质的数学分支,它在密码学、编码理论等许多领域有着广泛应用。

这本教材系统地介绍了数论的基本知识和方法,包括素数、同余、数论函数等,对于培养读者的数学逻辑和推理能力非常有帮助。

综上所述,这些书籍涵盖了数学的各个领域,从基础的数学分析、代数到高级的微分几何、泛函分析,再到应用性的概率论、数理统计和数论,每本书都具有较高的权威性和可读性。

数学与应用数学专业推荐选读书目

数学与应用数学专业推荐选读书目

数学与应用数学专业推荐选读书目1、《数学分析》(上、下册),华东师大数学系编,高等教育出版社;2、《数学分析讲义》(第三版),刘玉涟、付沛仁著,高等教育出版社;3、《数学分析》,(北大)方企勒、沈燮昌等编高等教育出版社;4、《数学分析讲义》,(复旦)陈纪修、于崇华等编,高等教育出版社;5、《微积分教程》,[苏]菲赫金哥尔茨著,人民教育出版社;6、《数学分析题集》,[苏]吉米多维奇编,人民教育出版社;7、《数学分析讲义》,北京师范大学数学系编,高等教育出版社;8、《数学分析中的典型问题与方法》,裴礼文,高等教育出版社;9、《数学分析的基本概念与方法》,强文久、李元章、黄雯荣编,高等教育出版社;10、《数学分析》,陈征修等编,高等教育出版社。

11、《复变函数论》(第二版),钟玉泉编,高等教育出版社;12、《复变函数》(第二版),余家荣等编,高等教育出版社;13、《实变函数与泛函分析基础》,程其襄等编,高等教育出版社;14、《实变函数论与泛函分析》(第二版),夏道行等编,高等教育出版社。

15、《高等代数》(第二版),北京大学数学系几何与代数教研室代数小组编,高等教育出版社,1988年;16、《高等代数》,张禾瑞、郝丙新,高等教育出版社,1983年;17、《高等代数分析与研究》,王正文,山东大学出版社,1994年;18、《高等代数新方法》,王品超,山东教育出版社,1989年;19、《线性代数--方法导引》,屠伯埙,复旦大学出版社,1986年;20、《线性代数解题分析》,胡海清,湖南科学技术出版社,1984年;21、《线性代数》,谢邦杰,人民教育出版社,1978年;22、《全国高等院校研士研究生入学试题解答--高等代数》,侯国荣等,天津科学技术出版社,1986年;23、《近世代数基础》,刘绍学,高等教育出版社,1999年(面向21世纪课程教材);24、《近世代数基础》,张禾瑞,高等教育出版社,1978年;25、《近世代数》,吴品三,高等教育出版社,1979年;26、《代数学引论》,聂灵绍、丁石孙,高等教育出版社,1988年(面向21世纪课程教材);27、《环论》,熊全淹,武汉大学出版社,1993年;28、《Basic Algebra I》,N.Jacobson,W.H.Freeman and company,1974;29、《环与代数》,刘绍学,科学出版社,1986年;30、《模与环》,F.卡施,科学出版社,1974年。

大学数学阅读书目推荐150本

大学数学阅读书目推荐150本

大学数学阅读书目推荐150本以下是针对大学数学研究的一些推荐书目,涵盖了数学的各个领域和不同难度级别。

这些书籍将为大学生提供坚实的数学基础和深入的数学知识。

基础数学1. 《普通数学》(作者:程路、左国光)2. 《高等数学》(作者:同济大学)3. 《线性代数与解析几何》(作者:谢金星、宁先念)4. 《概率论与数理统计》(作者:李建国)5. 《离散数学及其应用》(作者:肖平、刘源、陈景林)微积分1. 《微积分学教程》(作者:苏步青)2. 《微积分学》(作者:郭廷宇)3. 《微积分》(作者:邵发)4. 《微积分学教程》(作者:王尧、毛红新)5. 《微积分学辅导与题解析》(作者:许正章)线性代数1. 《线性代数及其应用》(作者:David C. Lay)2. 《线性代数》(作者:张贤达、朱桂香)3. 《线性代数》(作者:丘维声、张维皓)4. 《线性代数基础教程》(作者:陈佩民)5. 《线性代数》(作者:Charles Curtis)概率论与数理统计1. 《概率论与数理统计》(作者:吴喜之)2. 《概率论与数理统计》(作者:邵发)3. 《概率论与数理统计》(作者:陈希孺)4. 《概率论与数理统计教程》(作者:严新华)5. 《概率论与数理统计》(作者:黄启广)数学分析1. 《数学分析教程》(作者:吴文俊)2. 《数学分析教程》(作者:王浩)3. 《数学分析教程》(作者:郑曾良)4. 《数学分析教程》(作者:冯克勤)5. 《数学分析教程》(作者:水木清华)抽象代数1. 《抽象代数导论》(作者:David S. Dummit、Richard M. Foote)2. 《抽象代数教程》(作者:朱浩生)3. 《抽象代数教程》(作者:吴文智)4. 《抽象代数教程》(作者:邵红明)5. 《抽象代数研究指导与题解答》(作者:郑也夫)这只是一个推荐书目的小小部分,希望对正在学习大学数学的同学们有所帮助。

数学专业书单

数学专业书单

数学专业书单数学专业是一门理论性较强的学科,学习数学需要掌握一定的基础知识和技巧。

下面是一份数学专业书单,帮助学生系统学习数学知识。

1.《数学分析》数学分析是数学专业的基础课程之一,它主要研究实数、函数、极限、连续性、微积分等概念和性质。

这本书以严谨的推导和证明,帮助学生深入理解数学分析的基本原理和方法。

2.《线性代数》线性代数是数学专业的另一个重要基础课程,它研究向量空间、线性变换、矩阵、特征值等概念和性质。

这本书介绍了线性代数的基本理论和应用,包括矩阵运算、线性方程组、特征值问题等。

3.《概率论与数理统计》概率论与数理统计是数学专业的一门重要课程,它研究随机事件的概率和随机变量的统计规律。

这本书介绍了概率论和数理统计的基本概念、定理和方法,包括概率、随机变量、概率分布、参数估计、假设检验等。

4.《常微分方程》常微分方程是数学专业的一门应用数学课程,它研究描述变化规律的微分方程解的存在性、唯一性和性质。

这本书介绍了常微分方程的基本理论和求解方法,包括一阶和高阶微分方程、常系数和变系数线性微分方程、常微分方程的数值解法等。

5.《数值分析》数值分析是数学专业的一门应用数学课程,它研究利用计算机进行数值计算和数值模拟的方法和技巧。

这本书介绍了数值分析的基本原理和常用算法,包括数值逼近、数值积分、数值代数方程的求解等。

6.《离散数学》离散数学是数学专业的一门基础课程,它研究离散结构和离散对象的性质和关系。

这本书介绍了离散数学的基本概念和方法,包括集合论、图论、布尔代数、逻辑推理等。

7.《数学建模》数学建模是数学专业的一门应用数学课程,它研究利用数学方法解决实际问题的建模和求解技巧。

这本书介绍了数学建模的基本原理和方法,包括问题分析、模型构建、模型求解和模型评价等。

8.《实变函数》实变函数是数学专业的一门高级课程,它研究实数轴上的函数的性质和变化规律。

这本书介绍了实变函数的基本概念和性质,包括连续性、可微性、积分等。

大学里要读的数学书目录

大学里要读的数学书目录

大学里要读的数学书目录1. 微积分- 微积分原理(作者:James Stewart)- 微积分导论(作者:Michael Spivak)- 微积分入门(作者:Susan J. Colley)2. 线性代数- 线性代数及其应用(作者:David C. Lay)- 线性代数导论(作者:Gilbert Strang)- 线性代数方法(作者:Stephen H. Friedberg)3. 概率与统计- 概率导论(作者:Dimitri P. Bertsekas)- 数理统计学(作者:Robert V. Hogg)- 统计推断(作者:George Casella)4. 微分方程- 微分方程引论(作者:Dennis G. Zill)- 常微分方程与动力系统(作者:Lawrence Perko) - 偏微分方程的数值解(作者:David Kincaid)5. 抽象代数- 抽象代数(作者:David S. Dummit)- 现代抽象代数(作者:Joseph A. Gallian)- 环和域的基础(作者:Paul J. McCarthy)6. 实分析- 实分析导论(作者:Charles G. Denlinger)- 实变函数与泛函分析(作者:Serge Lang)- 实分析基础(作者:Robert G. Bartle)7. 离散数学- 离散数学及其应用(作者:Kenneth H. Rosen) - 离散数学与应用(作者:Richard Johnsonbaugh) - 离散数学导论(作者:Richard Johnsonbaugh)8. 数值分析- 数值分析(作者:Richard L. Burden)- 数值分析方法(作者:Gerald B. Folland)- 数值分析与计算方法(作者:Robert L. Burden)9. 图论- 图:性质、结构与算法(作者:Adrian Bondy)- 图论导引(作者:Gary Chartrand)- 树和图的组合(作者:John M. Harris)10. 数论- 数论导引(作者:Andre Weil)- 初等数论(作者:Kenneth H. Rosen)- 数论简介(作者:Neal Koblitz)11. 数学物理- 数学物理方程(作者:Robert D. Richtmyer)- 数学物理导论(作者:Michael T. Vaughn)- 数学物理方法(作者:George B. Arfken)12. 复变函数- 复变函数与积分变换(作者:James Ward Brown)- 复变函数导论(作者:Ruel V. Churchill)- 复变函数及其应用(作者:Anthony Tromba)这些数学书目录涵盖了大学课程中的主要数学领域,涉及微积分、线性代数、概率与统计、微分方程、抽象代数、实分析、离散数学、数值分析、图论、数论、数学物理以及复变函数。

数学系书单(en,ch)

数学系书单(en,ch)

24、偏微分方程I&II
姜礼尚,《数学物理方程讲义》,高教版
谷超豪,《数学物理方程》,高教版
Aleksei.A.Dezin,Partial differential equations,Springer-Verlag
Evans "Partial Differential Equations" ‘98 AMS
4、集合论原理
耿素云,集合论与图论,北京大学出版社
Elements of Set Theory by Herbert Enderton
Set Theory by Thomas J. Jech
5、离散数学原理
耿素云,离散数学,高教版
Discrete Mathematics and its Applications Kenneth H. Rosen
A Second Course in Stochastic Processes by Samuel Karlin, Howard Taylor
The Theory of Stochastic Processes I &II Gikhman, I.I., Skorokhod, A.V
21、复分析I&II
Real & Complex Analysis, 3rd Edition by W. Rudin
Conway "Functions of One Complex Variable I&II Springer-Verlag
史济怀,《多复变函数论基础》,高教版
张南岳,《复变函数论选讲》,北大版
18、拓扑学I&II
Munkries "Topology" 2nd ed. Prentice Hall

数学与应用数学专业必读书目

数学与应用数学专业必读书目

数学与应用数学专业必读书目对于数学与应用数学专业的学生来说,阅读相关的经典书籍是深入理解数学知识、拓展思维、提升专业素养的重要途径。

以下为大家推荐一些该专业的必读书目。

《数学分析》(作者:华东师范大学数学系)数学分析是数学专业的基础课程,这本书系统地阐述了数学分析的基本概念、理论和方法。

从实数理论、极限理论开始,逐步深入到函数的连续性、导数、积分等重要内容。

通过阅读这本书,可以打下坚实的数学分析基础,培养严谨的逻辑思维和推理能力。

《高等代数》(作者:北京大学数学系)高等代数是研究线性空间、线性变换、多项式等内容的学科。

这本教材逻辑清晰,内容丰富,涵盖了矩阵、行列式、线性方程组、向量空间、线性变换等核心知识。

通过学习,可以掌握代数结构的基本概念和方法,为后续学习抽象代数等课程做好准备。

《解析几何》(作者:吕林根许子道)解析几何将代数方法引入几何研究,使几何问题能够通过代数运算来解决。

本书详细介绍了空间直角坐标系、向量、曲线与曲面等内容,帮助读者建立起几何与代数之间的联系,培养空间想象能力和数形结合的思维方式。

《常微分方程》(作者:王高雄等)常微分方程是研究具有未知函数及其导数的关系式的方程。

这本书介绍了常微分方程的基本理论和求解方法,包括一阶方程、高阶线性方程、线性方程组等。

通过阅读,可以学会运用数学工具解决实际问题中的动态变化过程。

《概率论与数理统计》(作者:盛骤谢式千潘承毅)概率论与数理统计是研究随机现象的数学分支。

本书涵盖了概率的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、参数估计、假设检验等重要内容。

在当今数据驱动的时代,掌握这方面的知识对于处理和分析数据具有重要意义。

《实变函数论》(作者:周民强)实变函数论是数学分析的深化和拓展,它引入了勒贝格测度和积分的概念。

这本书对实变函数的理论进行了深入的探讨,有助于提高对函数本质的理解和数学分析的能力。

《复变函数》(作者:钟玉泉)复变函数是研究复数域上的函数。

数学系书籍推荐教材

数学系书籍推荐教材

数学书籍推荐2楼目录引言一数学分析二高等数学三高等代数四线性代数五解析几何六概率论七常微分方程八偏微分方程九数学物理方程(数学物理方法)十复变函数十一实变函数十二泛函分析十三高等几何十四微分几何十五拓扑学十六近世代数十七离散数学十八组合数学十九数值分析二十数学建模二十一数学史附录数学软件后记3楼引言早就有一种想法:把一些非常好的数学书籍尽量全面地推荐给广大数学爱好者和吧友们。

这是由于以下原因:一是在我们高等数学吧不断有吧友发贴询问推荐一些(高等)数学方面比较好的书籍,可能其中有部分是初学者,因而急需一些有经验的学长推荐些好书,以便不走弯路。

二来恰好笔者也有类似经历,初接触高等数学方面的书籍时,也不知有啥好坏或者稂莠之别,后来在一些这些书的内容中了解到、在网上一些学长的贴子中看到很多“经典”和比较“好”的教材、参考书、课外书籍等,于是在广泛查阅、拜读之后,把我所看过的和所知道的一些很好的书目记录下来,提供朋友们参考。

希望能给大家有所帮助。

实际上所谓的“好书”和经典书,并不限于数学方面,其他学科方面的有,相信大家也看过不少,这里只说数学方面的。

以下结合本人经验和一些学长的见解,共写有二十一个专题,每个专题都有该学科的简介或者是小结;相应的介绍书籍则是按【教材】、【习题集】、【辅导书】、【提高】四个方面来写,而且每本书后有简评供参考。

最后附录介绍几个常用数学软件。

============注:1)打引号或书名号的课程名词被认为是指书籍或课程名,否则是指这一数学学科类(领域)。

2)以下推荐的书籍一般不标注版本,因为随时有新版出版的可能,并且不一定新版就比旧版的好一些,有时还不如旧版的。

最好多结合几个版本来看(有三个以上版本的不要看第一版,结合看最新版和倒数几个旧版),这样能学到更多。

这是笔者的经验。

如果书后标有版本号的,一般是指比较好的版本。

3)关于出版社的问题,这个不必要过多追究,因为大部分书不会用一个以上的出版社出版,况且不同出版社出版同一本书,只是版式和符号的样式不同而已,内容不会有别。

数学专业的“经典名著”清单

数学专业的“经典名著”清单

数学专业的“经典名著”清单数学大师的经典FelixKlein1849-1925(菲利克斯·克莱因)•《EIementary Mathematics from an AdvancedStandpoint》《高观点下的初等数学》(全3册)•《Famous Problems of Elementary Geometry》《初等几何的著名问题》•《DeveIopment of Mathematics in the 19thCentury》《数学在19世纪的发展》David Hilbert 1862-1943(大卫·希尔伯特)•《The Foundations of Geometry》《几何基础》•《Geometry and the imagination〉《直观几何》与康福森(S.ohnvossen)合著•《Methods of MathematicaI Physics)《数学物理方法》与柯朗(Richard Courant)合著•《The Theory of Algebraic Number Fields)《代数数域理论》Hermann Veyl 1885-1955(赫尔曼·外尔)•《CIassicaI Group》《经典群》•《Symmetry》《对称》Andre Weil 1906一1998(安德烈·韦伊)•《Basic Number Theory》《基础数论》拓扑学名著•《Basic Topology》《基础拓扑学》一阿姆斯特朗(M.A.Armstrong)•《Topology from the Differentiable View point》《从微分观点看拓扑》约翰·米尔诺(John nor)•《Topology》(2nd Edition)《拓扑学》Munkres,James代数学名著•《Algebra》《代数学》(共两卷)一范德瓦尔登(B.L.Van der waerden)•《Basic Algebra》《基础代数学》(共两卷)一雅各布森(N.Jacobson)•《lntroduction to Commutative Algebra》《交换代数导引》迈克尔·阿蒂亚(MichaeI Atiyah)•《lntroduction to Lie Algebras and Representation Theory》《李代数与表示论导论》一J.E.Humphreys。

高等数学教材推荐书单

高等数学教材推荐书单

高等数学教材推荐书单在高等数学学习中,选择一本好的教材对于提高学习效果和理解数学概念至关重要。

本文将为大家推荐几本经典的高等数学教材,希望能够为学生和教师提供参考。

1. 《数学分析》(Walter Rudin)《数学分析》是一本经典的高等数学教材,适合有一定数学基础的学生。

该教材准确地解释了数学分析的基本原理和概念,并提供了大量的习题供学生练习。

它的严谨性和深度使得它成为很多大学数学系的教材之一。

2. 《微积分学导论》(Michael Spivak)《微积分学导论》是一本深入浅出的高等数学教材,适合初学者。

它以清晰的语言和丰富的示例讲解微积分的基本概念,并引领读者逐步理解微积分的应用。

这本教材常用于大学的微积分入门课程。

3. 《高等代数学教程》(Fraleigh)《高等代数学教程》是一本介绍高等代数学的经典教材。

它详细涵盖了线性代数、群论、环论等内容,以及它们在数学和其他领域中的应用。

该教材通俗易懂,适合广大学生学习。

4. 《普林斯顿微积分读本》(George F. Simmons)《普林斯顿微积分读本》是一本综合性的微积分教材,内容包含了微分和积分学的基本原理和应用。

它以易懂的语言和丰富的图例,帮助学生深入理解微积分的概念和计算方法。

5. 《高等数学导论》(Loomis and Sternberg)《高等数学导论》是一本系统介绍高等数学各个分支的教材。

它涵盖了微积分、线性代数、偏微分方程等内容,并强调了数学的应用和建模。

这本教材对于培养学生的数学综合能力和解决实际问题的能力非常有帮助。

总结:选择一本适合自己的高等数学教材对于有效学习和提高数学能力至关重要。

上述推荐的教材既有经典的数学著作,也有便于初学者入门的教材。

希望本文的推荐能够为大家在学习高等数学时提供一些建议,并帮助大家更好地掌握高等数学的知识。

数学专业的经典教材与参考书目

数学专业的经典教材与参考书目

数学专业的经典教材与参考书目数学专业作为一门基础学科,对于学生的学习以及未来的发展具有非常重要的意义。

而选择适合的教材和参考书目对于学生的学习效果也至关重要。

本文将介绍数学专业中的经典教材和参考书目,以帮助学生更好地选择适合自己的学习资料。

一、线性代数1.《线性代数及其应用》(Linear Algebra and Its Applications)这是一本经典的线性代数教材,由美国加州大学伯克利分校的Gilbert Strang教授撰写。

本书内容全面,结构严谨,对于线性代数的基本概念和理论进行了详细的介绍,并给出了大量的例题和习题供学生练习。

适合作为线性代数的入门教材。

2.《线性代数引论》(Introduction to Linear Algebra)这本教材由美国麻省理工学院的Gilbert Strang教授所编写,是一本经典的线性代数教材。

该书以简洁的语言和清晰的思路介绍了线性代数的基本概念和理论,并通过大量的实例和应用来加深学生对于线性代数的理解。

适合有一定数学基础的学生使用。

二、微积分1.《微积分学教程》(Calculus: A Complete Course)这本教材是由加拿大精算学会成员Robert A. Adams所著,是一本非常全面的微积分教材。

该书内容系统完整,涵盖了微积分的各个方面,从初等函数的微积分开始,逐步引导学生掌握微积分的核心概念和方法。

同时,书中也包含了大量的例题和习题,供学生进行实践和巩固。

2.《微积分学导论》(Calculus: An Intuitive and Physical Approach)这是一本由美国哈佛大学教授Morris Kline所写的微积分教材。

与传统的微积分教材不同,该书采用了更加贴近实际问题的讲解方式,旨在帮助学生建立对微积分的直观和物理的理解。

书中融合了大量的实例和历史背景知识,使得学习微积分变得有趣和易于理解。

三、概率论与数理统计1.《概率论与数理统计》(Probability and Mathematical Statistics)这是一本由中国科学院理论物理研究所的教授吴文俊、刘先琨等合著的概率论与数理统计教材。

国外数学名著系列

国外数学名著系列

国外数学名著系列一、欧几里得的《几何原本》二、卡尔·弗里德里希·高斯的《算术研究》《算术研究》是德国数学家卡尔·弗里德里希·高斯于1801年发表的一部关于数论的著作。

该书首次提出了同余理论,并系统研究了二次互反律、二次剩余等数论问题。

高斯在书中提出的许多理论和方法,对后来的数论研究产生了重要影响,奠定了现代数论的基础。

三、大卫·希尔伯特的《几何基础》《几何基础》是德国数学家大卫·希尔伯特于1899年出版的一部关于几何学的著作。

该书对欧几里得的《几何原本》进行了深刻的反思和改进,提出了几何学公理系统,并探讨了欧氏几何、非欧几何以及拓扑学等几何学分支的基本问题。

希尔伯特在书中提出的许多理论和方法,对20世纪数学的发展产生了重要影响。

四、约翰·冯·诺伊曼的《量子力学的数学基础》《量子力学的数学基础》是美国数学家约翰·冯·诺伊曼于1932年出版的一部关于量子力学的著作。

该书系统阐述了量子力学的数学原理,提出了希尔伯特空间、自伴算符等概念,并解决了量子力学中的许多基本问题。

冯·诺伊曼在书中提出的许多理论和方法,对量子力学的发展产生了重要影响,奠定了现代量子力学的基础。

五、安德烈·魏尔斯特拉斯的《函数论》《函数论》是德国数学家安德烈·魏尔斯特拉斯于19世纪中期发表的一系列关于函数论的论文。

这些论文系统研究了实数域上的连续函数、可微函数和解析函数,提出了魏尔斯特拉斯级数、魏尔斯特拉斯函数等概念。

魏尔斯特拉斯在书中提出的许多理论和方法,对现代分析学的发展产生了重要影响,奠定了实分析的基础。

本系列将陆续介绍更多国外数学名著,敬请期待。

希望这些著作能激发读者对数学的兴趣,为数学学科的发展贡献自己的力量。

六、勒内·笛卡尔的《几何学》《几何学》是法国哲学家、数学家勒内·笛卡尔于1637年发表的一部著作。

一份数学书单

一份数学书单

一份数学书单以下是一份数学书单,包括了一些经典的数学教材和数学科普读物,供您参考:1. 《数学之美》(吴军)这本书通过生动的语言和有趣的故事,介绍了数学在各个领域中的应用,非常适合对数学感兴趣的读者。

2. 《数学基础》(David Hilbert)这是一本经典的数学教材,涵盖了数学基础领域的各个方面,包括集合论、数理逻辑等。

它被广泛用作数学系的教材或参考书。

3. 《微积分的几何》(David Bressoud)这本书用生动的语言和丰富的插图,介绍了微积分的几何本质。

它不仅适合学生阅读,也适合教师参考。

4. 《概率论与数理统计》(吴喜之)这是一本经典的概率论与数理统计教材,内容涵盖了概率论的基本概念、随机变量、大数定律、中心极限定理等。

它被广泛用作统计学、经济学、物理学等领域的教材或参考书。

5. 《线性代数》(David C. Lay)这是一本经典的线性代数教材,内容涵盖了线性代数的基本概念、矩阵、向量空间、线性变换等。

它被广泛用作理工科大学生的教材或参考书。

6. 《组合数学》(Kenneth H. Rosen)这本书是组合数学的经典教材之一,内容涵盖了组合数学的基本概念、排列、组合、二项式系数等。

它被广泛用作计算机科学、数学、统计学等领域的教材或参考书。

7. 《解析几何》(David希尔伯特)这本书系统地介绍了解析几何的基本理论,包括空间解析几何,射影几何,欧几里得几何等等。

对理解几何学有很好的指导作用。

8. 《实变函数》(周民强)这本书详细介绍了实变函数的积分理论,测度理论等等。

对理解实变函数有很好的帮助。

9. 《复变函数》(James Ward Brown and Ruel V. Churchill)这本书详细介绍了复变函数的积分理论,全纯函数和亚全纯函数等等。

对理解复变函数有很好的帮助。

10. 《微分几何》(陈维桓)这本书详细介绍了曲线和曲面的微分几何,包括曲线和曲面的几何性质等等。

对理解微分几何有很好的帮助。

书单99本经典数学好书,总有一本适合你

书单99本经典数学好书,总有一本适合你

书单99本经典数学好书,总有一本适合你林开亮老师推荐数学书单一、数学家的故事1.E. T. 贝尔,《数学大师》2.哈尔莫斯,《我要作数学家》3.Reid, 《希尔伯特》4.王元, 《华罗庚》5.张奠宙,王善平,《陈省身传》6.郭金海、袁向东,《徐利治访谈录》7.丘成桐《生命的形状》(口述自传,在出)8.Cook, 《当代大数学家画传》9.Ulam 《一个数学家的经历》10.Weil 《一个学徒的数学生涯》(“数学概览”丛书,在出)11.Kac ,《机运之谜》(“数学概览”丛书,在出)二、数学史1 钱宝琮,《中国数学史》2 M. 克莱茵,《古今数学思想》(三卷)3. F. 克莱因,《数学在19世纪的发展》(两卷)4. 斯特罗伊克,《数学简史》5. 高木贞治,《近代数学史谈》6. Weil,《数论:从汉穆拉比到勒让德的历史导引》7. 冯克勤,《代数数论简史》8. V. J. Katz,《数学史通论》9 J. Stillwell,《数学及其历史》10 H. 伊夫斯,《数学史概论》11 张奠宙,《20世纪数学经纬》三、通俗经典(中学生以上)1.H.拉德马赫, O.特普利茨,《数学欣赏》2. Courant,Robbins,《什么是数学?》3. 伯莱坎普、康威(Conway)和盖伊(Guy),《稳操胜券》(两卷)4. 马丁·加德纳(Martin Gardner)的系列著作5.斯图尔特(Ian Stewart)的系列著作6. 结城浩,《数学女孩》,《费马大定理》,《哥德尔不完备性定理》,《伽罗瓦理论》7.路沙·彼得,《无穷的玩意》8. 艾勃特,《平面国》,陈凤洁译9. 高德纳,《研究之美》10. 高尔斯,《数学》牛津通识读本11. 《天才引导的历程:数学中的伟大定理》四、通俗经典(大学生以上)1.戈丁,《数学概观》2.《数学的内容、方法和意义》(三卷)3.高尔斯,《普林斯顿数学指南》(三卷)4.纽曼,《数学的世界》5.《天书中的数学证明》6.汤涛、丁玖,《数学之英文写作》7.希尔伯特,康福森,《直观几何》8.F. 克莱因,《初等几何中的著名问题》9.张跃辉、李吉有、朱佳俊,《数学的天空》10.蔡聪明,《微积分的历史步道》11.鲍耶,《微积分概念发展史》五、大数学家小品1维拉尼,《一个定理的诞生》2弗伦克尔,《爱与数学》3丘成桐,《大宇之形》4小平邦彦,《惰者集:数感与数学》5阿诺德,《惠更斯与巴罗,牛顿与胡克》6冈洁,《春夜十话:数学与情绪》7吕埃尔,《数学与人类思维》8 Littlewood,《一个数学家的杂记》9 外尔,《对称》10. 庞加莱,《科学与假设》,《科学的方法》,《科学的价值》,《最后的沉思》11. 哈达玛,《数学领域的发明心理学》六、大数学家通俗文集汇编1.Hardy,《一个数学家的辩白》2. Atiyah,《数学的统一性》3. Bourbaki,《数学的建筑》4. 华罗庚,《大哉数学之为用——华罗庚科普著作选集》5. 陈省身,《陈省身文选》、《陈省身文集》6. Weyl ,《诗魂数学家的沉思》7. Von Neumann ,《数学在科学和社会中的作用》8. Hilbert ,《数学问题》9. Milnor, 《Milnor眼中的数学和数学家》10. Langlands, 《Langlands 纲领和他的数学世界》11. 柯尔莫果洛夫,(数学家思想文库第二辑,在出)七、中小学数学(适合中小学教师和师范生)1 F. 克莱因,《高观点下的初等数学》(三卷)2 .波利亚《怎样解题》,《数学与猜想》,《数学的发现》3. 伍鸿熙,《数学家讲解小学数学》4. 蔡聪明,《数学的发现趣谈》5.《人类符号简史:一部跨越人类想象世界和经验世界的思维颠覆史》6.陶哲轩,《陶哲轩教你学数学》7.刘炯朗《数学的魔法:生活中无处不在的数学智慧》,《拜托,你该懂点逻辑学:学校没教的逻辑》,《你没听过的逻辑课: 探索魔术、博奕、运动赛事背后的法则》8.马希文,《数学花园漫游记》9.曹亮吉,《阿草的圆锥曲线》,《阿草的数学世界》,《从生活学数学》,《从旅游学数学》10.蔡聪明,《数学拾穗》11.张景中,《数学家的眼光》八、科普名著1.辛格,《费马大定理》2.《魔法数学:大魔术的数学灵魂》3.《素数之恋:黎曼和数学中最大的未解之谜》4.《算法霸权》5.《黎曼猜想漫谈》6.《x的奇幻之旅》7.大栗博司,《用数学的语言看世界》8.蔡天新,《数学传奇》9.《心中有数的人生》10.《魔鬼数学:大数据时代,数学思维的力量》11.《改变世界的17个方程式》九、杂志和丛书1.高等教育出版社,严加安主编“数学概览”丛书,已有20多本2.高等教育出版社,丘成桐主编“数学与人文”丛书,已有20本3.《数学文化》季刊(汤涛、刘建亚主编)4.《数理人文》季刊(丘成桐等主编)5.《数学传播》季刊(台湾中央研究院数学所发行)6.《数学译林》季刊(中科院数学所发行)7.大连理工大学出版社,“数学家思想文库”丛书,很快就有10本8.科学出版社,“数学小丛书”,18册9.上海教育出版社,“通俗数学名著译丛”,共31本10.哈尔滨工业大学出版社,刘培杰数学工作室出版的图书(需读者自己甄别),若干11.高等教育出版社,“数学文化小丛书”(李大潜主编),已经出到第三辑,有30本传播数学,普及大众。

关于数学的书

关于数学的书

关于数学的书(一)必读数学书1、《离散数学》:由美国数学家米勒撰写,书中涵盖了大量的离散数学的基本概念,包括数学归纳法、逻辑证明、程序设计、图论中的图、矩阵论、二进制等,并且给出了详细的证明。

对于对数学或者计算机感兴趣的人来说,这是一本必读的经典之作。

2、《线性代数》:这本书作者为德国数学家克劳斯·帕蒂尔,是线性代数完整矩阵理论研究和提出的重要贡献者。

书中讨论了矩阵理论、基本矩阵、线性方程组、特征值、向量空间、张量分解等很多内容。

读该书的人需要有一定的数学基础,熟悉高等数学,但是书中的推导细节流畅而且很详细,很适合学习。

3、《计算机数学》:本书由Calvin 撰写,介绍了计算机数学经典知识,如数学逻辑、数理逻辑、算法设计、算术表达式解释和实现等,讲述了从算法到物理计算的全面的计算机科学课程,书中的实例十分具体,看起来轻松易懂。

(二)实践数学书1、《时间序列分析:理论及应用》:这是一本关于时间序列分析的实践性书籍,由美国大学的数学专家写就,书中涵盖细节超全,从宏观的财经变量到具体的传感器数据,本书适合用于大数据分析或工业数据驱动,为科学研究和经济管理起到了重要作用。

2、《统计学》:本书是由美国知名专家约翰生钟撰写,本书详尽地论述了统计学的最基本的概念,如概率论、连续变量分析和试验设计等,书中介绍了很多数学分析工具,用于分析科学和工程的实际问题的数据,可以说是统计学发展的一部很重要的参考资料。

3、《微积分概论》:这是一本微积分的实用教材,作者是美国数学家斯维特林,书中涵盖了多种微积分的基本概念,包括复变函数、微积分的变换方法、初等变换和校正变换等,以及与微积分有关的抽象向量空间及作用空间等,也可以用于机器学习及深度学习分析中。

数学与应用数学专业必读书目

数学与应用数学专业必读书目

数学与应用数学专业必读书目1.《怎样解题》波利亚著,科学出版社1982年版2.《数学与猜想》波利亚著,科学出版社1984年版3.《数学与似真推理》波利亚著,福建人民出版社1985年版4.《数学的发现》波利亚著,科学出版社1982年版5.《古今数学思想》(1—4卷)克莱茵著,上海科技出版社1979—1981年版6.《数学的精神、思想与方法》朱芷国著,四川教育出版社1986年版7.《高观点下的初等数学》 F.克莱茵著,湖北教育出版社1986年版8.《数学手稿》马克思著,人民出版社1976年版9.《数学领域中的发明心理学》江苏教育出版社1989年版10.《人人关心数学教育的未来》世界图书出版社1993年版11.《美国数学的现在和未来》复旦大学出版社1986年版12.《从惊讶到思考—数学悖论》科学技术文献出版社1984年版13.《数学加德纳》戴维·A.克拉纳著,上海教育出版社1987年版14.《从混沌到有序》伊·普里戈金等著,上海译文出版社1986年自版15.《猜想与反驳》波普尔著,上海译文出版社1986年版16.《数学—它的内容、方法与意义》(1—3卷)亚历山大著,科学出版社2001年版17.《数学史上的里程碑》伊夫斯著,北京科学技术出版社1993年版18.《数论妙趣》阿尔伯特著,上海教育出版社1998年版19.《大众数学》(上下册)范格本著,科学普及出版社1992年版20.《数学确定性的丧失》M.克莱茵著,湖南科技出版社1997年版21.《数学:新的黄金时代》德夫林著,上海教育出版社1998年版22.《自然哲学之数学原理宇宙体系》牛顿著,武汉大学出版社1977年版23.《数学方法论先讲》徐利治著,华中工学院出版社1983年版24.《数学与文化》邓东皋等著,北京大学出版社1990年版25.《数学与教育》丁石孙等著,湖南教育出版社1991年版26.《数学与社会》胡作玄著,湖南教育出版社1991年版27.《数学与经济》史济怀著,湖南教育出版社1990年版28.《数学与语言》冯志伟著,湖南教育出版社1991年版29.《数学分析的方法及例题选讲》徐利治等著,高等教育出版社1982年版30.《数学思想发展简史》袁小明等著,高等教育出版社1992年版31.《从数学教育到教育数学》井中等著,四川教育出版社1989年版32.《几何中机器证明的基本定律》吴文俊著,科学出版社1984年版33.《21世纪数学展望》江苏教育出版社1992年版34.《中国数学通史》李迪著,辽宁教育出版社1997年版35.《世界数学通史》梁宗巨著,辽宁教育出版社1995年版36.《九章算术》辽宁教育出版社2000年版37.《华罗庚》王元著,开明出版社1994年版38.《数:上帝的宠物》谈祥柏著,上海教育出版社1998年版39.《科学发现纵横谈》王梓坤著,湖南教育出版社1979年版40.《科学发现纵横新编》王梓坤著,北京师范大学出版社1992年版41.《中国数学史》钱金琛著,科学出版社1992年版42.《现代数学设计论》盛群力等编,浙江教育出版社1998年版43.《混沌控制》胡岗著,上海科技出版社2000年版44.《Mathcad7.0实用教程》思索著,人民邮电出版社1998年版45.《Matlab应用程序接口用户指南》刘志俭著,科学出版社2000年版46.《数学奇妙》西奥妮.帕帕著,上海科技出版社1999年版47.《数学的源与流》张顺燕著,高等教育出版社2000年版48.《世界著名数学家评传》袁小明著,江苏教育出版社1990年版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M. Postnikov,Analytic geometry, Mir Publishers
M. Postnikov,Linear algebra and differential geometry,Mir Publishers
A.T.Fomenko Differential geometry and topology,Consultantsp; Complex Analysis, 3rd Edition by W. Rudin
Royden "Real Analysis" 3rd ed. Prentice Hall
Ahlfors "Complex Analysis" 3rd ed. McGraw-Hill
Hormander "An Intro to Complex Analysis in Several Variables"
Dubrovin, Fomenko, Novikov “Modern geometry-methods and applications”Vol 1—3
A Comprehensive Introduction to Differential Geometry vol 1-5 ,by Michael Spivak
微积分:
R.Courant,F.John,Introduction to Calculus and Analysis vol I&II
T.M.Apostol Calculus vol I&II
T.M.Apostol Mathematical Analysis
Rudin "Principles of Mathematical Analysis"
Hoffman & Kunz , Linear Algebra
Basic Algebra I&II, 2nd Edition by N. Jacobson
Algebra by Serge Lang
Dummit & Foote "Abstract Algebra" Wiley
Hungerford "Abstract Algebra: An Introduction" Brooks/Cole
Spivak "Calculus on Manifolds"
V.A.Zorich,Mathematical Analysis vol I&II Springer-Verlag
代数:
Friedberg "Linear Algebra" 4th ed. Prentice Hall
Axler "Linear Algebra Done Right" 2nd ed. Springer-Verlag
Ordinary Differential Equations by V. I. Arnold
Geometrical Methods in the Theory of Ordinary Differential Equations by V. I.Arnold
方程:
Earl.A. Coddington,Theory of ordinary differential equations,McGraw-Hill
Aleksei.A.Dezin,Partial differential equations,Springer-Verlag
Evans "Partial Differential Equations" ‘98 AMS
Basic Topology by Armstrong
Differential Geometry of Curves and Surfaces by Manfredo Do Carmo
Hatcher "Algebraic Topology" Cambridge UP
Munkries "Topology" 2nd ed. Prentice Hall
Conway "Functions of One Complex Variable I&II Springer-Verlag
Conway A Course in Functional Analysis
Functional Analysis, 3rd Edition by W. Rudin
几何与拓扑:
相关文档
最新文档