电路分析课件第7章
高频电路原理和分析课件第7章_频率调制和解调
第7章 角度调制与解调
7.1 角度调制信号分析 7.2 调频器与调频方法 7.3 调频电路 7.4 鉴频器与鉴频方法 7.5 鉴频电路 7.6 调频收发信机及附属电路 7.7 调频多重广播
第7章 角度调制与解调
概述
在无线通信中,频率调制和相位调制是又一类重要的 调制方式。
1、频率调制又称调频(FM)——模拟信号调制,它是使 高频振荡信号的频率按调制信号的规律变化(瞬时频率变化 的大小与调制信号成线性关系),而振幅保持恒定的一种调 制方式。调频信号的解调称为鉴频或频率检波。
些边频对称地分布在载频两边,其幅度取决于调制指数mf ;
(2) 由于mf=Δ ωm/Ω=Δ fm/F,且Δ ωm=kfUΩ,因此调制指 数mf既取决于最大频偏,又取决于调制信号频率F。 (3) 由于相邻两根谱线的间隔为调制信号频率,因此调制信 号频率越大,谱线间隔越大,在相同的调制指数mf时,最 大频偏也越大。
(7-3)
第7章 角度调制与解调
式中, m
m f 为调频指数。FM波的表示式为
u F M ( t ) U C c o s (c t m fs i n t ) R e [ U C e j e t e j m fs i n t ]
(7-4)
图7-1画出了频率调制过程中调制信号、调频信号及 相应的瞬时频率和瞬时相位波形。
J
2 n
(mf
)
1
n
PFM
1 2RL
Uc2
Pc
(7-14) (7-15)
第7章 角度调制与解调
(7-15)式说明,调频波的平均功率与未调载波的平均 功率相等。当调制指数mf由零增加时,已调制的载波功 率下降,而分散给其他边频分量。这就是说,调频的过 程就是进行功率的重新分配,而总功率不变,即调频器 可以看作是一个功率分配器。
《电路第七章》课件
诺顿定理
总结词
诺顿定理是电路分析中的另一个重要定 理,它与戴维南定理类似,可以将一个 有源二端网络等效为一个电流源和一个 电阻并联的形式。
VS
详细描述
诺顿定理的应用与戴维南定理类似,它也 可以简化复杂电路的分析过程。通过将有 源二端网络等效为简单的等效电路,我们 可以更容易地计算出电路中的电流和电压 。与戴维南定理不同的是,诺顿定理将网 络等效为一个电流源和电阻的形式,适用 于分析和计算动态响应和瞬态电流的情况 。
电路的作用与分类
总结词
电路的作用是实现电能的传输和转换,根据不同的分类标准,电路可分为多种类 型。
详细描述
电路的主要作用是实现电能的传输和转换,即将电能转换为其他形式的能量,如 机械能、光能等。根据不同的分类标准,电路可分为交流电路和直流电路、开路 和闭路、串联和并联等类型。
电路的基本物理量
总结词
叠加定理
总结词
叠加定理是线性电路的一个重要性质,它表明在多个独立电 源共同作用下,电路中某支路的电流或电压等于各个独立电 源单独作用于该支路产生的电流或电压的代数和。
详细描述
叠加定理是线性电路分析中常用的一个定理,它简化了多个 电源作用下的电路分析过程。通过应用叠加定理,我们可以 分别计算各个独立电源对电路的影响,然后将结果相加得到 最终结果。
电感元件
电流滞后电压90度相位, 相量模型为复数,虚部为 感抗。
电容元件
电压滞后电流90度相位, 相量模型为复数,虚部为 容抗。
复杂交流电路的分析与计算
串联电路
复杂电路的分析方法
各元件电流相同,总电压等于各元件 电压之和。
利用基尔霍夫定律和相量法进行电路 的分析与计算。
并联电路
电路分析第7章 二阶电路1
根据 uC(0-) = uC(0+) =10V
i(0-) = i(0+) = 0
uC (0) K sin 10 i(0) duC K ( sin d cos ) 0 t=0 = dt C
arctan(
uC 10.33e 0.5t sin( .94t 75.5)V t 0 1
d 1.94 ) arctan( ) 75.5 K 10.33, 0.5
i 2.6e 0.5t [1.94cos( .94t 75.5) 0.5 sin( .94t 75.5)]A20 t 0 1 1
t1 t2 t3 iL uC
欠阻尼衰减振荡
电量
uC
t1时间段 减小 增大
uC ( K 1 K 2t )e s1t ( K 1 K 2t )e 2t
根据 uC(0-) = uC(0+)= 10V i(0-) = i(0+) = 0 duC dt i(0) t=0 = C
duC K 2e 2 t 2( K1 K 2 t )e 2 t dt
K1=10
s1.2 0.5 0.5 4 0.5 j1.94
L R 1 Rd 2 4 C
两个共轭复根 欠阻尼
19
解:(3)R = 1 s1, s2 0.5 j0.5 15 0.5 j1.94 uC(t) = e-t [K1cosd t + K2sind t] uC Ke t sin( d t ) Ke 0.5t sin( .94t ) 1 – 衰减因子 d – 衰减振荡角频率
uC uL uR 0
1 2 1 2 w( t ) Li ( t ) CuC ( t ) 2 2
电路(第七章 二阶电路)
uC (t ) e 3t (3 cos 4t 4 sin 4t ) 5e3t cos(4t 53.1o )V (t 0)
返 回 上一页 下一页
电路分析基础
电容电压和电感电流的表达式分别为:
duC iL (t ) C 0.04e 3t (7 cos 4t 24 sin 4t ) dt 3t o
uC (0 ) K1 3
t 0
3 3 5 3 j4 2L 2 L LC
利用初始值uC(0+)=3V和iL(0+)=0.28A得:
解得 K1=3和K2=4。 电容电压和电感电流的表达式分别为:
duC (t ) dtຫໍສະໝຸດ i L (0 ) 3K1 4 K 2 7 C
Im
iL(t)
T 4 T 2
3T 4
o t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 Im
返 回
T
t
上一页 下一页
电路分析基础
LC振荡回路的能量
LC回路的总瞬时储能
LC回路的初始储能
1 2 1 2 w(t ) Li (t ) Cu (t ) 2 2 1 1 2 2 (sin t cos t ) (J) 2 2
LC d 2 uC dt2
d uC RC uC uOC dt
返 回 上一页 下一页
电路分析基础
LC
d 2 uC dt2
d uC RC uC uOC dt
这是一个常系数非齐次线性二阶微分方程。 求解该方程必须有条件: d uC i t i 0 uC 0 0 0 dt C C 为了得到电路的零输入响应,令uOC=0,得二阶齐次微分方程 d 2 uC d uC 根据一阶微分方程的求解 LC RC u 0 C 经验可假定齐次方程的解 dt dt2
电路分析第7章 动态电路分析法-文档资料
y ( t ) Tx [ { ( 0 ) } ,ft ( ) ]
t 0
(7.2-3)
起始状态/条件
初始状态/条件
f (t )
T
{x(0 )}
y (t )
x ( i ) (0 )
起始时刻
x ( i ) (0 )
0
0
0 初始时刻
t
y(t ) T [{x(0 )}, f (t )]
动态电路分析的主要任务就是列写动态电路的激励与响应之间满足的数学模型并求解。
7.2 电路的状态与响应
换路定律告诉我们:“电感的电流不能突变,电容的电压不能突变”。
iL (0 ) iL (0 ) uC (0 ) uC (0 )
系统状态是指:一组必须知道的最少数据,利用这组数据和 的激励,就能够完全确定
(b)系统响应示意图
(a)系统状态示意图
图7-2 系统状态及响应示意图
7.2 电路的状态与响应
电路模型为
d u() t R C C u () t E 0 C d t
电路全解为
u ( t ) E ( E E ) e E e Ee ( 1 ) C 1 1
t0
“系统”是指:能够对信号进行某种特定处理的电路、设备或算法的总称。
7.1 动态电路及相关概念
开关闭合后三个灯泡的亮度表现之所以不同,是因为每个灯泡串联的不同元件 造成的。这个例子说明,在相同的激励下,含有电容或电感的动态电路与纯电 阻电路(即时电路)所产生的响应是不同的。
S
R
L
C
US
LP1
LP2
LP3
1.
RL
电路的零状态响应
电路基本分析(第5版_石生)教学资源50650 课件 第7章
i
i1
i2 R1
R2
uS
C
L
第7章 非正弦周期电流电路
解:(1)直流分量作用下
i(0)
i1(0)
i2 (0)
R1
R2
u
S(0)
C
L
uS (0) 10V i1( 0 ) 0
i2(0)
10 2
5A
i(0) i1(0) i2(0) 5A
第7章 非正弦周期电流电路
第7章 非正弦周期电流电路
工程实例
• 在工业实践中常用到半波和全波整流电路。这种电路可 将正弦交流电压和电流整流为直流的电压和电流。
T A VD
ui
uV
u2
RL u o
ui
B
半波整流电路
TA
VD1
VD
4
u2
VD3
RL u o
VD 2 B
全波整流电路
负载上的电压电流既不是前面的直流信号,也不是正 弦交流信号。本章的内容可以解决分析此类电路的问题。
解: U
U
2 0
U12
U
2 3
102 (141.4)2 ( 70.7 )2V
2
2
102 1002 502V 112.2V
第7章 非正弦周期电流电路
二、平均值
1.定义:一个非正弦周期量的平均值为:
Aav
1 T
T 0
f (t)dt
即一个周期内函数绝对值的平均值。
以电流为例,其定义式为:
例7-1 求图7-5(b)所示三角波f2(t)的傅里叶级数展开式 。
f1(t)
f2(t)
Am
电路分析基础第七章__二阶电路
第七章二阶电路重点要求:1. 理解二阶电路零输入响应过渡过程的三种情况;2. 了解二阶电路的阶跃响应和冲击响应。
3.学习数学中的拉普拉斯变换的定义、性质及反变换的方法;4.掌握用拉普拉斯变换求解电路的过渡过程的方法。
1§7-1 二阶电路的零输入响应二阶电路:由二阶微分方程描述的电路。
典型的二阶电路是RLC串联电路。
求全响应方法:1.经典法(时域分析法)全响应= 稳态分量(强制分量) + 暂态分量(自由分量)2.拉普拉斯变换法(频域分析法)2响应曲线:U 0u C , u L , i 0ωtiu Cu L§7-1 二阶电路的零输入响应220p ααω=−±−一. 问题的提出经典法解动态电路过渡过程存在的问题:对较复杂的电路,联立求解微分方程特别是定积分常数比较困难。
若激励不是直流或正弦交流时,特解不容易求得。
二. 拉氏变换法用积分变换的原理简化求解电路过渡过程时域电路解微分方程时域响应f(t)取拉斯变换复频域电路解代数方程复频域响应F(s)取拉斯反变换7.2 动态电路的复频域分析应用拉氏变换法进行电路分析称为电路的一种复频域分析方法,也叫运算法!是数学中的一种积分变换.优点:对复杂电路﹑无稳态情况﹑换路时出现强迫跃变等用拉氏变换法较经典法方便。
三. 拉普拉斯变换的定义设函数f(t)在0≤t ≤∞时有定义,则积分称为原函数f(t)的拉普拉斯变换(象函数)。
()dte tf s F st∫∞−−=0)(式中s=σ+ j ω----复频率。
单位:熟悉的变换:相量法⎩⎨⎧=∫∞+∞−)s (21)(ds e F j t f stj c j c π反变换正变换ZH1.象函数F (s)存在的条件:∞<∫∞−−dt et f st0)(说明:电路分析中的函数都能满足上述条件。
2. 在电路中积分的下限定义为“0-”, 更有实际意义(将奇异函数也包括在内)。
[][]⎩⎨⎧==−)( )()( )( S F t f t f S F 1简写正变换反变换在电路分析中通常直接查表得到。
简明电路分析基础 第七章 一阶电路jat7
vC ke
vCp是非齐次微分方程
vCp
dvCp dt
t≥0
RC
vCp E
的任意一个特解。方程等式右边的函数称为强制函数。该方 程所描述的电路状态称为强制状态,而特解vCp称为vC的强制 分量,它与强制函数或输入波形有关。若电路中的独立电源 是周期函数或常量,则此时的强制状态称为稳定状态,或简 称稳态;相应地称强制分量为稳态分量或稳态响应。
L R
u 、i Io RI o uR 0 uL iL t
-RI o
对于一阶线性定常电路来说,零输入响应可以看作是在 0≤t<≦区间内定义的一个波形,它是初始状态的一个线性 函数。即零输入响应是初始状态的线性函数。 从前面的分析可知,零输入响应是在电路输入为零时,仅 由初始状态引起的响应,它取决于电路的初始状态和电路的 元件参数和拓扑结构,对于线性定常的一阶RC电路和RL电路 来说,它们的零输入响应分别为
+ u C -
则:
uC (t ) 10 (1 e 100t )V duC iC (t ) C 5e 100t m dt uC (t ) 5 iC (t ) (1 e 100t )m 6 3
二、 RL电路的零状态响应
如图,S闭合后,根据KVL,有:
+ S(t=0) R
第七章 一阶电路
在实际工作中,常遇到只含一个
动态元件的线性定常电路,这种电路
是用线性、常系数一阶常微分方程来
描述。
7-1 分解方法在动态电路分析中的运用 7-3 一阶电路的零输入响应 7-4 一阶电路的零状态响应 7-5 线性动态电路的叠加原理 7-6 分解方法和叠加方法的综合运用----- 三要 素方法 7-7 阶跃响应和分段常量信号响应 7-8 冲激响应 7-9 卷积积分 7-10 瞬态和稳态 正弦稳态的概念 7-11 子区间分析 方波激励的过渡过程和稳态
第七章电路分析基础PPT课件
U1( j)
-
线性 网络
I2 ( j)
+
U2 ( j)
-
返回 上页 下页
I1( j)
+
U1( j)
-
线性 网络
I2 ( j)
+
U2 ( j)
-
激励是电压源
H
(
j
)
I2 ( j) U1( j)
转移 导纳
H
(
j
)
U 2 U1
( (
j) j)
转移 电压比
激励是电流源
H
(
j
)
U2 ( j) I1( j)
arctan( X )
R
R
R
Z ( ) |Z( )| XL( )
( )
X( ) /2
R
O
0 XC( ) O
–/2
相频特性
0
Z(j)频响曲线
返回 上页 下页
Z(j)频响曲线表明阻抗特性可分三个区域描述:
容性区
ω0 X ( j) 0 (j) 0
R Z ( j)
lim Z ( j) ∞
0L U
R
返回 上页 下页
(4) 谐振时的功率
P=UIcos=UI=RI02=U2/R
电源向电路输送电阻消耗的功率,电阻功率达最大。
Q UI sin QL QC 0
QL
0
LI
2 0
,
QC
1
0C
I2 0
0
LI
2 0
注意 电 源 不 向 电 路 输 送
H
( j)
I2 ( j) I1( j)
转移 阻抗
电路分析第7章ppt
叠加定理
总结词
叠加定理是线性电路分析的重要定理之一,它指出在多个独 立源共同作用下,电路的响应等于各个独立源单独作用于电 路所产生的响应的总和。
详细描述
叠加定理适用于线性时不变电路,当多个电源同时作用于电 路时,可以将它们分别独立地作用在电路中,然后将得到的 响应叠加起来。这个定理简化了复杂电路的分析过程,使我 们能够单独分析各个电源对电路的影响。
功率因数是表示电力设备效率的指标, 等于有功功率与视在功率的比值。
无功功率
提高功率因数的方法
通过合理配置无功补偿装置、改善设 备运行状况等措施,可以提高电力系 统的功率因数,减少能源浪费。
无功功率是用于电路内电场与磁场交 换的功率,不消耗电能。
04 三相电路分析
三相电源
星形连接
三相电源的三个绕组的一端连接在一 起,另一端与中性点相连,形成星形 连接。
THANKS FOR WATCHING
感谢您的观看
动态电路的频域分析
01
频域分析是一种将时域 函数转换为频域函数的 方法,通过傅里叶变换 实现。
02
频域分析可以用来研究 电路的频率响应,即输 入信号在不同频率下的 输出响应。
03
频域分析可以用来计算 电路的传递函数和频率 特性,例如幅频特性和 相频特性。
04
频域分析可以用来优化 电路的性能,例如通过 调整元件参数来改善频 率响应。
}$。
无功功率
表示电路与电源之间交 换的功率,计算公式为
$Q = frac{U_{线}I_{线}}{1.732
}$。
视在功率
表示电路的总功率,计 算公式为$S =
电路分析基础 第7章 耦合电感电路
M
di dt
0
电压表正向读数
当两组线圈装在黑盒里,只引出四个端子,要确定 其同名端,就可以利用上面的结论来加以判断。
当断开S时,如何判定?
耦合电感电路模型
有了同名端,以后表示两个线圈相互作用,就不 再考虑实际绕向,而只画出同名端及参考方向即可。
i1 M i2
+* u_12 L1
*+ L2 _u21
11 =N1 11
11
21
施感电流
N1
i1
+ u11 –
11 21
i1
N2 + u21 –
21 =N2 21
互感磁链 Ψ21
L1
11 i1
,称L1为自感系数,单位亨(H)。
M21
21
i1
,称线圈1对线圈2的互感系数,单位亨(H)。
楞次定律 11
21
N1 i1
+ u11 –
N2 + u21 –
自感电压: u22
dΨ 22 dt
N2
dΦ22 dt
L2
di2 dt
( L2
Ψ 22 i2
)
互感电压 : u12
dΨ 12 dt
N1
dΦ12 dt
M12
di2 dt
( M12
Ψ 12 i2
)
可以证明:M12= M21= M。
3、两个线圈同时通电 每个线圈两端的电压均包含自感电压和互感电压:
11
22
互感
第7章 耦合电感电路
( Mutual Inductance Circuits )
7.1 互感现象及耦合电感元件
先回顾单个线圈的自感(电感)及自感电压;
第7章 正弦稳态电路分析
第7章 正弦稳态电路分析
二、正弦量的相量表示 著名科学家 • 斯坦梅茨(Charlea Proteus Steinmetz 1865~1923) • 斯坦梅茨是德国一澳大利亚数学家和工程师。他最 伟大的贡献就是在交流电路分析中引入了向量分析法, 并以其在滞后理论方面的著作而闻名。 • 出生于德国的布勒斯劳,一岁时就失去了母亲,在 即将在大学完成他的数学博士论文时,由于政治活动, 被迫离开德国,到瑞士后又去了美国,1893年受雇于美 国通用电气公司,这一年他发表论文,首次将复数应用 于交流电路的分析中,其后出版了专著《交流现象的理 论和计算》,1901年成为美国电气工程师协会(IEEE)主 席。
T
0
i 2 ( t )dt
周期电流有效值定义为:
1 T 2 I i (t )dt T 0
第7章 正弦稳态电路分析
一、正弦量的概念 周期电流有效值定义为:
1 T 2 I i (t )dt T 0
def
当信号为正弦信号时,设: i(t)=Imsin( t+ ) 有效值为:
1 I T
第7章 正弦稳态电路分析
一、正弦量的概念 同理,可得正弦电压有效值与最大值的关系: 1 U Um 或 U m 2U 2 若一交流电压有效值为U=220V,则其最大值为Um311V; U=380V, Um537V。
工程上说的正弦电压、电流一般指有效值,如设备铭牌额 定值、电网的电压等级等。但绝缘水平、耐压值指的是最大值。 因此,在考虑电器设备的耐压水平时应按最大值考虑。 测量中,电磁式交流电压、电流表读数均为有效值。 *注意 区分电压、电流的瞬时值、最大值、有效值的符号。
i(t)=Imsin( t+ i)
u i j
精品课件-电路分析基础(马颖)-第7章
第7章互感与变压器
2.
当两个耦合电感线圈上都有电流通过时,在L1中,若自磁 通Φ11与互磁通Φ12方向相同,则称为磁通相助;同理,在L2 中,若自磁通Φ22与互磁通Φ21方向相同,磁通也相助。即两 耦合线圈的自磁通与互磁通方向相同,如图7-2所示。
根据自感和互感的定义,有以下关系式
L1
对于电感L1
12
第7章互感与变压器
图7-3 磁通相消电路图
13
第7章互感与变压器
对于电感L1 Ψ1=Ψ11-Ψ12=L1i1-Mi2
对于电感L2 Ψ2=Ψ22-Ψ21=L2i2-Mi1
如图7-3所示,设i1与u1、i2与u2参考方向关联,根据电磁
对于电感L1
u1
d1
dt
L1
di1 dt
M
di2 dt
u'1u"1
11
i1
,
L2
22
i2
,M
21
i1
12
i2
Ψ1=Ψ11+Ψ12=L1i1+Mi2
9
第7章互感与变压器
图7-2 磁通相助电路图
10
第7章互感与变压器
对于电感L2 Ψ2=Ψ22+Ψ21=L2i2+Mi1
如图7-2所示,设i1与u1、i2与u2参考方向关联,根据电磁
对于电感L1,有
u1
d1
dt
(7-6a)
14
第7章互感与变压器
对于电感L2,有
u2
d2
dt
L2
di2 dt
M
di1 dt
u'2 u"2
(7-6b)
所以,当两耦合线圈的自磁通与互磁通相消时,线圈电压
(大学物理电路分析基础)第7章二阶电路分析
作用
阻尼比决定了二阶电路的响应 速度和振荡幅度,对电路的稳 定性有很大影响。
分类
根据阻尼比的大小,可以分为 欠阻尼、临界阻尼和过阻尼三
种情况。
自然频率
定义
自然频率是二阶电路在没有外部激励时自由振荡的频率,表示为ωn, 它等于电路的总电感与总质量的比值。
计算公式
自然频率的计算公式为ωn = sqrt(K/m),其中K是弹簧常数,m是电 路的总质量。
赫尔维茨判据
赫尔维茨判据也是一种基于系统 极点的判据,通过计算系统函数 的零点和极点来判断系统的稳定 性。
乃奎斯特判据
乃奎斯特判据是一种基于频率域 分析的判据,通过分析系统的频 率响应来判断系统的稳定性。
稳定性分析方法
时域分析法
时域分析法是一种直接分析法,通过求解电路的微分方程来分析系统的动态响应和稳定 性。
大学物理电路分析基 础 第7章 二阶电路分 析
目 录
• 二阶电路的概述 • 二阶电路的响应分析 • 二阶电路的稳定性分析 • 二阶电路的阻尼比和自然频率 • 二阶电路的实例分析
01
二阶电路的概述
二阶电路的定义
二阶电路
由两个或更多电容元件或电感元 件组成的电路,其中每个元件有 两个端子。
定义中的关键点
频域分析法
频域分析法是一种间接分析法,通过将电路方程转化为频率域下的传递函数来分析系统 的稳定性。
04
二阶电路的阻尼比和自 然频率
阻尼比
定义
阻尼比是衡量二阶电路中阻尼作 用的参数,表示为ζ,它等于阻 尼电阻与电路总电阻的比值。
计算公式
阻尼比的计算公式为ζ = R/2L, 其中R是阻尼电阻,L是电路的总 电感。
二阶电路必须包含两个电容元件 或电感元件,且每个元件有两个 端子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1 动态电路的方程及其初始条件 7.2 一阶电路的零输入响应 7.3 一阶电路的零状态响应 7.4 一阶电路的全响应 7.5 二阶电路的零输入响应 7.6 二阶电路的零状态响应和全响应 7.7 一阶电路和二阶电路的阶跃响应 7.8* 一阶电路和二阶电路的冲激响应 7.9* 卷积积分 7.10* 状态方程 7.11* 动态电路时域分析中的几个问题
t 0
0+ 换路后一瞬间
f (0 ) lim f (t ) t 0
t 0
f (0 ) f (0 )
0- 0 0+ t
注意 初始条件为 t = 0+时u ,i 及其各阶导数
的值。
返 回 上 页 下 页
dt 特征根方程: RCp 1 0
通解:
pt
图示为电容放电电路,电容原先带有电压Uo,求 例 开关闭合后电容电压随时间的变化。 (t=0) Ri uc 0 (t 0) 解 + C uC duc R RC uc 0 i -
pt
1 t RC
RCp+1=0 1 p RC
代入初始值
uC (0+)=uC(0-)=U0
A=U0
(t >0) + Us -
R i + uC –
C
Ri uC uS (t ) duC iC dt
若以电流为变量:
duC RC uC uS (t ) dt 1 Ri idt uS (t ) C
di i duS (t ) R dt C dt
返 回 上 页 下 页
RL电路 应用KVL和电感的VCR得:
?
前一个稳定状态
过渡状态
返 回
上 页
下 页
电感电路 + Us (t = 0) R i + k uL –
L
+ Us -
(t →) R i + uL –
i k未动作前,电路处于稳定状态: i = 0 , uL = 0 US/R 新的稳定状态 US k接通电源后很长时间,电路达到新的稳定 状态,电感视为短路: uL= 0, i=Us /R uL 有一过渡期 t1 t 0
当u为有限值时
返 回
上 页
下 页
LiL
iL(0+)= iL(0-)
L (0+)= L (0-)
磁链 守恒
结论
换路瞬间,若电感电压保持为有限值, 则电感电流(磁链)换路前后保持不变。
返 回
上 页
下 页
④换路定律
qc (0+) = qc (0-)
换路瞬间,若电容电流保持 为有限值,则电容电压(电荷) uC (0+) = uC (0-) 换路前后保持不变。 换路瞬间,若电感电压保持 L (0+)= L (0-) 为有限值,则电感电流(磁链) iL(0+)= iL(0-) 换路前后保持不变。
结论
有源 电阻 电路
一个动 态元件
一阶 电路
含有一个动态元件电容或电感的线性电 路,其电路方程为一阶线性常微分方程,称 一阶电路。
返 回
上 页
下 页
RLC电路
应用KVL和元件的VCR得:
Ri uL uC uS (t )
2
(t >0) R i + + uL Us C – -
di d uC duC uL L LC 2 iC dt dt dt 2 d uC duC LC 2 RC uC uS (t ) dt dt
uc 1 t - C uC (t ) i ( )d C 1 0 1 t i ( )d 0 i ( )d C C
i
+
当i()为有限值时
返 回
上 页
下 页
uC (0+) = uC (0-)
q =C uC
结论
q (0+) = q (0-)
电荷 守恒
Ri uL uS (t )
di uL L dt
(t >0) R i + + uL Us – -
R 若以电感电压为变量: uLdt uL uS (t ) L
R duL duS (t ) uL L dt dt
返 回 上 页 下 页
di Ri L uS (t ) dt
48 / 4 12 A
uC (0 ) uC (0 ) 2 12 24V
iC (0 ) (48 24) / 3 8A
i(0 ) 12 8 20A
uL (0 ) 48 2 12 24V
返 回 上 页 下 页
例5 求k闭合瞬间流过它的电流值
返 回
上 页
下 页
例
电阻电路
(t = 0) R1 R2 0 i
+ i us -
i U S / R2
t 过渡期为零
i U S ( R1 R2 )
返 回
上 页
下 页
电容电路
+ Us -
(t = 0) R i + k uC –
+ C Us -
(t →) R i + uC –
C
uc k未动作前,电路处于稳定状态: i = 0 , uC = 0 US 新的稳定状态 US k接通电源后很长时间,电容充电完毕,电路 R 达到新的稳定状态: i i = 0 , u有一过渡期 C= U s t1 t 0
返 回
上 页
下 页
换路
电路结构、状态发生变化 支路接入或断开 电路参数变化
过渡过程产生的原因 电路内部含有储能元件 L、C,电路在换路时 能量发生变化,而能量的储存和释放都需要一定的 时间来完成。
Δw p Δt
Δt 0
p
返 回 上 页 下 页
2. 动态电路的方程
例 RC电路
应用KVL和电容的VCR得:
1.RC电路的零输入响应
S(t=0)
C
+ uC –
uR uC 0
duC i C dt uR= Ri
返 回 上 页 下 页
S(t=0) C
i + R uR –
+ uC –
duC RC uC 0 dt uC ( 0 ) U 0
特征方程 特征根
则
uC Ae Ae
返 回 上 页 下 页
10 iL (0 ) 2A 1 4
注意 uL (0 ) uL (0 )
小结 求初始值的步骤:
1.由换路前电路(稳定状态)求uC(0-)和iL(0-); 2.由换路定律得 uC(0+) 和 iL(0+)。
3.画0+等效电路。
a. 换路后的电路 b. 电容(电感)用电压源(电流源)替代。 (取0+时刻值,方向与原假定的电容电压、电 感电流方向相同)。 4.由0+电路求所需各变量的0+值。
L iL 10 S C + - uC 10 10 + 20V iL + 1A 10 10 uL - + 10V - uC - 10 iC 1010 + 20V 10 + -20V -
ik
解 ①确定0-值
20 iL (0 ) iL (0 ) 1A 20
uC (0 ) uC (0 ) 10V
注意 ①电容电流和电感电压为有限值是换路定
律成立的条件。 ②换路定律反映了能量不能跃变。
返 回 上 页 下 页
⑤电路初始值的确定
(1) 由0-电路求 uC(0-)
+ 10k 10V 40k + uC 电 容 开 路
例1 求 iC(0+)
i 10k + 40k 10V iC S + uC iC
-
uC(0-)=8V
(2)由换路定律
+ i
-
10k + 8V 10V
-
uC (0+) = uC (0-)=8V
电容用 电压源 替代
0+等效电路
10 8 iC (0 ) 0.2mA 10 注意 iC(0-)=0 iC(0+)
返 回 上 页
(3) 由0+等效电路求 iC(0+)
下 页
例 2 t = 0时闭合开关k ,求 uL(0+)
返 回 上 页 下 页
例4 求k闭合瞬间各支路电流和电感电压
2 + 48V S L 2 + uL iL 3 C + i uL iC 3 3 + 2 + 48V - iL 12A 2 + + 48V uC 24V 2 -- 由0+电路得:
解 由0-电路得:
iL (0 ) iL (0 )
微分方程的特解
dx 直流时 a1 a0 x U S dt dx t 0 a0 x U S dt
返 回 上 页 下 页
3.电路的初始条件
① t = 0+与t = 0-的概念 0- 换路前一瞬间 认为换路在t=0时刻进行
f (0 ) f (0 )
f(t)
f (0 ) lim f (t ) t 0
返 回 上 页 下 页
例3 求 iC(0+) , uL(0+)
iL
iS
L + uL –
S(t=0) R iC C
iS
+ uC –
+
uL
– R
iC + RiS –