初二数学初中期末考试试卷

合集下载

山东初二初中数学期末考试带答案解析

山东初二初中数学期末考试带答案解析

山东初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列实数中,无理数是A.B.C.D.0.10100100012.-64的立方根是A.-8B.±8C.±4D.-43.下列图形:其中是轴对称图形的共有A.1个B.2个C.3个D.4个4.向如图所示的等边三角形区域扔沙包(区域中每一个小等边三角形除颜色外完全相同),假设沙包击中每一个小等边三角形是等可能的,扔沙包一次,击中阴影区域的概率等于A.B.C.D.5.下列各组数中,是勾股数的一组为A.3,4,25B.6,8,10C.5,12,17D.8,7,66.下列各式成立的是A.=9B.="2"C.=±5D.=67.若等腰三角形的一角为100°,则它的底角是A.20°B.40°C.60°D.80°8.一次函数y=-2x+4的图象与x轴的交点坐标是A.(2,0)B.(0,2)C.(0,4)D.(4,0)9.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=12,BD=8,则点D到AB的距离是A.6B.4C.3D.210.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是A B C D11.如图,在Rt△ABC中,∠B=90°,AB=8,BC=4,斜边AC的垂直平分线分别交AB、AC于点E、O,连接CE,则CE的长为A. 5B. 6C. 7D. 4.512.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路,若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是A.汽车在高速公路上行驶速度为100km/hB.乡村公路总长为90kmC.汽车在乡村公路上行驶速度为60km/hD.该记者在出发后4.5h到达采访地二、填空题1.49的算术平方根是_______。

人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试题一、单选题(本大题共16小题,共48分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是A.8B.7C.2D.12.下列图形中具有不稳定性的是( )A.长方形B.等腰三角形C.直角三角形D.锐角三角形3.如图,平移ΔABC得到ΔDEF,若∠DEF=35°,∠ACB=50°,则∠A的度数是A.65°B.75°C.95°D.105°4.探究多边形的内角和时,需要把多边形分割成若干个三角形.在分割六边形时,所分三角形的个数不可能的是A.3个B.4个C.5个D.6个5.如图,在RtΔABC中,∠ABC=90°,BD是高,E是ΔABC外一点,BE=BA,∠E=∠C,若DE=23BD,AD=95,BD=125,则ΔBDE的面积为A.2725B.1825C.3625D.54256.剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是A. B. C. D.7.如图,在等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,若∠BEC= 90°,则∠ACE的度数A.60°B.45°C.30°D.15°8.下列式子不能用“两数和乘以这两数差的公式”计算的是A.(3b−a)(3b+a)B.(3b−a)(−3b−a)C.(3b−a)(6b+2a)D.(3b−a)(a−3b)9.下列多项式相乘,能用平方差公式计算的是A.(5x+2y)(3x−2y)B.(2x−y)(2x+y)C.(−m+n)(m−n)D.(a−2b)(2a+b)10.如图是小明的作业,那么小明做对的题数为A.2B.3C.4D.511.下列从左边到右边的变形中,是因式分解的是A.a2−9=(a−3)(a+3)B.(x−y)2=x2−y2C.x2−4+4x=(x+2)(x−2)+4xD.x2+3x+1=x(x+3+1x)12.如果多项式x2−5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是A.2B.3C.4D.513.下列分式中属于最简分式的是( )A.x+2y+2B.1−x2x−2C.2x+2y6x−6yD.x2−9x+314.如果把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,那么分式的值A.不变B.缩小为原来的12C.变为原来的2倍D.变为原来的4倍15.假期正是读书的好时候,小颖同学到重庆图书馆借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是A.140x+140x−21=14B.280x+280x+21=14C.140140101016.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是A.40×1.25x−40x=800 B.800x−8002.25x=40C.800x−8001.25x=40D.8001.25x−800x=40二、填空题(本大题共6小题,共18分)17.一个正多边形的每个内角都等于120°,那么它的内角和是______.18.如图,BD是ΔABC的角平分线,DE⊥AB于点E.ΔABC的面积为20,AB=12,BC=8,则DE的长为______.19.两位同学将同一个二次三项式进行因式分解时,一位同学因看错了一次项系数而分解成(x−1)(x−9);另一位同学因看错了常数项而分解成(x−2)(x−4),则原多项式因式分解的正确结果是:______.20.如图,在ΔABC中,BC边的垂直平分线交BC于D,交AB于E.若CE平分∠ACB,∠B=42°,则∠A=______.21.某校九年级学生去距学校6千米的地铁站参观,一部分同学们步行先走,过了40分钟后,其余学生乘坐公共汽车出发,结果他们同时到达,已知公共汽车的速度的步行学生速度的3倍,求步行学生的速度.若设步行学生的速度为x km/h,则可列方程______.22.化简:(1x−4−8x2−16)⋅(x+4)=______.三、计算、画图、解答题(本大题共6小题,共48分)23.如图,∠B=∠E,BF=EC,AB=DE.求证:AC//DF.24.在如图所示的网格(每个小正方形的边长为1)中,ΔABC的顶点A的坐标为(−2,1),顶点B的坐标为(−1,2). (1)在网格图中画出两条坐标轴,并标出坐标原点; (2)作ΔA'B'C'关于x轴对称的图形ΔA''B''C''; (3)求ΔABB''的面积.25.因式分解(1)3a2−6ab+3b2. (2)m2(m−2)+4(2−m).26.先化简再求值: (1)y(x+y)+(x+y)(x−y)−x2,其中x=−2,y=12. 27.(2)2(a−3)(a+2)−(3+a)(3−a),其中a=−2.27.已知分式y−a y+b,当y=−3时无意义,当y=2时分式的值为0,求当y=−7时分式的值.28.为庆祝建党100周年,学校组织初二学生乘车前往距学校132千米的某革命根据地参观学习.二班因事耽搁,比一班晚半小时出发,为了赶上一班,平均车速是一班平均车速的1.2倍,结果和一班同时到达.求一班的平均车速是多少千米/时?答案和解析1.【答案】C;【解析】解:设第三边长x. 根据三角形的三边关系,得1<x<7. 故选:C. 根据三角形的三边关系求得第三边的取值范围解答即可. 此题主要考查三角形三边关系的知识点,此题比较简单,注意三角形的三边关系.2.【答案】A;【解析】解:等腰三角形,直角三角形,锐角三角形都具有稳定性, 长方形不具有稳定性. 故选:A. 根据三角形具有稳定性解答. 此题主要考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.3.【答案】C;【解析】解:∵平移ΔABC得到ΔDEF,∠DEF=35°, ∴∠B=∠DEF=35°, ∵∠ACB=50°, ∴∠A=180°−∠B−∠ACB=95°. 故选:C. 由平移的性质可得∠B=∠DEF=35°,从而利用三角形的内角和定理即可求∠A的度数. 此题主要考查三角形的内角和定理,平移的性质,解答的关键是由平移的性质得到∠B=∠DEF.4.【答案】A;【解析】解:分割六边形,可以从一顶点连接对角线,分割成四个三角形,如图1; 可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形,如图2; 可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形,如图3. 故选:A. 分割六边形,可以从一顶点连接对角线,分割成四个三角形;可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形;可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形. 此题主要考查了多边形内角和问题,解题关键是把多边形分割成若干三角形来研究.5.【答案】C;【解析】解:∵∠ABD=∠C=∠E,,AB=BE, 在BD上截取BF=DE, 在ΔABF与ΔBED中, AB=BE∠ABD=∠EBF=DE, ∴ΔABF≌ΔBED(SAS), ∴SΔBDE=SΔABF. ∴SΔABD=12BD⋅AD=12⋅125⋅95=5425. ∵DE=23BD, ∴BF=23BD, ∴SΔABF=23SΔABD=3625, ∴SΔBDE=3625. 故选:C. 根据SAS证明ΔABF与ΔBED全等,进而利用全等三角形的性质解答即可. 此题主要考查全等三角形的判定和性质,关键是根据SAS证明ΔABF与ΔBED全等.6.【答案】C;【解析】解:A、不是轴对称图形,本选项不符合题意; B、不是轴对称图形,本选项不符合题意; C、是轴对称图形,本选项符合题意; D、不是轴对称图形,本选项不符合题意. 故选:C. 根据轴对称图形的概念求解即可. 此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,7.【答案】D;【解析】解:∵等边三角形ABC中,AD⊥BC, ∴BD=CD,即:AD是BC的垂直平分线, ∴BE=CE, ∴∠EBC=∠ECB, ∵∠BEC=90°, ∴∠EBC=∠ECB=45°, ∵ΔABC是等边三角形, ∴∠ACB=60°, ∴∠ACE=∠ACB−∠ECB=15°, 故选:D. 先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论. 此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.8.【答案】D;【解析】解:A、(3b−a)(3b+a)=(3b)2−a2,故A不符合题意; B、(3b−a)(−3b−a)=−(3b−a)(3b+a)=−[(3b)2−a2],故B不符合题意; C、(3b−a)(6b+2a)=2(3b−a)(3b+a)=2[(3b)2−a2],故C不符合题意; D、(3b−a)(a−3b)=−(a−3b)(a−3b)=−(a−3b)2,故D符合题意; 故选:D. 根据平方差公式进行分析求解即可. 此题主要考查整式的混合运算,解答的关键是对平方差公式的掌握与应用.9.【答案】B;【解析】解:A、原式=15x2−10xy+6xy−4y2=15x2−4xy−4y2,不符合题意; B、原式=4x2−y2,符合题意; C、原式=−(m−n)2=−(m2−2mn+n2)=−m2+2mn−n2,不符合题意; D、原式=2a2+ab−4ab−2b2=2a2−3ab−2b2,不符合题意. 故选:B. 利用平方差公式的结构特征判断即可. 此题主要考查了平方差公式,熟练掌握平方差公式的结构特征是解本题的关键.10.【答案】A;【解析】解:(1)∵a m=3,a n=7, ∴a m+n=a m⋅a n=3×7=21,本小题正确; (2)原式=(−0.125)2020×82020×8 =(−0.125×8)2020×8 =(−1)2020×8 =1×8 =8,本小题正确; (3)原式=2a2b÷ab−ab÷ab (4)原式=(−2)3⋅a3 =−8a3,本小题错误; (5)原式=2x2+x−6x−3 =2x2−5x−3,本小题错误, 则小明做对的题数为2. 故选:A. (1)利用同底数幂的乘法法则计算得到结果,即可作出判断; (2)原式变形后,逆用积的乘方运算法则计算得到结果,即可作出判断; (3)原式利用多项式除以单项式法则计算得到结果,即可作出判断; (4)原式利用积的乘方运算法则计算得到结果,即可作出判断; (5)原式利用多项式乘多项式法则计算,合并得到结果,即可作出判断. 此题主要考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.11.【答案】A;【解析】解:A、符合因式分解的定义,故本选项符合题意; B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; C、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意. 故选:A. 多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可. 此题主要考查因式分解的定义.解答该题的关键是掌握因式分解的定义,属于基础题型.12.【答案】C;【解析】解:当c=4时, x2−5x+c =x2−5x+4 =(x−1)(x−4). 故选:C. ∵4=−1×(−4),−1+(−4)=−5,∴可以用十字相乘法因式分解. 此题主要考查了因式分解−十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.13.【答案】A;【解析】解:A、x+2y+2是最简分式,故本选项符合题意; B、原式=−12,不是最简分式,故本选项不符合题意; C、原式=x+y3x−3y,不是最简分式,故本选项不符合题意; D、原式=x−3,该式子不是最简分式,故本选项不符合题意; 故选:A. 最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 此题主要考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.14.【答案】C;【解析】解:∵2.(2x)2−3.(2y)22x−2y=8x2−12y22x−2y=4(2x2−3y2)2(x−y)=2(2x2−3y2)x−y, ∴把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,则分式的值变为原来的2倍. 故选:C. 根据分式的基本性质解决此题. 此题主要考查分式的基本性质,熟练掌握分式的基本性质是解决本题的关键.15.【答案】C;【解析】解:读前一半用的时间为:140x, 读后一半用的时间为:140x+21. 由题意得,140x+140x+21=14, 故选:C. 设读前一半时,平均每天读x页,关键描述语为:“在两周借期内读完”;等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可. 此题主要考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.16.【答案】C;【解析】解:小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒, 方程是800x−8001.25x=40, 故选:C. 先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 该题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.17.【答案】720°;【解析】解:设所求正多边形边数为n, ∵正n边形的每个内角都等于120°, ∴正n边形的每个外角都等于180°−120°=60°. 又因为多边形的外角和为360°, 即60°⋅n=360°, ∴n=6. 所以这个正多边形是正六边形. 所以内角和是120°×6=720°. 故答案为:720°. 设所求正多边形边数为n,根据内角与外角互为邻补角,可以求出外角的度数.根据任何多边形的外角和都是360度,由60°⋅n=360°,求解即可. 此题主要考查了多边形内角和外角的知识,解答本题的关键在于熟练掌握任何多边形的外角和都是360°并根据外角和求出正多边形的边数.18.【答案】2;【解析】解:作DF⊥BC于F, ∵BD是ΔABC的角平分线,DE⊥AB,DF⊥BC, ∴DF=DE, ∴12×AB×DE+12×BC×DF=20,即12×12×DE+12×8×DF=20, ∴DF=DE=2. 故答案为:2. 作DF⊥BC于F,根据角平分线的性质得到DF=DE,根据三角形面积公式计算即可. 此题主要考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解答该题的关键.19.【答案】(x-3)2;【解析】解:根据题意得:(x−1)(x−9)=x2−10x+9,(x−2)(x−4)=x2−6x+ 8, 原多项式为x2−6x+9=(x−3)2. 故答案为:(x−3)2. 根据两位同学的结果确定出原多项式,分解即可. 此题主要考查了因式分解−十字相乘法,熟练掌握因式分解的方法是解本题的关键.20.【答案】54°;【解析】解:∵E在线段BC的垂直平分线上, ∴BE=CE, ∵CE平分∠ACB, ∴∠ACD=2∠ECB=84°, 又∵∠A+∠B+∠ACB=180°, ∴∠A=180°−∠B−∠ACB=54°, 故答案为:54°. 由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在ΔABC中由三角形内角和定理可求得∠A. 此题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解答该题的关键.21.【答案】6x−63x=23;【解析】解:设步行学生的速度为x km/h,则汽车的速度为3x km/h, 由题意得,6x−63x=23, 故答案为:6x−63x=23. 表示出汽车的速度,然后根据汽车行驶的时间等于步行行驶的时间减去时间差列方程即可. 此题主要考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解答该题的关键.22.【答案】1;【解析】解:(1x−4−8x2−16)⋅(x+4) =x+4−8(x+4)(x−4)⋅(x+4) =x−4(x+4)(x−4)⋅(x+4) =1, 故答案为:1. 先根据分式的减法法则算减法,再算乘法即可. 此题主要考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.23.【答案】证明:∵BF=EC, ∴BF+CF=EC+CF, ∴BC=EF, 在△ABC和△DEF中, BC=EF∠B=∠EAB=DE, ∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴AC∥DF.;【解析】 证明ΔABC≌ΔDEF(SAS),由全等三角形的性质得出∠ACB=∠DFE,由平行线的判定可得出结论. 此题主要考查了全等三角形的判定与性质、平行线的判定.解答该题的关键是证明ΔABC≌ΔDEF.24.【答案】解:(1)如图,平面直角坐标系如图所示: (2)如图,△A″B″C″即为所求; =3×4-12×1×1-12×3×3-12×2×4=3. (3)S△ABB″;【解析】 (1)根据A,B两点坐标确定平面直角坐标系即可; (2)利用轴对称的性质分别作出A',B',C'的对应点A'',B'',C''即可; (3)把三角形面积看成矩形面积减去周围三个三角形面积即可. 此题主要考查作图−轴对称变换,三角形的面积等知识,解答该题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.25.【答案】解:(1)原式=3(a2-2ab+b2) =3(a-b)2; (2)原式=m2(m-2)-4(m-2) =(m-2)(m2-4) =(m-2)(m-2)(m+2) =(m-2)2(m+2).;【解析】 (1)先提公因式3,再利用完全平方公式即可进行因式分解; (2)先提公因式(m−2),再利用平方差公式进行因式分解即可. 此题主要考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.26.【答案】解:(1)原式=xy+y2+x2-y2-x2 =xy, 当x=-2,y=12时, 原式=-2×12=-1; (2)原式=2(a2+2a-3a-6)-(9-a2) =2a2-2a-12-9+a2 =a2-2a-21, 当a=-2时,原式=(-2)2-2×(-2)-21 =4+4-21 =-13.;【解析】 (1)直接利用单项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案; (2)直接利用多项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案. 此题主要考查了整式的混合运算−化简求值,正确运用乘法公式计算是解题关键.27.【答案】解:∵当y=-3时无意义, ∴-3+b=0, ∴b=3. ∵当y=2时分式的值为0, ∴2-a=0,2+3≠0, ∴a=2. ∴该分式为y−2y+3, 当x=-7时, y−2y+3 =−7−2−7+3 =−9−4 =94. 答:当x=-7时分式的值为94.;【解析】 分式无意义的条件是分母等于0,分式等于0的条件是分子等于0,且分母不等于0. 此题主要考查分式无意义的条件和分式值为0的条件,解题时注意分式为0的条件是分子等于0,且分母不等于0.28.【答案】解:设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时, 依题意得:132x-1321.2x=12, 解得:x=44, 经检验,x=44是原方程的解,且符合题意. 答:一班的平均车速是44千米/时.;【解析】 设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时,利用时间=路程÷速度,结合二班比一班少用半小时,即可得出关于x的分式方程,解之经检验后即可得出一班的平均车速. 此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解答该题的关键.。

2022年-有答案-江西省赣州市某校初二(上)期末考试数学试卷

2022年-有答案-江西省赣州市某校初二(上)期末考试数学试卷

2022学年江西省赣州市某校初二(上)期末考试数学试卷一、选择题1. 下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.2. 下列四个多项式中,能因式分解的是( )A.a2+1B.x2+5yC.x2−5yD.a2−6a+93. 满足下列条件的三条线段a,b,c能构成三角形的是( )A.a:b:c=1:2:3B.a+b=4,a+b+c=9C.a=3,b=4,c=5D.a:b:c=1:1:24. 下列式子运算结果为x+1的是( )A.1−1x B.x2+2x+1x+1C.x+1x ÷1x−1D.x2−1x⋅xx2+15. 如图,∠ACD是△ABC的外角,若∠ACD=125∘,∠A=75∘,则∠B的度数为()A.30∘B.36∘C.45∘D.50∘6. 如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP // AR;④△BRP≅△QSP.其中,正确的有( )A.4个B.3个C.2个D.1个二、填空题世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为________米.点P(2, −3)关于直线y =1的对称点的坐标是________.计算:832+83×34+172=________.若a 2−b 2=−116,a +b =−14,则a −b 的值为________.如图,在平面直角坐标系中,已知A (0,5),B (2,0),在第一象限内的点C ,使△ABC 是以AB 为腰的等腰直角三角形,则点C 的坐标为________.三、解答题(1)计算: 2x 23y 2⋅5y 7x ÷10y 21x 2 ;(2)因式分解: 4(a −2b )2−1.化简求值:[(x +12y)2+(x −12y)2](2x 2−12y 2),其中x =−3,y =4.解方程x x−1−1=3x 2−1.如图,在平面直角坐标系中,点A的坐标是(4, 0),点B的坐标是(2, 3),点C的坐标是(0, 3).(1)作出四边形OABC关于y轴对称的图形,并写出点B对应点的坐标;(2)在y轴上找一点P,使PA+PB的值最小.(不要求写作法,保留作图痕迹)知△ABC的三边a,b,c满足a2+b2+c2−ab−bc−ac=0,试判断△ABC的形状.如图,点P在∠AOB内,点M,N分别是P点关于OA,OB的对称点,且MN交OA,OB相交于点E,若△PEF的周长为20,求MN的长.如图,点E是BC边上的点,BM // NC,BM=NC.试判断点E是否为线段BC的中点,并说明理由.如图,在△ABC中,AC=BC,点D,E分别为AB,BC上的点,∠CDE=∠A,若BC=BD,求证:CD=DE.如图,在△ABC中,∠ACB=90∘,AC=BC,D是AB的中点,点E在AC上,点F在BC 上,且AE=CF.求证:DE=DF,DE⊥DF.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30∘,那么它所对的直角边等于斜边的一半.即:如图(1),在Rt△AB.ABC中,∠ACB=90∘,∠ABC=30∘,则AC=12探究结论:小明同学对以上结论作了进一步研究.(1)如图(1),作AB边上的中线CE,得到结论:①△ACE为等边三角形;②BE与CE之间的数量关系为________.(2)如图(2),CE是△ABC的中线,点D是边CB上任意一点,连接AD,作等边△ADP,且点P在∠ACB的内部,连接BP.试探究线段BP与DP之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)中条件的基础上,线段BP与DP之间存在怎样的数量关系?直接写出答案即可.参考答案与试题解析2022学年江西省赣州市某校初二(上)期末考试数学试卷一、选择题1.【答案】C【考点】轴对称图形【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.根据轴对称图形的定义得,C选项图形是轴对称图形.故选C.2.【答案】D【考点】因式分解-运用公式法【解析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A,B,C都不能把一个多项式转化成几个整式积的形式,故A,B,C不能因式分解;D是完全平方公式的形式,a2−6a+9=(a−3)2,故D能因式分解.故选D.3.【答案】C【考点】三角形三边关系【解析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【解答】解:A,设a,b,c分别为x,2x,3x,则有a+b=c,不符合三角形任意两边之和大于第三边,故错误;B,当a+b=4时,c=5,4<5,不符合三角形任意两边之和大于第三边,故错误;C,当a=3,b=4,c=5时,3+4>5,故正确;D,设a,b,c分别为x,x,2x,则有a+b=c,不符合三角形任意两边之和大于第三边,故错误.故选C.4.【答案】B【考点】分式的加减运算分式的乘除运算【解析】对各个选项中的式子进行化简即可解答本题.【解答】解:选项A,1−1x =x−1x,故选项A不符合题意;选项B,x 2+2x+1x+1=(x+1)2x+1=x+1,故选项B符合题意;选项C,x+1x ÷1x−1=x+1x⋅x−11=x2−1x,故选项C不符合题意;选项D,x 2−1x⋅xx2+1=x2−1x2+1,故选项D不符合题意.故选B.5.【答案】D【考点】三角形的外角性质【解析】根据三角形的内角与外角之间的关系解答即可.【解答】解:∵∠ACD=125∘,∠A=75∘,∴∠B=∠ACD−∠A=125∘−75∘=50∘.故选D.6.【答案】A【考点】等边三角形的性质全等三角形的性质与判定平行线的判定【解析】此题暂无解析【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,PR=PS,∴Rt△BPR≅Rt△CPS(HL),∴BR=CS,∴AR=AS,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60∘=∠BAC,∴PQ // AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≅△PCS,又由②可知,△BRP≅△QSP,故④正确,综上,①②③④都正确,共4个.故选A.二、填空题【答案】6×10−9【考点】科学记数法--表示较小的数【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000006=6×10−9.故答案为:6×10−9.【答案】(2, 5)【考点】坐标与图形变化-对称【解析】点P(2, −3)关于直线y=1对称的点与点P的连线平行于y轴,因而横坐标与P的横坐标相同,纵坐标与−3的平均数是1,因而纵坐标是5.【解答】解:点P(2, −3)关于直线y=1对称的点的坐标是(2, 5).故答案为:(2, 5).【答案】10000【考点】完全平方公式【解析】把34写成2×17,然后根据完全平方公式计算.【解答】解:832+83×34+172=832+2×83×17+172=(83+17)2=1002=10000.故答案为:10000.【答案】14【考点】平方差公式【解析】根据整式的混合运算,用到的知识点有平方差公式【解答】解:∵a2−b2=(a+b)(a−b)=−116,a+b=−14,∴a−b=14.故答案为:14.【答案】(7,2)或(5,7)【考点】坐标与图形性质全等三角形的性质与判定等腰直角三角形【解析】分别从当∠ABC=90∘,AB=BC时,当∠BAC=90∘,AB=AC时去分析求解,利用全等三角形的判定与性质,即可求得点C的坐标.【解答】解:如图1,当∠ABC=90∘,AB=BC时,过点C作CD⊥x轴于点D,∴∠CDB=∠AOB=90∘,∵∠OAB+∠ABO=90∘,∠ABO+∠CBD=90∘,∴∠OAB=∠CBD,在△AOB和△BDC中,{∠AOB=∠BDC,∠OAB=∠CBD,AB=BC,∴△AOB≅△BDC(AAS),∴BD=OA=5,CD=OB=2,∴OD=OB+BD=7,∴点C的坐标为(7,2);如图2,当∠BAC=90∘,AB=AC时,过点C作CD⊥y轴于点D,同理可证得:△OAB≅△DCA,∴AD=OB=2,CD=OA=5,∴OD=OA+AD=7,∴点C的坐标为(5,7).综上所述,点C的坐标为(7,2)或(5,7). 故答案为:(7,2)或(5,7).三、解答题【答案】解:(1)原式=2x 23y2⋅5y7x⋅21x210y=x3y2.(2)原式=[2(a−2b)]2−1=[2(a−2b)+1][2(a−2b)−1]=(2a−4b+1)(2a−4b−1).【考点】分式的乘除运算因式分解-运用公式法【解析】(1)根据分式乘除法的运算法则,把除法转化为乘法,约分即可.(2)利用平方差公式分解因式即可.【解答】解:(1)原式=2x 23y2⋅5y7x⋅21x210y=x3y2.(2)原式=[2(a−2b)]2−1=[2(a−2b)+1][2(a−2b)−1] =(2a−4b+1)(2a−4b−1). 【答案】解:原式=(x2+xy+14y2+x2−xy+14y2)(2x2−12y2)=(2x2+12y2)(2x2−12y2)=4x4−14y4,把x=−3,y=4代入,原式=4×(−3)4−14×44=324−64=260.【考点】整式的混合运算——化简求值【解析】(1)去括号化简,再把值代入即可.【解答】解:原式=(x2+xy+14y2+x2−xy+14y2)(2x2−12y2)=(2x2+12y2)(2x2−12y2)=4x4−14y4,把x=−3,y=4代入,原式=4×(−3)4−14×44=324−64=260.【答案】解:方程两边乘(x−1)(x+1),得x(x+1)−(x−1)(x+1)=3,解得x=2.检验:当x=2时,(x−1)(x+1)≠0,所以,原分式方程的解为x=2.【考点】解分式方程——可化为一元一次方程【解析】此题暂无解析【解答】解:方程两边乘(x−1)(x+1),得x(x+1)−(x−1)(x+1)=3,解得x=2.检验:当x=2时,(x−1)(x+1)≠0,所以,原分式方程的解为x=2.【答案】解:(1)四边形OABC关于y轴对称的图形为四边形OA′B′C,如图所示,因为点B的坐标是(2, 3),点B的对应点为B′,所以点B的对应点的坐标为(−2, 3).(2)连接AB′与y轴交于点P,点P即为使PA+PB的值最小的点.【考点】作图-轴对称变换关于x轴、y轴对称的点的坐标轴对称——最短路线问题【解析】(1)延长BC至B′,使B′C=BC,在x轴负半轴上截取OA′,使OA′=OA,然后顺次连接A′B′CO即可,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相等写出点B的对应点的坐标;(2)根据轴对称确定最短路线问题,连接AB′与y轴的交点即为点P.【解答】解:(1)四边形OABC关于y轴对称的图形为四边形OA′B′C,如图所示,因为点B的坐标是(2, 3),点B的对应点为B′,所以点B的对应点的坐标为(−2, 3).(2)连接AB′与y轴交于点P,点P即为使PA+PB的值最小的点.【答案】解:∵a2+b2+c2−ab−bc−ac=0,∴2a2+2b2+2c2−2ab−2bc−2ac=0,即(a2−2ab+b2)+(b2−2bc+c2)+(a2−2ac+c2)=0,∴(a−b)2+(b−c)2+(a−c)2=0,∴a−b=0,b−c=0,a−c=0,即a=b=c,∴△ABC是等边三角形.【考点】等边三角形的判定完全平方公式非负数的性质:偶次方【解析】本题主要考查了等式和等边三角形的判定的相关知识点,需要掌握等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式;三个角都相等的三角形是等边三角形;有一个角等于60∘的等腰三角形是等边三角形才能正确解答此题.【解答】解:∵a2+b2+c2−ab−bc−ac=0,∴2a2+2b2+2c2−2ab−2bc−2ac=0,即(a2−2ab+b2)+(b2−2bc+c2)+(a2−2ac+c2)=0,∴(a−b)2+(b−c)2+(a−c)2=0,∴a−b=0,b−c=0,a−c=0,即a=b=c,∴△ABC是等边三角形.【答案】解:∵点M是P点关于OA的对称点,∴EP=EM,∵N是P点关于OB的对称点,∴FP=FN,∵△PEF的周长为20,∴EP+EF+FP=20,∴MN=EM+EF+FN=20.【考点】轴对称的性质【解析】根据轴对称的性质可知:EP=EM,PF=FN,所以线段MN的长=△PEF的周长,再根据△PEF的周长为20,即可得出MN的长.【解答】解:∵点M是P点关于OA的对称点,∴EP=EM,∵N是P点关于OB的对称点,∴FP=FN,∵△PEF的周长为20,∴EP+EF+FP=20,∴MN=EM+EF+FN=20.【答案】解:点E是线段BC的中点.理由是:∵BM // NC,∴∠M=∠CNE,在△BME和△CNE中,{∠M=∠CNE,∠BEM=∠CEN, BM=CN,∴△BME≅△CNE(AAS),∴BE=CE,即点E为线段BC中点.【考点】全等三角形的性质与判定平行线的性质【解析】根据平行线性质求出∠M=∠CNE,根据AAS推出△BME≅△CNE即可.【解答】解:点E是线段BC的中点.理由是:∵BM // NC,∴∠M=∠CNE,在△BME和△CNE中,{∠M=∠CNE,∠BEM=∠CEN, BM=CN,∴△BME≅△CNE(AAS),∴BE=CE,即点E为线段BC中点.【答案】证明:∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=∠A,∴∠ACD=∠BDE.∵AC=CB,BC=BD,∴∠A=∠B,AC=BD.在△ACD和△BDE中,∵{∠A=∠B,AC=BD,∠ACD=∠BDE,∴△ACD≅△BDE(ASA),∴CD=DE.【考点】全等三角形的性质与判定【解析】暂无【解答】证明:∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=∠A,∴∠ACD=∠BDE.∵AC=CB,BC=BD,∴∠A=∠B,AC=BD.在△ACD和△BDE中,∵{∠A=∠B,AC=BD,∠ACD=∠BDE,∴△ACD≅△BDE(ASA),∴CD=DE.【答案】证明:如图,连接CD,∵AC=BC,∠ACB=90∘,∴△ABC是等腰直角三角形,∠A=∠B=45∘. ∵D为AB中点,∴AD=BD,CD平分∠ACB,CD⊥AB,∴∠DCF=45∘,∴AD=BD=CD,在△ADE和△CDF中,{AE=CF,∠A=∠FCD, AD=CD,∴△ADE≅△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90∘,∴∠CDF+∠EDC=∠EDF=90∘,即DE⊥DF.【考点】等腰直角三角形全等三角形的性质与判定等腰三角形的性质:三线合一【解析】(1)首先可判断△ABC是等腰直角三角形,连接CD,再证明BD=CD,∠DCF=∠A,根据全等三角形的判定易得到△ADE≅△CDF,继而可得出结论.【解答】证明:如图,连接CD,∵AC=BC,∠ACB=90∘,∴△ABC是等腰直角三角形,∠A=∠B=45∘.∵D为AB中点,∴AD=BD,CD平分∠ACB,CD⊥AB,∴∠DCF=45∘,∴AD=BD=CD,在△ADE和△CDF中,{AE=CF,∠A=∠FCD, AD=CD,∴△ADE≅△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90∘,∴∠CDF+∠EDC=∠EDF=90∘,即DE⊥DF.【答案】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:600x =6001.5x+5,化简得600×1.5=600+5×1.5x,解得x=40,∴ 1.5x=60,经检验,x=40是分式方程的解且符合实际意义. 答:甲每天加工60个零件,乙每天加工40个零件.(2)设甲加工了x天,乙加工了y天,由题意得{60x+40y=3000,150x+120y≤7800,由①得y=75−1.5x③,将③代入②得150x+120(75−1.5x)≤7800,解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【考点】一元一次不等式的实际应用分式方程的应用【解析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:600x =6001.5x+5,化简得600×1.5=600+5×1.5x,解得x=40,∴ 1.5x=60,经检验,x=40是分式方程的解且符合实际意义. 答:甲每天加工60个零件,乙每天加工40个零件.(2)设甲加工了x天,乙加工了y天,由题意得{60x+40y=3000,150x+120y≤7800,由①得y=75−1.5x③,将③代入②得150x+120(75−1.5x)≤7800,解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【答案】BE=CE(2)PD=PB.证明:如图,连接PE,∵△ACE,△ADP都是等边三角形,∴AC=AE,AD=AP,∠CAE=∠DAP=60∘,∴∠CAE−∠DAB=∠DAP−∠DAB,∴∠CAD=∠EAP,∴△CAD≅△EAP(SAS),∴∠ACD=∠AEP=90∘,∴PE⊥AB.∵EA=EB,∴PA=PB.∵DP=AP,∴PD=PB.(3)当点D为边CB延长线上任意一点时,同(2)中的方法可证PD=PB.【考点】含30度角的直角三角形等边三角形的判定全等三角形的性质与判定等边三角形的性质与判定线段垂直平分线的性质【解析】(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似.【解答】解:(1)∵∠ACB=90∘,∠B=30∘,∴∠A=60∘.∵CE为AB边上的中线,AB=AE=EB,∴AC=12∴△ACE是等边三角形,∴EC=AE=EB.故答案为:BE=CE.(2)PD=PB.证明:如图,连接PE,∵△ACE,△ADP都是等边三角形,∴AC=AE,AD=AP,∠CAE=∠DAP=60∘,∴∠CAE−∠DAB=∠DAP−∠DAB,∴∠CAD=∠EAP,∴△CAD≅△EAP(SAS),∴∠ACD=∠AEP=90∘,∴PE⊥AB.∵EA=EB,∴PA=PB.∵DP=AP,∴PD=PB.(3)当点D为边CB延长线上任意一点时,同(2)中的方法可证PD=PB.。

安徽初二初中数学期末考试带答案解析

安徽初二初中数学期末考试带答案解析

安徽初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.点(﹣2,3)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数y=的自变量x 的取值范围是( )A .x≠﹣2B .x≥﹣2C .x >﹣2D .x <﹣24.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形5.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .6.下列各图中,能表示y 是x 的函数的是( )A .B .C .D .7.下列命题中真命题是( )A .三角形按边可分为不等边三角形,等腰三角形和等边三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形的一个外角大于任何一个内角D .三角形三条内角平分线相交于一点,这点到三角形三边的距离相等8.若一次函数y=(m ﹣1)x+m 2﹣1的图象通过原点,则m 的值为( )A .m=﹣1B .m=1C .m=±1D .m≠19.设三角形三边之长分别为3,8,1﹣2a ,则a 的取值范围为( )A .3<a <6B .﹣5<a <﹣2C .﹣2<a <5D .a <﹣5或a >210.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A.6B.12C.32D.64二、填空题1.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为.2.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.3.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB 为.4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.5.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.三、解答题1.夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E 的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)2.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为 ; (2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后对应点P 1的坐标为 .3.如图,点F 、C 在BE 上,BF=CE ,∠A=∠D ,∠B=∠E .求证:AB=DE .4.小明家与学校在同一直线上且相距720m ,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x (分),兄弟两人之间的距离为ym ,图中的折线是y 与x 的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是 m/分,点B 的坐标是 ;(2)线段AB 所表示的y 与x 的函数关系式是 ;(3)试在图中补全点B 以后的图象.5.如图,直线l 1:y 1=x 和直线l 2:y 2=﹣2x+6相交于点A ,直线l 2与x 轴交于点B ,动点P 沿路线O→A→B 运动.(1)求点A 的坐标,并回答当x 取何值时y 1>y 2?(2)求△AOB 的面积;(3)当△POB 的面积是△AOB 的面积的一半时,求出这时点P 的坐标.安徽初二初中数学期末考试答案及解析一、选择题1.下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】A【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.点评:此题主要考查了轴对称图形,关键是掌握轴对称的定义.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据各象限内点的坐标特征解答即可.解:点(﹣2,3)所在的象限是第二象限,故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.函数y=的自变量x的取值范围是()A.x≠﹣2B.x≥﹣2C.x>﹣2D.x<﹣2【答案】B【解析】根据被开方数大于等于0列式计算即可得解.解:由题意得:x+2≥0,解得x≥﹣2.故选:B.点评:本题考查的知识点为:二次根式的被开方数是非负数,熟记二次根式的被开方数是非负数是解决本题的关键.4.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】B【解析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.点评:三角形按边分类:不等边三角形和等腰三角形(等边三角形);三角形按角分类:锐角三角形,钝角三角形,直角三角形.5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【答案】D【解析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.解:线段BE是△ABC的高的图是选项D.故选D.点评:本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.6.下列各图中,能表示y 是x 的函数的是( )A .B .C .D .【答案】B【解析】在坐标系中,对于x 的取值范围内的任意一点,通过这点作x 轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以B 正确.故选:B .点评:本题主要考查了函数的定义,函数的意义反映在图象上简单的判断方法是:x 的取值范围内做垂直x 轴的直线与函数图象只会有一个交点.7.下列命题中真命题是( )A .三角形按边可分为不等边三角形,等腰三角形和等边三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形的一个外角大于任何一个内角D .三角形三条内角平分线相交于一点,这点到三角形三边的距离相等【答案】D【解析】利用三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质分别判断后即可确定正确的选项.解:A 、三角形按边可分为不等边三角形,等腰三角形,故错误,是假命题;B 、等腰三角形任一个内角都有可能是钝角或直角,错误,是假命题;C 、三角形的一个外角大于任何一个不相邻的内角,故错误,是假命题;D 、三角形三条内角平分线相交于一点,这点到三角形三边的距离相等,正确,是真命题,故选D .点评:本题考查了命题与定理的知识,解题的关键是了解三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质,难度不大.8.若一次函数y=(m ﹣1)x+m 2﹣1的图象通过原点,则m 的值为( )A .m=﹣1B .m=1C .m=±1D .m≠1【答案】A【解析】根据一次函数的定义及函数图象经过原点的特点列出关于m 的不等式组,求出m 的值即可.解:∵一次函数y=(m ﹣1)x+m 2﹣1的图象经过原点,∴0=0+m 2﹣1,m ﹣1≠0,即m 2=1,m≠1解得,m=﹣1.故选A .点评:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b (k≠0)中,当b=0时函数图象经过原点..9.设三角形三边之长分别为3,8,1﹣2a ,则a 的取值范围为( )A .3<a <6B .﹣5<a <﹣2C .﹣2<a <5D .a <﹣5或a >2【答案】B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:由题意得:8﹣3<1﹣2a <8+3,解得:﹣5<a <﹣2,故选:B .点评:此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6B .12C .32D .64【答案】C【解析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°, ∵∠MON=30°, ∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°, ∵∠MON=∠1=30°, ∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°, ∵∠4=∠12=60°, ∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°, ∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,以此类推:A 6B 6=32B 1A 2=32.故选:C .点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.二、填空题1.如图,在Rt △ABC 中,∠C=90°,边AB 的垂直平分线交BC 点D ,AD 平分∠BAC ,则∠B 度数为 .【答案】30°【解析】根据线段垂直平分线的性质得到DA=DB ,得到∠B=∠DAB ,根据角平分线的定义得到∠DAB=∠DAC ,根据三角形内角和定理计算即可.解:∵DE 是△ABC 的AB 边的垂直平分线,∴AD=BD , ∴∠B=∠DAB , ∵AD 平分∠BAC , ∴∠DAB=∠DAC ,∴∠B=∠DAB=∠DAC,又∠C=90°,∴∠B=30°,故答案为:30°点评:本题考查了线段垂直平分线性质的应用,能求出∠B=∠DAB=∠DAC是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.2.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.【答案】y=﹣2x+2.【解析】注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.解:原直线的k=﹣2,b=﹣1;向上平移3个单位长度得到了新直线,那么新直线的k=﹣2,b=﹣1+3=2.因此新直线的解析式为y=﹣2x+2.故答案为:y=﹣2x+2.点评:本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.3.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB 为.【答案】10°【解析】根据轴对称的性质可知∠CA′D=∠A=50°,然后根据外角定理可得出∠A′DB.解:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.点评:本题考查轴对称的性质,属于基础题,注意外角定理的运用是解决本题的关键.4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.【答案】4.【解析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故答案为:4.点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等.5.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.【答案】1【解析】结合函数图象,设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据企业供应的足球数=库存+每日产量×生产天数,得出关于x、a的二元一次方程组,解方程组即可得出结论.解:∵(6﹣2)÷(4﹣2)=2,∴设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据题意可得:,解得:.∴每家企业供应的足球数量a=1万个.故答案为:1.点评:本题考查了二元一次方程组的应用,解题的关键是得出关于x、a的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.三、解答题1.夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E 的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)【答案】【解析】延长DB、CA交于点O,作∠DOC或∠DOC的外角的平分线,再作线段BC的垂直平分线,两线的交点就是所求的点.解:如图所示,点E或E′就是所求的点.点评:本题考查作图应用设计、角平分线的作法、线段的垂直平分线的作法等知识,解题的关键是熟练掌握这些知识的应用,属于中考常考题型.2.在边长为1的小正方形网格中,△AOB 的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为 ; (2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后对应点P 1的坐标为 .【答案】(1)(﹣3,2)(2)见解析(3)(a ﹣3,b+2)【解析】(1)根据坐标系可得B 点坐标,再根据关于y 轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A 、B 、C 三点平移后的对应点位置,然后再连接即可;(3)根据△AOB 的平移可得P 的坐标为(a ,b ),平移后横坐标﹣3,纵坐标+2.解:(1)B 点关于y 轴的对称点坐标为(﹣3,2),故答案为:(﹣3,2);(2)如图所示:(3)P 的坐标为(a ,b )平移后对应点P 1的坐标为(a ﹣3,b+2).故答案为:(a ﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.3.如图,点F 、C 在BE 上,BF=CE ,∠A=∠D ,∠B=∠E .求证:AB=DE .【答案】见解析【解析】欲证明AB=DE ,只要证明△ABC ≌△DEF 即可.证明:∵BF=CE ,∴BF+CF=CE+CF 即BC=EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (AAS ),∴AB=DE .点评:本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键,记住一般三角形全等的四种判定方法,属于中考常考题型.4.小明家与学校在同一直线上且相距720m ,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x (分),兄弟两人之间的距离为ym ,图中的折线是y 与x 的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是 m/分,点B 的坐标是 ;(2)线段AB 所表示的y 与x 的函数关系式是 ;(3)试在图中补全点B 以后的图象.【答案】(1)60,120;(2)y=kx+b ,(3)【解析】(1)由图象可知,当x=0时,y=60,即可得到弟弟1分钟走了60m ;分别求出x=9时,哥哥走的路程,弟弟走的路程,即可得到兄弟两人之间的距离,即可解答;(2)利用待定系数法求出解析式,即可解答;(3)根据点B 的坐标为(9,120),此时小明到达终点,弟弟离小明的距离为120米,弟弟到终点的时间为:120÷60=2(分),画出图形即可.解:(1)由图象可知,当x=0时,y=60,∵弟弟走得慢,先走1分钟后,小明才出发, ∴弟弟1分钟走了60m , ∴弟弟步行的速度是60米/分,当x=9时,哥哥走的路程为:80×9=720(米),弟弟走的路程为:60+60×9=600(米),兄弟两人之间的距离为:720﹣600=120(米),∴点B 的坐标为:(9,120),故答案为:60,120;(2)设线段AB 所表示的y 与x 的函数关系式是:y=kx+b ,把A (3,0),B (9,120)代入y=kx+b 得:解得: ∴y=20x ﹣60,故答案为:y=20x ﹣60.(3)如图所示;点评:本题考查了一次函数的应用,解决本题的关键是看懂函数图象,利用待定系数法求一次函数的解析式.5.如图,直线l 1:y 1=x 和直线l 2:y 2=﹣2x+6相交于点A ,直线l 2与x 轴交于点B ,动点P 沿路线O→A→B 运动.(1)求点A 的坐标,并回答当x 取何值时y 1>y 2?(2)求△AOB 的面积;(3)当△POB 的面积是△AOB 的面积的一半时,求出这时点P 的坐标.【答案】(1)当x >2时,y 1>y 2;(2)3;(3)P (1,1)或(,1).【解析】(1)当函数图象相交时,y 1=y 2,即﹣2x+6=x ,再解即可得到x 的值,再求出y 的值,进而可得点A 的坐标;当y 1>y 2时,图象在直线AB 的右侧,进而可得答案;(2)由直线l 2:y 2=﹣2x+6求得B 的坐标,然后根据三角形面积即可求得;(3)根据题意求得P 的纵坐标,代入两直线解析式求得横坐标,即为符合题意的P 点的坐标.解:(1)∵直线l 1与直线l 2相交于点A ,∴y 1=y 2,即﹣2x+6=x ,解得x=2,∴y 1=y 2=2,∴点A 的坐标为(2,2);观察图象可得,当x >2时,y 1>y 2;(2)由直线l 2:y 2=﹣2x+6可知,当y=0时,x=3,∴B (3,0),∴S △AOB =×3×2=3;(3)∵△POB 的面积是△AOB 的面积的一半,∴P 的纵坐标为1, ∵点P 沿路线O→A→B 运动,∴P (1,1)或(,1).点评:此题主要考查了两直线相交,一次函数与不等式的关系以及三角形面积等,关键是掌握凡是函数图象经过的点必能满足解析式.。

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试带答案解析

福建初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.不等式的解集在数轴上表示正确的是()2.如果,那么下列各式中正确的是()A.B.C.D.3.下列调查适合作普查的是()A.了解一批圆珠笔笔芯的使用寿命B.了解你们班同学的身高C.了解龙年春节晚会的收视率D.了解我市居民对废电池的处理情况4.下列命题是真命题的是()A.相等的角是对顶角B.两直线被第三条直线所截,内错角相等C.若D.所有的等边三角形都相似5.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为3米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米6.若分式的值为零,则x等于()A.2B.-2C.±2D.07.已知△ABC∽△DEF,如果∠A=55º,∠B=100º,则∠F=()A.55ºB.100ºC.25ºD.30º8.在方差的计算公式s=[(x-20)+(x-20)+……+(x-20)]中,数字10和20分别表示的意义可以是()A.数据的个数和平均数B.平均数和数据的个数C.数据的个数和方差D.数据组的方差和平均数9.如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),由B、O、C组成的三角形与ΔAOB相似,下列满足条件的点C是()A.(3,0)B.(2,0)C.(1,0) D(-2,0)10.一次函数的图象如图所示,当-3 < < 3时,的取值范围是()A.>4B.0<<2C.0<<4D.2<<4二、填空题1.计算:.2.因式分解:= .3.某学习小组各成员期中数学测试成绩分别是90分,98分,87分,78分,65分。

这次测试成绩的极差是分.4.如图,AB∥CD,∠A=400,∠C=∠E,则∠C的度数是.5.如图,三角尺在灯泡的照射下在墙上形成影子,.现测得则这个三角尺的面积与它在墙上所形成影子图形的面积之比是.6.已知,则= .7.某公司打算至多用1000元印刷广告单。

2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)

2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)

2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.已知(a-2)2+|b-8|=0,则ab的平方根为()A .±12B .-12C .±2D .22.下列命题中,正确的是()A .如果|a|=|b|,那么a=bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角3.如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD 的条件是()A .BD=CDB .AB=AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)4.实数327,0,-π,16,13,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有()A .1个B .2个C .3个D .4个5.下列各式运算正确的是()A .3a+2b=5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 66.下列长度的四组线段中,可以构成直角三角形的是()A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2,37.下列因式分解中,正确的个数为()①x 3+2xy+x=x(x 2+2y);②x 2+4x+4=(x+2)2;③-x 2+y 2=(x+y)(x-y).A .3个B .2个C .1个D .0个8.如图所示,所提供的信息正确的是()A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN 至G,取NG=NQ,若△MNP 的周长为12,MQ=a,则△MGQ 的周长是()A .8+2a B .8+a C .6+a D .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB、AC 于点M 和N,再分别以M、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P,连接AP,并延长交BC 于点D,则下列说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1200名女生的身高进行测量,身高在1.58m ~1.63m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示7的是________.(第14题)(第16题)(第18题)(第19题)15.已知(a-b)m =3,(b-a)n =2,则(a-b)3m-2n=________16.将一副三角尺如图所示叠放在一起,若AC=14cm ,则阴影部分的面积是________cm 2.17.若x<y,x 2+y 2=3,xy=1,则x-y=________.18.如图,在△ABC 中,AB=AC=3cm ,AB 的垂直平分线分别交AB,AC 于点M,N,△BCN 的周长是5cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C,D 两点;(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)181+3-27+(-2)2+(-1)2014;(2)a 3-a 2b+14ab 2.22.先化简,再求值:(x+y)(x-y)+(4xy 3-8x 2y 2)÷4xy,其中x=1,y=12.23.如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图).频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6000,1请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.(第27题)参考答案:一、 1.A 2.C 3.B 4.B 5.B 6.B 7.C 8.B 9.D 10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.412.30013.x 2y 2(y+x)(y-x)14.点P15.274点拨:(a-b)3m-2n =(a-b)3m ÷(a-b)2n =[(a-b)m ]3÷[(a-b)n ]2=[(a-b)m ]3÷[(b-a)n ]2=33÷22=274.16.9817.-1点拨:(x-y)2=x 2+y 2-2xy=3-2×1=1,∵x<y,∴x-y<0,∴x-y=-1=-1.18.219.32点拨:在Rt △ABC 中,∠B=90°,AB=3,BC=4,∴AC=5,设BE=B′E=x,则EC=4-x,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x=32.20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=19-3+2+1=19;2-ab+14b a-12b .22.解:原式=x 2-y 2+y 2-2xy=x 2-2xy,当x=1,y=12时,原式=1-2×1×12=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1)20°(2)设AD =x ,则BD =x ,DC =8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =254.∴AD 的长为254.(3)由题意知:AC 2+BC 2=m 2,12AC ·BC =m +1,∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF=AF=EF,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC互余,∴∠DCF =∠AMF.在△DFC 和△AFM 中,∴△DFC ≌△AFM(A .A .S .),∴CF=MF,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC =140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(二)一、选择题(每小题4分,共40分)1.9的平方根是()C.3D.-3 A.±3B.±132.下列运算正确的是()A.x3·x4=x12B.(x3)4=x7C.x8÷x2=x6D.(3b3)2=6b63.将下列长度的三条线段首尾顺次连结,不能组成直角三角形的是() A.8、15、17B.7、24、25C.3、4、5D.2、3、74.已知关于x的二次三项式x2+kx+36可以写成一个两数和(差)的平方式,则k 的值是()A.6B.±6C.12D.±125.如图是某地PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是()A.汽车尾气约为建筑扬尘的3倍B.表示建筑扬尘的占7%C.表示煤炭燃烧对应的扇形圆心角度数为126°D.煤炭燃烧的影响最大(第5题)(第6题)(第8题)6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A .40°B .30°C .70°D .50°7.下列分解因式正确的是()A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)28.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是()A .1B .2C .3D .49.如图,数轴上点A 、B 分别对应数1、2,PQ ⊥AB 于点B ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是()A.3B.5C.6D.7(第9题)(第10题)10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,点Q 为BC 延长线上一点,当PA =CQ 时,连结PQ 交AC 于点D ,则DE 的长为()A.13 B.12C.23D .不能确定二、填空题(每小题4分,共24分)11.请写出一个大于1且小于2的无理数:________.12.已知x 2n =5,则(3x 3n )2-4(x 2)2n 的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.(第13题)(第15题)(第16题)14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应边上的角平分线相等.其中逆命题是假命题的是________.(填序号)15.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过O 作EF ∥BC 分别交AB 、AC 于点E 、F .若△ABC 的周长比△AEF 的周长大12,点O 到AB 的距离为3.5,则△OBC 的面积为________.16.如图所示,将一个边长为a 的正方形剪去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.利用图形的面积关系可以得到一个代数恒等式是____________________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|(2)[x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .18.(8分)先化简,再求值:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab ),其中a =12,b =-12.19.(8分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE 、DE 、DC .(第19题)(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.20.(8分)如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,∠C =∠C ′,AD 平分∠BAC交BC于点D.(1)在△A′B′C′中,作出∠B′A′C′的平分线A′D′交B′C′于点D′;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A′D′,求证:BD=B′D′.(第20题)21.(8分)(1)如图1所示,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.易知这个大正方形的面积是2,所以大正方形的边长为________.(2)观察下列各方格图中阴影所示的图形(每一小方格的边长为1),如图2,将左图阴影部分剪开,重新拼成右图的正方形,那么所拼成的正方形的边长为________.请你模仿图2的方法,将图3、图4阴影所示的图形剪拼成一个正方形,并在图中作出适当的标注.(第21题)22.(10分)某校为了解学生百米跑成绩,在各个年级抽取部分同学开展百米跑测试.成绩分为A、B、C、D四个等级,并绘制成以下两幅不完整的统计图.(1)求这次测试抽取的学生总人数,并补全条形统计图;(2)求C等级在扇形统计图中对应的圆心角的度数;(3)若成绩为A等级或B等级为合格,已知该校共有1400人,试估计全校合格的学生人数.(第22题)23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).(第23题)24.(12分)【知识介绍】换元法是数学中重要的解题方法.通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.换元的实质是转化,关键是构造元和设元.均值换元法是换元法主要形式之一.【典例分析】已知实数x,y满足x+y=4,试求代数式x2+y2的最小值.【分析】均值换元法:由x+y=4,得x与y的均值为2,所以可以设x=2+t,y=2-t,再代入代数式换元求解.【解法】因为x+y=4,所以设x=2+t,y=2-t,所以x2+y2=(2+t)2+(2-t)2=2t2+8≥8,所以x2+y2的最小值是8.【理解应用】根据以上知识背景,回答下列问题:(1)若实数a、b满足a+b=2,求代数式a2+b2+2的最小值;(2)已知△ABC的三边长为a、b、c,满足b+c=8,bc=a2-8a+32,请判断△ABC的形状,并求△ABC的周长.25.(14分)【问题初探】如图①,△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连结AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连结BE,猜想BE和CD 有怎样的数量关系,并说明理由.【类比再探】如图②,△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连结BE,则∠EBD=________.(直接写出答案,不写过程)【方法迁移】如图③,△ABC是等边三角形,点D是BC上一点,连结AD,以AD为一边作等边三角形ADE,连结BE,则BD、BE、BC之间有怎样的数量关系?答案:________.(直接写出答案,不写过程)【拓展创新】如图④,△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作等边三角形MDE,连结BE.猜想∠EBD的度数,并说明理由.(第25题)答案一、1.A 2.C3.D4.D5.C6.A7.C8.D9.B 10.B二、11.3(答案不唯一)12.102513.1014.①③④15.21提示:∵∠ABC 与∠ACB 的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB .∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EOB =∠EBO ,∠FOC =∠FCO ,∴OE =BE ,OF =FC ,∴EF =BE +CF ,∴AE +EF +AF =AB +AC .∵△ABC 的周长比△AEF 的周长大12,∴(AB +BC +AC )-(AE +EF +AF )=12,∴BC =12.∵O 到AB 的距离为3.5,且O 在∠ABC 的平分线上,∴O 到BC的距离也为3.5,∴△OBC 的面积是12×12×3.5=21.16.a 2-b 2=(a +b )(a -b )三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y )÷x 2y =2xy -2.18.解:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab )=(a 2b 2-2ab +3ab -6-5a 2b 2+6)÷(-ab )=(-4a 2b 2+ab )÷(-ab )=4ab -1.当a =12,b =-12时,原式=4×12×1=-1-1=-2.19.(1)证明:在△ABE 和△CBD 中,∵AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (S.A.S.).(2)解:∵AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°.∵∠CAE =30°,∴∠AEB =∠ACB +∠CAE =45°+30°=75°.由(1)知△ABE ≌△CBD ,∴∠BDC =∠AEB =75°.20.(1)解:如图所示,A ′D ′为∠B ′A ′C ′的平分线.(第20题)(2)证明:∵∠B =∠B ′,∠C =∠C ′,∴∠BAC =∠B ′A ′C ′.∵AD 平分∠BAC ,A ′D ′平分∠B ′A ′C ′,∴∠BAD =12∠BAC ,∠B ′A ′D ′=12∠B ′A ′C ′,∴∠BAD =∠B ′A ′D ′.又∵∠B =∠B ′,AD =A ′D ′,∴△ABD ≌△A ′B ′D ′,∴BD =B ′D ′.21.解:(1)2(2)5拼法及标注如图所示.(答案不唯一)(第21题)22.解:(1)120÷30%=400,所以这次测试抽取的学生总人数为400,所以B 等级的人数为400-120-80-40=160.补全条形统计图如图所示.(第22题)(2)360°×80400=72°,所以C等级在扇形统计图中对应的圆心角的度数为72°.(3)1400×120+160400=980,所以估计全校合格的学生人数为980.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∵∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意,得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理,得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)因为a+b=2,所以设a=1+t,b=1-t,所以a2+b2+2=(1+t)2+(1-t)2+2=1+2t+t2+1-2t+t2+2=2t2+4≥4,所以a2+b2+2的最小值为4.(2)因为b+c=8,所以设b=4+t,c=4-t,因为bc=a2-8a+32,所以(4+t)(4-t)=a2-8a+32,16-t2=a2-8a+32,(a2-8a+16)+t2=0,即(a-4)2+t2=0,所以a=4,t=0,所以b=4+t=4,c=4-t=4,所以a=b=c,所以△ABC为等边三角形,所以△ABC的周长为12. 25.解:【问题初探】BE=CD.理由:∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD.又∵AB=AC,AE=AD,∴△BAE≌△CAD(S.A.S.),∴BE=CD.【类比再探】90°【方法迁移】BC=BD+BE【拓展创新】∠EBD=120°.理由:过点M作MG∥AC交BC于点G,如图,则∠BMG=∠A=60°,∠BGM=∠C=60°,(第25题)∴△BMG是等边三角形,∴BM=GM.∵∠DME=∠BMG=60°,∴∠BME=∠GMD.又∵ME=MD,∴△BME≌△GMD(S.A.S.),∴∠MBE=∠MGD=60°,∴∠EBD=∠MBE+∠MBG=120°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(三)一、选择题(每题4分,共40分)1.在实数-227,0,-6,503,π,0.101中,无理数的个数是() A.2B.3C.4D.52.已知一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,则该函数的图象大致是()3.如图所示,以A为圆心的圆交数轴于B,C两点,若A,B两点表示的数分别为1,2,则点C表示的数是()A.2-1B.2-2C.22-2D.1-2(第3题)(第5题)4.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:锻炼时间/h5678人数2652则这15名学生一周在校参加体育锻炼时间的中位数和众数分别为()A .6h ,7hB .7h ,7hC .7h ,6hD .6h ,6h5.如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是()A .30°B .40°C .50°D .60°6.如图,x 轴是△AOB 的对称轴,y 轴是△BOC 的对称轴,点A 的坐标为(1,2),则点C 的坐标为()A .(-1,-2)B .(1,-2)C .(-1,2)D .(-2,-1)7=-2,=1是关于x ,y +by =1,+ay =7的解,则(a +b )(a -b )的值为()A .-356 B.356C .16D .-168.我国古代著名的“赵爽弦图”的示意图如图①所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图②所示“数学风车”,则这个风车的外围周长是()A .413B .810C .413+12D .810+129.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托;折回索子却量竿,却比竿子短一托.”其大意:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是()x =y +5,12x =y -5x =y -5,12x =y +5x =y +5,2x =y -5x =y -5,2x =y +510.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不考虑),直到两车相遇.若甲、乙两车之间的距离y (km)与两车行驶的时间x (h)之间的关系如图所示,则A ,B 两地之间的距离为()A .150kmB .300kmC .350kmD .450km二、填空题(每题4分,共24分)11.64的算术平方根是________.12.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的6块试验田中同时播种并核定亩产,统计结果为:x 甲=1042千克/亩,s 2甲=6.5,x 乙=1042千克/亩,s 2乙=1.2,则________品种更适合在该村推广.(填“甲”或“乙”)13.一条有破损的长方形纸带,按如图折叠,纸带重合部分中的∠α的度数为________.14.如图,正比例函数y 1=2x 和一次函数y 2=kx +b 的图象交于点A (a ,2),则当y 1>y 2时,x 的取值范围是____________.(第14题)(第16题)15.我国明代数学读本《算法统宗》有一道题,其题意为客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有________两.16.如图,△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上,BD =6,CD=2,点P 是边AB 上一点,则PC +PD 的最小值为________.三、解答题(22~23题每题10分,24题12分,25题14分,其余每题8分,共86分)17.计算:24×13-4×18×(1-2)0+32.18x+2y=9,x-y=2.19.如图,在正方形网格中,每个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上.解答下列问题:(1)在图中建立直角坐标系,使点A,C的坐标分别为(-2,0)和(1,4),则B(____,____)和D(____,____);(2)求四边形ABCD的周长.20.如图,已知AD∥BE,∠1=∠2,∠3=∠4,求证:AB∥CD.21.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?家电种类甲乙每辆汽车能装运的台数203022.为了从甲、乙两名同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两名同学6次选拔赛的成绩,分别绘制了如下统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90________93乙________87.585(2)分别求出甲、乙两名同学6次成绩的方差.(3)你认为选择哪一名同学参加知识竞赛比较好?请说明理由.23.在△ABC中,AC=21,BC=13,点D是AC所在直线上的点,BD⊥AC,BD=12.(1)求AD的长;(2)若点E是AB边上的动点,连接DE,求线段DE的最小值.24.某超市计划按月购买一种酸奶,每天进货量相同,进货成本为每瓶4元,售价为每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天的需求量与当天本地最高气温有关.为了确定今年六月份的购买计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数y的数据统计如下:x/℃15≤x<2020≤x<2525≤x<3030≤x≤35天数610113y/瓶270330360420以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100瓶的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶获得的利润最大?25.如图,在平面直角坐标系中,直线y=-x+6与x轴和y轴分别交于点B和点C,与直线OA交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求点B和点C的坐标.(2)求△OAC的面积.S△OAC?若存在,求出此时点M的坐标;若不存在,(3)是否存在点M,使S△OMC=14请说明理由.答案一、1.A 2.A 3.B 4.D 5.B 6.A 7.D8.D9.A10.D二、11.2212.乙13.75°14.x>115.4616.10三、17.解:原式=24×13-4×24×1+42=22-2+42=5 2.183x+2y=9,①5x-y=2,②由②,得y=5x-2,③将③代入①,得3x+2(5x-2)=9,所以x=1,把x=1代入③,得y=3.x=1,y=3.19.解:(1)建立直角坐标系如图所示.4;0;-3;2(2)由勾股定理得AD =12+22=5,CD =42+22=25,BC =32+42=5,所以四边形ABCD 的周长=AB +AD +CD +BC =6+5+25+5=11+35.20.证明:因为AD ∥BE ,所以∠3=∠CAD ,因为∠3=∠4,所以∠4=∠CAD ,因为∠1=∠2,所以∠1+∠CAE =∠2+∠CAE ,即∠BAE =∠CAD ,所以∠4=∠BAE ,所以AB ∥CD .21.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.x +y =8,20x +30y =190,x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.22.解:(1)91;90(2)s 2甲=16[(85-90)2+(82-90)2+(89-90)2+(98-90)2+(93-90)2+(93-90)2]=863,s 2乙=16[(95-90)2+(85-90)2+(90-90)2+(85-90)2+(100-90)2+(85-90)2]=1003.(3)选择甲同学.理由:因为两人的平均数相同,说明两人实力相当,但甲的方差小于乙的方差,说明甲同学发挥更稳定,因此选择甲同学参加知识竞赛比较好.(理由不唯一)23.解:(1)①当∠ACB 为锐角时,∵BD ⊥AC ,BC =13,BD =12,∴CD =BC 2-BD 2=132-122=5,∴AD =AC -CD =21-5=16;②当∠ACB 为钝角时,同理可得CD =5,∴AD =AC +CD =21+5=26.综上,AD 的长为16或26.(2)当DE ⊥AB 时,线段DE 有最小值.①当∠ACB 为锐角时,AB =AD 2+BD 2=162+122=20.∵S △ABD =12AD ·BD =12AB ·DE ,∴DE =AD ·BD AB =16×1220=9.6;②当∠ACB 为钝角时,AB =AD 2+BD 2=262+122=2205,同理可得DE =AD ·BD AB =26×122205=156205205.综上,线段DE 的最小值为9.6或156205205.24.解:(1)依题意,得今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率为6+10+1130=0.9.(2)由题意可知该超市当天售出一瓶酸奶可获利2元,降价处理一瓶酸奶亏损2元.设今年六月份这种酸奶一天的进货量为n 瓶,平均每天的利润为W 元,则当n =100时,W =100×2=200;当n =200时,W =200×2=400;当n =300时,W =130×[(30-6)×300×2+6×270×2-6×(300-270)×2]=576;当n =400时,W =130×[6×270×2+10×330×2+11×360×2+3×400×2-6×(400-270)×2-10×(400-330)×2-11×(400-360)×2]=544;当n ≥500时,与n =400时比较,亏本售出多,所以其平均每天的利润比n =400时平均每天的利润少.综上,当n =300时,W 的值达到最大,即今年六月份这种酸奶一天的进货量为300瓶时,平均每天销售这种酸奶获得的利润最大.25.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M ,使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2)在直线OA 上,∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.如图①,当点M 在线段OA 上时,a =1,此时b =12a =12,∴点M如图②,当点M在射线AC上时,若a=1,则b=-a+6=5,∴点M1的坐标是(1,5);若a=-1,则b=-a+6=7,∴点M2的坐标是(-1,7).综上所述,点M(1,5)或(-1,7).。

2023—2024学年最新人教新版八年级上学期数学期末考试试卷(含答卷)

2023—2024学年最新人教新版八年级上学期数学期末考试试卷(含答卷)

2023—2024学年最新人教新版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图形是轴对称图形的是()A.B.C.D.2、北京2022年冬奥会上的“雪花”图案向世界展现了一起向未来的美好愿景.单个“雪花”的质量约为0.00000024千克.将0.00000024用科学记数法表示正确的是()A.﹣2.4×108B.2.4×10﹣7C.﹣2.4×107D.2.4×10﹣83、下列长度的三根小木棒能构成三角形的是()A.7cm,4cm,2cm B.5cm,5cm,6cmC.3cm,4cm,8cm D.2cm,3cm,5cm4、如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.不变D.扩大6倍5、三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形6、若(x+a)(x﹣6)的积中不含有x的一次项,则a的值为()A.0B.6C.﹣6D.﹣6或07、如图,AC和BD相交于O点,若OA=OD,不能证明△AOB≌△DOC的是()A.AB=DC B.OB=OC C.∠A=∠D D.∠B=∠C8、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是()A.1cm B.2cm C.3cm D.4cm9、已知,则分式的值为()A.8B.C.D.410、如图,已知在等边△ABC中,AD⊥BC,AB=8,若点P在线段AD上运动,当AP+BP有最小值时,最小值为()A.B.C.10D.12第7题图第8题图第10题图二、填空题(每小题3分,满分18分)11、因式分解:2a2﹣8=.12、一个正多边形的每个内角为135°,则这个正多边形的边数为.13、在平面直角坐标系中,点A(a﹣2,2a+3)到y轴的距离为4,则a的值为.14、已知a m=2,a n=3(m,n为正整数),则a3m+n=.15、若关于x的分式方程+2的解为正数,则m的取值范围是.16、如图所示,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=10cm,AB=7cm,那么DE的长度为cm.最新人教新版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、先化简,再求值:,其中x=2.19、已知实数m,n满足m+n=6,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m2+n2的值.20、如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案)A1B1C1(3)求△ABC的面积.21、已知在△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,求证:△CDE是等腰三角形;(2)如图2,若DE平分∠ADC交AC于E,∠ABC=30°,在BC边上取点F使BF=DF,若BC=12,求DF的长.22、甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过 5.2万元,甲工程队至少修路多少天?23、如图,在等腰Rt△ABC中,∠C=90°,BC=AC=8,点F是AB边上的中点,点D、E分别在线段AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中.(1)求证:△DFE是等腰三角形;(2)求证:∠DFE=90°;(3)在点D、E运动的过程中,四边形CDFE的面积是否为定值,如果是,请求出这个定值,如果不是,请说明理由.24、我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+e2﹣ab﹣bc﹣ac+2t的最小值.25、如图,在平面直角坐标系中,已知点A(a,0)、B(0,b)分别为x轴和y轴上一点,且a,b满足,过点B作BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD,CE平分∠OCD.(1)A点的坐标为;∠OAB的度数为.(2)如图1,若点C在第四象限,试判断OC与OD的数量关系与位置关系,并说明理由.(3)如图2,连接CD,CE平分∠OCD,若点C的坐标为(4,3),连接AC 交BD于点E,AC与OD交于点F.①求D点的坐标;②试判断DE与CF的数量关系,并说明理由.。

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试题一、选择题(每小题3分,共30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+43.在,,,,中,分式的个数是()A.2B.3C.4D.54.下列各式中,能与合并的二次根式是()A.B.C.D.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC 6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是.12.式子有意义时a的取值范围是.13.比较大小:﹣﹣2.(填“>”或“<”号)14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是cm.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是cm.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.17.(5分)解不等式,并将解集在数轴上表示出来.18.(7分)解分式方程:=.19.(7分)计算:÷﹣×+.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.答案与解析一、选择题(每小题3分,满分30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.【分析】根据算术平方根的定义解答.【解答】解:∵()2=,∴的算术平方根为.故选:A.【点评】本题考查了算术平方根的定义,注意分数的平方要加括号.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+4【分析】根据不等式的性质逐一进行判断即可.【解答】解:A.因为a<b,所以﹣5a>﹣5b,故本选项不合题意;B.因为a<b,所以,故本选项不合题意;C.因为a<b,所以,故本选项不合题意;D.因为a<b,所以a+4<b+4,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.3.在,,,,中,分式的个数是()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,这三个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.4.下列各式中,能与合并的二次根式是()A.B.C.D.【分析】先将各选项二次根式化简,再利用同类二次根式的概念判断即可.【解答】解:A.=2与不是同类二次根式,此选项不符合题意;B.=2与不是同类二次根式,此选项不符合题意;C.=2与不是同类二次根式,此选项不符合题意;D.=3与是同类二次根式,此选项符合题意;故选:D.【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的定义:把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC【分析】根据等腰三角形“三线合一”的性质解答.【解答】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°【分析】利用三角形的外角性质可求出∠AFD的度数,再利用邻补角互补可求出∠DFB 的度数.【解答】解:∵∠CDF=∠A+∠AFD,∴∠AFD=∠CDF﹣∠A=45°﹣30°=15°.又∵∠DFB+∠AFD=180°,∴∠DFB=180°﹣∠AFD=180°﹣15°=165°.故选:C.【点评】本题考查了三角形的外角性质以及邻补角,利用三角形外角的性质,求出∠AFD 的度数是解题的关键.7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等【分析】对各个命题逐一判断后找到正确的即可确定真命题.【解答】解:A、如果ab=0,那么a=0或b=0,原命题是假命题;B、,不是最简分式,原命题是假命题;C、直角三角形的两个锐角互余,是真命题;D、不是对顶角的两个角也可能相等,原命题是假命题;故选:C.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.【分析】根据三角形中线的定义判断即可.【解答】解:根据作图可知,选项B中,点D是AB的中点,故线段CD是△ABC的中线,故选:B.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的中线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF【分析】根据全等三角形的判定方法进行判断即可.【解答】解:A、无法判定两个三角形全等;B、根据SSS能判定两个三角形全等;C、可用ASA判定两个三角形全等;D、可用SAS判定两个三角形全等.故选:A.【点评】本题考查全等三角形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4【分析】不等式组整理后,根据不等式组无解确定出a的范围即可.【解答】解:不等式组整理得:,由不等式组无解,得到a≥4.故选:D.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,5是整数,属于有理数;是分数,属于有理数;无理数π.故答案为:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.式子有意义时a的取值范围是a≥4.【分析】利用二次根式有意义的条件可得a﹣4≥0,再解不等式即可.【解答】解:由题意得:a﹣4≥0,解得:a≥4,故答案为:a≥4.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.比较大小:﹣>﹣2.(填“>”或“<”号)【分析】先求出2=,再根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵2==>,∴﹣>﹣2,故答案为:>.【点评】本题考查了算术平方根和实数的大小比较,能熟记实数的大小比较法则是解此题的关键.14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是4(答案不唯一)cm.【分析】根据三角形三边关系,在三角形中任意两边之和大于第三边,任意两边之差小于第三边解答即可.【解答】解:根据三角形三边关系,∴三角形的第三边x满足:7﹣4<x<4+7,即3<x<11,∴x可以取4,5,6,7,8,9,10等无数个,故答案为:4(答案不唯一).【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是16cm.【分析】根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【解答】解:∵DE垂直平分AC,∴DA=DC,∵△ABD的周长为12cm,∴AB+BD+DA=AB+BD+DC=AB+BC=12(cm),∵AC=4cm,∴△ABC的周长=AB+BC+AC=16(cm),故答案为:16.【点评】本题考查的是线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.【分析】直接利用二次根式的性质、立方根的定义、负整数指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2﹣+1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(5分)解不等式,并将解集在数轴上表示出来.【分析】两边同乘以6,去分母,去括号,移项,合并,系数化为1即可求解.【解答】解:2(x+4)﹣3(3x﹣1)>62x+8﹣9x+3>6﹣7x+11>6﹣7x>﹣5.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.18.(7分)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+2)=7x,去括号得:3x+6=7x,解得:x=,检验:当x=时,x(x+2)≠0,∴分式方程的解为x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)计算:÷﹣×+.【分析】先计算乘法和除法,再合并即可得.【解答】解:原式=﹣+2=4+【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式===,∵a=0,a=2时,原式没有意义,∴当a=3时,原式==1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.【分析】根据全等三角形的判定和性质定理即可得到结论.【解答】解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?【分析】(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,根据数量=总价÷单价,结合用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,根据总价=单价×数量,结合总价不超过7200元,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,依题意得:=,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴x+1.5=4.答:A型口罩的单价是4元,B型口罩的单价是2.5元.(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,依题意得:4y+2.5×2y≤7200,解得:y≤800.答:增加购买A型口罩的数量最多是800个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF 中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.【点评】此题主要考查了等腰三角形的判定,等边三角形的判定,关键是证明△DBE≌△ECF.11。

初二期末数学考试卷附答案

初二期末数学考试卷附答案

初二期末数学考试卷附答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.25的平方根是A.5B.-5C.±5D.±52.下列图形中,是中心对称图形的是3.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7B.8,7.5C.7,7.5D.8,6.54.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为A.4B.8C.16D.645.化简2x2-1÷1x-1的结果是A.2x-1B.2xC.2x+1D.2(x+1)6.不等式组x-1≤02x+4>0的解集在数轴上表示为7.如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是A.a<0B.a<-1C.a>1D.a>-18.实数a在数轴上的位置如图所示,则(a-4)2+(a-11)2化简后为A.7B.-7C.2a-15D.无法确定9.若方程Ax-3+Bx+4=2x+1(x-3)(x+4)那么A、B的值A.2,1B.1,2C.1,1D.-1,-110.已知长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A.6B.8C.10D.1211.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于A.2-2B.1C.2D.2-l12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边内△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是A.Sl=S2=S3B.S1=S2<S3C.Sl=S3<S2D.S2=S3<Sl第II卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:8一2=______________.14.分解因式:a2-6a+9=______________.15.当x=______时,分式x2-9(x-1)(x-3)的值为0.16.已知a+b=3,a2b+ab2=1,则ab=____________?17.如图,一只蚂蚁沿着边长为2的正方体表面从点4出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短路径的是长为__________________.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______________.三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)计算:(1)18+22-3(2)a+2a-2÷1a2—2a20.(本小题满分6分)(1)因式分解:m3n―9mn.(2)求不等式x-22≤7-x3的正整数解21.(本小题满分8分)(1)解方程:1-2__-2=2+32-x(2)解不等式组4x―3>__+4<2x一1,并把解集在数轴上表示出来22.(本小题满分10分)(1)如图1,△ABC是边长为2的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.求线段BD的长.(2)一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?23.(本小题满分8分)济南与北京两地相距480千米,乘坐高铁列车比乘坐普通快车能提前4小时到达.已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.24.(本小题满分6分)标签:先化简再求值:(x+1一3x-1)__-1x-2,其中x=-22+225.(本小题满分10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲__乙__丙__(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.26.(本小题满分12分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22.(1)求CD的长:(2)求四边形ABCD的面积27.(本小题满分12分)已知,点D是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,己知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是_______________②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.一、选择题题号____答案__ACADA二、填空题13.14.(a-3)215.-316.17.18.三.解答题:19.解:(1)=1分=2分=13分(2)=5分=6分20.解:(1)m3n-9mn.=1分=2分=3分(2)解:3(x-2)≤2(7-x)4分3x-6≤14-2x5x≤20x≤45分∴这个不等式的正整数解为1、2、3、4.6分21.(1)1分2分3分经检验是增根,原方程无解4分(2),解:解不等式①得:x>1,5分解不等式②得:x>5,6分∴不等式组的解集为x>5,7分在数轴上表示不等式组的解集为:.8分22.(1)解:∵正△ABC沿直线BC向右平移得到正△DCE∴BE=2BC=4,BC=CD,DE=AC=2,∠E=∠ACB=∠DCE=∠ABC=60°2分∴∠DBE=∠DCE=30°3分∴∠BDE=90°4分在Rt△BDE中,由勾股定理得5分(2)解:设小明答对了x道题,6分4x-(25-x)≥858分x≥229分所以,小明至少答对了22道题.10分23.解:设普通快车的速度为xkm/h,由题意得:1分3分=44分x=805分经检验x=80是原分式方程的解6分3x=3×80=2407分答:高铁列车的平均行驶速度是240km/h.8分24.解:=1分=2分=3分=4分当=时5分原式==6分25.解:(1)=(83+79+90)÷3=84,=(85+80+75)÷3=80,=(80+90+73)÷3=81.3分从高到低确定三名应聘者的排名顺序为:甲,丙,乙;4分(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰,5分乙成绩=85×60%+80×30%+75×10%=82.5,7分丙成绩=80×60%+90×30%+73×10%=82.3,9分标签:∴乙将被录取.10分26解:(1)过点D作DH⊥AC,1分∵∠CED=45°,∴∠EDH=45°,∴∠HED=∠EDH,∴EH=DH,3分∵EH2+DH2=DE2,DE=,∴EH2=1,∴EH=DH=1,5分又∵∠DCE=30°,∠DHC=90°,∴DC=26分(2)∵在Rt△DHC中,7分∴12+HC2=22,∴HC=,8分∵∠AEB=∠CED=45°,∠BAC=90°,BE=2,∴AB=AE=2,9分∴AC=2+1+=3+,10分∴S四边形ABCD=S△BAC+S△DAC11分=×2×(3+)+×1×(3+)=12分27.解:(1)①90°.2分②线段OA,OB,OC之间的数量关系是.3分如图1,连接OD.4分∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD=OC,∠ADC=∠BOC=120°,AD=OB.∴△OCD是等边三角形,5分∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.6分在Rt△ADO中,∠DAO=90°,∴.(2)①如图2,当α=β=120°时,OA+OB+OC有最小值.8分作图如图2,9分如图2,将△AOC绕点C按顺时针方向旋转60°得△A’O’C,连接OO’.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OCO′是等边三角形.10分∴OC=O′C=OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小.11分②当等边△ABC的边长为1时,OA+OB+OC的最小值A′B=.12分。

广东省深圳市深圳高级中学2023-2024学年八年级下学期期末考试数学试卷(含答案)

广东省深圳市深圳高级中学2023-2024学年八年级下学期期末考试数学试卷(含答案)

深圳高级中学 2023-2024学年第二学期期末测试卷初二数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1-10题,共30分,第Ⅱ卷为第11-22题, 共70分,全卷共计100分.考试时间为90分钟.第Ⅰ卷 (本卷共计30分)一、选择题(本题共10小题,每小题3分,共30分.答案填在答卷的指定位置上,否则不给分)1.2024年4月25日搭载神舟十八号载人飞船的长征二号F遥十八运载火箭成功发射升空,叶光富、李聪、李广苏 3 名航天员开启“太空出差”之旅,展现了中国航天科技的新高度,下列航空航天图标中,其文字上方的图案是中心对称图形的是(※ )2.下列从左到右的变形中,是因式分解的为 (※ )A.(x+3)²=x²+6x+9B. x―3xy=x(1―3y)C.3xy²=3x⋅y⋅yD.x²+2x+2=x(x+2)+23.根据下表中的数值,判断方程(ax²+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是(※ )x 3.23 3.24 3.25 3.26ax²+bx+c-0.04-0.010.020.06A. 3<x<3.23B. 3.23<x<3.24C. 3.24<x<3.25D. 3.25<x<3.264.如图,下列条件能使平行四边形ABCD是菱形的为(※ )①AC⊥BD; ②∠BAD=90°; ③AB=BC; ④AC=BD.A. ①③B. ②③C. ③④D. ①④5.用配方法解下列方程,其中应在方程两边同时加上4的是(※)A.x²―2x=5B.x²+4x=5C.x²+2x―5=0D.4x²+4x=56.如图,小明荡秋千,位置从A点运动到了A'点,若∠OAA'=55°,则秋千旋转的角度为(※ )A. 55°B. 60°C. 65°D. 70°7. 如图, ▱ABCD的对角线AC、BD相交于点O,∠ADC的平分线与边AB相交于点P, E是PD中点,连接PE, 若AD=4, CD=8, 则OE的长为( ※ )A. 4B. 3C. 2D. 18.如图,直线y₁=kx+b与直线y₂=―x+5交于点(1,m),则不等式y₁<y₂的解集为(※ )A. x<1B. x>1C. x≤1D. x≥19.下列说法正确的是(※ )A.对角线互相垂直的四边形是菱形B.顺次连接矩形四边中点形成的图形是菱形C.对角线相等的矩形是正方形D.对角线相等的四边形是矩形10. 如图, 四边形ABCD中, BC∥AD, AC⊥BD, AC=3, BD=6,BC=1, 则AD的长为( ※ )A. 8B.32―1C.32+1D.35―1第Ⅱ卷 (本卷共计70分)二、填空题(每小题3分,共15分.答案填在答卷的指定位置上,否则不给分)11. 因式分解: x²―4y²=.※12.若m是一元二次方程x²―3x―5=0的一个解,则2m²―6m=.※13.一个正多边形的内角和减外角和等于360°,则它的边数为※ .14. 关于x的不等式组{x―m<03―2x≤3(x―2)有且仅有3个整数解,那么m的取值范围为※ .15. 如图, 在□ABCD中, AG⊥BC, ∠ADB=30°,BG=25,CG=3,AG=4,E为平行四边形对角线BD上一点, F为CD边上一点,且BE=CF,连接AE、AF, 则AE+AF的最小值为※ .三、解答题(共7题,合计55分.答案填在答卷的指定位置上,否则不给分)16.(6分)计算: (1)x²―4x=0;(2)x+13≤x―52.17.(6分) 先化简, 再求值: x2―6x+9x2―9÷x―3x+2,其中x=3―3.18.(8分)如图, 在▱ABCD中, BC=2AB, E、F分别是BC、AD的中点, AE与BF交于点O, 连接EF、OC.(1) 求证: 四边形 ABEF 是菱形;(2) 若BC=8, ∠ABC=60°, 求OC的长.19.(8分)某粮食生产基地积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多3万元,用30万元购买甲种农机具的数量和用21万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共10件,且购买的总费用不超过90万元,则甲种农机具最多能购买多少件?20.(8分)仅利用已有的格点与无刻度直尺作图.(保留作图痕迹)(1)在图1中,作出面积最大的平行四边形ABCD.(2) 在图2中, D是 AC 中点, 在AB边上找到点E, 连接DE, 使DE∥BC.(3) 在图3中, 在 CD边上找到点 E, 连接BE, 使 BE 平分∠ABC.21.(9分)先阅读材料,再回答问题.我们定义:形如x+mnx=m+n(m、n为非零实数),且两个解分别为x₁=m,x₂=n的方程称为“可分解分式方程”.例如:x+6x =5为可分解分式方程,可化为x+2×3x=2+3,∴x1=2,x2=3.应用上面的结论解答下列问题:(1)若x―12x=4为可分解分式方程,则:x₁=,x₂=.(2)若可分解分式方程方程:x―7x =5的两个解分别为x₁=a,x₂=b,求ab+ba的值.(3)若关于x的可分解分式方程x―k2―k―61―x=2k的两个解分别为x₁、x₂(k为实数),且x₁⋅x ₂=6,求k的值.22.(10分)【问题感知】(1) 如图1, 在四边形ABCD 中, ∠ABC=∠ADC=90°,∠A+∠C=180°,, 且AD=CD,①请直接写出AB、BC、BD的数量关系: ;②证明: BD平分∠ABC;【迁移应用】(2) 如图2, 四边形 ABCD 中, ∠ABC=60°, ∠ADC=120°, BE⊥AD, AB=BC= 13,CD=1, 计算 BE的长度;【拓展研究】(3)如图3, 正方形ABCD中, E为BC边上一点, 连接AE, F为AE边上一点, 且AF=BC,FG 垂直DF 交 AB于点G, EF=2, AG=5, 直接写出正方形的边长.深圳高级中学2023-2024学年第二学期期末测试卷参考答案初二数学一、选择题(本题共10小题,每小题3分,共30分.答案填在答卷的指定位置上,否则不给分)1-5: CBCAB6-10: DCABD二、填空题(每小题3分,共15分.答案填在答卷的指定位置上,否则不给分)11. (x+2y)(x――2y)12. 1013. 614. 4<m≤515. 7三、解答题(共7题,合计55分.答案填在答卷的指定位置上,否则不给分)16.(6分) 计算: (1)x²―4x=0;(2)x+13≤x―52.(1) 解: x(x―4)=0x₁=0,x₂=4(2) 解: 6x+2≤3(x―5) 6x+2≤3x―153x≤―17x≤―17317.(6分) 先化简, 再求值: x 2―6x +9x 2―9÷x ―3x +2,其中 x =3―3.原式 =(x ―3)2(x ―3)(x +3)⋅x +2x ―3=x +2x +3将 x =3―3带入原式 =3―3+23―3+3=3―3318.(8分)如图, 在▱ABCD 中, BC=2AB, E 、F 分别是 BC 、AD 的中点, AE 与BF 交于点O, 连接EF 、OC.(1) 求证: 四边形 ABEF 是菱形;(2) 若BC=8, ∠ABC=60°, 求OC 的长.证明:∵四边形ABCD 是平行四边形∴AD ∥BC, AD=BC ∴AF ∥BE∵点E 、F 分别是BC 、AD 的中点 ∴AF =12AD ,BE =12BC ∴AF=BE∴四边形ABEF 是平行四边形∵ BC=2AB,且BC=2BE ∴AB= BE∴四边形ABEF 是菱形;(2) 如图, 过点O 作OH ⊥BC 于H由(1) 知, 四边形 ABEF 是菱形, ∠ABC=60°∴∠ABO =∠OBH =12×60∘=30 ∘,BO ⊥AE ∵ AB=4 ∴AO =12AB =2∴BO =AB 2―AO 2=23 ∴OH =12BO =3∴BH=BO2―OH2=(23)2―(3)2=3∵BC=2AB=2×4=8HC=BC-BH=8-3=5∴OC=OH2+HC2=(3)2+52=27.19.(8分)某粮食生产基地积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多3万元,用30万元购买甲种农机具的数量和用21万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共10件,且购买的总费用不超过90万元,则甲种农机具最多能购买多少件?解:(1)设乙种农机具一件需x万元,则甲种农机具一件需(x+3)万元根据题意得:30x+3=21x解得: x=7经检验:x=7是原方程的解,且符合题意.∴一台甲种农机具需7+3=10万元.答:甲种农机具一件需10万元,乙种农机具一件需7万元(2)设甲种农机具最多能购买m件由题意得10m+7(10―m)≤90解得m≤203∵m为正整数,则m的最大值为6,答:甲种农机具最多能购买6件.20.(8分)仅利用已有的格点与无刻度直尺作图.(保留作图痕迹)(1)在图1中,作出面积最大的平行四边形 ABCD.(2) 在图2中, D是 AC 中点, 在 AB边上找到点E, 连接DE, 使DE∥BC.(3) 在图3中, 在 CD边上找到点 E, 连接BE, 使 BE 平分∠ABC.21.(9分)先阅读材料,再回答问题.我们定义:形如x+mnx=m+n(m、n为非零实数),且两个解分别为x₁=m,x₂=n的方程称为“可分解分式方程”.例如:x+6x =5为可分解分式方程,可化为x+2×3x=2+3,∴x1=2,x2=3.应用上面的结论解答下列问题:(1)若x―12x=4为可分解分式方程,则:x₁=,x₂=.(2)若可分解分式方程方程x―7x =5的两个解分别为x₁=a,x₂=b,求ab+ba的值.(3)若关于x的可分解分式方程x―k2―k―61―x=2k的两个解分别为x₁、x₂(k为实数),且x₁⋅x ₂=6,求k的值.解: (1) 解: ∵方程x―12x =4是可分解分式方程,可化为x+6×(―2)x=6+(―2),∴x1=6,x2=―2,故答案为: 6, -2.(-2, 6亦可以)(2)解:∵可分解分式方程x―7x=5的两个解分别为x₁=a,x₂=b,∴ab=―7, a+b=5,∵ab +ba=a2+b2ab=(a+b)2―2abab,∴ab +ba=52―2×(―7)―7=―397.(3)解:方程x―k2―k―61―x=2k是可分解分式方程,可化为x―1+(k+2)(k―3)x―1=2k―1=(k+2)+(k―3),∵k为实数,不妨设x₁―1=k+2,x₂―1=k―3∴x₁=k+3,x₂=k―2∴x₁⋅x₂=(k+3)(x―2)=k²+k―6=6,∴k²+k―12=0∴(k+4)(k―3)=0∴k₁=―4,k₂=3(舍去)22. (10分)【问题感知】(1) 如图1, 在四边形ABCD 中, ∠ABC=∠ADC=90°,∠A+∠C=180°,, 且AD=CD,①请直接写出AB、BC、BD的数量关系: ;②证明: BD平分. ∠ABC;【迁移应用】(2)如图2, 四边形ABCD 中, ∠ABC=60∘,∠ADC=120∘,BE⊥AD,AB=BC=13 ,CD=1, 计算 BE 的长度;【拓展研究】(3)如图3, 正方形ABCD中, E为BC边上一点, 连接AE, F为AE 边上一点, 且AF=BC,FG 垂直DF 交 AB 于点G,EF=2,AG=5,直接写出正方形的边长.解: (1)circle1AB+BC=2BD②证明: 将△DAB绕点D逆时针旋转90°至△DCE∴∠DCB+∠DCE=∠DCB+∠DAB=180°∴B、C、E三点共线∵∠ADB+∠BDC=∠CDE+∠BDC=90°, BD=CD∴△BDE是等腰直角三角形∴∠DBC=∠DEC=∠DBA=45°∴BD平分∠ABC(2) 连接BD, 将△BCD绕点D逆时针旋转60°至△BAD'∴AD′=CD=1,BD′=BD,∠D′BA=∠DBC在四边形ABCD中,∠BAC+∠ABC+∠BCD+∠ADC=360°∴∠BAD+∠BAD'=∠BAD+∠BCD=180°∴B、D、D'三点共线又∠∠ABD′+∠ABD=∠BCD+∠ABD=60°,BD=BD所以△BDD′是等边三角形∵BE⊥AD∴BE平分∠D'BE∴∠D′BE=30°∴BE=3D′E设AE=x则BE=3(AD′+AE)=3(1+x)在Rt△ABE中, AE²+BE²=AB²则x2+[3(1+x)]2=13(舍)解得x1=1,x2=―52∴AE=1∴BE=23(3)25+5。

2024届陕西省西安市未央区数学八下期末综合测试试题含解析

2024届陕西省西安市未央区数学八下期末综合测试试题含解析

2024届陕西省西安市未央区数学八下期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列四个数中,是无理数的是( )A .2πB .227C .38-D .()23 2.已知Rt ABC ∆中,90tan 0.756C A BC ∠=︒==,,,则AC 等于( )A .6B .8C .10D .123.下列各式中,运算正确的是( )A .235+=B .6556-=C .2(7)7-=-D .31555= 4.下列属于最简二次根式的是( )A .9B .7C .20D .0.55.下列计算正确的是 () A .822-= B .()236-= C .42232a a a -= D .()235a a -=6.已知平行四边形,下列条件中,不能判定这个平行四边形为菱形的是( ) A . B . C .平分 D .7.某校九年级()1班全体学生2016年初中毕业体育考试的成绩统计如表:成绩(分) 15 19 22 24 25 28 30 人数(人) 2 5 6 6 8 7 6 根据表中的信息判断,下列结论中错误的是() A .该班一共有40名同学 B .该班学生这次考试成绩的众数是25分C .该班学生这次考试成绩的中位数是25分D .该班学生这次考试成绩的平均数是25分8.坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过( )A .第一、二象限B .第一、四象限C .第二、三象限D .第二、四象限9.如图,直线y=-x+m 与y=nx+4n (n≠0)的交点的横坐标为-1.则下列结论:①m <0,n >0;②直线y=nx+4n 一定经过点(-4,0);③m 与n 满足m=1n-1;④当x >-1时,nx+4n >-x+m ,其中正确结论的个数是( )A .1个B .1个C .3个D .4个10.如图所示,在平行直角坐标系中,▱OMNP 的顶点P 坐标是(3,4),顶点M 坐标是(4,0)、则顶点N 的坐标是( )A .N (7,4)B .N (8,4)C .N (7,3)D .N (8,3)11.如图,在△ABC 中,AB=8,AC=6,∠BAC=30°,将△ABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为( )A .6B .8C .10D .1212.下列各式-3x ,x y x y +-,3xy y -,-310,25y +,3x ,4x xy中,分式的个数为( ) A .1 B .2 C .3 D .4二、填空题(每题4分,共24分)13.一次函数y =kx +b 与y =2x +1平行,且经过点(﹣3,4),则表达式为:_____.14.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.15.如图所示:分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,若125S =,39S =,则BC 的长为__________.16.在某次数学测验中,班长将全班50名同学的成绩(得分为整数)绘制成频数分布直方图(如图),从左到右的小长方形高的比为0.6:2:4:2.2:1.2,则得分在70.5到80.5之间的人数为________.17.在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为2,把△EFO 放大,则点E 的对应点E ′的坐标是_____.18.如图,在矩形ABCD 中,已知AB=3,BC=4,则BD=________.三、解答题(共78分)19.(8分)如图,平面直角坐标系中的每个小正方形边长为1,△ABC 的顶点在网格的格点上.(1)画线段AD ∥BC ,且使AD =BC ,连接BD ;此时D 点的坐标是 .(2)直接写出线段AC 的长为 ,AD 的长为 ,BD 的长为 .(3)直接写出△ABD 为 三角形,四边形ADBC 面积是 .20.(8分)已知关于x 的方程x 2-2(k -1)x +k 2 =0有两个实数根x 1.x 2.(1)求实 数k 的取值范围;(2)若(x 1+1)(x 2+1)=2,试求k 的值.21.(8分)如图,在平行四边形ABCD 中,DB =DA ,∠ADB 的平分线交AB 于点F ,交CB 的延长线于点E ,连接AE .(1)求证:四边形AEBD 是菱形;(2)若DC =10,EF :BF =3,求菱形AEBD 的面积.22.(10分)已知:如图,过矩形ABCD 的顶点C 作//CE BD ,交AB 的延长线于点E()1求证:;CAE CEA ∠=∠()2若1,30AD E =∠=°,求ACE ∆的周长.23.(10分)已知坐标平面内的三个点()A 3,5,()3,1B ,()0,0O ,把ABO ∆向下平移3个单位再向右平移2个单位后得到DEF ∆.(1)直接写出A ,B ,O 三个对应点D 、E 、F 的坐标;(2)画出将AOB ∆绕O 点逆时针方向旋转90︒后得到AOB ''∆;(3)求DEF ∆的面积.24.(10分)经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)当每吨售价是240元时,此时的月销售量是多少吨.(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?25.(12分)如图1,已知直线:24l y x =-+交y 轴于点A ,交x 轴于点B ,点()3,0C -,D 是直线l 上的一个动点.(1)求点B 的坐标,并求当BCD BOA S S ∆∆=时点D 的坐标;(2)如图2,以CD 为边在CD 上方作正方形CDEF ,请画出当正方形CDEF 的另一顶点也落在直线l 上的图形,并求出此时D 点的坐标;(3)当D 点在l 上运动时,点F 是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.26.已知求代数式:x =2,y =2.(1)求代数式x 2+3xy+y 2的值;(2)若一个菱形的对角线的长分别是x 和y ,求这个菱形的面积?参考答案一、选择题(每题4分,共48分)1、A【解题分析】试题分析:根据无理数是无限不循环小数,可得A.2π是无理数,B .227,C .38-,D .()23是有理数, 故选A .考点:无理数2、B【解题分析】直接利用锐角三角三角函数关系得出AC 的长.【题目详解】如图所示:90tan 0.75C A ∠=︒=,,3tan 4BC A AC ∴==, 6BC =,8AC ∴=.故选B .【题目点拨】此题主要考查了锐角三角三角函数关系,正确画出图形是解题关键.3、D【解题分析】根据二次根式的加减法对A、B进行判断;根据二次根式的性质对C进行判断;利用分母有理化对D进行判断.【题目详解】A A选项错误;B、原式B选项错误;C、原式=7,所以C选项错误;D、原式,所以D选项正确,故选D.【题目点拨】本题考查了二次根式的运算,涉及了二次根式的加减法,二次根式的化简,分母有理化,正确把握相关的运算法则是解题的关键.4、B【解题分析】直接利用最简二次根式的定义分析得出答案.【题目详解】解:A3,故此选项错误;BC=,故此选项错误;D=,故此选项错误;故选:B.【题目点拨】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.5、A【解题分析】A. ==,故正确;-=,故不正确;B. ()239C. 4232与不是同类项,不能合并,故不正确;a aD. ()236-=,故不正确;a a故选A.6、A【解题分析】菱形的判定有以下三种:①一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.【题目详解】解:A 、由平行四边形的性质可得AB=CD ,所以由AB=CD 不能判定平行四边形ABCD 是菱形,故A 选项符合题意;B 、一组邻边相等的平行四边形是菱形,故B 选项不符合题意.C 、由一条对角线平分一角,可得出一组邻边相等,也能判定为菱形,故C 选项不符合题意;D 、对角线互相垂直的平行四边形是菱形,故D 选项不符合题意;故选:A .【题目点拨】本题考查菱形的判定方法,熟记相关判定即可正确解答.7、D【解题分析】结合表格根据众数、平均数、中位数的概念即可求解.【题目详解】该班人数为:256687640++++++=,得25分的人数最多,众数为25,第20和21名同学的成绩的平均值为中位数,中位数为:()2525225+÷=,平均数为:()1521952262462582873064024.425⨯+⨯+⨯+⨯+⨯+⨯+⨯÷=.故错误的为D .故选:D .【题目点拨】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.8、A【解题分析】根据该线性函数过点(-3,4)和(-7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.【题目详解】∵坐标平面上有一次函数过(-3,4)和(-7,4)两点,∴该函数图象是直线y=4,∴该函数图象经过第一、二象限.故选:A.【题目点拨】本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.9、D【解题分析】①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;③由整理即可判断结论③正确;④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.【题目详解】解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,故结论①正确;②将x=-4代入y=nx+4n,得y=-4n+4n=0,∴直线y=nx+4n一定经过点(-4,0).故结论②正确;③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,∴当x=-1时,y=1+m=-1n+4n,∴m=1n-1.故结论③正确;④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,∴当x>-1时,nx+4n>-x+m,故结论④正确.故选:D.【题目点拨】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.10、A【解题分析】此题可过P 作PE ⊥OM ,过点N 作NF ⊥OM ,根据勾股定理求出OP 的长度,则N 点坐标便不难求出.【题目详解】过P 作PE ⊥OM ,过点N 作NF ⊥OM ,∵顶点P 的坐标是(3,4),∴OE=3,PE=4,∵四边形ABCD 是平行四边形,∴OE=MF=3,∵4+3=7,∴点N 的坐标为(7,4).故选A .【题目点拨】此题考查了平行四边形的性质,根据平行四边形的性质和点P 的坐标,作出辅助线是解决本题的突破口. 11、C【解题分析】此题涉及的知识点是旋转的性质,由旋转的性质,再根据∠BAC=30°,旋转60°,可得到∠BAC 1=90°,结合勾股定理即可求解.【题目详解】解:∵△ABC 绕点A 逆时针旋转60°得到△AB 1C 1,∴∠BAC 1=∠BAC+∠CAC 1=30°+60°=90°,AC 1=AC=6,在RtBAC 1中,∠BAC=90°,AB=8,AC 1=6, ∴222211=6+8=10BC AB AC =+,故本题选择C.【题目点拨】此题重点考查学生对于旋转的性质的理解,也考查了解直角三角形,等腰三角形的性质和含30度角的直角三角形的性质,熟练掌握以上知识点是解题的关键.12、D【解题分析】根据分母中是否含有未知数解答,如果分母含有未知数是分式,如果分母不含未知数则不是分式.【题目详解】-3x ,3xy y -,-310的分母中均不含未知数,因此它们是整式,不是分式, x y x y +-,25y +,3x ,4x xy分母中含有未知数,因此是分式, ∴分式共有4个,故选D.【题目点拨】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.二、填空题(每题4分,共24分)13、y=2x+1【解题分析】解:已知一次函数y=kx+b 与y=2x+1平行,可得k=2,又因函数经过点(-3,4),代入得4=-6+b ,解得,b=1,所以函数的表达式为y=2x+1.14、16或2【解题分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C 时,作辅助线,构建平行四边形AGHD 和直角三角形EGB',计算EG 和B'G 的长,根据勾股定理可得B'D 的长;【题目详解】∵四边形ABCD 是矩形,∴DC=AB=16,AD=BC=1.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD是矩形,∴AG=DH,∠GHD=90°,即B'H⊥CD,又B'D=B'C,∴DH=HC=183CD=,AG=DH=8,∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′2213512,∴B'H=GH×GB'=1-12=6,在Rt△B'HD中,由勾股定理得:B′D226810+=综上,DB'的长为16或2.故答案为:16或2【题目点拨】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.15、1.【解题分析】先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【题目详解】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=25,S2=b2,S3=c2=9,∵△ABC是直角三角形,∴c2+b2=a2,即S3+S2=S1,∴S2=S1-S3=25-9=16,∴BC=1,故答案为:1.【题目点拨】本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.16、20【解题分析】所有小长方形高的比为0.6:2:4:2.2:1.2,可以求出得分在70.5到80.5之间的人数的小长方形的高占总高的比,进而求出得分在70.5到80.5之间的人数.【题目详解】解:450=200.624 2.2 1.2⨯++++人故答案为:20【题目点拨】考查频数分布直方图的制作特点以及反映数据之间的关系,理解各个小长方形的高表示的实际意义,用所占比去乘以总人数就得出相应的人数.17、(-8,4)或(8,-4)【解题分析】由在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,根据位似图形的性质,即可求得点E的对应点E′的坐标.【题目详解】∵点E(-4,2),以原点O为位似中心,相似比为2,把△EFO放大,∴点E的对应点E′的坐标是:(-8,4)或(8,-4).故答案为:(-8,4)或(8,-4).【题目点拨】此题考查了位似图形的性质.此题比较简单,注意位似图形有两个.18、1【解题分析】先由矩形的性质求出CD= AB=3,再根据勾股定理可直接算出BD的长度.【题目详解】∵四边形ABCD是菱形,∴CD= AB=3,由勾股定理可知,BD==1.故答案为1.【题目点拨】本题主要考查了矩形的性质,勾股定理的知识点,熟练掌握勾股定理是解答本题的关键.三、解答题(共78分)19、(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为10,AD的长为210,BD的长为10;(3)△ABD为直角三角形,四边形ADBC面积是1.【解题分析】(1)根据题意画出图形,进一步得到D点的坐标;(2)根据勾股定理可求线段AC的长,AD的长,BD的长;(3)根据勾股定理的逆定理可得△ABD为直角三角形,再根据矩形的面积公式即可求解.【题目详解】(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC22+=BD2262210,+=AD223110,+=3110.(3)∵AB AD BD====((222,+=∴△ABD为直角三角形,四边形ADBC面积是20=.【题目点拨】考查了勾股定理,勾股定理的逆定理,矩形的面积,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20、 (2)12k;(2)k=-3.【解题分析】(2)根据一元二次方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数可得出x2+x2=2(k-2),x2x2=k2,结合(x2+2)(x2+2)=2,即可得出关于k的一元二次方程,解之即可得出k值,结合(2)的结论即可得出结论.【题目详解】解:(2)∵关于x的方程x2-2(k-2)x+k2=0有两个实数根,∴△=[-2(k-2)]2-4×2×k2≥0,∴k≤12,∴实数k的取值范围为k≤12.(2)∵方程x2-2(k-2)x+k2=0的两根为x2和x2,∴x2+x2=2(k-2),x2x2=k2.∵(x2+2)(x2+2)=2,即x2x2+(x2+x2)+2=2,∴k2+2(k-2)+2=2,解得:k2=-3,k2=2.∵k≤12,∴k=-3.【题目点拨】本题考查了根的判别式以及根与系数关系,解题的关键是:(2)牢记“当△≥0时,方程有实数根”;(2)根据根与系数关系结合(x2+2)(x2+2)=2,找出关于k的一元二次方程.21、(1)见解析;(2)1.(1)由△AFD ≌△BFE ,推出AD=BE ,可知四边形AEBD 是平行四边形,再根据DB =DA 可得结论;(2)先求出BF 的长,再求出EF 的长即可解决问题.【题目详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥CE ,∴∠DAF=∠EBF ,∵∠AFD=∠EFB ,AF=FB ,∴△AFD ≌△BFE ,∴AD=EB ,∵AD ∥EB ,∴四边形AEBD 是平行四边形,∵BD=AD ,∴四边形AEBD 是菱形.(2)∵四边形ABCD 是平行四边形,∴∵四边形AEBD 是菱形,∴AB ⊥DE ,AF=FB=122AB =, ∵EF :BF =3∴EF=2∴DE=2EF=∴S 菱形AEBD =12•AB•DE=12×=1. 【题目点拨】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22、(1)详见解析;(2)4+【解题分析】(1)根据矩形的性质可证明四边形CDBE 为平行四边形,继而得出CE DB AC ==,即可证明结论;(2)根据直角三角形的性质计算得出AB 、AC 的值,即可得出ACE ∆的周长.解:()1证明:四边形ABCD 为矩形.//,DC AB AC BD ∴=//CE BD∴四边形CDBE 为平行四边形CE DB AC ∴==CAE CEA ∴∠=∠()2由()1得.CAE CEA ∠=∠30E ︒∠=30CAE ︒∴∠=又90CBA CBE ︒∠=∠=,1AD BC ==AB BE ∴==2AC CE ==244ACE C AC CE AB ∆∴=++==+【题目点拨】本题考查的知识点是矩形的性质、平行四边形的判定及性质、勾股定理、等腰三角形的性质,解此题的关键是灵活运用矩形的性质、平行四边形的性质.23、(1)点D 、E 、F 的坐标分别为(5,2)、(5,-2)、(2,-3);(2)见解析;(3)1.【解题分析】(1)利用点平移的坐标规律写出点D 、E 、F 的坐标;(2)利用网格特点和旋转的性质画出A 、B 的对应点A′、B′即可;(3)利用三角形面积公式计算.【题目详解】解:(1)点D 、E 、F 的坐标分别为(5,2)、(5,-2)、(2,-3);(2)如图,△A'OB'为所作;(3)△DEF 的面积=12×4×3=1.故答案为:(1)点D 、E 、F 的坐标分别为(5,2)、(5,-2)、(2,-3);(2)见解析;(3)1.【题目点拨】本题考查作图-平移变换、旋转变换,解题的关键是熟练掌握平移变换和旋转变换的定义、性质,并据此得到变换后的对应点.24、(1)60;(2)将售价定为200元时销量最大.【解题分析】(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.(2)设当售价定为每吨x 元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元做为等量关系可列出方程求解.【题目详解】(1)45+26024010-×7.5=60; (2)设售价每吨为x 元, 根据题意列方程为:(x - 100)(45+26010x -×7.5)=9000, 化简得x 2 - 420x + 44000=0,解得x 1=200,x 2=220(舍去),因此,将售价定为200元时销量最大.【题目点拨】本题考查理解题意能力,关键是找出降价10元,却多销售7.5吨的关系,从而列方程求解.25、(1)()2,0B ,D (1.2,1.6)或(2.8,-1.6);(2)()1,2D 或()3,2-,见解析;(3)点F 在直线上11322y x =+运动,见解析.【解题分析】(1)利用待定系数法求出A ,B 两点坐标,再构建方程即可解决问题.(2)分两种情形:①如图1,当点F 在直线上时,过点D 作DG ⊥x 轴于点G ,过点F 作FH ⊥x 轴于点H ,②如图2,当点E 在直线上时,过点D 作DG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,过点D 作DM ⊥EH 于点M ,分别求解即可解决问题.(3)由(2)①可知:点F 的坐标F (2m-7,m+3),令x=2m-7,y=m+3,消去m 即可得到.【题目详解】解:(1)令0y =,则240x -+=,解得,2x =,()20B ∴,,易得()0,4A ,由BCD BOA S S ∆∆=得,1124522D y ⨯⨯=⨯⨯ ,解得, 1.6D y =± 由24 1.6x -+=± 解得 1.2x =或2.8,∴D (1.2,1.6)或(2.8,-1.6).(2)①如图1,当点F 在直线上时,过点D 作DG x ⊥轴于点G ,过点F 作FH x ⊥轴于点H ,图1设(),24D m m -+,易证CDG FCH ∆≅∆24DG CH m ∴==-,3CG FH m ==+,则()32427OH OC CH m m =-=--=-+,()27,0H m ∴-()2274418F y m m FH ∴=--+=-+=,4183m m ∴-+=+,得3m =,()3,2D ∴-;②如图2,当点E 在直线上时,过点D 作DG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,图2过点D 作DM EH ⊥于点M ,同①可得DG DM GH MH ===,FM CG =,则()34,0H m -,()34,612E m m --+,()612243EH MH m m EM CG m ∴-=-+--+===+,得1m =,()1,2D ∴;(3) 设D (m ,-2m+4),由(2)①可知:F (2m-7,m+3),令x=2m-7,y=m+3,消去m 得到:11322y x =+ 点F 在直线上11322y x =+运动.故答案为:(1)()2,0B ,D (1.2,1.6)或(2.8,-1.6);(2)()1,2D 或()3,2-,见解析;(3)点F 在直线上11322y x =+运动,见解析.【题目点拨】 本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.26、(1)18;(2)1.【解题分析】(1)求出x+y ,xy 的值,利用整体的思想解决问题;(2)根据菱形的面积等于对角线乘积的一半计算即可.解:(1)∵x=2y=2-∴x+y=4,xy=4-2=2∴x 2+3xy+y 2=(x+y )2+xy=16+2=18(2)S 菱形=12xy=12(2(2-=12(4-2) =1 “点睛”本题考查菱形的性质,二次根式的加减乘除运算法则等知识,解题的关键是学会整体的思想进行化简计算,属于中考常考题型.。

八年级上学期期末考试数学试卷(附带答案)

八年级上学期期末考试数学试卷(附带答案)

八年级上学期期末考试数学试卷(附带答案)一.单选题。

(每小题4分,共40分)1.5的平方根可以表示为()A.±√5B.√±5C.±5D.√52.点A(2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线a,b被直线c所截,且a∥b,∠1=55°,则∠2等于()A.55°B.65°C.125°D.135°(第3题图)(第6题图)(第9题图)4.一组数据:65,57,56,58,56,58,56,这组数据的众数是()A.56B.57C.58D.655.方程组{7x+2y=4①7x-3y=﹣6②,由①-②得()A.2y-3y=4-6B.2y-3y=4+6C.2y+3y=4-6D.2y+3y=4+66.已知正比例函数图象如图所示,则这个函数的关系式为()A.y=xB.y=﹣xC.y=﹣3xD.y=﹣x37.甲,乙,丙,丁四组的人数相同,且平均升高都是1.68m,升高的方差分别是S2甲=0.15,S2乙=0.12,S2丙=0.10,S2丁=0.12,则身高比较整齐的组是()A.甲B.乙C.丙D.丁8.已知实数x,y满足|x-3|+√y-2=0,则代数式(y-x)2023的值为()A.1B.﹣1C.2023D.﹣20239.如图,在平面直角坐标系中,三角形ABC三个顶点A,B,C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值是()A.10B.11C.12D.1410.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,沿x轴每秒1个单位长度的速度向右移动,且过点P的直线y=﹣x+b也随之平移,设移动时间为t秒,若直线与线段BM 有公共点,则t的取值范围是()A.3≤t≤7B.3≤t≤6C.2≤t≤6D.2≤t≤5(第10题图)二.填空题。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各组数,是勾股数的是()A .13,14,15B .0.3,0.4,0.5C .6,7,8D .5,12,132.下列说法:①-27的立方根是3;②36的算数平方根是6±;③18的立方根是12平方根是3±.其中正确说法的个数是()A .1B .2C .3D .43.点(),A x y 在第四象限,则点(),2B x y --在第几象限()A .第一象限B .第二象限C .第三象限D .第四象限4最接近的数是()A .2B .3C .4D .55.在 1.414-,π,12,2,3.212212221…(相邻两个1之间的2的个数逐次加1),3.14这些数中,无理数的个数为()个.A .5B .2C .3D .46.下列命题中,是真命题的是()A .同位角相等B .同旁内角相等,两直线平行C .平行于同一直线的两直线平行D .相等的角是对顶角7.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是()A .乙同学的成绩更稳定B .甲同学的成绩更稳定C .甲、乙两位同学的成绩一样稳定D .不能确定哪位同学的成绩更稳定8.正比例函数()0y kx k =-≠的函数值y 随x 的增大而减小,则一次函数y kx k =-的图象大致是()A .B .C .D .9.《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为x 人,牛价为y 钱,根据题意,可列方程组为()A .64084y x y x =+⎧⎨=+⎩B .64084y x y x =+⎧⎨=-⎩C .64084y x y x =-⎧⎨=-⎩D .64084y x y x =-⎧⎨=+⎩10.甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离()km y 与行驶时间()h t 的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ;②乙车用了5h 到达B 城;③甲车出发4h 时,乙车追上甲车A .0个B .1个C .2个D .3个二、填空题11.已知点()1,3P m m ++在x 轴上,则m =________;点P 的坐标为________.12有意义,则x 的取值范围是___.13.若函数()231m y m x-=+是正比例函数,且图像在一、三象限,则m =_________.14.若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.15.已知一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,则1y _______2y (填“>”“<”或“=”)16.如图,已知函数y ax b =+和y kx =的图象交于点P ,关于,x y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是____.17.如图,ABC 中,90A ∠=︒,点D 在AC 边上,∥DE BC ,若1145∠=︒,则B ∠的度数为_______.18.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_________dm .三、解答题19.计算(1)2(23)(33)(33)+-+(2)20223125272---20.用适当的方法解下列方程组(1)231951x y x y +=-⎧⎨+=⎩(2)237324x y x y +=⎧⎨-=⎩21.中考体育测试前,我区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)扇形统计图中a =%,并补全条形统计图.(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.如图所示,折叠长方形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知6AB =,8BF =,求CE 的长.23.已知一次函数y kx b =+的图象经过点()1,5--,且与正比例函数2y x =的图象相交于点()2,A m .求:(1)m 的值;(2)k ,b 的值;(3)这两个函数图象与y 轴所围成的三角形的面积.24.如图,Rt △ABC 中,∠BAC =90°,AC =9,AB =12.按如图所示方式折叠,使点B 、C 重合,折痕为DE ,连接AE .求AE 与CD 的长.25.某商场去年的利润为10万元,今年的总收入比去年增加10%,总支出比去年减少了5%,今年的利润为30万元.求去年的总收入和总支出?26.已知一次函数y =kx ﹣3的图象与正比例函数y=12x 的图象相交于点(2,a ).(1)求a 的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.27.如图1,在平面直角坐标系中,(),0A m,(),4C n ,且满足()240m +=,过C 作CB x ⊥轴于B .(1)求m ,n 的值;(2)在x 轴上是否存在点P ,使得ABC 和OCP △的面积相等,若存在,求出点P 坐标,若不存在,试说明理由.(3)若过B 作BD AC ∥交y 轴于D ,且AE ,DE 分别平分CAB ∠,ODB ∠,如图2,图3,①求:CAB ODB ∠+∠的度数;②求:AED ∠的度数.参考答案1.D【分析】根据能够成为直角三角形三条边长的三个正整数,称为勾股数,即可求解【详解】解:A、不是正整数,则不是勾股数,故本选项不符合题意;B、不是正整数,则不是勾股数,故本选项不符合题意;C、222678+≠,则不是勾股数,故本选项不符合题意;D、2225+12=13,是勾股数,故本选项符合题意;故选:D【点睛】本题主要考查了勾股数的定义,熟练掌握能够成为直角三角形三条边长的三个正整数,称为勾股数是解题的关键.2.A【分析】分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.【详解】解:①-27的立方根是-3,错误;②36的算数平方根是6,错误;③18的立方根是12,正确;∴正确的说法有1个,故选:A.【点睛】本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.3.C【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B10,距离10最近的完全平方数是9和16,通过比较可知10距离9比较近,由此即可求解.解答:解:∵32=9,42=16,又∵11-9=2<16-9=5∴与最接近的数是3.故选B.5.D【分析】有理数是整数与分数的统称,无理数就是无限不循环小数,据此逐一判断即可得答案.-是有限小数,是有理数,【详解】 1.414π是无理数,1是分数,是有理数,22是无理数,3.212212221…(相邻两个1之间的2的个数逐次加1),是无限不循环小数,是无理数,3.14是有限小数,是有理数,∴无理数有π2和3.212212221…(相邻两个1之间的2的个数逐次加1),共4个,故选:D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.熟练掌握定义是解题关键.6.C【分析】根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.【详解】解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;B 、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;C 、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;D 、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.7.A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A .【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.8.C【分析】因为正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,可以判断0k >;再根据0k >判断出y kx k =-的图象的大致位置.【详解】解: 正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,0k ∴>,∴一次函数y kx k =-的图象经过一、三、四象限.故选C .【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k<,0b <时,函数y kx b =+的图象经过第二、三、四象限.9.B【分析】设合伙人数为x 人,牛价为y 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.【详解】解:设合伙人数为x 人,牛价为y 钱,根据题意得:64084y x y x =+⎧⎨=-⎩.故选:B【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.10.C【分析】求出正比函数的解析式,k 值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx ,∴6k=300,解得k=50,∴y 甲=50x ,∴甲车的速度为50km/h ,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h )到达B 城,∴②错误;设y =mx b +乙,∴2m =05m 300b b +⎧⎨+=⎩,∴m 100200b =⎧⎨=-⎩,∴y =100x-200乙,∵=50100200y x y x ⎧⎨=-⎩,∴x 4200y =⎧⎨=⎩,即甲行驶4小时,乙追上甲,∴③正确;故选C .11.3-()2,0-【分析】根据x 轴上的点,纵坐标为0,求出m 值即可.【详解】解:∵点()1,3P m m ++在x 轴上,∴30m +=,解得,3m =-,则1312m +=-+=-;点P 的坐标为(-2,0);故答案为:-3,(-2,0).【点睛】本题考查了坐标轴上点的坐标特征,解题关键是明确x 轴上的点,纵坐标为0.12.2x ≥有意义,即x ﹣2≥0,解得:x≥2.故答案为:x≥2.13.2【分析】根据自变量的次数等于1,系数大于0列式求解即可.【详解】解:由题意得m+1>0,m 2-3=1,解得m=2.故答案为:2.14.89【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x 1,x 2,…xn 的平均数是2,∴数据3x 1+2,3x 2+2,…+3xn+2的平均数是3×2+2=8;∵数据x 1,x 2,…xn 的方差为1,∴数据3x 1,3x 2,3x 3,……,3xn 的方差是1×32=9,∴数据3x 1+2,3x 2+2,…+3xn+2的方差是9.故答案为:8、9.15.>【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小,判断即可.【详解】∵一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,且k <0,∴k <0,∵-2<3,∴1y >2y ,故答案为:>.16.4,2x y =-⎧⎨=-⎩【分析】根据函数与方程组的关系结合交点坐标即可求得方程组的解.【详解】解:∵一次函数y=ax+b (a≠0)和y=kx (k≠0)的图象交于点P (-4,-2),∴二元一次方程组0y ax b kx y -=⎧⎨-=⎩的解是42x y =-⎧⎨=-⎩,故答案为:42x y =-⎧⎨=-⎩.17.55︒【分析】先求出∠EDC=35°,然后根据平行线的性质得到∠C=∠EDC=35°,再由直角三角形两锐角互余即可求解.【详解】解:∵∠1=145°,∴∠EDC=35°,∵DE ∥BC ,∴∠C=∠EDC=35°,又∵∠A=90°,∴∠B=90°-∠C=55°,故答案为:55°.18.25【分析】把立体几何图展开得到平面几何图,如图,然后利用勾股定理计算AB ,则根据两点之间线段最短得到蚂蚁所走的最短路线长度.【详解】解:展开图为:则AC=20dm,BC=3×3+2×3=15(dm ),在Rt △ABC 中,25AB ===(dm ).所以蚂蚁所走的最短路线长度为25dm.故答案为:25.19.(1)1+;(2)9-【分析】(1)利用完全平方公式,平方差公式展开,合并同类项即可;(2)根据幂的意义,算术平方根,立方根的定义计算.【详解】(1)2(2(3-=43(93)+--=1+(2)20221--+-=153---=9-20.(1)143x y =-⎧⎨=⎩;(2)21x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)231951x y x y +=-⎧⎨+=⎩①②②×2-①得:7y=21,解得:y=3,把y=3代入②中,解得:x=−14,∴方程组的解为:143x y =-⎧⎨=⎩;(2)237324x y x y +=⎧⎨-=⎩①②①×2-②×3得:13x=26,解得:x=2,把x=2代入①中,解得:y=1,∴方程组的解为:21x y =⎧⎨=⎩.21.(1)25,图见解析(2)5,5(3)810名【分析】(1)用1减去其他天数所占的百分比即可得到a 的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.(1)解:扇形统计图中a=1-30%-15%-10%-20%=25%,设引体向上6个的学生有x 人,由题意得20,25%10%x =,解得x=50.条形统计图补充如下:故答案为:5;(2)解:由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5.故答案为:5,5.(3)解:50401800810200+⨯=(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.22.83【分析】由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,由勾股定理,可得10AF ==,从而得到2FC =,然后设CE x =,6EF DE x ==-,在Rt ECF △中,由勾股定理,即可求解.【详解】解:由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,10AF ==,∴2FC BC BF =-=,设CE x =,6EF DE x ==-,在Rt ECF △中,222EF EC CF =+,即()2246x x +=-,解得83x =,∴CE 的长为83.23.(1)4m =;(2)3k =,2b =-;(3)2【分析】(1)把(2,m )代入正比例函数解析式即可得到m 的值;(2)把(-1,-5)、(2,4)代入y=kx+b 中可得关于k 、b 的方程组,然后解方程组求出k 、b 即可;(3)先利用描点法画出图象,再求出两直线与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)将()2,m 代入2y x =得,4m =.(2)由(1)得,交点坐标为()2,4,将()1,5--,()2,4代入y kx b =+中,得524k b k b -+=-⎧⎨+=⎩,解得32k b =⎧⎨=-⎩,∴3k =,2b =-.(3)由(2)得,直线的表达式为32y x =-,令0x =,则2y =-,所以直线32y x =-与y 轴的交点坐标问为()0,2-,又∵两直线的交点坐标为()2,4,∴12222s =⨯⨯=.【点睛】本题考查了一次函数的综合题:用待定系数法求一次函数的解析式,一次函数与坐标轴的交点问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.24.AE =7.5,CD =758【分析】在Rt △ABC 中由于∠BAC =90°,AC =9,AB =12,所以根据勾股定理可求出BC 的长,由折叠可知,ED 垂直平分BC ,E 为BC 中点,BD =CD ,根据直角三角形斜边上的中线等于斜边的一半可求出AE 的长,设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中由AD 2+AC 2=CD 2即可求出x 的值,故可得出结论.【详解】解:在Rt △ABC 中,∠BAC =90°,AC =9,AB =12,由勾股定理得:AB 2+AC 2=BC 2.∴BC 2=92+122=81+144=225=152,∴BC =15∵由折叠可知,ED 垂直平分BC ,∴E 为BC 中点,BD =CD∴AE =12BC =7.5(直角三角形斜边上的中线等于斜边的一半).设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中,∴AD 2+AC 2=CD 2(勾股定理).即92+(12﹣x )2=x 2,解得x =758,∴CD =758.【点睛】本题考查的是图形折叠的性质,熟知图形折叠不变性的性质及勾股定理是解答此题的关键.25.去年的总收入为4103元,总支出为3803元【分析】设去年的总收入为x 万元,总支出为y 万元,根据利润=总收入-总支出,列出方程,构成方程组求解.【详解】解:设去年的总收入为x 万元,总支出为y 万元,依题意得:x-1000(1+10)(1-5)=3000y x y =⎧⎪⎨-⎪⎩,解得410x=3380=3y ⎧⎪⎪⎨⎪⎪⎩,答:去年的总收入为4103元,总支出为3803元.【点睛】本题考查了二元一次方程组的应用题,根据利润=总收入-总支出,列出符合题意的方程是解题的关键.26.(1)a =1;(2)y =2x ﹣3;(3)详见解析.【分析】(1)直接把点(2,a )代入正比例函数的解析式y =12x 可求出a ;(2)将求得的交点坐标代入到直线y =kx ﹣3中即可求得其表达式;(3)利用与坐标轴的交点及两图像交点即可确定两条直线的解析式.【详解】(1)∵正比例函数y =12x 的图象过点(2,a ),∴a =1;(2)∵一次函数y =kx ﹣3的图象经过点(2,1)∴1=2k ﹣3,∴k =2,∴y =2x ﹣3;(3)函数图象如下图:【点睛】本题考查了两条直线相交或平行问题:若直线y =k 1x+b 1与直线y =k 2x+b 2相交,则交点坐标同时满足两个解析式.也考查了待定系数法求函数解析式.27.(1)4m =-,4n =;(2)存在,()8,0N 或()8,0-;(3)①90︒;②45︒【分析】(1)根据非负数的和为零,则每一个数为零,列等式计算即可;(2)设点P 的坐标为(n ,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;(3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;②作EM AC ∥,利用平行线的性质,角的平分线的定义,计算即可.【详解】解:(1)∵()240m +=,∴m+4=0,n-4=0,∴4m =-,4n =.(2)存在,设点P 的坐标为(n ,0),则OP=|n|,∵A (-4,0),C (4,4),∴B (4,0),AB=4-(-4)=8,∵12ABCS AB CB = ,12OCP CB OP = △S ,且ABC 和OCP △的面积相等,∴12AB CB 12CB OP = ,∴OP=AB=8,∴|n|=8,∴n=8或n=-8,∴()8,0P 或()8,0P -;(3)①∵AC BD ∥,∴CAB OBD ∠=∠,又∵90OBD ODB ∠+∠=︒,∴90CAB ODB ∠+∠=︒.②作EM AC ∥,如图,∵AC BD ∥,∴AC EM BD ∥∥,∴CAE AEM ∠=∠,BDE DEM ∠=∠,∴AED CAE BDE ∠=∠+∠,∵AE ,DE 分别平分CAB ∠,ODB ∠,∴12CAE CAB ∠=∠,12BDE ODB ∠=∠,∴11()904522AED AEM DEM CAB ODB ∠=∠+∠=∠+∠=⨯︒=︒,即45AED ∠=︒.。

初二数学下册期末考试试卷及答案

初二数学下册期末考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()A. 60cm²B. 78cm²C. 84cm²D. 90cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。

()7. 两个等腰直角三角形的面积一定相等。

()8. 一次函数的图像是一条直线。

()9. 二次函数的图像是一个抛物线。

()10. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是______。

12. 一次函数y = 3x 5的图像与y轴的交点是______。

13. 二次函数y = x² 4x + 4的顶点坐标是______。

14. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高是______。

15. 两个相同的数相乘,结果是这个数的______。

四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。

17. 什么是等腰三角形?请给出一个例子。

18. 请解释一次函数的图像是一条直线的原理。

19. 什么是二次函数的顶点?如何找到它?20. 请解释无理数的概念,并给出一个例子。

五、应用题(每题2分,共10分)21. 一个长方形的长度是10cm,宽度是5cm,求这个长方形的面积。

平江初二期末考试数学试卷

平江初二期末考试数学试卷

一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. 2C. 0D. -52. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x + 3 = 7xC. 2x + 3 = 0D. 2x + 3 = 2x3. 已知等差数列的前三项分别为2,5,8,则该数列的公差是()A. 3B. 2C. 1D. 04. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)5. 下列函数中,是奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = 2x6. 一个长方形的长是8cm,宽是5cm,那么它的对角线长是()A. 10cmB. 12cmC. 13cmD. 15cm7. 已知三角形ABC的边长分别为3cm,4cm,5cm,则三角形ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 不等边三角形8. 下列命题中,正确的是()A. 平行四边形对角线互相平分B. 矩形对角线互相垂直C. 等腰三角形底角相等D. 等边三角形底角相等9. 在直角坐标系中,点P(3,-2)到原点O的距离是()A. 5B. 4C. 3D. 210. 下列数中,是无限循环小数的是()A. 0.333...B. 0.555...C. 0.666...D. 0.777...二、填空题(每题3分,共30分)11. 完成下列数的平方:(1)(3 + 2√2)^2 = ______(2)(2 - √3)^2 = ______(3)(5 - √5)^2 = ______12. 完成下列数的立方:(1)(2 + 3√3)^3 = ______(2)(4 - √2)^3 = ______(3)(1 + √2)^3 = ______13. 已知等差数列的前三项分别为2,5,8,求该数列的第四项。

14. 求函数y = 2x - 3在x=2时的函数值。

燕郊初二期末考试数学试卷

燕郊初二期末考试数学试卷

1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. -√92. 若a、b是方程x^2 - 3x + 2 = 0的两根,则a+b的值为()A. 2B. 3C. 1D. 03. 已知函数f(x) = 2x - 1,若f(x) > 3,则x的取值范围是()A. x > 2B. x < 2C. x ≤ 2D. x ≥ 24. 在直角坐标系中,点A(-2, 3),点B(2, -3),则线段AB的中点坐标是()A. (0, 0)B. (0, 3)C. (2, 0)D. (-2, -3)5. 已知三角形ABC的三个内角A、B、C的正弦值分别为sinA=1/2,sinB=√3/2,sinC=√6/4,则三角形ABC是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形6. 下列各图中,是函数y = -2x + 3的图象的是()(选项图略)7. 若a、b、c是等差数列,且a+b+c=9,则a+c的值为()A. 3B. 6C. 9D. 128. 下列函数中,有最小值的是()A. y = x^2B. y = -x^2C. y = x^2 + 1D. y = -x^2 + 19. 在等腰三角形ABC中,AB=AC,AD是底边BC上的高,若BD=3,则AD的长度为()A. 3B. 4C. 5D. 610. 下列命题中,正确的是()A. 对顶角相等B. 对角线互相平分的四边形是平行四边形C. 相邻角互补的四边形是矩形D. 对角线互相垂直的四边形是菱形11. 5的平方根是______,-3的立方根是______。

12. 若sinA = 3/5,且A为锐角,则cosA的值为______。

13. 若x^2 - 5x + 6 = 0,则x的值为______。

14. 函数y = 2x + 1的图象与x轴的交点坐标是______。

15. 在直角三角形ABC中,∠A=30°,∠B=60°,则BC的长度是AB的______倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学初中期末考试试卷
注意事项及说明:本卷考试时间为90分钟,满分为100分.卷中除要求近似计算的结果取近似值外,其余的结果应给出准确值.
一、细心填一填(共16个空,每空2分,共32分)
1. 16的平方根是 , 64的立方根是 ,9= .
2. 函数y =12-x 中的自变量x 的取值范围是
3. 点P (-3 ,5)关于x 轴的对称点Q的坐标是 ,点P到y 轴的距离为 . 4 .已知实数x ,y 满足︱y -5︱+10-x =0, 则xy = .
5.化简:
55
5
- = , (56-)(56+) = . 6.如图,点P 是反比例函数x
k
y =
图象上的一点,PD ⊥x 轴于点D , 若点Q (3,-2)也在该函数的图象上,则k = , △POD 的面积= .
7.直线y=2x +1经过平移后,图象经过点(3,2) ,请写出一个符 合条件的平移变换过程: . 8.在比例尺为1∶200 000的交通图上,距离为15厘米的两地之间的 实际距离约为 千米.
9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图标出的 尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 mm .
10.一棵树在太阳光下的影子长是9米,而在同一时刻身高1.6米的小江同学,影子长是1.2米,这棵树的高度是 米.
11.一组数据a , b , c , d , e 极差和方差分别是4和2,则数据 3a +2 ,3b+2 ,3c+2 3d +2 ,3e +2的极差和方差分别是 .
二、精心选一选(共7小题,每小题3分,共21分)
12. 227
,3.14 , 25,π, 39,15中无理数有---------------------------【 】
A 、 2个
B 、 3个
C 、 4个
D 、 5个
13. 下列二次根式中与3是同类二次根式的是-------------------------------------------【 】
120
60
60
140
A
C
B
第10题
A 、12
B 、18
C 、
3
2 D 、39
14. 已知点P (m -1,2-m )在第四象限,则m 的取值范围是 ---------【 】 A 、m <1 B 、m <2 C 、1<m <2 D 、m >2
15.下列事件发生的机会从小到大排序正确的是 ----------------------------------------【 】 错误!未找到引用源。

从一副(54张)扑克牌中随机抽出一张是红心; 错误!未找到引用源。

同时掷两枚硬币,出现两个正面; 错误!未找到引用源。

买一注彩票,结果中特等奖; 错误!未找到引用源。

无锡6月份会下雨;
错误!未找到引用源。

迎面开过来一辆汽车,牌号末位数字是奇数.
A 、错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

B 、错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

C 、错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

D 、错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

16. 某人沿坡度i =1 :7的斜坡面前进30米,则他上升的铅直高度为-----------【 】
A 、730米
B 、830
米 C 、32米 D 、212米 17.下列说法中,正确的是--------------------------【 】 A 、有两条边对应成比例且有一个角相等的两个三角形相似 B 、有两个角对应相等的两个三角形相似 C 、正比例函数y =3x 与反比例函数x
y 3
=
的图象位于不同的象限
D 、两组数据中,平均数越小,这组数据越稳定
18.如图,把△ABC 沿 A -B 平移到△DEF 的位置,它们的重 叠部分(阴影部分)的面积是△ABC 的面积的一半,若AB =2, 则△ABC 移动的距离是----------------------【 】 A 、2-1 B 、2
2 C.、1 D 、2
1
三、认真答一答
19. 计算:(共2小题,每小题5分,共10分) (1)21
8
2
418-+ (2) 3
21+ + 6×tan 30° + 31-
20. (本题共6分)
甲、乙两名射击运动员各进行10发子弹的射击,命中靶的环数如下表:
第几发一二三四五六七八九十甲86108797456
乙6577678798
(1)在图中分别描出表示甲、乙命中靶的
环数的折线图.(甲用虚线连)
(2)求得:
甲命中靶的平均环数x甲=,
方差S2甲=;
乙命中靶的平均环数x乙=,
方差S2乙= .
(3)如果从甲、乙两名运动员中选一名参
加比赛,你认为应选谁?请说明理由.
21.(本题共6分)
如图,ABCD是平行四边形,点E在边BC延长线上,连AE交CD于点F,如果∠EAC =∠D.
试证明:AC·BE=AE·AB.
22.(本题共6分)
如图,小明沿着河岸边的人行道散步,想顺便测一测河的宽度,在A点,他发现对岸的一棵大树C与河岸的夹角∠CAB=45o,继续往前走了2分钟到达点B,又测得∠ABC=60o,已知他步行的平均速度是1米/秒.请你帮他算一算河的宽度(精确到0.1米).
一般地,提高商品的单价,可以使每件商品获得更大的利润,但单价太高会反过来影响该商品的销售数量,只有通过合理的定价,才能取得较好的回报.小商品批发商李欣对其中一种小商品的单价与该种商品的日平均获利经过统计,得到下列数据:
该商品的销售单价x(元/件) 1 1.7 1.9 2.4
该商品的日平均获利y(元)72 79 87 77
(1)根据统计所得数据,在所给的平面直角坐标系中描出相应的各点。

(2)用线段
..将题(1)所画的点从左到右顺次连接,若用此图象来模拟日平均获利y关于商品的销售单价x的函数关系,分别写出函数在1.7≤x≤1.9和1.9≤x≤2.4 时的解析式;
(3)利用题(2)所得函数关系,当日平均获利不低于83元时,求该商品的销售单价x 应该控制的范围.


直角梯形OABC中BC∥OA,在如图平面直角坐标系中,已知它的各顶点坐标分别是O(0,0),A(9,0),B(6,4),C(0,4).点P从点C沿C—B—A运动,速度为每秒2个单位,点Q从A向O点运动,速度为每秒1个单位,当其中一个点到达终点时,另一个点也停止运动.两点同时出发,设运动的时间是t秒.
(1)点P和点Q谁先到达终点?到达终点时t是多少?(请直接写出答案)
(2)当t取何值时,直线PQ∥AB?并写出此时点P的坐标.(要写出解答过程)
(3)是否存在符合题意的t的值,使直角梯形OABC被直线PQ分成面积相等的两个部分?
如果存在,求出t的值;如果不存在,请说明理由.
(4)探究:当t取何值时,直线PQ⊥AB ?(请直接写出答案,不需写出计算过程).图1图2(备用)图3(备用)。

相关文档
最新文档