整式的化简求值小专题
专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册
七年级上册数学《第二章整式的加减》专题整式的化简求值(50题)整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.1.先化简,再求值:11a2﹣[a2﹣3(2a﹣5a2)﹣4(a2﹣2a)],其中a=﹣4.【分析】先化简整式,再代入求值.【解答】解:原式=11a2﹣(a2﹣6a+15a2﹣4a2+8a)=11a2﹣a2+6a﹣15a2+4a2﹣8a=(11a2+4a2﹣15a2)﹣a2﹣8a+6a=﹣a2﹣2a.当a=﹣4时,原式=﹣(﹣4)2﹣2×(﹣4)=﹣16+8=﹣8.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.(2022秋•香洲区期末)先化简,再求值:2(x2+xy−32y)﹣(x2+2xy﹣1),其中x=﹣4,y=5.【分析】先去括号,然后合并同类项,最后将x=﹣4,y=5代入化简结果进行计算即可求解.【解答】解:原式=2x2+2xy﹣3y﹣x2﹣2xy+1=x2﹣3y+1,当x=﹣4,y=5时,原式=(﹣4)2﹣3×5+1=16﹣15+1=2.【点评】本题考查了整式的加减与化简求值,正确的去括号与合并同类项是解题的关键.3.(2022秋•亭湖区期末)先化简,再求值:a2﹣(3a2﹣2b2)+3(a2﹣b2),其中a=﹣2,b=3.【分析】原式去括号,合并同类项进行化简,然后代入求值.【解答】原式=a2﹣3a2+2b2+3a2﹣3b2=a2﹣b2;当a=﹣2;b=3时,原式=(﹣2)2﹣32=4﹣9=﹣5.【点评】本题考查整式的加减和化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.4.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=16.【分析】先去括号,再合并同类项得到原式=﹣4x2y,然后把x、y的值代入计算即可.【解答】解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=16时,原式=﹣4×(﹣1)2×16=−23.【点评】本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.5.(2022秋•江岸区期末)先化简,再求值:5a2+4b﹣(5+3a2)+3b+4﹣a2,其中a=3,b=﹣2.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:5a2+4b﹣(5+3a2)+3b+4﹣a2=5a2+4b﹣5﹣3a2+3b+4﹣a2=a2+7b﹣1.当a=3,b=﹣2时,原式=32+7×(﹣2)﹣1=9﹣14﹣1=﹣6.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.6.(2022秋•辽阳期末)先化简,再求值:x2y﹣(3xy2﹣x2y)﹣2(xy2+x2y),其中x=1,y=﹣2.【分析】先去括号,再合并同类项,然后把x=1,y=﹣2代入化简后的结果,即可求解.【解答】解:原式=x2y﹣3xy2+x2y﹣2xy2﹣2x2y=﹣5xy2,当x=1,y=﹣2时,原式=﹣5×1×(﹣2)2=﹣20.【点评】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.7.(2022秋•盘山县期末)先化简再求值:﹣(3a2﹣2ab)+[3a2﹣(ab+2)],其中a=−12,b=4.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=﹣3a2+2ab+3a2﹣ab﹣2=ab﹣2,当a=−12,b=4时,原式=﹣2﹣2=﹣4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.【分析】去括号,合并同类项,将x,y的值代入计算即可.【解答】解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2,当x=﹣1,y=2时,原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.【点评】本题主要考查了整式的加减与求值,正确利用去括号的法则运算是解题的关键.9.(2022秋•秀屿区期末)先化简,再求值:4x2y﹣3xy2+3(xy﹣2x2y)﹣2(3xy﹣3xy2)其中x=34,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x2y﹣3xy2+3xy﹣6x2y﹣6xy+6xy2=﹣2x2y+3xy2﹣3xy,当x=34,y=﹣1时,原式=98+94+94=458.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.10.(2022秋•黔江区期末)先化简,再求值:3(2+122−B)−(2B+32−122),其中x=1,y=2.【分析】先去括号,合并同类项,化简整式,然后将x,y的值代入求值.【解答】解:3(2+122−B)−(2B+32−122),=3x2+32y2﹣3xy﹣2xy﹣3x2+12y2=2y2﹣5xy,当x=1,y=2时,原式=2y2﹣5xy=2×22﹣5×1×2=﹣2.【点评】本题考查了整式的化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.11.(2022秋•高新区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=1,b=﹣2时,原式=﹣6﹣4=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.(2022秋•嘉峪关校级期末)先化简,再求值.2(3a﹣4b)﹣3(3a+2b)+4(3a﹣2b),其中=−13,=12.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=6a﹣8b﹣9a﹣6b+12a﹣8b=9a﹣22b,当a=−13,b=12时,原式=9×(−13)﹣22×12=−3﹣11=﹣14.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.(2022秋•皇姑区期末)先化简,再求值:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3],其中a=2,b=﹣1.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3]=3a2b﹣6b3+6ab﹣(6ab+2a2b﹣4b3)=3a2b﹣6b3+6ab﹣6ab﹣2a2b+4b3=a2b﹣2b3.当a=2,b=﹣1时,原式=22×(﹣1)﹣2×(﹣1)3=﹣4+2=﹣2.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•寻乌县期末)先化简,再求值:﹣3(x2﹣2x)+2(32x2﹣2x−12),其中x=﹣4.【分析】直接去括号进而合并同类项进而得出答案.【解答】解:原式=﹣3x2+6x+3x2﹣4x﹣1=2x﹣1,把x=﹣4代入得:原式=2×(﹣4)﹣1=﹣9.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.15.(2022秋•市南区校级期末)先化简,再求值:12−2(−132)+(−12+132),其中=−2,=23.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:原式=12x﹣2x+232−12+132=﹣2x+y2;当x=﹣2,y=23时,原式=﹣2×(﹣2)+(23)2=4+49=409.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.16.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.17.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.18.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.【分析】先去括号合并同类项,然后将xy=2,x+y=3整体代入即可.【解答】解:原式=3xy+10y+5x﹣2xy﹣2y+3x=xy+8y+8x=8(x+y)+xy,当xy=2,x+y=3时,原式=8×3+2=26.【点评】本题考查了整式的加减﹣﹣化简求值,熟悉合并同类项是解题的关键.20.已知a2+b2=20,a2b﹣ab2=﹣3,求(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)的值.【分析】去括号、合并同类项,再把已知条件代入即可得到整式的值.【解答】解:(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)=b2﹣a2+a2b﹣3ab2﹣2b2+2ab2=﹣b2﹣a2+a2b﹣ab2=﹣(b2+a2)+(a2b﹣ab2)把a2+b2=20,a2b﹣ab2=﹣3代入,原式=﹣20+(﹣3)=﹣23.【点评】本题主要考查了整式的加减—化简求值,掌握整式的加减运算法则,整体思想是解题的关键.21.(2023春•大荔县期末)已知3a﹣b=﹣2,求代数式3(2B2−163+p−2(3B2−2p+的值.【分析】直接去括号,再合并同类项,再把已知数据代入得出答案.【解答】解:原式=6ab2﹣16a+3b﹣6ab2+4a+b=﹣12a+4b,∵3a﹣b=﹣2,∴原式=﹣4(3a﹣b)=﹣4×(﹣2)=8.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.22.已知b=2a+2,求整式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵b=2a+2,∴﹣2a+b=2,∴原式=4(﹣2a+b)=4×2=8.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.23.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.【分析】(1)把(a﹣b)2看成一个整体,利用合并同类项运算法则进行计算;(2)将原式进行变形,然后利用整体思想代入求值.【解答】解:(1)原式=(3﹣6+7)(a﹣b)2=4(a﹣b)2,故答案为:4(a﹣b)2;(2)原式=﹣3(x2+2y)+2021,当x2+2y=−13时,原式=﹣3×(−13)+2021=1+2021=2022,即原式的值为2022.【点评】本题考查整式的加减运算,理解整体思想解题的应用,掌握合并同类项(系数相加,字母及其指数不变)的运算法则是解题关键.24.(2022秋•黔西南州期中)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a﹣3的值.【分析】(1)直接利用合并同类项法则计算得出答案;(2)所求式子变形后,将已知等式代入计算即可求出值.【解答】解:(1)3(x+y)2﹣5(x+y)2+7(x+y)2=(3﹣5+7)(x+y)2=5(x+y)2;(2)∵a2+2a+1=0,∴2a2+4a﹣3=2(a2+2a+1)﹣5=0﹣5=﹣5.【点评】此题主要考查了代数式求值,利用了整体代入的思想.25.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.【解答】解:(1)原式=(3﹣1+7)(a﹣b)2=9(a﹣b)2,故答案为:9(a﹣b)2;(2)∵x2﹣2y=1,∴原式=﹣3(x2﹣2y)+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y=1看成一个整体,整体代入求值是解题的关键.26.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用“整体思想”和合并同类项法则进行计算即可;(2)先把﹣3x2﹣6y+21化成﹣3(x2+2y)+21,再把x2+2y=5整体代入,计算即可;(3)由a﹣2b=3,2b﹣c=﹣5,c﹣d=10,得出a﹣c=﹣2,2b﹣d=5,再代入计算即可.【解答】解:(1)3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2=﹣2(a﹣b)2;(2)﹣3x2﹣6y+21=﹣3(x2+2y)+21,当x2+2y=5时,原式=﹣3×5+21=6;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=3+(﹣5)=﹣2,2b﹣d=﹣5+10=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减—化简求值,会把整式正确化简及运用“整体思想”是解决问题的关键.27.(2022秋•铜梁区期末)先化简,再求值:6a2﹣[2(a2+ab)﹣4ab]﹣ab,其中a,b满足|a+1|+(b﹣2)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:∵6a2﹣[2(a2+ab)﹣4ab]﹣ab=6a2﹣(2a2+2ab﹣4ab)﹣ab=6a2﹣2a2+2ab﹣ab=4a2+ab,∵a,b满足|a+1|+(b﹣2)2=0,∴a+1=0,a=﹣1.b﹣2=0,b=2.则原式=4×(﹣1)2+(﹣1)×2=4﹣2=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2022秋•汝阳县期末)已知|a+1|+(b﹣2)2=0,求5ab2﹣[3ab﹣2(﹣2ab2+ab)]的值.【分析】直接利用非负数的性质得出a,b的值,再利用整式的加减运算法则计算,进而得出答案.【解答】解:∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,∵5ab2﹣[3ab﹣2(﹣2ab2+ab)]=5ab2﹣(3ab+4ab2﹣2ab)=5ab2﹣(ab+4ab2)=ab2﹣ab,将a=﹣1,b=2代入原式=ab2﹣ab=﹣1×22﹣(﹣1)×2=﹣4+2=﹣2.【点评】此题主要考查了整式的加减—化简求值,正确掌握相关运算法则是解题关键.29.(2022秋•沙坪坝区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣(2x2﹣15xy+6x2﹣xy)=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.30.(2022秋•利州区校级期末)先化简,再求值:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2),其中x、y满足(x﹣3)2+|+13|=0.【分析】先化简整式,再根据非负数的和为0求出x、y的值,最后代入求值.【解答】解:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2)=3x2+2xy﹣3y2﹣2x2﹣2xy+2y2=x2﹣y2.∵(x﹣3)2+|+13|=0.又∵(x﹣3)2≥0,|+13|≥0.∴x=3,y=−13.∴原式=32﹣(−13)2=9−19=889.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则,根据非负数的和求出x、y的值是解决本题的关键.31.(2022秋•招远市期末)先化简,再求值;4B−[(2−2)−3(2+3B−132)],其中x、y满足(−2)2+ |+12|=0.【分析】先化简整式,再根据非负数的意义确定x、y的值,最后代入化简后的整式求值.【解答】解:4B−[(2−2)−3(2+3B−132)]=4xy﹣(x2﹣y2﹣3x2﹣9xy+y2)=4xy﹣x2+y2+3x2+9xy﹣y2=13xy+2x2.∵(−2)2+|+12|=0,又∵(x﹣2)2≥0,|y+12|≥0,∴x=2,y=−12.当x=2,y=−12时,原式=13×2×(−12)+2×22=﹣13+2×4=﹣13+8=﹣5.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及非负数的意义是解决本题的关键.32.(2022秋•万州区期末)化简求322b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=322b﹣2ab2﹣2−32a2b+12ab2﹣2=−32B2−4.∵2(−3)2022+|+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,+23=0,∴a=3,=−23.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.33.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(2−B+162)−2(2B+2−142)的值.【分析】利用非负数的性质求出x,y的值,去括号合并同类项可得结论.【解答】解:3(2−B+162)−2(2B+2−142)=3x2﹣3xy+12y2﹣4xy﹣2x2+12y2=x2﹣7xy+y2,∵|x﹣1|+(y+5)2=0,∴x=1,y=﹣5,∴原式=12﹣7×1×(﹣5)+(﹣5)2=61.【点评】本题考查整式的加减,非负数的性质等知识,解题的关键是掌握整式的混合运算的法则,属于中考常考题型.34.(2022秋•沙坪坝区校级期中)先化简,再求值:2(2−2B2)−[(−22+42p−13(6B2−322)],其中x是最大的负整数,y是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x是最大的负整数,y是绝对值最小的正整数,∴x=﹣1,y=1,∴2(2−2B2)−[(−22+42p−13(6B2−322)]=2x2y﹣4xy2﹣(﹣x2y2+4x2y﹣2xy2+x2y2)=2x2y﹣4xy2+x2y2﹣4x2y+2xy2﹣x2y2=﹣2x2y﹣2xy2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x2y﹣2xy2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.35.(2022秋•松滋市期末)已知关于x,y的单项式7x a y与﹣4x2y b是同类项.(1)求a、b的值;(2)化简求值:5(2a2b﹣ab2)﹣6(−32ab2+2a2b).【分析】(1)根据同类项的定义可得结论;(2)先去括号,再合并同类项.【解答】解:(1)∵单项式7x a y与﹣4x2y b是同类项,∴a=2,b=1.(2)5(2a2b﹣ab2)﹣6(−32ab2+2a2b)=10a2b﹣5ab2+9ab2﹣12a2b=4ab2﹣2a2b.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则、有理数的混合运算是解决本题的关键.36.已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.【分析】原式去括号合并得到最简结果,利用同类项定义求出m与n的值,代入计算即可求出值.【解答】解:原式=2m2﹣2mn﹣6m2+9mn﹣2m2+4m2﹣2mn+2m2﹣1=5mn﹣1,∵2a3m b和﹣2a6b n+2是同类项,∴3m=6,n+2=1,即m=2,n=﹣1,则原式=﹣10﹣1=﹣11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.37.已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【分析】将A与B代入A+2B中,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:∵A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,∴A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1时原式=﹣12﹣9×(﹣1)2=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.38.先化简,再求值:已知=−12+2,=34−−1.若3b﹣a的值为﹣8,求A﹣2B的值.【分析】此题需要先去括号,再合并同类项,将原整式化简,然后再将3b﹣a=﹣8代入求解即可.【解答】解:∵A=a−12b+2,B=34−b﹣1,∴A﹣2B=(−12+2)−2(34−−1)=−12+2−32+2+2=−12+32+4把3b﹣a=﹣8代入,原式=−r32+4=−82+4=−4+4=0.【点评】此题考查了整式的混合运算,主要考查了整式的加减法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.39.(2022秋•和平区校级期中)已知A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.【分析】(1)将A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2代入2A﹣3B中,再进行化简即可求解;(2)将a=﹣1,b=2代入(1)中化简的式子即可求解.【解答】解:(1)∵A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2,∴2A﹣3B=2(3b2﹣2a4+5ab)﹣3(4ab+2b2﹣a2)=6b2﹣4a4+10ab﹣12ab﹣6b2+3a2=﹣4a4+3a2﹣2ab;(2)当a=﹣1,b=2时,2A﹣3B=﹣4a4+3a2﹣2ab=﹣4×(﹣1)4+3×(﹣1)2﹣2×(﹣1)×2=﹣4+3+4=3.【点评】本题主要考查了整式的化简,掌握合并同类法则是解题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B ﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=15.当x=2,y=15时,原式=﹣5×2﹣5×15=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.【分析】(1)根据两个非负数的和为0,两个非负数分别为0,再进行化简求值即可求解;(2)根据2A+B的值与x的取值无关,即为含x的式子为0即可求解.【解答】解:(1)由题意得,a﹣3=0,b﹣2=0,∴a=3,b=2,∴A=3x2﹣2x+6,B=6x2﹣4x﹣1,∴2A﹣B=2(3x2﹣2x+6)﹣(6x2﹣4x﹣1)=6x2﹣4x+12﹣6x2+4x+1=13;(2)由题意得,2A+B=2(3x2﹣bx+6)+2ax2﹣4x﹣1,=6x2﹣2bx+12+2ax2﹣4x﹣1=(6+2a)x2﹣(2b+4)x+11∵代数式2A+B的值与x无关,∴6+2a=0,2b+4=0,∴a=﹣3,b=﹣2,∴5a+2b=5×(﹣3)+2×(﹣2)=﹣19.【点评】本题考查了整式的化简求值、非负数的性质,解决本题的关键是与x的值无关即是含x的式子为0.45.(2022秋•韩城市期末)已知关于x的多项式A,B,其中A=mx2+2x﹣1,B=x2﹣nx+2(m,n为有理数).(1)化简2B﹣A;(2)若2B﹣A的结果不含x项和x2项,求m、n的值.【分析】(1)根据整式的减法法则计算即可;(2)根据结果不含x项和x2项可知其系数为0,然后列式计算即可.【解答】解:(1)2B﹣A=2(x2﹣nx+2)﹣(mx2+2x﹣1)=2x2﹣2nx+4﹣mx2﹣2x+1=2x2﹣mx2﹣2nx﹣2x+5;(2)2B﹣A=2x2﹣mx2﹣2nx﹣2x+5=(2﹣m)x2﹣(2n+2)x+5,∵2B﹣A的结果不含x项和x2项,∴2﹣m=0,2n+2=0,解得m=2,n=﹣1.【点评】本题考查了整式的加减运算,关键是注意去括号时符号的变化情况.46.(2022秋•北碚区校级期末)已知A=32B2−2x﹣1,B=3x2−13mx+4,(1)当4A−3B的值与x的取值无关,求m、n的值;(2)在(1)的条件下,求多项式(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)的值.【分析】(1)化简整理整式,令含有x的项的系数为0,求出m、n的值;(2)把m、n的数据代入代数式求值.【解答】解:(1)∵A=32B2−2x﹣1,B=3x2−13mx+4,∴4A−3B=4(32B2−2x﹣1)﹣3(3x2−13mx+4)=6nx2﹣8x﹣4﹣9x2+mx﹣12=(6n﹣9)x2+(m﹣8)x﹣16,∵4A−3B的值与x的取值无关,∴6n﹣9=0,m﹣8=0,∴n=32,m=8;(2)由(1)得n=32,m=8,∴(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)=m2﹣3mn+3n2﹣2nm+mn+4n2=m2﹣4mn+7n2=82﹣4×8×32+7×(32)2=64﹣48+634=16+15.75=31.75.【点评】本题考查了整式的混合运算化简求值,解题的关键是掌握整式的混合运算.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式32−[2B2−4(B−342p]+2B2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以=25.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−12;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b=3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。
人教版 七年级整式的加减--化简求值专项练习(含答案)
整式的加减化简求值专项1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中a=﹣2,b=.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.化简:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)].7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x2﹣xyz)﹣2(x2﹣y2+xyz)﹣(xyz+2y2),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.59.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.76.先化简再求值:3x2y﹣[2xy2﹣4(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣1.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中85.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)﹣4(3a2b﹣ab2),其中a=﹣2,b=.86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.整式化简求值90题参考答案:1.原式=6a2﹣2ab﹣6a2+3ab=ab,当a=﹣2,b=3时,原式=ab=﹣2×3=﹣6.2.原式=6a2b+3a2b﹣5ab2﹣10a2b+6ab2=﹣a2b+ab2把a=﹣2,b=代入上式得:原式=﹣(﹣2)2×+(﹣2)×2=﹣2﹣=﹣2.3.原式=3x2y2﹣5xy2+4xy2﹣3﹣2x2y2=x2y2﹣xy2﹣3∴当x=﹣3,y=2时,原式=454.原式=5ab2+3a2b﹣3a2b+2ab2(4分)=7ab2.(6分)当a=2,b=﹣1时,原式=7×2×(﹣1)2(7分)=14.5.原式=2x2﹣y2+2y2﹣x2﹣3x2﹣6y2=﹣2x2﹣5y2.当x=3,y=﹣2时,原式=﹣18﹣20=﹣38.6.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5+[4x2﹣3x2+x+y]=﹣2x+6y,7.原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=8.原式=6a2﹣6ab﹣12b2﹣6a2+12b2=﹣6ab,当a=﹣,b=﹣8时,原式=﹣6×(﹣)×(﹣8)=﹣24.9.=﹣a2﹣9a+7当a=﹣2时,原式=﹣(﹣2)2﹣9×(﹣2)+7=﹣4+18+7=21.10.∵|x﹣y+1|+(x﹣5)2=0,则x﹣y+1=0,x﹣5=0,解得x=5,y=6.(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1)=﹣3x2﹣4y﹣2x2+5y﹣6+x2﹣5y﹣1=﹣4x2﹣4y﹣7=﹣100﹣24﹣7=﹣13111.(1)原式=a2b+ab2,当a=﹣1,b=2时,原式=(﹣1)2×2+(﹣1)×22,=﹣2;(2)原式=2x2﹣xyz﹣2x2+2y2﹣2xyz﹣xyz﹣2y2,=﹣4xyz,当x=1,y=2,z=﹣3时,原式=﹣4×1×2×(﹣3)=2412.原式=x2y﹣2xy+x2y+xy=2x2y﹣xy,当x=﹣1,y=﹣2时,原式=2×(﹣1)2×(﹣2)﹣(﹣1)×(﹣2)=﹣6.13.∵|x﹣2|+|y+1|=0,∴x﹣2=0,y+1=0,解得x=2,y=﹣1,原式=5xy2﹣2x2y+3xy2﹣4xy2+2x2y,=4xy2,=4×2×1,=814.原式=﹣9y+6x2+3y﹣3x2=3x2﹣6y,由x=﹣2,y=﹣得:原式=12+2=1415.∵|x﹣2a|+(y﹣3)2=0∴x=2a,y=3∵B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y又B﹣2A=a∴﹣7×2a﹣5×3=a∴a=﹣116.(1)4M﹣3N=4(﹣xy2+3x2y﹣1)﹣3(4x2y+2xy2﹣x)=﹣4xy2+12x2y﹣4﹣12x2y﹣6xy2+3x=﹣10xy2+3x﹣4;(2)当x=﹣2,y=1时,4M﹣3N=﹣10×(﹣2)×1+3×(﹣2)﹣4=20﹣6﹣4=10.17.(1)原式=(5x2﹣3x)﹣2(2x﹣3)+7x2=12x2﹣7x+6,当x=﹣2时,原式=12×(﹣2)2﹣7×(﹣2)+6=68;(2)原式=2a﹣[4a﹣7b﹣2+6a+4b],=2a﹣[10a﹣3b﹣2],=﹣8a+3b+2,当a=,b=时,原式=618.原式=5xy+15x2﹣10y﹣3xy﹣15x2+6y=2xy﹣4y,当x=,y=﹣1时,原式=2××(﹣1)﹣4×(﹣1)=3.19.(1)原式=3y﹣1+2y﹣2=5y﹣3;(2)原式=x﹣2x+y2﹣x+y2=﹣3x+y2当x=﹣2,y=时,原式=﹣3×(﹣2)+()2=6+=620.(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2)=5a+2a2﹣3+4a3+a﹣4a3﹣2a2=(5a+a)+(2a2﹣2a2)﹣3+(4a3﹣4a3)=6a﹣3当a=1时原式=6×1﹣3=6﹣3=321.化简代数式得,原式=1+a+b;当a=3时,b=1,代数式的值为5;当a=﹣3时,b=﹣5,代数式的值为﹣7.22.a2﹣(2a2+2ab ﹣b2)+(a2﹣ab ﹣b2)=a2﹣2a2﹣2ab+b2+a2﹣ab ﹣b2=﹣a2﹣3ab.当a=3,b=﹣2时,原式=﹣×32﹣3×3×(﹣2)=﹣3+18=1523.原式=2a2﹣ab+b2其中a=﹣1,b=2.所以2a2﹣ab+b2=8 24.原式=3a2b﹣(2ab2﹣2ab+3a2b+ab)+3ab2=ab2+ab;将a=3,b=﹣代入得,原式=ab2+ab=﹣25. ∵3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项∴a﹣2=3,b﹣1=2∴a=5,b=3.3a2b﹣[2ab2﹣2(a2b+2ab2)]=3a2b﹣[2ab2﹣2a2b﹣4ab2]=3a2b﹣2ab2+2a2b+4ab2=5a2b+2ab2当a=5,b=3时,原式=5×52×3+2×5×32=465.26.﹣8xy2+3xy﹣2(xy2﹣xy)=﹣8xy2+3xy﹣2xy2+2xy=﹣10xy2+5xy.当x=,y=﹣2时,原式=﹣10xy2+5xy=﹣10××(﹣2)2+5××(﹣2)=﹣8﹣2=﹣1027.(1)2A﹣B=2(3x2+3y2﹣5xy)﹣(2xy﹣3y2+4x2)=6x2+6y2﹣10xy﹣2xy+3y2﹣4x2=2x2+9y2﹣12xy;(2)当时,2A﹣B=2x2+9y2﹣12xy=3128. 原式=2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1,当a=﹣2,b=时,∴原式=a2b﹣1=(﹣2)2×﹣1=2﹣1=1.29.2(a2﹣2ab)﹣3(a2+2ab)=2a2﹣4ab﹣3a2﹣6ab=﹣a2﹣10ab当a=﹣1,b=2时,原式=﹣(﹣1)2﹣10×(﹣1)×2=﹣1+20=19.30.(1)A=4(2﹣x2)﹣2x,B=2x2﹣x+3.A﹣2B=4(2﹣x2)﹣2x﹣2(2x2﹣x+3)=﹣8x2+2当x=时,A﹣2B=﹣8×()2+2=;(2)A=4(2﹣x2)﹣2x,B=2x2﹣x+3,即:2B=4x2﹣2x+6,由于A与2B互为相反数,即:A+2B=0,4(2﹣x2)﹣2x+4x2﹣2x+6=04x=14,解得:x=所以,x 的值为:.31.原式=5abc﹣2a2b﹣4ab2+a2b+3abc=8abc﹣a2b﹣4ab2;a=﹣2,b=﹣1,c=3时,原式=8×2×1×3﹣4×(﹣1)﹣4×(﹣2)×1=60.32.2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y=2x2y+2 xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y;把x=﹣2,y=2代入上式,原式=2×(﹣2)﹣2×2=﹣833.原式=﹣2ab+6a2﹣(a2﹣5ab+5a2+6ab)=﹣2ab+6a2﹣a2+5ab﹣5a2﹣6ab=﹣3ab;当a=2,b=﹣3时,原式=﹣3×2×(﹣3)=1834.原式=3a3﹣[a3﹣3b+6a2﹣7a]﹣2a3+6a2+8a﹣2b=3a3﹣a3+3b﹣6a2+7a﹣2a3+6a2+8a﹣2b=15a+b当a=2,b=﹣1时,则原式=15×2﹣1=29.35.原式=5a2b+4b3﹣2ab2+3a3﹣2a3+5ab2﹣3b3﹣2a2b=a3+3a2b+3ab2+b3,当a=﹣2,b=3时,原式=(﹣2)3+3×(﹣2)2×3+3×(﹣2)×32+33=﹣8+36﹣54+27=1.36.=a﹣2ab﹣2b 2a+2ab+b2=(+)a+(﹣2+2)ab+(﹣2+1)b2=2a+0﹣b2=2a﹣b2把a=1,b=﹣2代入上式,得上式=2×1﹣(﹣2)2=2﹣4=﹣2.37.原式=a2﹣3ab﹣2b2﹣a2+2b2(3分)=﹣3ab,当,b=﹣8时,原式=﹣3×()×(﹣8)(7分)=﹣12.38.原式=2x2﹣0.5+3x﹣4x+4x2﹣2+x+2.5=6x2;当x=时,原式=6×=.39.原式=3x3﹣6y2﹣3xy﹣3x3+6y2﹣2xy=﹣5xy,当x=3,y=1时,原式=﹣5×3×1=﹣15.40.原式=3x2y﹣[2xy2﹣(2xy﹣3x2y)+xy]+3xy2=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy+xy2,当x=,y=﹣5时,原式=×(﹣5)+×25=.41.原式=8mn﹣[4m2n﹣6mn2﹣mn]﹣29mn2=8mn﹣4m2n+6mn2+mn﹣29mn2=9mn﹣4m2n﹣23mn2当m=﹣1,n=时原式=9×(﹣1)×﹣4×12×﹣23×(﹣1)×=﹣﹣2+=﹣.42.原式=4ab﹣3b2﹣2b2=4ab﹣5b2,当a=1,b=﹣3时,原式=4×1×(﹣3)﹣5×(﹣3)2=﹣57.43.原式=3x2+4x﹣2x2﹣2x2﹣4x+2﹣x+1=﹣x2﹣x+3,当x=﹣2时,原式=﹣(﹣2)2﹣(﹣2)+3=1 44.(2x2﹣x﹣1)﹣(x2﹣x ﹣)+(3x2﹣3)=2x2﹣x﹣1﹣x2+x++3x2﹣3=4x2﹣4,当x=,原式=1﹣4=﹣3.45.原式=3x2﹣3xy﹣3x2+5xy=2xy,当x=﹣2,y=﹣3时,原式=2×(﹣2)×(﹣3)=12.46.原式=3xy﹣x2y﹣2xy+x2y+2…(1分)=xy+2…(2分)∵xy+1=0,∴xy=﹣1…(3分)∴原式=﹣1+2=1…(447.原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2当x=,y=﹣1时,原式=6x2y﹣6xy2=6xy(x﹣y)=6×(﹣)×(+1)==﹣4.48.原式=x2﹣y ﹣x2﹣y=﹣x2﹣y,当x=﹣3,y=﹣时原式=﹣×(﹣3)2﹣(﹣)=﹣3+=﹣.49.原式=4xy﹣2x2﹣5xy+y2+2x2+6xy)=5xy+y2.当x=﹣2,y=1时,原式=5×(﹣2)+1=﹣9.50.(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3)=8xy﹣3x2﹣5xy﹣3xy+6x2﹣9=3x2﹣9,当时,原式=51.原式=x2﹣[7x﹣2x+﹣2x2]+=x2﹣7x+2x ﹣+2x2+=3x2﹣5x当x=﹣时,原式=3×(﹣)2+5×=+=.52.3a2﹣7a+[3a﹣2(a2﹣2a﹣1)]=3a2﹣7a+3a﹣2a2+4a+2=a2+2,当d=﹣2时,原式=4+4=8.53.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5y+[4x2﹣3x2+x+y]=﹣x2﹣3x+5y+4x2﹣3x2+x+y=﹣2x+6y.当x=,y=时,原式=﹣2×+6×=154.原式=x﹣x+y2﹣x+y2=﹣2x+y2,当x=2,y=时,原式=﹣2×2+()2=﹣4+=﹣.55.原式=x2y﹣3xy2﹣5x2y+4xy2=﹣x2y+xy2,当x=2,y=﹣1时,原式=﹣×22×(﹣1)+2×(﹣1)2=1656.=a3﹣2b3+2ab2﹣a2b﹣2ab2+2b3=a3﹣a2b,把a=1,b=﹣代入得:原式=13﹣12×=1+=.57.原式=3x2﹣3xy﹣4x2+3xy+1=﹣x2+1,当x=2,y=﹣3时,原式=﹣22+1=﹣3.58.原式=9x+6x2﹣3x+2x2﹣6x+6=8x2+6,当x=﹣时,原式=8×(﹣)2+6=2+6=8.59.原式=2x2y﹣2xy2﹣2﹣2x2y+xy2+y=﹣xy2+y﹣2,当x=2,y=﹣1时,原式=﹣2×(﹣1)2﹣1﹣2=﹣2﹣1﹣2=﹣5.60.原式=2m2n+2mn2﹣2m2n+2﹣3+mn=2mn2+mn﹣1,当m=﹣2,n=时,原式=2×(﹣2)×()2+(﹣2)×﹣1=﹣361.3x﹣5(x﹣2xy2)+8(x﹣3xy2)=3x﹣5x+10xy2+8x ﹣24xy2=6x﹣14xy2,当x=4,y=﹣时,原式=6×4﹣14×4×(﹣)2=24﹣126=﹣102.62.(2x2﹣x+1)﹣4(x﹣x2+)=2x2﹣x+1﹣4x+4x2﹣2=6x2﹣x﹣1,当x=﹣2时,原式=6×(﹣2)2﹣×(﹣2)﹣1=24+9﹣1=3263.原式=﹣5x2y﹣3x2y+2xy2﹣2x2y=2xy2,当x=2,y=﹣1时,原式=2×2×(﹣1)2=4.故答案为464.原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2008时,原式=﹣()2+×=﹣+=.65.原式=5a2﹣3b2﹣a2+2ab+b2﹣5a2﹣2ab﹣3b2=﹣a2﹣5b2,当a=1,b=﹣时,原式=﹣1﹣5×=﹣66.原式=2x2+3x+5+[4x2﹣5x2+x﹣1]=2x2+3x+5+4x2﹣5x2+x﹣1=2x2+4x2﹣5x2+3x+x+5﹣1=x2+4x+4,∵x=3,∴x2+4x+4=9+12+4=25.67.原式=x2﹣xy+y2﹣x2+xy﹣y2=﹣x2﹣xy,当x=﹣2,y=时,原式=﹣2+=﹣1.68.原式=2a2b+4b3﹣2ab2+3a3﹣2a2b+3ab2﹣3a3﹣4b3=ab2,当a=﹣3,b=2时,原式=﹣3×22=﹣12.69.原式=2a2b,2ab3﹣3a2b+9﹣2ab3﹣1=2a2b﹣3a2b+2ab3﹣2ab3+9﹣1=﹣a2b+8∵a=2,b=﹣2,∴﹣a2b+8=8+8=1670.∵,∴a+=0,3b+2=0,∴a=﹣,b=﹣,=a ﹣b+a+b ﹣a+b+a+b ﹣a+ b=(+﹣+﹣)a+(﹣++++)b=a+ b=×(﹣)+×(﹣)=﹣.71.∵4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)]=4xy﹣(2x2+2xy﹣4y2﹣3x2+6xy﹣3y2)=x2﹣4xy+7y2,∴当x=﹣,y=时,原式=x2﹣4xy+7y2=(﹣)2﹣4×(﹣)×+7×()2=+1+=372.原式=2x2﹣x2+3xy+2y2﹣x2+xy﹣2y2,=(2﹣1﹣1)x2+(3+1)xy+(2﹣2)y2,=4xy,当x=,y=3时,原式=4××3=673.原式=2x2﹣5xy﹣3x2+3y2+x2﹣3y2=(2﹣3+1)x2+(3﹣3)y2﹣5xy=﹣5xy,当x=﹣3,y=时,原式=(﹣5)×(﹣3)×=574.原式=5a2b+3b2﹣6a2b﹣2ab2+4a2b﹣3b2=3a2b﹣2ab2,当a=﹣2,b=1时,原式=12+4=16.75.原式=5a﹣a2﹣5a2+3a+6a2﹣12a=8a﹣12,当a=﹣时,原式=﹣2﹣12=﹣14.76.原式=3x2y﹣[2xy2﹣2xy+3x2y+xy]+3xy2=3x2y﹣2xy2+xy﹣3x2y+3xy2=xy2+xy,把x=3,y=﹣1代入得:原式=xy2+xy=077.2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1,=2a2b+2ab2﹣3a2b+9﹣2ab2﹣1,=﹣a2b+8,当a=﹣2,b=2时,原式=﹣(﹣2)2×2+8=0.78.原式=﹣3x+5y2﹣+=﹣4x+y2,当x=3,y=时,原式=(﹣4)×3+×()2=0.79.∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.80.原式=5x2﹣3y2﹣5x2+2xy﹣7xy+4y2=﹣5xy+y2,当x=﹣1,y=﹣时,原式=﹣5×(﹣1)×(﹣)+(﹣)2=﹣+=﹣.81.原式==﹣3x+y2,由(x﹣2)2+|y+3|=0,知x﹣2=0,y+3=0,解得x=2,y=﹣3,代入化简结果得,原式=﹣3×2+(﹣3)2=382.原式=x2﹣6xy﹣2y2﹣2x2+7xy+2y2=﹣x2+xy,当x=4,y=﹣1时,原式=﹣42+4×(﹣1)=﹣2083.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.84.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.85.原式=15a2b﹣5ab2﹣ab2﹣3a2b﹣12a2b+4ab2=﹣2ab2,当a=﹣2,b=时,原式=﹣2×(﹣2)×=186.原式=a2﹣2ab﹣b2+b2﹣a2=﹣2ab,当a=﹣,b=2012时,原式=﹣2×(﹣)×2012=2012.87.原式=2x﹣y﹣6x+y=﹣4x,当x=﹣,y=2010时,原式=﹣4×(﹣)=1.88.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.89.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.90.原式=4xy2﹣y2﹣4xy2﹣y2+x2y ﹣y2=﹣3y2+x2y.当x=,y=﹣时,原式=﹣3×(﹣)2+()2×(﹣)==.。
整式的化简求值(整式的乘除)-整体代入法专题练习(解析版)
整式的化简求值(整式的乘除)-整体代入法专题练习一、选择题1、如果代数式3x2-4x的值为6,那么6x2-8x-9的值为().A. 12B. 3C. 32D. -3答案:B解答:6x2-8x-9=2(3x2-4x)-9=2×6-9=3.2、已知a2-3=2a,那么代数式(a-2)2+2(a+1)的值为().A. -9B. -1C. 1D. 9答案:D解答:原式=a2-4a+4+2a+2=a2-2a+6∵a2-3=2a,∴a2-2a=3,∴原式=3+6=9.选D.3、若代数式x2-13x的值为6,则3x2-x+4的值为().A. 22B. 10C. 7D. 无法确定答案:A解答:∵x2-13x=6,∴3x2-x+4=3(x2-13x)+4=3×6+4=18+4=22.选A.4、如果3a2+5a-1=0,那么代数式5a(3a+2)-(3a+2)(3a-2)的值是().A. 6B. 2C. -2D. -6答案:A解答:5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2·1+4=6.5、已知a-b=1,则代数式-2a+2b-3的值是().A. -1B. 1C. -5D. 5答案:C解答:-2a+2b-3=-2(a-b)-3=-2×1-3=-5,选C.6、已知代数式3x2-4x的值为9,则6x2-8x-6的值为().A. 3B. 24C. 18D. 12答案:D解答:∵3x2-4x=9,∴6x2-8x=18,∴6x2-8x-6=12,选D.7、如果a2+4a-4=0,那么代数式(a-2)2+4(2a-3)+1的值为().A. 13B. -11C. 3D. -3答案:D解答:由a2+4a-4=0可得:a2+4a=4,原式=a2-4a+4+8a-12+1=a2+4a-7=4-7=-3.选D.8、已知2x-3y+1=0且m-6x+9y=4,则m的值为().A. 7B. 3C. 1D. 5答案:C解答:∵2x-3y+1=0,∴2x-3y=-1,又∵m-6x+9y=4,∴m-3(2x-3y)=4,∴m+3=4,∴m=1.9、已知a+b=3,ab=1,则a2b+ab2的值为().A. 3B. 2C. -3D. 1答案:A解答:a2b+ab2=ab(a+b)=1×3=3.选A.10、如果x2+x=3,那么代数式(x+1)(x-1)+x(x+2)的值是().A. 2B. 3C. 5D. 6答案:C解答:原式=x2-1+x2+2x=2x2+2x-1.∵x2+x=3,∴2x2+2x-1=2(x2+x)-1=2×3-1=5.选C.11、若a+b=1,则a2-b2+2b的值为().A. 4B. 3C. 1D. 0答案:C解答:∵a+b=1,∴a2-b2+2b=(a+b)(a-b)+2b=1×(a-b)+2b=a+b=1.12、如果a2-2a-1=0,那么代数式(a-3)(a+1)的值是().A. 2B. -2C. 4D. -4答案:B解答:(a-3)(a+1)=a2-2a-3,∵a2-2a=1,∴原式=-2.选B.13、若-a2b=2,则-ab(a5b2-a3b+2a)的值为().A. 0B. 8C. 12D. 16答案:D解答:-ab(a5b2-a3b+2a)=-a6b3+a4b2-2a2b=-(a2b)3+(a2b)2-2a2b,∵-a2b=2,∴a2b=-2.∴原式=-(-2)3+(-2)2-2×(-2)=8+4+4=16.14、若x+y=1,x3+y3=13,则x5+y5的值是().A. 1181B.3181C.11243D.31243答案:A解答:由题目条件易得(x+y)2=1,x2-xy+y2=13,由此可得xy=29,x2+y2=59,∴x5+y5=(x2+y2)(x3+y3)-x2y2(x+y)=542781=1181.15、已知代数式x+2y的值是3,则代数式2x+4y+1的值是().A. 1B. 4C. 7D. 不能确定答案:C解答:∵x+2y=3,∴2x+4y+1=2(x+2y)+1,=2×3+1,=6+1,=7.选C.二、填空题16、已知a-b=2,则多项式3a-3b-2的值是______.答案:4解答:3a-3b-2=3(a-b)-2=4.17、当a=3,a-b=-1时,a2-ab的值是______.答案:-3解答:a2-ab=a(a-b)=-a=-3.18、已知t满足方程14+5(t-12017)=12,则3+20(12017-t)的值为______.答案:2解答:∵t满足方程14+5(t-12017)=12,∴t-12017=120,∴12017-t=-120,∴3+20(12017-t)=3+20×(-120)=3+(-1)=2.19、已知x,则代数式x2-4x+3的值是______.答案:4解答:∵x,∴x∴x2-4x+3=(x-2)2-1=5-1=4.20、如果x-y,那么代数式(x+2)2-4x+y(y-2x)的值是______.答案:6解答:(x+2)2-4x+y(y-2x)=x2+4+4x-4x+y2-2xy=x2+y2-2xy+4=(x-y)2+4=2+4=6.21、若代数式2x2-4x-5的值为7,则x2-2x-2的值为______.答案:4解答:∵2x2-4x-5=7,∴2x2-4x=12,∴x2-2x=6,∴x2-2x-2=6-2=4.22、若3x3-kx2+4被3x-1除后余3,则k的值为______.答案:10解答:3x3-kx2+4-3=3x3-kx2+1,令3x3-kx2+1=0,故x=13为该方程的解,代入解得,k=10.23、已知x2+2x=3,则代数式(x+1)2-(x+2)(x-2)+x2的值为______.答案:8解答:原式=x2+2x+1-(x2-4)+x2=x2+2x+5=3+5=8.三、解答题24、已知x2-2x-7=0,求(x-2)2+(x+3)(x-3)的值.答案:9.解答:原式=x2-4x+4+x2-9=2x2-4x-5.∵x2-2x-7=0,∴x2-2x=7.∴原式=2(x2-2x)-5=2×7-5=9.25、已知x2+4x-5=0,求代数式2(x+1)(x-1)-(x-2)2的值.答案:-1.解答:原式=2(x2-1)-(x2-4x+4)=2x2-2-x2+4x-4=x2+4x-6.∵x2+4x-5=0,∴x2+4x=5.∴原式=x2+4x-6=-1.26、若实数a满足a2-2a-1=0,计算4(a+1)(a-1)-2a(a+2)的值.答案:-2.解答:原式=4a2-4-2a2-4a=2a2-4a-4.∵a2-2a=1,∴原式=2-4=-2.27、已知x2-2x=3,求2x(x+2)-8x+7的值.答案:13.解答:2x(x+2)-8x+7=2x2+4x-8x+7=2x2-4x+7=2(x2-2x)+7,∵x2-2x=3,∴原式=2×3+7=13.28、化简求值:已知a2+7a+6=0,求(3a-2)(a-3)-(2a-1)2的值.答案:11.解答:(3a-2)(a-3)-(2a-1)2=3a2-9a-2a+6-(4a2-4a+1)=3a2-9a-2a+6-4a2+4a-1=-a2-7a+5.由a2+7a+6=0得,a2+7a=-6把a2+7a=-6代入,原式=-(a2+7a)+5=6+5=11.29、已知m2-5m-14=0,求(m-1)(2m-1)-(m+1)2+1的值.答案:原代数式的值为15.解答:(m-1)(2m-1)-(m+1)2+1=2m2-m-2m+1-(m2+2m+1)+1=2m2-m-2m+1-m2-2m-1+1=m2-5m+1.当m2-5m=14时,原式=(m2-5m)+1=14+1=15.∴原代数式的值为15.30、已知xy=-3,满足x+y=2,求代数式x2y+xy2的值.答案:-6.解答:∵xy=-3,x+y=2,∴x2y+xy2=xy(x+y)=-3×2=-6.31、关于x的三次多项式a(x4-x3+7x)+b(38x3-x)+x4-5,当x取2时多项式的值为-8,求当x取-2时该多项式的值.答案:-2.解答:原式=(a+1)x4+(38b-a)x3+(7a-b)x-5,原式是关于x的三次多项式,即a+1=0,∴a=-1.原式=(38b+1)x3+(7-b)x-5当x=2时,原式=(38b+1)×8+2(7-b)-5=-8,(38b+1)×8+2(7-b)=-3,当x=-2时,原式=(38b+1)×(-8)+(7-b)×(-2)-5=3-5=-2.。
部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案
专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可.【详解】解:原式=222223263a b ab ab a b ab --++,=29a b .当2a =-,3b =-时,29(2)(3)108´-´-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn éù----+ëû,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-´´-+´-+´++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解.【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2)=2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2=3x 2+y 2当x =﹣1,y =2时,原式=()223127´-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键.13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++;(2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-.【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案.【详解】解:(1)()()54392a a b a b --+++54392a a b a b=---++b =-;(2)()()323232242x y x y x---+323232442x y x y x =--+-3x =-,当3x =时,原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则.14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值.15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3.【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解.【详解】解∶ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+ 2222126312a b ab ab a b =-+-23ab =-当a =2,b =﹣3时,原式()232354=-´´-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-´´-+´´-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1.(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy æöæö--+--ç÷ç÷,其中2x =-,14y =.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y éù+---+ëû其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可.【详解】原式=222222321y x x y y éù+-+-+ëû=22321y y y +-+=221y y ++原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项.21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-.【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可.【详解】解:原式322324232x y x y x y x =--+-+-2223y x y=--+当3x =-,2y =-时,原式()()()22223328=-´--´-+´-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab=-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+´-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可.【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2=﹣9a 2+8a +4,当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4=﹣9×4﹣16+4=﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x æö+---+ç÷,其中4x =-,3y =.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|;(2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=.当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b æö-+-+ç÷的值.。
整式的化简求值
整式的化简求值1.先化简,再求值:3(4a 2+2a )﹣(2a 2+3a ﹣5),其中a =﹣2.2.先化简,再求值:4xy ﹣(2x 2+5xy ﹣y 2)+2(x 2+3xy ),其中x =1,y =﹣2.3.先化简后求值:,其中x =﹣2,y =﹣32.4.先化简,再求值:2(x 2﹣xy )﹣3(x 2﹣2xy ),其中x =1,y =﹣1.5.先化简,再求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中x =﹣1,y =1.6.先化简,再求值:﹣3(x 2y ﹣xy 2)﹣(﹣3x 2y +2xy 2)+xy ,其中x =2,y =﹣21.7.先化简,再求值:4xy ﹣(2x 2+5xy ﹣y 2)+2(x 2+3xy ),其中x =1,y =﹣2.8.先化简,再求值:5x 2﹣2(3y 2+6xy )+(2y 2﹣5x 2),其中x =,y =21-.9.先化简再求值:21xy ﹣2(xy +41y 2)+(xy ﹣21y 2),其中x =﹣3,y =.10.先化简,再求值:(﹣x 2+3xy ﹣2y )﹣2(﹣21x 2+4xy ﹣23y 2),其中x =3,y =﹣211.先化简,再求值:2(ab ﹣3a 2)+[5a 2﹣(3ab ﹣a 2)],其中a =,b =1.12.先化简,再求值:3(a 2+ab )﹣2(a 2+2ab ),其中a =﹣2,b =3.13.先化简,再求值:3(x 2﹣2xy )﹣[3x 2﹣2y +2(xy +y )],其中x =﹣4,y =2.14.先化简,再求值:6(x 2y +32xy 2﹣x )﹣23(4x 2y +2xy 2+8x ),其中x =,y =1.15.先化简,再求值:2(x ﹣31y 2)﹣(﹣23x +31y 2)﹣x ,其中x =﹣1,y =23.16.先化简再求值:,其中x =﹣2,y =32.17.化简求值:3(x 2y ﹣31xy 2)﹣(xy 2﹣x 2y )﹣2x 2y ,其中,x =21,y =﹣2.18.化简求值:5(3x 2y ﹣xy 2)﹣(xy 2+3x 2y ),其中x =1,y =﹣2119.化简下式,求值:4a 2b ﹣2(a 2b ﹣3ab 2)+(﹣4ab 2﹣2a 2b ).其中a =﹣3.b =﹣2.20.先化简,再求值:4x 2﹣2xy +y 2﹣2(x 2﹣xy +5y 2),其中x =3,y =﹣1.21.先化简,再求值:,其中x =﹣1,y =2.22.先化简下式,再求值:5(3ba 2﹣b 2a )﹣(ab 2+3a 2b ),其中a =,b =.23.先化简,再求值3(x 2y ﹣xy 2)﹣2(﹣23xy 2﹣2+x 2y )﹣3其中x =﹣,y =﹣2.24.先化简,再求值:3(2a 2b ﹣ab 2)﹣3(﹣ab 2+3a 2b ),其中a =﹣1,b =2.25.先化简,再求值:3x 2+(2xy ﹣3y 2)﹣2(x 2+xy ﹣y 2),其中x =﹣1,y =2.26.先化简,再求值:2x 2﹣(4x 2﹣3xy +y 2)+2(x 2﹣3xy +2y 2),其中x =31,y =﹣2.27.先化简,再求值:2(3x 2y +xy 2)﹣3(2x 2y ﹣xy )﹣2xy 2+1,其中x =31,y =1.28.先化简,再求值:2(4x 2﹣3xy ﹣6y 2)﹣3(2x 2﹣3xy ﹣4y 2),其中x =﹣2,y =1.29.先化简,再求值﹣3(2x 2y ﹣xy 2)﹣(xy 2+x 2y ),其中x =2,y =﹣21.30.先化简后求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中(x +2)2+|y-1=031.先化简再求值:3x 2y ﹣[2x 2y ﹣3(2xy ﹣x 2y )﹣xy ],其中x =21,y =2.32.先化简,再求值:(7x 2﹣6xy ﹣1)﹣2(﹣3x 3﹣4xy )﹣5,其中x =﹣2,y =﹣21.33.化简求值:2(x 2y ﹣xy 2﹣1)﹣3(2x 2y ﹣3xy 2﹣3),其中x =﹣21,y =1.34.先化简,再求值:2(x 2+3xy )﹣(x 2﹣xy ),其中x =2,y =3.35.先化简,再求值:(3a 2b ﹣ab 2)﹣2(ab 2+3a 2b ),其中a =﹣21,b =2.36.先化简,再求值:4(3a 2b ﹣ab 2)﹣3(﹣ab 2+3a 2b ).其中a =﹣1,b =﹣2.37.先化简,再求值:2(2xy 2﹣x 2y )﹣(x 2y +6xy 2)+3x 2y ,其中x =2,y =﹣1.38.已知:A =﹣4x 2+2x ﹣8,B =121 x ,求41A ﹣B 的值,其中x =21;39.先化简,再求值:3(xy ﹣35x 3)﹣2(1﹣3x 3)﹣2xy ,其中,x =y =﹣2.40.先化简,再求值:,其中x =5,y =﹣3.41.先化简,再求值:x 2+(2xy ﹣y 2)﹣2(x 2+xy ﹣2y 2),其中x =﹣1,y =2.42.先化简,再求值:(2x 2y ﹣4xy 2)﹣2(﹣xy 2+x 2y );其中x =﹣1,y =2.43.先化简,再求值:3(x ﹣)﹣(6x ﹣2y 2),其中x =2,y =﹣32.44.先化简,再求值:6y 3+4(x 3﹣2xy )﹣2(3y 3﹣xy ),其中x =﹣2,y =3.45.先化简,再求值:2(x 3﹣2y )﹣(x ﹣2y )﹣(x ﹣3y +2x 3),其中x =﹣3,y =﹣2.46.已知代数式A =x 2+3xy +x ﹣12,B =2x 2﹣xy +4y ﹣1(1)当x =y =﹣2时,求2A ﹣B 的值;(2)若2A ﹣B 的值与y 的取值无关,求x 的值.47.已知A =4x 2y ﹣5xy 2,B =3x 2y ﹣4y 2,当x =﹣2,y =1时,求2A ﹣B 的值.48.已知A =4x 2y ﹣5xy 2,B =3x 2y ﹣4xy 2,当x =﹣2,y =1时,求2A ﹣B 的值.49.已知A =x 2﹣3xy +y 2,B =2x 2﹣2y 2(1)求2A ﹣B ;(2)当x =3,y =﹣1时,求2A ﹣B 的值.50.已知:A =2x 2+3xy ﹣5x +1,B =x 2-xy +2.求A -2B .。
整式的加减--化简求值专项练习90题(有答案有过程)
整式的加减化简求值专项练习90题(有答案)1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.先化简,再求值:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],其中.7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.9.先化简,再求值,其中a=﹣2.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x3﹣xyz)﹣2(x3﹣y3+xyz)﹣(xyz+2y3),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1)2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.59.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.。
初一上册整式化简求值60题(含答案)
整式化简求值:先化简再求值1. (3a28a)(2a313a 22a) 2(a33) ,其中 a42. ( x 25 4x 3)2(x35x 4) ,其中 x23.求1 x 2( x 1 y 2) ( 3 x 1 y 2) 的值,其中 x 2 y22 3 2 334.1 a 2b 3 a 2b 3(abc 1a 2c) 4a 2c 3abc 其中 a1b3 c 122 31 22 [bca 2ab(2的5.化简求值:若 a=﹣ 3,b=4,c=﹣,求 7a bc 8a cb2a bc )]7值6.先化简后求值:3x 2y [2 xy 2(xy3x 2y) xy] ,其中 x=3 , y=﹣ 1237.8.化简求代数式: (2 a 25a) 2(3a 5 a 2) 的值,其中 a=﹣ 1.9.先化简,再求值:5(a 2b ab 2) ( ab23a 2b), 其中 a1,b 123 10.求代数式的值:2(3xy 4x 2 ) 3(xy 4x 2),其中 x 3, y1311.12.先化简,再求值: 2( 3a ﹣ 1)﹣ 3( 2﹣ 5a ),其中 a=﹣ 2.13.先化简,再求值:2( xy 1 x 2 ) [ x 2 3(xy y 2) 2xy] ,其中 x=2 , y=﹣ 1.214.先化简,再求值: 2x(3x24x 1) 3x 2(2 x3) 1 ,其中 x= ﹣ 5.15.先化简,再求值: 3 x 2﹣ [7x ﹣( 4x ﹣ 3)﹣ 2 x 2] ;其中 x=2.16.先化简,再求值: (﹣ x2+5x+4 )+( 5x ﹣ 4+2 x2),其中 x= ﹣ 2.17.先化简,再求值: 3( x ﹣ 1)﹣( x ﹣ 5),其中 x=2. 18.先化简,再求值: 3( 2x+1 ) +2( 3﹣ x ),其中 x=﹣ 1.19.先化简,再求值: ( 3 a 2﹣ ab+7)﹣( 5ab ﹣ 4 a 2+7),其中 a=2, b= 1 .1 (( 1x 1),其中 x1320.化简求值: 4x 2 2 x 8)4 221 21.先化简,再求值: ( 1)( 5 a2+2a+1)﹣ 4( 3﹣ 8a+2 a 2)+( 3 a 2﹣ a ),其中 a2(3x23322.先化简再求值:2x23) ( 5x23), 其中x3523.先化简再求值: 2( x 2y+x y 2 )﹣ 2( x 2 y ﹣ x )﹣ 2x y 2﹣ 2y 的值,其中 x= ﹣ 2,y=2.24.先化简 ,再求值 .4xy ﹣[2( x 2 +xy ﹣ 2 y 2 )﹣ 3( x 2﹣ 2xy+y2 )],其中 x1, y12225.先化简 ,再求值: 2 x 2 +(﹣ x 2 +3xy+2 y 2 )﹣( x 2 ﹣xy+2 y2),其中 x= 1,y=3 .1226.先化简后求值: 5( 3 x 2 y ﹣ x y 2 )﹣( x y 2 +3 x 2y ),其中 x=- ,y=2 .3(x 221227.先化简,再求值:x22x x) ,其中 x=-3 228.( 5 x 2 ﹣ 3 y 2)﹣ 3( x 2﹣ y 2)﹣(﹣ y 2),其中 x=5 , y=﹣ 3.29.先化简再求值: ( 2 x 2﹣ 5xy )﹣ 3( x 2﹣ y 2) + x 2﹣3 y 2,其中 x= ﹣ 3, y1330.先化简再求值: (﹣ x 2+5x )﹣( x ﹣ 3)﹣ 4x ,其中 x= ﹣ 131.先化简,再求值: 2x22( x2y) 3( y 2x),其中, x3, y 232. 3( x22xy) [3 x22 y 2( xyy)] ,其中 x1 , y 3 。
小专题(四) 整式的化简求值
3.(邵阳县期末)先化简,再求值:(3x2-xy+7)-(5xy-4x2+ 7),其中 x,y 满足(x-2)2+|3y-1|=0.
解:原式=3x2-xy+7-5xy+4x2-7=7x2-6xy. 由题意知 x-2=0,3y-1=0,所以 x=2,y=13. 则原式=28-4=24.
4.已知:x-2y-2=0. (1)x-2y=2 ; (2)求+(5+4x-6y)+2(y-x+1)的值. 解:因为 x-2y=2, 所以原式=5+4x-6y+2y-2x+2 =7+2x-4y =7+2(x-2y) =7+2×2 =11.
(2)14(-4x2+2x-8)-(12x-1),其中 x=12; 解:原式=-x2+12x-2-12x+1 =-x2-1. 当 x=12时,原式=-14-1=-54.
(3)(张家界慈利县期中)先化简,再求值:2(x2y+3xy)-3(x2y- 1)-2xy-2,其中 x=-2,y=2;
解:原式=2x2y+6xy-3x2y+3-2xy-2 =-x2y+4xy+1. 当 x=-2,y=2 时, 原式=-(-2)2×2+4×(-2)×2+1 =-23.
(4)2(a2b+ab2)-2(a2b-1)-2ab2-2,其中 a=-2,b=2.
解:原式=2a2b+2ab2-2a2b+2-2ab2-2 =0. 当 a=-2,b=2 时,原式=0.
2.已知 a2+2b2=5,求(3a2-2ab+b2)-(a2-2ab-3b2)的值;
解:原式=3a2-2ab+b2-a2+2ab+3b2 =2a2+4b2. 当 a2+2b2=5 时, 原式=2(a2+2b2)=10.
5.已知代数式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字 母 x 的取值无关,求代数式12a2-2b+4ab 的值.
整式化简求值专项训练
整式化简求值专项训练1.先化简,再求值:$(4a^2-3a)-2(a^2+a^{-1})-(-2+a^2-4a)$,其中$a=-2$。
化简得:$4a^2-3a-2a^2-2a^{-1}+2-a^2+4a$,合并同类项得:$a^2+1$。
代入$a=-2$,得到答案为$5$。
2.先化简,再求值:$7x+8-6$,其中$x=$。
化简得:$7x+2$。
代入$x=$,得到答案为$2$。
3.先化简,再求值:$-a^2b+(3ab^2-a^2b)-2(2ab^2-a^2b)$,其中$a=-1$,$b=-2$。
化简得:$-3a^2b+4ab^2$。
代入$a=-1$,$b=-2$,得到答案为$24$。
4.求代数式$3(x^2-2xy)-[3x^2-2y+2(xy+y)]$的值。
化简得:$x^2-5xy-2y$。
代入$x=-2$,得到答案为$18$。
5.先化简,再求值:$2(a^2+3ab-4.5)-(a^2-6ab-9)$,其中$a=-5$,$b=$。
化简得:$11ab-13.5$。
代入$a=-5$,$b=$,得到答案为$67.5$。
6.先化简,再求值:$2(a^2+3ab-4.5)-(3a^2-4ab-9)$,其中$a=3$,$b=$。
化简得:$7ab-0.5$。
代入$a=3$,$b=$,得到答案为$20.5$。
7.求$3x^2+x+3(x^2-x)-(6x^2+x)$的值,其中$x=-6$。
化简得:$-9x^2+2x$。
代入$x=-6$,得到答案为$330$。
8.已知$A=2a^2-a$,$B=-5a+1$。
1)化简:$3A-2B+2$。
化简得:$6a^2+5a+1$。
2)求$3A-2B+2$的值。
代入$A$和$B$,得到答案为$-33$。
9.先化简,再求值:$2(a^2+3ab-4.5)-(a^2-6ab-9)$,其中$a=-5$,$b=$。
化简得:$11ab-13.5$。
代入$a=-5$,$b=$,得到答案为$67.5$。
整式的化简求值(五大题型50题)(原卷版)
(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x2y−[xy2+3(x2y−13xy2)],其中x=12,y=2.2.先化简,再求值:4x2﹣2xy+y2﹣(x2﹣xy+y2),其中x=﹣1,y=−1 2.3.(2022秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.4.(2022秋•邹城市校级期末)先化简,再求值:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2),其中x=﹣1,y=2.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.9.先化简,再求值:2(ab −32a 2+a ﹣b 2)﹣3(a ﹣a 2+23ab ),其中a =5,b =﹣2.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.12.(2022秋•绿园区期末)先化简,再求值:12m −(2m −23n 2)+(−32m +13n 2),其中m =−14,n =−12.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14xy2)−2(xy2−xy),其中x=12,y=﹣2.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1=.(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1=;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.28.(2022秋•西安期中)化简求值:−12(5xy −2x 2+3y 2)+3(−12xy +23x 2+y 26),其中x 、y 满足 (x +1)2+|y ﹣2|=0.29.(2022秋•公安县期中)先化简,再求值:4a 2b ﹣[﹣2ab 2﹣2(ab ﹣ab 2)+a 2b ]﹣3ab ,其中a =12,b =﹣4.30.(2022秋•海林市期末)先化简再求值:12a +2(a +3ab −13b 2)−3(32a +2ab −13b 2),其中a 、b 满足|a ﹣2|+(b +3)2=0.31.(2022秋•万州区期末)化简求32a 2b ﹣2(ab 2+1)−12(3a 2b ﹣ab 2+4)的值,其中2(a ﹣3)2022+|b +23|=0.32.(2022秋•偃师市期末)已知:(x−2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x2y−2xy2)−[(−x2y2+4x2y)−13(6xy2−3x2y2)],其中x是最大的负整数,y是绝对值最小的正整数.34.(2022秋•越秀区期末)已知代数式M=(2a2+ab﹣4)﹣2(2ab+a2+1).(1)化简M;(2)若a,b满足等式(a﹣2)2+|b+3|=0,求M的值.35.(2022秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.36.(2022秋•江都区期末)已知代数式A =x 2+xy ﹣12,B =2x 2﹣2xy ﹣1.当x =﹣1,y =﹣2时,求2A ﹣B 的值.37.已知:A =x −12y +2,B =x ﹣y ﹣1.(1)化简A ﹣2B ;(2)若3y ﹣2x 的值为2,求A ﹣2B 的值.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =xy 2−2(32xy 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.44.(2021秋•沂源县期末)已知多项式x2+ax﹣y+b与bx2﹣3x+6y﹣3差的值与字母x的取值无关,求代数式3(a2﹣2ab﹣b2)﹣4(a2+ab+b2)的值.45.(2022秋•大竹县校级期末)已知代数式x2+ax﹣(2bx2﹣3x+5y+1)﹣y+6的值与字母x的取值无关,求1 3a3−2b2−14a3+3b2的值.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2ab2−4(ab−34a2b)]+2ab2的值.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.。
整式的化简及求值
整式的化简及求值姓名:类型1 整式的化简 1.计算:(1)(-2a 2)·(3ab 2-5ab 3)+8a 3b 2;(2)(3x -1)(2x +1);(3) (2x +5y)(3x -2y)-2x(x -3y);(4)(x -1)(x 2+x +1).2.计算:(1)21x 2y 4÷3x 2y 3;(2)(8x 3y 3z)÷(-2xy 2);(3)a 2n +2b 3c ÷2a n b 2;(4)-9x 6÷13x 2÷(-x 2).3.计算:(1)(-2a 2b 3)·(-ab)2÷4a 3b 5;(2)(-5a 2b 4c 2)2÷(-ab 2c)3.4.计算:(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ;(2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2.5.计算:(1)(-76a 3b)·65abc ;(2)(-x)5÷(-x)-2÷(-x)3;(3)6mn 2·(2-13mn 4)+(-12mn 3)2;(4)5x(x2+2x+1)-(2x+3)(x-5).类型2利用直接代入进行化简求值6.先化简,再求值:(1)(-12ab2)·(14a2b4)-(-a3b2)·(-b2)2,其中a=-14,b=4;(2)(a+b)(a-2b)-(a+2b)(a-b),其中a=-2,b=23;(3)(-13xy)2[xy(2x-y)-2x(xy-y2)],其中x=-32,y=-2;(4)(2a+3b)(3a-2b)-5a(b+1)-6a2,其中a=-12,b=2.类型3利用条件间接代入进行化简求值7.已知|2a+3b-7|+(a-9b+7)2=0,试求(14a2-12ab+b2)(12a+b)的值.类型4利用整体代入进行化简求值8.(随州中考)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-12.9.若x2+4x-4=0,求3(x-2)2-6(x+1)(x-1)的值.答案类型1 整式的化简 1.计算:(1)原式=-6a 3b 2+10a 3b 3+8a 3b 2=2a 3b 2+10a 3b 3. (2)原式=6x 2+3x -2x -1=6x 2+x -1.(3)原式=6x 2+11xy -10y 2-2x 2+6xy =4x 2+17xy -10y 2. (4)原式=x 3+x 2+x -x 2-x -1=x 3-1. 2.计算:(1)原式=(21÷3)·x 2-2·y 4-3=7y.(2)原式=[8÷(-2)]·(x 3÷x)·(y 3÷y 2)·z =-4x 2yz. (3)原式=(1÷2)·(a 2n +2÷a n )·(b 3÷b 2)·c =12a n +2bc.(4)原式=[-9÷13÷(-1)]·(x 6÷x 2÷x 2)=27x 2.3.计算:(1)原式=(-2a 2b 3)·(a 2b 2)÷4a 3b 5 =(-2a 4b 5)÷4a 3b 5 =-12a.(2)原式=25a 4b 8c 4÷(-a 3b 6c 3) =-25ab 2c. 4.计算:(1)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y =(2x 3y 2-2x 2y)÷x 2y =2xy -2.(2)原式=(23a 4b 7-19a 2b 6)÷136a 2b 6=23a 4b 7÷136a 2b 6-19a 2b 6÷136a 2b 6 =24a 2b -4. 5.计算:(1)原式=-75a 3+1b 1+1c=-75a 4b 2c.(2)原式=(-x)5-(-2)-3=(-x)4 =x 4.(3)原式=12mn 2-2m 2n 6+14m 2n 6=12mn 2-74m 2n 6.(4)原式=5x 3+10x 2+5x -(2x 2-7x -15) =5x 3+10x 2+5x -2x 2+7x +15 =5x 3+8x 2+12x +15.类型2 利用直接代入进行化简求值 6.先化简,再求值:(1)原式=-18a 3b 6-(-a 3b 2)·b 4=-18a 3b 6+a 3b 6=78a 3b 6.当a =-14,b =4时,原式=78×(-14)3×46=-56.(2)原式=a 2-ab -2b 2-(a 2+ab -2b 2)=a 2-ab -2b 2-a 2-ab +2b 2=-2ab. 当a =-2,b =23时,原式=(-2)×(-2)×23=83.(3)原式=19x 2y 2(2x 2y -xy 2-2x 2y +2xy 2)=19x 2y 2·xy 2=19x 3y 4.当x =-32,y =-2时,原式=19×(-32)3×(-2)4=-6.(4)原式=6a 2+5ab -6b 2-5ab -5a -6a 2=-6b 2-5a ,当a =-12,b =2时,原式=-6×22-5×(-12)=-24+52=-2112.类型3 利用条件间接代入进行化简求值7.解:由题意知⎩⎨⎧2a +3b -7=0,a -9b +7=0,解得⎩⎪⎨⎪⎧a =2,b =1.原式=18a 3+b 3=18×23+13=2.类型4 利用整体代入进行化简求值8.解:原式=4-a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-2ab.当ab =-12时,原式=4+2×12=5.9..解:原式=3x 2-12x +12-6x 2+6=-3x 2-12x +18=-3(x 2+4x)+18.∵x 2+4x -4=0,∴x 2+4x =4.∴原式=-3×4+18=6.。
整式专项-化简求值50题练习
1、先化简,再求值:3x + 2(x2- 2x + 1) - 3(x2- 3x + 2),其中x = -12、化简求值:2(a2- ab) - 3(a2- 2ab),当a = 1,b = -23、先化简,再计算:(2x2- 5xy + 3y2) - (x2- 4xy + 2y2),其中x =2,y = 14.化简并求值:4(m - 2n) + 3(2m + n) - 5(m + n),当m = 3,n = -11、先化简,后求值:5(a + b) - 2(2a - 3b) + 3(a - 4b),其中a = 2,b = -12、化简求值:6(x - y)2 - 3(x - y) + 2(y - x)2 - (x - y),当x = 5,y = 33、先化简,再求值:2(x2 - xy) - 3(x2- 2xy),其中x = -1,y = 24、化简计算:3(a - 2b) - 2(2a + b) + 5(a + 3b),当a = 1,b = 01、先化简,再求值:(4x2- 3xy + 5y2) - (2x2 + 2xy - 3y2),其中x =-2,y =12、化简求值:5(m - 2n) - 3(2m - 5n) + 2(m + 3n),当m = 4,n = -23、先化简,后求值:6(a - b) + 2(3a + b) - 4(a + 2b),其中a = 3,b = -14、化简求值:7(x + y2) - 4(x + y) + 3(y2 + x) - 2(x + y),当x = 1,y = -11、先化简,再求值:3(x2- 2xy) - 2(x2- 3xy),其中x = 0,y = -12、化简计算:4(a + 3b) - 3(2a - b) + 6(a - 4b),当a = -1,b = 23、先化简,再求值:(5x2- 4xy + 3y2) - (3x2- 3xy + 2y2),其中x = 1,y = -24、化简求值:8(m - 3n) - 5(3m + 2n) + 4(m + 5n),当m = 5,n = -11、先化简,后求值:9(a - 2b) - 6(2a + b) + 3(a + 4b),其中a = 2,b = -22、化简求值:10(x - y)2- 7(x - y) + 5(x - y)2- 3(x - y),当x = 7,y = 53、先化简,再求值:4(x2- xy) - 5(x2- 2xy),其中x = -2,y = 34、化简计算:6(a - 4b) - 4(2a + 3b) + 8(a + 2b),当a = 0,b = 15.先化简,再求值:(7x2- 6xy + 5y2) - (5x2- 5xy + 4y2),其中x = 3,y = -11、化简求值:3(m - 5n) - 2(5m - 3n) + 6(m + 2n),当m = -1,n = 22、先化简,后求值:8(a - b) + 5(2a + b) - 7(a + 3b),其中a = 4,b = -13、化简求值:9(x + y)2- 6(x + y) + 7(y + x)2- 4(x + y),当x = -2,y = 14、先化简,再求值:5(x2 - 3xy) - 4(x2- 4xy),其中x = 1,y = -35、化简求值:10(m - 4n) - 7(4m + 3n) + 5(m + 6n),当m = 6,n = -21、先化简,后求值:7(a - 3b) - 4(3a + b) + 2(a + 5b),其中a = 5,b = -22、化简求值:11(x2- y) - 8(x - y) + 9(y - x2) - 5(x - y),当x = 8,y = 63、先化简,再求值:6(x2- 2xy) - 5(x2- 3xy),其中x = -3,y = 24、化简计算:8(a + 2b) - 6(2a - b) + 9(a - 3b),当a = 1,b = -35、先化简,再求值:(9x2- 8xy + 7y2) - (7x2- 7xy + 6y2),其中x = -1,y = 01、化简求值:4(m - 6n) - 3(6m + 2n) + 7(m + 4n),当m = 2,n = -12、先化简,后求值:5(a - 4b) + 3(4a + b) - 6(a + 2b),其中a = 0,b = -13、化简求值:6(x + y)2 - 5(x + y) + 8(y + x)2 - 3(x + y),当x = 3,y = -24、先化简,再求值:7(x2- 4xy) - 6(x2- 5xy),其中x = 2,y = -45、化简求值:12(m - 5n) - 9(5m + 3n) + 6(m + 7n),当m = 7,n = -31、先化简,后求值:10(a - 5b) - 7(5a + b) + 5(a + 3b),其中a = -1,b = -22、化简求值:13(x - y)2- 10(x - y) + 11(y - x)2- 7(x - y),当x = 9,y = 73、先化简,再求值:8(x2- 3xy) - 7(x2- 4xy),其中x = -4,y = 14、化简计算:9(a + 4b) - 7(4a - b) + 10(a - 2b),当a = 2,b = -45、先化简,再求值:(11x2 - 10xy + 9y2) - (9x2- 9xy + 8y2),其中x = 0,y = -11、化简求值:5(m - 8n) - 4(8m + 2n) + 9(m + 6n),当m = -3,n = 12、先化简,后求值:6(a - 6b) + 4(6a + b) - 8(a + 3b),其中a = 1,b = -23、化简求值:7(x + y)2 - 6(x + y) + 10(y + x)2 - 5(x + y),当x = -1,y = 04、先化简,再求值:9(x2- 5xy) - 8(x2- 6xy),其中x = 3,y = -55、化简求值:14(m - 7n) - 11(7m + 3n) + 8(m + 9n),当m = 8,n = -4七年级化简求值打卡练习1、先化简,后求值:12(a - 7b) - 9(7a + b) + 6(a + 5b),其中a = -2,b = -32、化简求值:15(x - y)2- 12(x - y) + 13(y - x)2- 9(x - y),当x = 10,y = 83、先化简,再求值:10(x2- 4xy) - 9(x2- 5xy),其中x = -5,y = 24、. 化简计算:11(a + 5b) - 9(5a - b) + 12(a - 3b),当a = -1,b = -5。
整式的加减化简60题
整式的加减化简求值专项练习1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b ﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.先化简,再求值:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],其中.7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.9.先化简,再求值,其中a=﹣2.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;18.2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.19.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x ﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代22.先化简,再求值:a2﹣(2a2+2ab ﹣b2)+(a2﹣ab ﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab ﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣227.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.27.化简计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.28.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.化简求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.化简求值其中a=1,b=﹣2 37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy ﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x ﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy ﹣x2y)﹣2(xy ﹣x2y﹣1)其中xy+1=0.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]再求值x=,y=.54.化简求值:其中x=﹣2,.55.先化简,再求值,已知a=1,b=﹣,求多项式的值.56.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.化简求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.化简求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn ,其中.。
七年级数学人教版(上册)小专题(六)整式的化简与求值
解:原式=-2x2+x+1-1+2x2
=x. (6)12+3(1-m)-4(1-m-m2)+(1-m+m2-m3).
解:原式=12+3-3m-4+4m+4m2+1-m+m2-m3
=12+5m2-m3.
2 (7)3x2y-[2xy-2(xy-3x2y)+xy].
4 解:原式=3x2y-(2xy-2xy+3x2y+xy)
第二章 整式的加减
小专题(六) 整式的化简与求值
类型 1 整式的加减运算 1.计算: (1)6a2+4b2-4b2-7a2. 解:原式=(6-7)a2+(4-4)b2 =-a2.
1
1
(2)3mn2-4n2m+x2y-2x2y.
11 解:原式=(3-4)mn2+(1-2)x2y
1 =12mn2-x2y.
3 =-5.
6.已知 A+B=-3x2-5x-1,A-C=-2x2+3x-5.求当 x=1 时,B+C 的值.[提示:B+C=(A+B)-(A-C)]
解:因为 B+C=(A+B)-(A-C), 所以 B+C=(-3x2-5x-1)-(-2x2+3x-5) =-3x2-5x-1+2x2-3x+5 =-x2-8x+4. 当 x=1 时, B+C=-12-8×1+4=-5.
1 当 a=2,b=4时,
1 原式=-22×4+4=3.
(3)4(m2-2mn)-4m2+2n-2(mn+n),其中 mn=6. 解:原式=4m2-8mn-4m2+2n-2mn-2n =-10mn. 当 mn=6 时,原式=-10×6=-60.
(4)(5a2+3a-1)-3(a+a2),其中 a2-2=0. 解:原式=5a2+3a-1-3a-3a2 =2a2-1. 因为 a2-2=0,所以 a2=2. 所以原式=2×2-1=3.
六年级整式化简求值练习题
六年级整式化简求值练习题一、练习题1:整式化简求值1. 小明有一些苹果,小红有若干苹果。
现在小明把他的苹果和小红的苹果放在一起,一共有45个苹果。
如果小明有5个苹果,求小红有多少个苹果。
解法:假设小红有x个苹果,则小明和小红一共有5 + x个苹果。
根据题意,5 + x = 45,解方程,得x = 40。
所以小红有40个苹果。
2. 一条绳子的长度为16米,需要切成若干段,其中每段的长度为4米。
问可以切成几段?解法:设需要切成n段,则每段长度为4米,所以总长度为4n米。
根据题意,4n = 16,解方程,得n = 4。
所以可以切成4段。
3. 某商品原价100元,现在打8折出售。
求折后价格。
解法:原价100元打8折,即折后价格为100 * 0.8 = 80元。
4. 小明身高为140厘米,比小红高30厘米。
求小红的身高。
解法:小明身高为140厘米,比小红高30厘米,所以小红的身高为140 - 30 = 110厘米。
5. 一块金属的重量为2.5千克,需要分成若干份,每份重0.1千克。
求可以分成几份?解法:设需要分成n份,则总重量为0.1n千克。
根据题意,0.1n =2.5,解方程,得n = 25。
所以可以分成25份。
二、练习题2:整式求值1. 计算3x - 2y + 5z,当x = 2,y = 3,z = 4时。
解法:代入x = 2,y = 3,z = 4,得3 * 2 - 2 * 3 + 5 * 4 = 6 - 6 + 20 = 20。
2. 计算4a^2 - 2b^3 + 5c,当a = 2,b = 3,c = 4时。
解法:代入a = 2,b = 3,c = 4,得4 * 2^2 - 2 * 3^3 + 5 * 4 = 4 * 4 -2 * 27 + 20 = 16 - 54 + 20 = -18。
3. 计算5x^2 + 3y^2,当x = 2,y = 3时。
解法:代入x = 2,y = 3,得5 * 2^2 + 3 * 3^2 = 5 * 4 + 3 * 9 = 20 + 27 = 47。