高中数学_第一章_计数原理A组测试题_北师大版选修2-3

合集下载

北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(答案解析)(1)

北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(答案解析)(1)

一、选择题1.今有8件不同的奖品,从中选6件分成三份,两份各1件,另一份4件,不同的分法有( )种 A .420B .840C .30D .1202.10个人排队,其中甲、乙、丙、丁4人两两不相邻的排法A .5457A A 种 B .1010A -7474A A 种 C .6467A A 种D .6466A A 种3.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为 A .14B .16C .20D .484.451)(1)x -的展开式中,4x 的系数为( ) A .-40B .10C .40D .455.数列129,,,a a a ⋅⋅⋅中,恰好有6个7,3个4,则不相同的数列的个数( ) A .69AB .39AC .39CD .36C6.若10521001210(1)(1)(1)x x a a x a x a x -=+-+-+⋅⋅⋅+-,则5a 为( ) A .251B .250C .252D .2497.某科技小组有四名男生两名女生.现从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为( ) A .36CB .1225C CC .12212424C C C C +D .36A8.甲乙和其他2名同学合影留念,站成两排两列,且甲乙两人不在同一排也不在同一列,则这4名同学的站队方法有( ) A .8种B .16种C .32种D .64种9.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设(0)a b m m >,,为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为(mod )a b m =.若012220202020202022...2a C C C C =++++,(mod8)a b =,则b 的值可以是( ) A .2015B .2016C .2017D .201810.已知8290129(3)(23)(1)(1)(1)x x a a x a x a x --=+-+-+⋅⋅⋅+-,则6a =( )A .1792-B .1792C .5376-D .537611.为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为( ) A .18B .24C .30D .3612.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或9二、填空题13.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则不同的安排方式共有________种14.七位同事(四男三女)轮值办公室每周的清洁工作,每人轮值一天,其中男同事甲必须安排周日清洁,且三位女同事任何两位的安排不能连在一起,则不同的安排方法种数是_______(用数字作答) 15.当n 为正奇数时,011221777...7nn n n n n n n C C C C ---++++除以9的余数是______.16.有4位同学和2位教师一起合影.若教师不能坐在两端,也不坐在一起,则有_________种坐法.17.计算2222223456C C C C C ++++=______.18.,,,,,A B C D E F 六人并排站成一排,,A B 必须站在一起,且,C D 不能相邻,那么不同的排法共有_____种(结果用数字表示). 19.若()626012612x a a x a x a x -=++++,则126a a a +++的值为__________.20.已知2⎛+ ⎝nx 的展开式的二项式系数之和为32,则其展开式中常数等于________.三、解答题21.用0、1、2、3、4这五个数字组成无重复数字的自然数. (1)在组成的三位数中,求所有偶数的个数;(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301、423等都是“凹数”,试求“凹数”的个数. 22.已知727012712+++(=+)x a a x a x a x ⋯-. 求:(1)127+++a a a ⋯; (2)1357+++a a a a ; (3)0246+++a a a a ;23.某毕业班级中有6人要拍毕业照留念.(1)若分成两排合影,前排2人,后排4人,有多少种不同的排法? (2)若排成一排合影,甲乙相邻但乙丙不相邻,有多少种不同的排法?24.已知n 为给定的正整数,设201223nn n x a a x a x a x ⎛⎫+=++++ ⎪⎝⎭,x ∈R .(1)若4n =,求01,a a 的值;(2)若13x =,求0()nkk k n k a x =-∑的值.25.有3名男生,4名女生,按下列要求排成一行,求不同的方法总数 (1)甲只能在中间或者两边位置; (2)男生必须排在一起;(3)男女各不相邻; (4)甲乙两人中间必须有3人.26.从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数. 试问:(1)能组成多少个不同的五位偶数? (2)五位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分两步进行:(1)先从8件不同的奖品中选6件;(2)将6件不同的奖品分成三份,两份各1件,另一份4件.利用分步乘法计数原理可求得分法种数. 【详解】分两步进行:(1)先从8件不同的奖品中选6件,有68C 种分法;(2)将6件不同的奖品分成三份,两份各1件,另一份4件,分法种数为46C . 由分步乘法计数原理可知,不同的分法种数为64862815420C C =⨯=. 故选:A. 【点睛】本题考查部分平均分组问题,考查分类乘法计数原理的应用,考查计算能力,属于中等题.2.C解析:C 【分析】不相邻问题采用“插空法”. 【详解】解:∵10个人排成一排,其中甲、乙、丙、丁4人两两不相邻排成一排, ∴采用插空法来解,另外六人,有66A 种结果,再在排列好的六人的七个空档里,排列甲、乙、丙、丁, 有47A 种结果,根据分步计数原理知共有66A •47A , 故选C . 【点睛】本题考查排列组合及简单计数问题,在题目中要求元素不相邻,这种问题一般采用插空法,先排一种元素,再在前面元素形成的空档,排列不相邻的元素.3.B解析:B 【解析】由间接法得32162420416C C C -⋅=-=,故选B .4.D解析:D 【分析】求出41)中的有理项,再求出5(1)x -中的相应项后,按多项式乘法法则计算. 【详解】441)(1=展开式通项公式为2144r r rr r TC C x +==,所以0,2,4r =时,该项为有理项,x 的指数分别为0,1,2,55(1)(1)x x -=-展开式通项公式为515(1)kk k k T C x -+=-, 所以所求4x 的系数为04232423454545(1)(1)(1)45C C C C C C ⨯-+⨯-+⨯-=, 故选:D . 【点睛】本题考查二项式定理,掌握二项展开式通项公式是解题关键,对两个二项相乘,注意多项式乘法法则的应用.5.C解析:C 【分析】把129,,,a a a ⋅⋅⋅看成9个位置,从这9个位置中,任取3个位置放4(或任取6个位置放7),即得不相同的数列的个数. 【详解】把129,,,a a a ⋅⋅⋅看成9个位置,从这9个位置中,任取3个位置放4(或任取6个位置放7),其余6个位置放7(或其余3个位置放4),有39C (或69C )种不同的取法. 每种取法放3个4都有一种方法,剩下的6个位置放6个7有1种方法. 所以不相同的数列共有39C (或69C )个. 故选:C . 【点睛】本题考查排列组合,属于基础题.6.A解析:A 【分析】根据题意,5a 是展开式中()51x -的系数,因此将等式左边变形为关于1x -的二项式,再求()51x -的系数. 【详解】由题意,()()1051051111x x x x -=-+--+, 又()()()()10109011010101011111x C x C x C x -+=⋅-+⋅-++⋅-,()()()()55401555511111x C x C x C x -+=⋅-+⋅-++⋅-,因为,()()()21010501210111x x a a x a x a x -=+-+-+⋅⋅⋅+-,即55101251a C =-=.故选:A. 【点睛】本题考查了二项式定理中展开式的系数,关键是将已知等价变形,得到关于()1nx -的二项式,属于基础题.7.C解析:C 【分析】分只有一名女生入选和有二名女生入选两种情况,结合分步乘法计数原理以及分类加法计数原理,即可得出答案. 【详解】当只有一名女生入选时,先选1名女生,有12C 种,再选2名男生,有24C 种,则根据分步乘法计数原理可知,有1224C C 种当有二名女生入选时,选选2名女生,有22C 种,再选1名男生,有14C 种,则根据分步乘法计数原理可知,有2124C C 种所以从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为12212424C C C C +故选:C 【点睛】本题主要考查了组合的应用,涉及了分步乘法计数原理以及分类加法计数原理的应用,属于中档题.8.A解析:A 【分析】根据题意,分3步进行讨论:先在4个位置中任选一个安排甲,再安排乙,最后将剩余的2个人,安排在其余的2个位置,分别求出每一步的情况数目,由分步计数原理计算可得答案. 【详解】根据题意,分3步进行讨论:1、先安排甲,在4个位置中任选一个即可,有14C 4=种选法;2、在与甲所选位置不在同一排也不在同一列只有一个位置,安排乙,即1种选法;3、将剩余的2个人,安排在其余的2个位置,有222A =种安排方法; 则这4名同学的站队方法有4128⨯⨯=种; 故选:A . 【点睛】本题主要考查排列、组合的综合应用,注意要优先分析受到限制的元素,属于中档题.9.C解析:C 【分析】根据已知中a 和b 对模m 同余的定义,结合二项式定理,我们可以求出a 的值,结合(mod8)a b =,比照四个答案中的数字,即可求解.【详解】0122202020202020202022...2=(12)3a C C C C =+⋅+⋅++⋅+=,又201010012210101010101039(18)888C C C C ==+=+⋅+⋅⋅⋅⋅+⋅a ∴被8除得的余数为1,同理b 被8除得的余数也要为1,观察四个选项,可知选C. 故选:C 【点睛】本题考查的知识点是同余定理,其中正确理解a 和b 对模m 同余,是解答本题的关键,同时利用二项式定理求出a 的值,也很关键.10.D解析:D 【分析】将原式改写成88(3)(23)[2(1)][2(1)1]x x x x --=----,利用二项式定理解决系数问题即可得解. 【详解】88(3)(23)[2(1)][2(1)1]x x x x --=----290129(1)(1)(1)a a x a x a x =+-+-+⋅-+⋅⋅,所以26356882C 2C 2358417925376.a =⨯⨯+⨯=+= 故选:D 【点睛】此题考查二项式定理的理解辨析和应用,关键在于熟练掌握定理公式,根据公式处理系数关系.11.C解析:C 【分析】由甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,再去掉丙、丁两名专家在同一地工作的排列数,即可得到答案. 【详解】因为甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家 看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,即从四个中选二个和 其余二个看成三个元素的全排列共有:2343C A ⋅种; 又因为丙、丁两名专家不能安排在同一地工作,所以再去掉丙、丁两名专家在同一地工作的排列数有33A 种, 所以不同的分配方法种数有:23343336630C A A ⋅-=-= 故选:C 【点睛】本题考查了排列组合的应用,考查了间接法求排列组合应用问题,属于一般题.12.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项; ()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 ()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D 【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.二、填空题13.150【分析】先根据题意确定分组分式则分组方法是113或221得到分组方法种数再分配到3个社区利用分步计数原理求解【详解】安排5名学生去3个社区进行志愿服务且每人只去一个社区要求每个社区至少有一名学解析:150 【分析】先根据题意,确定分组分式则分组方法是1,1,3或2,2,1,得到分组方法种数,再 分配到3个社区,利用分步计数原理求解. 【详解】安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则分组分式是1,1,3或2,2,1,故分组方法有:112231545322312225C C C C C C A A+=,分配到3个社区的分配方法有336A =种,由分步计数原理得:不同的安排方式共有256150⨯=种, 故答案为:150 【点睛】方法点睛:排列组合的综合题目,一般是先取出符合要求的元素组合(分组),再对取出的元素排列,分组时要注意“平均分组”与“不平均分组”的差异及分类的标准.14.144【分析】优先安排男同事甲在星期日轮值有1种再安排其余3位男同事作全排列有最后安排女同事插在三个男同事中有最后根据分步用乘法的原理得:【详解】解:第一步:先安排男同事甲在星期日轮值有1种第二步:解析:144 【分析】优先安排男同事甲在星期日轮值有1种,再安排其余3位男同事作全排列有33A ,最后安排女同事插在三个男同事中有34A ,最后根据分步用乘法的原理得:331A ⨯34144A =. 【详解】解:第一步:先安排男同事甲在星期日轮值有1种, 第二步:其余3位男同事作全排列有33A ,第三步:因为三位女同事任何两位的安排不能连在一起,所以后3位女同事插空安排有34A ,分步完成共有方法种数为:1⨯33A 34144A =. 故答案为:144. 【点睛】本题主要考查分步计数原理与排列,属于中档题.15.【分析】利用二项式定理结合组合数的运算即可容易求得结果【详解】因为为正奇数故上式可化简为:该式除以余数为故答案为:【点睛】本题考查由二项式定理解决余数问题属中档题 解析:7【分析】利用二项式定理,结合组合数的运算,即可容易求得结果. 【详解】011221777...7n n n n n n n n C C C C ---++++()711n=+- ()911n=--()()()101119919111n nn n n nn n n n C C C C ---=+⋅-++-+--因为n 为正奇数,故上式可化简为:()()101119919197n n n n n n n C C C ---+⋅-++--+该式除以9,余数为7. 故答案为:7. 【点睛】本题考查由二项式定理解决余数问题,属中档题.16.144【分析】先排4位同学将教师插入4位同学产生的3个空位中再由乘法原理即可得到答案【详解】先排4位同学共有种不同排法由于教师不能坐在两端也不坐在一起将2位老师插入4位同学产生的3个空位中共种不同排解析:144 【分析】先排4位同学,将教师插入4位同学产生的3个空位中,再由乘法原理即可得到答案. 【详解】先排4位同学共有44A 种不同排法,由于教师不能坐在两端,也不坐在一起,将2位老师插 入4位同学产生的3个空位中,共23A 种不同排法,由乘法原理,共有4243144A A =种不同排 法.故答案为:144 【点睛】本题考查排列的实际应用,涉及到特殊元素分析法,考查学生的逻辑推理能力,是一道中档题.17.35【分析】根据组合数的性质计算可得;【详解】解:故答案为:【点睛】本题考查组合数的性质属于中档题解析:35 【分析】根据组合数的性质11mm mn n n C C C -++=计算可得;【详解】解:2222223456C C C C C ++++3222233456C C C C C =++++ 32224456C C C C =+++ 322556C C C =++3266C C =+ 3776535321C ⨯⨯===⨯⨯故答案为:35 【点睛】本题考查组合数的性质,属于中档题.18.144【分析】根据题意分2步进行分析:①将两人看成一个元素与人进行全排列易得排好后有4个空位;②在4个空位中任选2个安排由分步计数原理计算可得答案【详解】解:根据题意分2步进行分析:①将两人看成一个解析:144 【分析】根据题意,分2步进行分析:①将AB 两人看成一个元素,与2EF 人进行全排列,易得排好后有4个空位;②在4个空位中任选2个,安排C 、D ,由分步计数原理计算可得答案. 【详解】解:根据题意,分2步进行分析:①将AB 两人看成一个元素,与2EF 人进行全排列, 有232312A A =种排法,排好后有4个空位,②在4个空位中任选2个,安排C 、D ,有2412A =种情况, 则有1212144⨯=种不同的排法. 故答案为:144. 【点睛】本题考查排列、组合的应用,注意常见的相邻和不相邻问题的处理方法有捆绑法和插空法.19.0【分析】在所给的等式中分别令令从而求得的值【详解】解:令可得再令可得故答案为:0【点睛】本题考查二项式定理的应用二项展开式的通项公式二项式系数的性质利用赋值法是解题的关键解析:0【分析】在所给的等式中,分别令0x =,令1x =,从而求得126a a a ++⋯+的值.【详解】解:6260126(12)x a a x a x a x -=+++⋯+,令0x =,可得01a =,再令1x =,可得12611a a a +++⋯+=,1260a a a ∴++⋯+=,故答案为:0.【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,利用赋值法是解题的关键.20.【分析】根据二项式系数和可求得根据二项展开式通项公式可求得的值代入可求得结果【详解】展开式二项式系数和为解得:展开式通项公式为:令解得:展开式中常数为故答案为:【点睛】本题考查二项展开式中指定项的求 解析:80【分析】根据二项式系数和可求得n ,根据二项展开式通项公式可求得r 的值,代入可求得结果.【详解】22n x x ⎛+ ⎝展开式二项式系数和为32,232n ∴=,解得:5n =, 522n x x⎛⎛∴+= ⎝⎝展开式通项公式为:51010221552rr r r r r r T C x C x --+=⋅=. 令51002r -=,解得:4r =,∴展开式中常数为445216580C =⨯=. 故答案为:80. 【点睛】本题考查二项展开式中指定项的求解问题,关键是熟练掌握二项式系数和的性质和二项展开式通项公式的形式.三、解答题21.(1)30;(2)20.【分析】(1)对个数是否为0进行分类讨论,结合分步乘法计数原理和分类加法计数原理可求得结果;(2)对十位数字进行分类讨论,结合“凹数”的定义与分类加法计数原理可求得结果.【详解】(1)偶数分为二类:若个位数0,则共有2412A =个;若个位数是2或4,则首位数不能为0,则共有23318⨯⨯=个;所以,符合条件的三位偶数的个数为121830+=;(2)“凹数”分三类:若十位是0,则有2412A =个;若十位是1,则有236A =个;若十位是2,则有222A =个;所以,符合条件的“凹数”的个数为126220++=.【点睛】本题考查数字的排列问题,考查了分类加法计数原理和分步乘法计数原理的应用,考查计算能力,属于中等题.22.(1)2- ;(2)1094-;(3)1093.【分析】赋值法 (1)令=0x 得:01a =;令=1x ,可得.(2)令=11x x =-,,再两式相减可得.(3)令=11x x =-,,再两式相加可得.【详解】解 (1)令=1x ,则01234567++++++.=+1a a a a a a a a - ①令1x =-,则701234567+3++a a a a a a a a ----=② 又=0x ,则01a =所以1234567++++++2a a a a a a a =-(2)两式相减,得 1357713=19++042+a a a a --=- (3)两式相加,得0472613=109+2+3+a a a a -+= 【点睛】赋值法在求各项系数和中的应用(1)形如(+)n ax b ,2()++m ax bx c (a b c R ∈,,)的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可.(2)对形如)()+(n ax by a b R ∈,的式子求其展开式各项系数之和,只需令==1x y 即可.(3)若2012()n n f x a a x a x a x ⋯=++++,则()f x 展开式中各项系数之和为(1)f .23.(1)720种(2)192种【分析】(1)将分排的问题采用直排的方式进行全排列即可得到结果;(2)将甲乙捆绑后,当做一人与除丙外的人进行排序,将丙插空放入,根据分步乘法计数原理可求得结果.【详解】(1)前后两排相当于一排,共有666!720A ==种排法(2)第一步:甲乙相邻,共有222A =种排法;第二步:将甲乙看做一个人,与除丙外的其他3人排列,共有:4424A =种排法; 第三步:将丙插空放入,保证与乙不相邻,共有:144A =种排法 ∴共有:2244192⨯⨯=种排法【点睛】本题考查排列数的应用问题,涉及到分排问题直排法、相邻问题捆绑法、相离问题插空法、分步乘法计数原理的应用.24.(1)01681a =,13227a =.(2)23n 【分析】(1)利用二项式定理可求出0a 和1a 的值;(2)利用组合数公式得出11k k n n kC nC --=,可得出()00121213333n k k n k kn n n k k k k n n k k k n k a x nC nC --===⎛⎫⎛⎫⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑,然后利用二项式定理即可求得答案.【详解】 (1)因为4n =,所以0404216C ()381a ==,1314232C ()327a ==; (2)当13x =时,21C ()()33k k n k k k n a x -=, 又因为11!(1)!C C !()!(1)!()!k k n n n n k k n n k n k k n k ---===---, 当1n =时,011022()C ()33nk k k n k a x =-==∑; 当2n ≥时,0021()()C ()()33n n k k n k k k n k k n k a x n k -==-=-∑∑ 012121C ()()C ()()3333nn k n k k k n k k n n k k n k --===-∑∑1112121()C ()()3333n n k n k k n k n n ---==+-∑ 1111121C ()()333n k n k k n k n n ----==-∑ 11212()3333n n n n -=-+=,当1n =时,也符合. 所以0()n kk k n k a x =-∑的值为23n . 【点睛】本题考查二项式定理求指定项的系数,同时也考查了利用二项式定理化简求值,解题的关键就是二项展开式通项和二项式定理的逆用,考查计算能力,属于中等题.25.(1)2160;(2)720;(3)144;(4)720.【分析】(1)利用元素分析法(特殊元素优先安排),甲为特殊元素,故先安排甲,左、右、中共三个位置可供甲选择,问题得以解决;(2)利用捆绑法,先将男生捆绑在一起算一个大元素,与女生进行全排,在将男生内部全排得到结果;(3)男女各不相邻,先排四名女生,之后将3名男生插在四个空中,正好得到所要的结果;(4)从除甲、乙之外的5人中选3人排在甲、乙中间,之后再排,问题得以解决.【详解】(1)甲为特殊元素,所以先安排甲,左、右、中共三个位置可供甲选择,有13A 种选择,其余6人全排列,有66A 种排法,由分步计数原理得共有16362160A A ⋅=种;(2)捆绑法,先将男生排在一起,和四名女生合在一起,有55A 种排法,再将三名男生内部排列,有33A 种排法,由分步计数原理得共有5353720A A ⋅=种;(3)男女各不相邻,即为女生排好后男生插入中间的三个空即可,所以有4343144A A ⋅=种;(4)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有35A 种排法,甲、乙两人有22A 种排法,甲、乙以及中间的三人与其余2人共有33A 种排法,由分步计数原理得共有323523720A A A ⋅⋅=种.【点睛】该题考查的是有关具有特殊要求的排列问题,在解题的过程中,注意处理原则和解题方法为:特殊元素优先考虑,不邻问题插空法,相邻问题捆绑法等,属于简单题目. 26.(1)576;(2)576;(3)144【分析】(1)根据先取后排的原则,从1到7的七个数字中取两个偶数和三个奇数,然后进行排列;(2)利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(3)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,问题得以解决.【详解】C C A A=576个.(1)偶数在末尾,五位偶数共有23413442C C A A=576个.(2)五位数中,偶数排在一起的有23423442C C A A=144.(3)两个偶数不相邻且三个奇数也不相邻的五位数有23233423【点睛】本题主要考查了数字的组合问题,相邻问题用捆绑,不相邻用插空,属于中档题.。

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(4)

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(4)

一、选择题1.两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12B .13C .512D .162.已知()~,X B n p ,且()2E X =,()43D X =,则n =( ) A .5B .6C .7D .83.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( ) A .49B .29C .12D .134.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .255.连续投掷2粒大小相同,质地均匀的骰子3次,则恰有2次点数之和不小于10的概率为( ) A .112B .572C .115D .52166.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .157.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b ==B .3,10a b ==C .5,6a b ==D .6,5a b ==8.已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,(02)P ξ<<=( ). A .0.6B .0.4C .0.3D .0.29.2017年5月30日是我国的传统节日端午节,这天小明的妈妈为小明煮了5个粽子,其中两个大枣馅三个豆沙馅,小明随机取出两个,事件A =“取到的两个为同一种馅”,事件B =取到的两个都是豆沙馅”,则(|)P B A =( )A .34B .14C .110D .31010.设样本x 1,x 2,…,x 10数据的平均值和方差分别为3和5,若y i =x i +a(a 为非零实数,i=1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .3,5B .3+a ,5C .3+a ,5+aD .3,5+a11.如下五个命题:①在线性回归模型中,2R 表示解释变量对于预报变量变化的贡献率,在对女大学生的身高预报体重的回归分析数据中,算得20.64R ≈,表明“女大学生的体重差异有64%是由身高引起的”②随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越大;③正态曲线关于直线x σ=对称,这个曲线只有当()3,3x σσ∈-时,才在x 轴上方; ④正态曲线的对称轴由μ确定,当μ一定时,曲线的形状由σ决定,并且σ越大,曲线越“矮胖”;⑤若随机变量()~0,1N ξ,且()1,P p ξ>=则()1102P p ξ-<<=-; 其中正确命题的序号是 A .②③B .①④⑤C .①④D .①③④12.将3颗骰子各掷一次,记事件A 为“三个点数都不同”,事件B 为“至少出现一个1点”,则条件概率(A |B)P 和(|)P B A 分别为( ) A .160,291B .560,1891C .601,912D .911,2162二、填空题13.某市一次高三年级数学统测,经抽样分析,成绩X 近似服从正态分布()284,N σ,且(7884)0.3P X <≤=.该市某校有400人参加此次统测,估计该校数学成绩不低于90分的人数为____.14.在一个袋中放入四种不同颜色的球,每种颜色的球各两个,这些球除颜色外完全相同.现玩一种游戏:游戏参与者从袋中一次性随机抽取4个球,若抽出的4个球恰含两种颜色,获得2元奖金;若抽出的4个球恰含四种颜色,获得1元奖金;其他情况游戏参与者交费1元.设某人参加一次这种游戏所获得奖金为X ,则()E X =________. 15.如图所示,旋转一次的圆盘,指针落在圆盘中3分处的概率为a ,落在圆盘中2分处的概率为b ,落在圆盘中0分处的概率为c ,(,,(0,1)a b c ∈),已知旋转一次圆盘得分的数学期望为1分,则213a b+的最小值为________.16.为响应国家号召,打赢脱贫致富攻坚战,武汉大学团队带领湖北省大悟县新城镇熊湾村村民建立有机、健康、高端、绿色的蔬菜基地,并策划“生产、运输、销售”一体化的直销供应模式,据统计,当地村民两年时间成功脱贫.蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市,每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:*,x y N ∈,且30x y +=).若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,若购进17份比购进18份的利润的期望值大,则x 的最小值是________. 前8小时内销售量 15 16 17 18 19 20 21 频数10x16161513y17.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是_______.18.已知随机变量X ~B (10,0.2),Y =2X +3,则EY 的值为____________.19.一个碗中有10个筹码,其中5个都标有2元,5个都标有5元,某人从此碗中随机抽取3个筹码,若他获得的奖金数等于所抽3个筹码的钱数之和,则他获得奖金的期望为________.20.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m ,13,n ,已知三个社团他都能进入的概率为124,至少进入一个社团的概率为34,且m >n .则m n +=_____三、解答题21.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[)80,100.例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T 服从正态分布()2,N μσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).参考数据:若()2,T N μσ~,则()0.6827P T μσμσ-<≤+=,()220.9545P T μσμσ-<≤+=,()330.9973P T μσμσ-<≤+=.22.近来国内一些互联网公司为了赢得更大的利润、提升员工的奋斗姿态,要求员工实行996''工作制,即工作日早9点上班,晚上21点下班,中午和傍晚最多休息1小时,总计工作10小时以上,并且一周工作6天的工作制度,工作期间还不能请假,也没有任何补贴和加班费.消息一出,社交媒体一片哗然,有的人认为这是违反《劳动法》的一种对员工的压榨行为,有的人认为只有付出超越别人的努力和时间,才能够实现想要的成功,这是提升员工价值的一种有效方式.对此,国内某大型企业集团管理者认为应当在公司内部实行996''工作制,但应该给予一定的加班补贴(单位:百元),对于每月的补贴数额集团人力资源管理部门随机抽取了集团内部的1000名员工进行了补贴数额(单位:百元)期望值的网上问卷调查,并把所得数据列成如下所示的频数分布表: 组别(单位:百元) [)0,20[)20,40[)40,60[)60,80[)80,100频数(人数)22504502908(Ⅰ)求所得样本的中位数(精确到百元);(Ⅱ)根据样本数据,可近似地认为员工的加班补贴X 服从正态分布()251,15N ,若该集团共有员工4000,试估计有多少员工期待加班补贴在8100元以上;(Ⅲ)已知样本数据中期望补贴数额在[]80,100范围内的8名员工中有5名男性,3名女性,现选其中3名员工进行消费调查,记选出的女职员人数为Y ,求Y 的分布列和数学期望.附:若()2~,X N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.23.2020年初,由于疫情影响,开学延迟,为了不影响学生的学习,国务院、省市区教育行政部门倡导各校开展“停学不停课、停学不停教”,某校语文学科安排学生学习内容包含老师推送文本资料学习和视频资料学习两类,且这两类学习互不影响已知其积分规则如下:每阅读一篇文本资料积1分,每日上限积5分;观看视频1个积2分,每日上限积6分.经过抽样统计发现,文本资料学习积分的概率分布表如表1所示,视频资料学习积分的概率分布表如表2所示.(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为ξ,求ξ的概率分布及数学期望.24.某工厂计划建设至少3个,至多5个相同的生产线车间,以解决本地区公民对特供商品A 的未来需求.经过对先期样本的科学性调查显示,本地区每个月对商品A 的月需求量均在50万件及以上,其中需求量在50~ 100万件的频率为0.5,需求量在100~200万件的频率为0.3,不低于200万件的频率为0.2.用调查样本来估计总体,频率作为相应段的概率,并假设本地区在各个月对本特供商品A 的需求相互独立.(1)求在未来某连续4个月中,本地区至少有2个月对商品A 的月需求量低于100万件的概率.(2)该工厂希望尽可能在生产线车间建成后,车间能正常生产运行,但每月最多可正常生产的车间数受商品A 的需求量x 的限制,并有如下关系: 商品A 的月需求量x (万件) 50100x ≤< 100200x ≤<200x ≥车间最多正常运行个数345若一个车间正常运行,则该车间月净利润为1500万元,而一个车间未正常生产,则该车间生产线的月维护费(单位:万元)与月需求量有如下关系:商品A 的月需求量x (万件)50100x ≤<100200x ≤<未正常生产的一个车间的月维护费(万元)500600试分析并回答该工厂应建设生产线车间多少个?使得商品A 的月利润为最大. 25.如图,直角坐标系中,圆的方程为2213131,(1,0),,,,2222x y A B C ⎛⎫⎛⎫+=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为圆上三个定点,某同学从A 点开始,用掷骰子的方法移动棋子,规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为3的倍数,则按图中箭头方向移动;若掷出骰子的点数为不为3的倍数,则按图中箭头相反的方向移动.设掷骰子n 次时,棋子移动到A ,B ,C 处的概率分别为(),(),(),n n n P A P B P C 例如:掷骰子一次时,棋子移动到A ,B ,C 处的概率分别为111()0,()3P A P B ==,12()3P C =.(1)分别掷骰子二次,三次时,求棋子分别移动到A ,B ,C 处的概率;(2)掷骰子N 次时,若以X 轴非负半轴为始边,以射线OA ,OB ,OC 为终边的角的正弦值弦值记为随机变量n X ,求5X 的分布列和数学期望; 26.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案. 【详解】记两个零件中恰好有一个一等品的事件为A , 即仅第一个实习生加工一等品为事件1A , 仅第二个实习生加工一等品为事件2A 两种情况, 则()()()125113164643P A P A P A =+=⨯+⨯=, 故选:B . 【点睛】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系,属于基础题.2.B解析:B 【解析】∵~(,)X B n p ,∴()2E X =,4()3D X =,∴2np =,且4(1)3np p -=,解得613n p =⎧⎪⎨=⎪⎩, ∴6n =,故选B .3.C解析:C 【分析】根据甲、乙、丙三人到三个景点旅游,甲独自去一个景点有3种,乙、丙有224⨯=种,得到B 事件“甲独自去一个景点”可能性,再求得A 事件“三个人去的景点不相同”的可能性,然后利用条件概率求解. 【详解】甲独自去一个景点有3种,乙、丙有224⨯=种,则B “甲独自去一个景点”,共有3412⨯=种,A “三个人去的景点不相同”,共有3216⨯⨯=种, 所以概率P (A |B ) 61122==.【点睛】本题主要考查条件概率的求法,还考查了分析求解问题的能力,属于中档题.4.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.5.B解析:B 【分析】基本事件总数n =6×6=36,利用列举法求出出现向上的点数之和不小于10包含的基本事件有6个,由此能求出一次出现向上的点数之和不小于10的概率,再结合独立重复试验的概率公式求解即可. 【详解】连续投掷2粒大小相同,质地均匀的骰子1次, 基本事件总数n =6×6=36,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共有6个, ∴每次投掷,两骰子点数之和不小于10的概率为16, 又投掷3次,相当于3次独立重复试验,故恰有两次点数之和不小于10的概率为2231556672C ⎛⎫⋅= ⎪⎝⎭.故选:B本题考查独立重复试验的概率的求法,考查古典概型概率计算公式、列举法等基础知识,考查运算求解能力,是中档题.6.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.7.C解析:C 【解析】 分析:详解:由随机变量X 的分布列可知,m 10.20.8=-=, ∴()00.210.80.8E X =⨯+⨯=,()10.20.80.16D X =⨯⨯=,∴()()()()2b 10?4E Y aE X D Y a D X =+===, ∴20.8a b 10? 0.164a +==, ∴5,6a b == 故选C点睛:本题考查了随机变量的数学期望及其方差,考查了推理能力与计算能力,属于中档题.8.C解析:C 【解析】∵P (ξ<4)=0.8,∴P (ξ>4)=0.2, 由题意知图象的对称轴为直线x =2,P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3 9.A解析:A 【解析】由题意,2223C +C 4P A ==1010(),23C 3P AB ==1010()P AB 3P A |B ==P A 4()()()∴,故选:A .【思路点睛】求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=n AB n A ()(),其中n(AB)表示事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数. 二是直接根据定义计算,P(B|A)=p AB p A ()(),特别要注意P(AB)的求法.10.B解析:B 【解析】根据题意,样本x 1,x 2,…,x 10数据的平均值和方差分别为3和5, 则有x =110(x 1+x 2+…+x 10)=3, S 2x =110[(x 1-3)2+(x 2-3)2+…+(x 10-3)2]=5, 对于y i =x i +a ; 则有y =110(x 1+a +x 2+a +…+x 10+a )=(x 1+x 2+…+x 10+10a )=3+a , S 2y =110[(y 1-3-a )2+(y 2-3-a )2+…+(y 10-3-a )2]=5, 本题选择B 选项.11.B解析:B 【解析】对于命题①,因为2R 表示解释变量对于预报变量变化的贡献率,所以算得20.64R ≈,表明“女大学生的体重差异有64%是由身高引起的”,故该命题①是正确的;对于命题②,由于随机变量的方差和标准差都反映了随机变量取值偏离于均值的整齐程度,因此方差或标准差越小,则随机变量偏离于均值的差异越大,命题②是错误;对于命题③,由于整个正太曲线都在轴上方,所以命题③的说法是不正确的;对于命题④,由于正态曲线的对称轴由μ确定,当μ一定时,曲线的形状由σ决定,并且σ越大,曲线越贴近于轴,因此命题④的说法是正确的;对于命题⑤,由于随机变量()~0,1N ξ,且()1P p ξ>= ,所以依据正太曲线的对称性可得()1P p ξ<-= ,故()1112,P p ξ-<<=- 所以()1102P p ξ-<<=-,即命题⑤是正确的,综上应选答案B 。

北师大版高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)

北师大版高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)

一、选择题1.若13nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式中的常数项是( )A .1215B .135C .18D .92.电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左右两边都有空位且甲坐在中间的坐法的种数为( ) A .40B .36C .32D .203.若多项式()210011x x a a x +=++()()91091011a x a x +++++,则9a =( )A .9B .10C .-9D .-10 4.1180被9除的余数为( )A .1-B .1C .8D .8-5.从20名同学中选派3人分别参加数学、物理学科竞赛,要求每科竞赛都有人参加,而且每人只能参加一科竞赛.记不同的选派方式有n 种,则n 的计算式可以是( ) A .3203CB .3206CC .3202AD .3203A ÷6.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”.现提供4种颜色给“弦图”的5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )A .48种B .72种C .96种D .144种7.设()929012913x a a x a x a x -=+++⋅⋅⋅+,则0129a a a a +++⋅⋅⋅+的值为( ) A .94B .93C .92D .92-8.甲、乙、丙、丁4人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( ) A .840B .2226C .2100D .23529.安排3人完成5项不同工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式种数为( ) A .60B .150C .180D .24010.如图所示,将四棱锥S-ABCD 的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为( )A .240B .360C .420D .96011.五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且宫、羽不相邻,且位于角音阶的同侧,可排成的不同音序有( ) A .20种B .24种C .32种D .48种12.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( ) A .1B .9C .-1或-9D .1或9二、填空题13.某学校安排5名高三教师去3个学校进行交流学习,且每位教师只去一个学校,要求每个学校至少有一名教师进行交流学习,则不同的安排方式共有______种.14.已知正整数n ,二项式322nx x ⎛⎫+ ⎪⎝⎭的展开式中含有7x 的项,则n 的最小值是________. 15.在二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式中,该二项展开式中系数最大的项为___________.16.把13个相同的小球放入编号为1,2,3,4的四个不同盒子中,若使放入盒子中的小球个数不小于盒子的编号数,则不同的放法种数为______. 17.83被5除所得的余数是_____________.18.6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项是_______________.19.计算2222223456C C C C C ++++=______.20.已知()()()()52012213211x x a a x a x --=+-+-()()565611a x a x +⋅⋅⋅+-+-,则5a =______.三、解答题21.红星高中2019年五一演讲比赛将在体育馆举行,所有参加人员凭票入场.(1)若将6张连号的门票分给明明、慧慧等六位老师,每人1张,且明明、慧慧分得的门票连号,则一共有多少种不同的分法?(2)高二年级准备从甲、乙等八名同学中选派四名同学参加,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加时,他们的演讲顺序不能相邻,那么高二年级不同的演讲顺序一共有多少种?22.我校学生会进行换届选举,共选举出7名学生会委员,其中甲、乙、丙是上一届的委员,现对7名成员进行如下分工.(1)若学生会正、副主席两职位只能由甲、乙、丙三人选两人担任,则有多少种不同的分工方法;(2)若甲不担任学生会主席,乙不能担任组织委员,则有多少种不同的分工方法? 23.(1)把6本不同的书分给4位学生,每人至少一本,有多少种方法? (2)由0,1,2,3,4,5这6个数字组成没有重复数字的四位偶数由多少个?(3)某旅行社有导游9人,其中3人只会英语,4人只会日语,其余2人既会英语,也会日语,现从中选6人,其中3人进行英语导游,另外3人进行日语导游,则不同的选择方法有多少种?24.有3名男生,4名女生,按下列要求排成一行,求不同的方法总数 (1)甲只能在中间或者两边位置; (2)男生必须排在一起; (3)男女各不相邻; (4)甲乙两人中间必须有3人.25.已知212nxi x ⎛⎫+ ⎪⎝⎭,i 是虚数单位,0x >,n ∈+N . (1)如果展开式中的倒数第3项的系数是-180,求n 的值; (2)对(1)中的n ,求展开式中系数为正实数的项. 26.已知. (1)若,求及的值;(2)若,求最大的系数;(3)定义,若化简.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:由二项式系数和求出指数n ,再写出展开式通项后可求得常数项. 详解:由题意264n =,6n =,∴通项为36662166(3)(3r rrr r rr T C x C x x---+==,令3602r -=,4r =,∴常数项为2463135C =, 故选B..点睛:在()n a bx +展开式中二项式系数为2n ,所有项的系数和为()n a b +.要注意这两个和是不一样的,二项式系数和是固定的,只与指数n 有关,而所有项系数和还与二项式中的系数,a b 有关.2.A解析:A 【分析】根据题意,先排好7个空座位,注意空座位是相同的,其中6个空位符合条件,将3人插入6个空位中,注意甲必须在三人中间,然后再排乙,丙,最后用分步计数原理求解. 【详解】除甲、乙、丙三人的座位外,还有7个座位,它们之间共可形成六个空, 三人从6个空中选三位置坐上去有36C 种坐法, 又甲坐在中间,所以乙、丙有22A 种方法,所以他们每人左右两边都有空位且甲坐在中间的坐法有36C 2240A ⋅=种. 故选:A . 【点睛】本题主要考查排列组合的实际应用,还考查了分析问题的能力,属于中档题.3.D解析:D 【解析】()()9011010019910999991...1[...]nn n x C C x C x a x a C C x C x +=++⇒+=++,()10101a x +=019910101010101010(...)a C C x C x C x ++++,根据已知条件得9x 的系数为0,10x 的系数为19999910101010101010011a a C a C a a C =-⎧⋅+⋅=⎧⇒⇒⎨⎨=⋅=⎩⎩ 故选D. 4.C解析:C 【分析】将1180转化为()11811-,利用二项式定理,即可得解. 【详解】()111180811=-()()()()2101101210111110911111111111818118118111C C C C C =⋅+⋅⋅-+⋅⋅-++⋅⋅-+⋅-1210111110911111111181818181C C C C =-⋅+⋅++⋅-1211109111181818111811C C =-⋅+⋅++⨯-121110911118181811081811C C =-⋅+⋅++⨯+- 12111091111818181108180C C =-⋅+⋅++⨯+ 121110911118181811081728C C =-⋅+⋅++⨯++12111091111818181108172C C -⋅+⋅++⨯+可以被9整除,所以1180被9除的余数为8. 故选:C. 【点睛】本题考查利用二项式定理解决余数问题,将原式变形为()11811-是本题的解题关键,属于中档题.5.B解析:B 【分析】先从20名同学中选派3人,再分为两类:第一类:2人参加数学,1人参加物理竞赛,第二类:1人参加数学,2人参加物理竞赛,结合分步计数原理,即可求解. 【详解】由题意,从20名同学中选派3人,共有320C 种不同的选法, 又由要求每科竞赛都有人参加,而且每人只能参加一科竞赛, 可分为两类:第一类:2人参加数学,1人参加物理竞赛,共有233C =中不同的选法; 第二类:1人参加数学,2人参加物理竞赛,共有133C =中不同的选法, 综上可得,不同的选派方式共有332020(33)6C C +⋅=⋅. 故选:B. 【点睛】本题主要考查了分步计数原理,以及排列、组合的综合应用,其中解答中选出3人后,合理分类求解是解答的关键,着重考查分析问题和解答问题的能力.6.B解析:B 【分析】A 区域与其他区域都相邻,从A 开始分步进行其它区域填涂可解【详解】解:根据题意,如图,假设5个区域依次为A B C D E 、、、、,分4步分析: ①,对于A 区域,有4种涂法,②,对于B 区域,与A 相邻,有3种涂法, ③,对于C 区域,与A B 、 相邻,有2种涂法,④,对于D 区域,若其与B 区域同色,则E 有2种涂法,若D 区域与B 区域不同色,则E 有1种涂法,则D E 、 区域有2+1=3种涂色方法, 则不同的涂色方案共有4×3×2×3=72种; 故选: B .【点睛】本题考查两个计数原理的综合问题使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.7.A解析:A 【分析】由()913x -的展开式的通项为()193rrr T C x +=-,可得10a <,30a <,50a <,70a <,90a <,则01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+-,再令1x =-即可得解; 【详解】解:因为()929012913x a a x a x a x -=+++⋅⋅⋅+,()913x -的展开式的通项为()193rr r T C x +=-,所以10a <,30a <,50a <,70a <,90a <,所以01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+- 令1x =-得901234567894a a a a a a a a a a -+-+-+-+-= 所以901294a a a a +++⋅⋅⋅+= 故选:A 【点睛】本题考查赋值法求二项式展开式的系数和的问题,属于中档题.8.B解析:B 【分析】分成三类:一类每个台阶站1人;二类一个台阶站2人,一个台阶1人,一个台阶1人;三类一个台阶站2人,一个台阶站2人,分类用加法原理可得. 【详解】每个台阶站1人有47840A =,一个台阶站2人,一个台阶1人,一个台阶1人有23471260C A , 一个台阶站2人,一个台阶站2人有273126A 所以共有840+1260+126=2226 故选:B. 【点睛】本题考查使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.9.B解析:B 【分析】根据题意,分2步进行分析:①、分两种情况讨论将5项工作分成3组的情况数目,②、将分好的三组全排列,对应3名志愿者,由分步计数原理计算可得答案. 【详解】解:根据题意,分2步进行分析: ①、将5项工作分成3组,若分成1、1、3的三组,有3115212210C C C A =种分组方法, 若分成1、2、2的三组,有2215312215C C C A =种分组方法, 则将5项工作分成3组,有101525+=种分组方法;②、将分好的三组全排列,对应3名志愿者,有336A =种情况, 则有256150⨯=种不同的分组方法; 故选:B . 【点睛】本题考查排列、组合的应用,注意分组时要进行分类讨论,属于中档题.10.C解析:C 【分析】可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论. 【详解】由题设,四棱锥S-ABCD 的顶点S 、A 、B 所染的颜色互不相同,它们共有54360⨯⨯=种染色方法.设5种颜色为1,2,3,4,5,当S 、A 、B 染好时,不妨设其颜色分别为1、2、3, 若C 染2,则D 可染3或4或5,有3种染法;若C 染4,则D 可染3或5,有2种染法,若C 染5,则D 可染3或4,有2种染法. 可见,当S 、A 、B 已染好时,C 、D 还有7种染法,故不同的染色方法有607420⨯=(种). 故选:C 【点睛】本题考查分类加法原理、分步乘法原理的综合应用,考查学生的分类讨论的思想、逻辑推理能力,是一道中档题.11.C解析:C 【分析】根据角所在的位置,分两类:角排在一或五;角排在二或四.根据分类计数原理和排列组合的知识可得. 【详解】若角排在一或五,有22232A A =24种;若角排在二或四,有22222A A 8=. 根据分类计数原理可得,共有24832+=种. 故选:C . 【点睛】本题考查排列组合和计数原理,属于基础题.12.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项; ()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D 【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.二、填空题13.150【分析】分2步分析:先将5名高三教师分成3组分2种情况分类讨论再将分好的三组全排列对应三个学校由分步计数原理计算可得答案;【详解】解:分2步分析:先将5名高三教师分成3组由两种分组方法若分成3解析:150 【分析】分2步分析:先将5名高三教师分成3组,分2种情况分类讨论,再将分好的三组全排列,对应三个学校,由分步计数原理计算可得答案; 【详解】 解:分2步分析:先将5名高三教师分成3组,由两种分组方法,若分成3、1、1的三组,有3510C =种分组方法, 若分成1、2、2的三组,有1225422215C C C A =种分组方法, 则一共有101525+=种分组方法;再将分好的三组全排列,对应三个学校,有336A =种情况, 则有256150⨯=种不同的安排方式; 故答案为:150. 【点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.14.【分析】确定展开式的通项令的指数为即可求得结论【详解】二项式的展开式通项为令可得当时取最小值故答案为:【点睛】本题考查二项展开式通项的应用考查学生的计算能力属于中等题 解析:4【分析】确定展开式的通项,令x 的指数为7,即可求得结论. 【详解】二项式322nx x ⎛⎫+ ⎪⎝⎭的展开式通项为()3351222kn k k k kn k k n n T C x C x x --+⎛⎫=⋅=⋅ ⎪⎝⎭. 令357n k -=,可得573k n +=,当1k =时,n 取最小值4. 故答案为:4. 【点睛】本题考查二项展开式通项的应用,考查学生的计算能力,属于中等题.15.【分析】先求出展开式通项得出系数要使展开式中系数最大只需该项系数不小于前一项系数也不小于后一项系数建立关于项数的不等式求解即可【详解】二项式的展开式通项为若第系数最大需满足即整理得解得所以该二项展开 解析:20126720x【分析】先求出展开式通项,得出系数,要使展开式中系数最大,只需该项系数不小于前一项系数,也不小于后一项系数,建立关于项数r 的不等式,求解即可. 【详解】二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式通项为31212364112121(2)()2r r r r r r r T C x C x x ---+==,0,1,2,12r =,若第1r +系数最大,需满足1213112121211112122222r r r r r r r r C C C C -----+⎧≥⎨≥⎩,即12!212!!(12)!(1)!(13)!212!12!!(12)!(1)!(11)!r r r r r r r r ⨯⎧≥⎪---⎪⎨⨯⎪≥⎪-+-⎩, 整理得121321121r rr r ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,解得1013,,433r r N r ≤≤∈∴=, 8420205122126720T C x x ==,所以该二项展开式中系数最大的项为20126720x . 故答案为:20126720x . 【点睛】本题考查二项展开式定理的应用,熟记通项是解题的关键,考查计算求解能力,属于中档题.16.20【分析】先将每个盒子放入编号相同的小球剩余3个小球讨论剩余小球放入一个两个三个盒子计算得到答案【详解】先将每个盒子放入编号相同的小球剩余3个小球若3个小球都放入一个盒子有4种放法;若3个小球放入解析:20 【分析】先将每个盒子放入编号相同的小球,剩余3个小球,讨论剩余小球放入一个,两个,三个盒子,计算得到答案. 【详解】先将每个盒子放入编号相同的小球,剩余3个小球, 若3个小球都放入一个盒子,有4种放法; 若3个小球放入两个盒子,有2412A =种放法; 若3个小球放入三个盒子,有4种放法. 故不同的方法有412420++=种. 故答案为:20. 【点睛】本题考查了分类原理和排列,意在考查学生的计算能力和应用能力,先将每个盒子放入编号相同的小球是解题的关键.17.1【分析】变形利用二项式定理展开即可求出被除所得的余数【详解】因为所以转化为求被除所得的余数因为所以被除所得的余数是1故答案为:1【点睛】本题主要考查了利用二项式定理研究整除问题考查了推理运算能力属解析:1 【分析】变形883(52)=-,利用二项式定理展开即可求出被5除所得的余数. 【详解】 因为883(52)=-0817262778088888855(2)5(2)5(2)5(2)C C C C C =⋅+⋅⨯-+⋅⨯-++⋅⨯-+⋅⨯- 071625277808888885(55(2)5(2)(2))5(2)C C C C C =⋅+⋅⨯-+⋅⨯-++-+⋅⨯-,所以转化为求8885(2)256C ⋅⨯-=被5除所得的余数, 因为2565151=⨯+, 所以83被5除所得的余数是1, 故答案为:1 【点睛】本题主要考查了利用二项式定理研究整除问题,考查了推理运算能力,属于中档题.18.60【分析】由题意可得二项展开式的通项要求展开式的常数项只要令可求代入可求【详解】解:由题意可得二项展开式的通项为:令可得:此时即的展开式中的常数项为60故答案为:60【点睛】本题考查了二项展开式项解析:60 【分析】由题意可得,二项展开式的通项26161(2)()(1)2r r r rr T C x x-+=-=-61236rr r C x --,要求展开式的常数项,只要令1230r -=可求r ,代入可求 【详解】解:由题意可得,二项展开式的通项为: 2661231661(2)()(1)2r r r r r r rr T C x C x x---+=-=-,令1230r -=,可得:4r =,此时2456260T C ==,即6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为60. 故答案为:60. 【点睛】本题考查了二项展开式项的通项公式的应用,考查解题运算能力.19.35【分析】根据组合数的性质计算可得;【详解】解:故答案为:【点睛】本题考查组合数的性质属于中档题解析:35 【分析】根据组合数的性质11m m mn n n C C C -++=计算可得;【详解】解:2222223456C C C C C ++++3222233456C C C C C =++++ 32224456C C C C =+++ 322556C C C =++ 3266C C =+ 3776535321C ⨯⨯===⨯⨯故答案为:35 【点睛】本题考查组合数的性质,属于中档题.20.【分析】将已知等式等价变形为结合二项展开式的通项即可求得【详解】展开后含有的项为:故答案为:【点睛】本题主要考查二项式定理的应用注意根据题意分析所给代数式的特点考查理解辨析能力与运算求解能力 解析:272【分析】将已知等式等价变形为5[2(1)1][3(1)1]x x -+-+,结合二项展开式的通项即可求得5a . 【详解】55(21)(32)[2(1)1][3(1)1]x x x x --=-+-+,展开后含有5(1)x -的项为:0551445552(1)2(1)3(1)272(1)C x C x x x ⋅⋅-+⋅⋅-⋅-=-,5272a ∴=.故答案为:272 【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,考查理解辨析能力与运算求解能力.三、解答题21.(1)240种; (2)1140种 【分析】(1)先从6张门票中选出两张连号的门票,有5种选法,剩下的4张门票分给其余四位老师属于排列问题,有44A 种,又因为两张连号的门票分明明、慧慧两位老师,有22A 种分法,由分步乘法计数原理即可求得结果;(2)先分类再分步.一类是甲、乙两人中恰有一人参加,先从甲、乙中选出1人,再从其余6人中选出3人,最后将参加的4人全排列,有134264960C C A ⋅⋅=种;另一类是甲、乙两人都参加,有22C 种.除甲、乙外,再选2名,有26C 种.其余两人先排好有22A 种,甲、乙不相邻采用插空法有23A 种,用分步乘法计数原理22222623C C A A ⋅⋅⋅计算.最后再将两类的结果加起来. 【详解】解:(1)门票连号有5种,分给其余四位老师有44A 种, 明明、慧慧分得的门票连号,一共有42425240A A ⨯⨯=种; (2)就甲、乙两名同学中实际参与演讲比赛的人数进行分类计数: 第一类,甲、乙两名同学中实际参与演讲比赛的恰有一人, 满足题意的不同的演讲顺序的种数为134264960C C A ⋅⋅=; 第二类,甲、乙两名同学中实际参与演讲比赛的恰有两人, 满足题意的不同的演讲顺序种数为22222623180C C A A ⋅⋅⋅=. 因此满足题意的不同的演讲顺序的种数为9601801140+=. 【点睛】本题考查了两个计数原理的综合应用,其中甲、乙不相邻采用“插空法”,属于中档题. 22.(1)720;(2)3720. 【分析】(1)由学生会正、副主席两职位只能由甲乙丙三人中选出两人担任,利用排列、组合计算即可;(2)甲不担任学生会主席,乙不担任组织委员,可用间接法计算,即可求解. 【详解】(1)由题意,学生会正、副主席两职位只能由甲乙丙三人中选出两人担任, 则有225325720C A A =种不同的分工.(2)甲不担任学生会主席,乙不担任组织委员,则有76576523720A A A -+=种不同的分工. 【点睛】本题主要考查了排列、组合及其简单的计数原理的应用,其中解答中认真审题,合理利用排列数、组合数的公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.23.(1)1560;(2)156;(3)92. 【解析】 【分析】(1)分为3,1,1,1和2,2,1,1两类分别计算,加和得到结果;(2)分为个位是0和个位不是0两类分别计算,加和得到结果;(3)分为只会英语的人中选了3人作英语导游、选了2人作英语导游和选了1人作英语导游三类分别计算,加和得到结果. 【详解】(1)把6本不同的书分给4位学生,每人至少一本,有3,1,1,1和2,2,1,1两类分配方式为3,1,1,1时,共有:3114632433480C C C A A ⋅=种分法 分配方式为2,2,1,1时,共有:2214642422221080C C C A A A ⋅=种分法 由分类加法计数原理可得,共有:48010801560+=种分法 (2)若个位是0,共有:3560A =个 若个位不是0,共有:11224496C C A =个由分类加法计数原理可得,共有:6096156+=个(3)若只会英语的人中选了3人作英语导游,共有:3620C =种选法 若只会英语的人中选了2人作英语导游,共有:12323560C C C =种选法 若只会英语的人中选了1人作英语导游,共有:133412C C =种选法 由分类加法计数原理可得,共有:20601292++=种选法 【点睛】本题考查排列组合的综合应用问题,涉及到分组分配问题、元素位置有限制的排列组合问题等知识,关键是能够根据题目的要求进行合理的分类,最终通过分类加法计数原理得到结果.24.(1)2160;(2)720;(3)144;(4)720. 【分析】(1)利用元素分析法(特殊元素优先安排),甲为特殊元素,故先安排甲,左、右、中共三个位置可供甲选择,问题得以解决;(2)利用捆绑法,先将男生捆绑在一起算一个大元素,与女生进行全排,在将男生内部全排得到结果;(3)男女各不相邻,先排四名女生,之后将3名男生插在四个空中,正好得到所要的结果;(4)从除甲、乙之外的5人中选3人排在甲、乙中间,之后再排,问题得以解决. 【详解】(1)甲为特殊元素,所以先安排甲,左、右、中共三个位置可供甲选择,有13A 种选择, 其余6人全排列,有66A 种排法, 由分步计数原理得共有16362160A A ⋅=种;(2)捆绑法,先将男生排在一起,和四名女生合在一起,有55A 种排法, 再将三名男生内部排列,有33A 种排法, 由分步计数原理得共有5353720A A ⋅=种;(3)男女各不相邻,即为女生排好后男生插入中间的三个空即可, 所以有4343144A A ⋅=种;(4)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有35A 种排法, 甲、乙两人有22A 种排法,甲、乙以及中间的三人与其余2人共有33A 种排法, 由分步计数原理得共有323523720A A A ⋅⋅=种. 【点睛】该题考查的是有关具有特殊要求的排列问题,在解题的过程中,注意处理原则和解题方法为:特殊元素优先考虑,不邻问题插空法,相邻问题捆绑法等,属于简单题目.25.(1)10n =(2)311520T =,1073360T x -=,2011T x -=.【解析】 【分析】(1)由题意得到关于n 的方程,解方程可得n 的值;(2)结合(1)中求得的n 的值,得到展开式的通项公式,然后整理计算可得展开式中系数为正实数的项. 【详解】(1)由已知,得-22(2)180n n C i =-,即24180n C =,所以2900n n --=,又n ∈+N ,解得10n =. (2)展开式的通项为5510210211010(2)(2)k k kkk kk TC xi xC i x----+==,因为系数为正实数,且{0,1,2,,10}k ∈,所以2,6,10k =.代入通项公式可得所求的项为311520T =,1073360T x -=,2011T x -=.【点睛】本题主要考查二项式展开式的通项公式及其应用,分类讨论的数学思想,复数的运算法则等知识,意在考查学生的转化能力和计算求解能力. 26.(1)(2)(3)【解析】 【分析】(1)由赋值法得到相应的数值;(2)将参数值代入表达式得到其通项公式为,由不等式,可得到,进而得到;(3)按照组合数的展开公式,分组求和即可. 【详解】 (1)若,,令,则, 令,则所以.(2)若,其通项公式为,由不等式解得,且,∴.所以.(3)若,【点睛】本题考查二项式定理的应用,以及组合数公式的相关运算,考查推理能力与计算能力,属于中等题。

北师大版高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)(2)

北师大版高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)(2)

一、选择题1.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为( )A .72B .48C .24D .602.如图,在杨辉三角形中,斜线l 的上方从 1 按箭头所示方向可以构成一个“锯齿形”的数列: 1,3,3,4,6,5,10,...,记此数列的前n 项之和为n S ,则 21S 的值为( )A .66B .153C .295D .3613.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为 A .14 B .16 C .20 D .484.若2020220200122020(12)x a a x a x a x -=+++⋯+,则下列结果不正确的是( )A .01220201a a a a +++⋯+=B .20201352019132a a a a -++++⋯+=C .20200242020132a a a a ++++⋯+=D .202012220201222a a a ++⋯+=- 5.影片《红海行动》里的“蛟龙突击队”在奉命执行撤侨过程中,海军舰长要求队员们依次完成6项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在第2位,且任务E 、F 必须排在一起,则这6项任务的不同安排方案共有( ) A .18种B .36种C .144种D .216种6.某科技小组有四名男生两名女生.现从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为( ) A .36CB .1225C CC .12212424C C C C +D .36A7.10名同学合影,站成前排4人后排6人,现摄影师要从后排6人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( ) A .2263C AB .2666C AC .2266C AD .2265C A8.已知8290129(3)(23)(1)(1)(1)x x a a x a x a x --=+-+-+⋅⋅⋅+-,则6a =( )A .1792-B .1792C .5376-D .53769.5名师生站成一排照相留念,其中教师1人,男生2人,女生2人,则两名女生相邻而站的概率是( )A .15B .25C .35D .4510.公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.1415926<π<3.1415927,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们把小数点后的7位数字1,4,1,5,9,2,6进行随机排列,整数部分3不变,那么可以得到大于3.14的不同数字有( ) A .2280B .2120C .1440D .72011.5名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法的种数为( ) A .35 B .53C .35AD .35C12.41(1)x x++的展开式中常数项为( ) A .18B .19C .20D .21二、填空题13.已知522()ax x-的展开式中1x -的系数为40-,则实数a =____ 14.设()28210012101(43)(21)(21)(21)x x a a x a x a x +-=+-+-++-,则1210a a a ++⋯+= ________.15.()83x y z +-展开式中,52x y z 项的系数为__________.16.某单位拟安排6位员工在今年6月14号至16号(某节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值16号,乙不值14号,则不同的安排方法共有____________种.17.在今年的疫情防控期间,某省派出5个医疗队去支援武汉市的4个重灾区,每个重灾区至少分配一个医疗队,则不同的分配方案共有_____________种.(用数字填写答案) 18.已知()()()()52012213211x x a a x a x --=+-+-()()565611a x a x +⋅⋅⋅+-+-,则5a =______.19.有3个本校老师和3个外校老师被安排到高三地理选考考试的3个考场,要求一个试场有一个本校老师和一个外校老师负责监考,且本校老师甲不能监考1号试场,外校老师乙不监考2号试场,则共有_____种不同安排方案.20.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数是_____.三、解答题21.已知数列{}n a 的首项为1,记()()()()120122123, 111nn n n nn F x n a C x a C x x a C x x --=-+-+-()11111n n n nn n n n a C x x a C x --+++-+.(1)若数列{}n a 是公比为3的等比数列,求()1, 2020F -的值;(2)若数列{}n a 是公差为2的等差数列,求证:(), 2020F x 是关于x 的一次多项式. 22.有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选5人排成一排;(2)排成前后两排,前排4人,后排3人; (3)全体排成一排,甲不站排头也不站排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻.23.江夏一中将要举行校园歌手大赛,现有3男3女参加,需要安排他们的出场顺序.(结果用数字作答.......) (1)如果3个女生都不相邻,那么有多少种不同的出场顺序?(2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序? (3)如果3位男生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序? 24.已知.(1)若,求及的值;(2)若,求最大的系数;(3)定义,若化简.25.已知2nx x ⎫⎪⎭的展开式中第4项与第5项的二项式系数相等. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.26.已知8件不同的产品中有3件次品,现对它们一一进行测试,直至找到所有次品. (1)若在第5次测试时找到最后一件次品,则共有多少种不同的测试方法? (2)若至多测试5次就能找到所有次品,则共有多少种不同的测试方法?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先将丙与丁捆绑,形成一个“大元素”与戊进行排列,然后再将甲、乙插空,利用分步乘法计数原理可求得排法种数. 【详解】先将丙与丁捆绑,形成一个“大元素”与戊进行排列,然后再将甲、乙插空,由分步乘法计数原理可知,不同的排法种数为22222324A A A =种. 故选:C. 【点睛】本题考查捆绑法与插空法的综合应用,同时也考查了分步乘法计数原理的应用,考查计算能力,属于中等题.2.D解析:D 【解析】试题分析:观察杨辉三角结合其中数的来源,可得到这个数列的通项公式.n a 当n 为偶数时,42n n a +=;当n 为奇数时,0212322233551,3,6,C C C C C C ======,所以()()232138n n n n a C +++==,所以21S =()()()()22221352124620124622224622758a a a a a a a a ⎡⎤+++++++++=++++++++++⎣⎦()122423112475286753618⎡⎤=⨯⨯+⨯+=+=⎣⎦,故选D. 考点:归纳推理与数列求和.3.B解析:B 【解析】由间接法得32162420416C C C -⋅=-=,故选B .4.B解析:B 【分析】令1x =,得到0120201a a a ++⋯+=,令1x =-,求得202001220203a a a a =-++⋯+,令0x =,求得01a =,进而逐项判定,即可求解.【详解】由题意,二项展开式2020220200122020(12)x a a x a x a x -=+++⋯+,令1x =,可得01220202020(12)1a a a a +++⋯+-==,①令1x =-,可得2020012202020203(123)a a a a a -=+-++⋯+=,②令0x =,可得20020(10)1a =-=,③由①-②,可得20201352019132a a a a -+++⋯+=,由①+②,可得2020024*******a a a a ++++⋯+=, 令12x =,可得20202020120220201(12)12222a a a a +++⋯+=-⨯=, 所以202012220201222a a a ++⋯+=-. 综上可得,A 、C 、D 是正确的,B 是错误的. 故选:B. 【点睛】本题主要考查了二项展开式的系数问题的求解,其中解答中合理利用二项展开式的形式,合理赋值是解答的关键,着重考查推理与计算能力.5.B解析:B 【分析】根据A 必须排在第2位,且任务E 、F 必须排在一起,先得到任务E 、F 相邻的位置的种数,再考虑E 、F 的顺序,然后将剩下的3个任务全排列,最后用分步计数原理求解. 【详解】因为A 必须排在第2位,且任务E 、F 必须排在一起, 则任务E 、F 相邻的位置有3种, 考虑E 、F 的顺序,有2种情况,将剩下的3个任务全排列,安排在其他3个位置,有336A =种, 所以这6项任务的不同安排方案共有32636⨯⨯=种, 故选:B 【点睛】本题主要考查计数原理中的排列问题,还考查了分析求解的能力,属于中档题.6.C解析:C 【分析】分只有一名女生入选和有二名女生入选两种情况,结合分步乘法计数原理以及分类加法计数原理,即可得出答案. 【详解】当只有一名女生入选时,先选1名女生,有12C 种,再选2名男生,有24C 种,则根据分步乘法计数原理可知,有1224C C 种当有二名女生入选时,选选2名女生,有22C 种,再选1名男生,有14C 种,则根据分步乘法计数原理可知,有2124C C 种所以从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为12212424C C C C +【点睛】本题主要考查了组合的应用,涉及了分步乘法计数原理以及分类加法计数原理的应用,属于中档题.7.C解析:C 【分析】分两步:1.首先先从后排6人中选2人出来;2.将这2人与前排4人排列,且前排4人的相对顺序不变,可以看成有6个位置,先选2个位置排这2人,其他4人按原顺序排列,再由乘法原理计算即可. 【详解】首先先从后排6人中选2人出来,共26C 种不同选法,将这2人与前排4人排列,且前排4 人的相对顺序不变,可以看成有6个位置,先选2个位置排这2人有26A 种不同排法,其余 位置按4人原顺序排好只有1种排法,由乘法原理,得不同调整方法的总数是2266C A . 故选:C 【点睛】本题考查排列与组合的应用,涉及到定序排列问题,考查学生的逻辑推理能力,是一道中档题.8.D解析:D 【分析】将原式改写成88(3)(23)[2(1)][2(1)1]x x x x --=----,利用二项式定理解决系数问题即可得解. 【详解】88(3)(23)[2(1)][2(1)1]x x x x --=----290129(1)(1)(1)a a x a x a x =+-+-+⋅-+⋅⋅,所以26356882C 2C 2358417925376.a =⨯⨯+⨯=+= 故选:D 【点睛】此题考查二项式定理的理解辨析和应用,关键在于熟练掌握定理公式,根据公式处理系数关系.9.B解析:B 【分析】这是一个古典概型,先确定5名师生站成一排站法数,记“两名女生相邻而站”为事件A , 两名女生站在一起,视为一个元素与其余3个人全排,计算出事件A 共有不同站法数,再代入公式求解.5名师生站成一排共有55120A=种站法,记“两名女生相邻而站”为事件A,两名女生站在一起有222A=种,视为一个元素与其余3个人全排,有4424A=种排法,则事件A共有不同站法242448A A⋅=种,所以()482 1205p A==,两名女生相邻而站的概率是2 5 .故选:B【点睛】本题主要考查古典概型的概率,还考查了理解辨析,运算求解的能力,属于中档题. 10.A解析:A【分析】整体上用间接法求解,先算出1,4,1,5,9,2,6这7位数字随机排列的种数,注意里面有两个1,多了22A倍,要除去,再减去小于3.14的种数,小于3.14的数只有小数点前两位为11或12,其他全排列.【详解】由于1,4,1,5,9,2,6这7位数字中有2个相同的数字1,故进行随机排列,可以得到的不同情况有7722AA,而只有小数点前两位为11或12时,排列后得到的数字不大于3.14,故小于3.14的不同情况有552A,故得到的数字大于3.14的不同情况有75752222280 AAA-=.故选:A【点睛】本题主要考查数字的排列问题,还考查了理解辨析的能力,属于中档题. 11.B解析:B【分析】把不同的报名方法可分5步完成,结合分步计数原理,即可求解.【详解】由题意,不同的报名方法可分5步完成:第一步:第一名同学报名由3种方法第二步:第二名同学报名由3种方法第三步:第三名同学报名由3种方法第四步:第四名同学报名由3种方法 第五步:第五名同学报名由3种方法根据分步乘法计数原理,共有5333333⨯⨯⨯⨯=种方法. 故选:B. 【点睛】本题主要考查了分步计数原理的应用,其中解答中认真审题,合理分步求解是解答的关键,着重考查了分析问题和解答问题的能力.12.B解析:B 【分析】 41(1)x x ++展开式的141()r r r T C x x +=+,(0r =,1,⋯,4).1()r x x+的通项公式:211()k r k k k r k k r r T C x C x x--+==,令2r k =,进而得出.【详解】 解:41(1)x x ++展开式的141()r r r T C x x+=+,(0r =,1,⋯,4). 1()r x x +的通项公式:211()k r k k k r k k r r T C x C x x--+==,令2r k =,可得:0k =时,0r =;1k =时,2r ,2k =时,4r =.41(1)x x∴++展开式中常数项21424244119C C C C =+⨯+⨯=. 故选:B . 【点睛】本题考查了二项式定理的通项公式及其应用,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】利用二项式定理写出二项展开式的通项公式令的幂指数为求出的值利用其系数为得到关于的方程解方程即可求解【详解】由二项式定理可得二项展开式的通项公式为令解得所以的展开式中的系数为解得故答案为:【点 解析:1-【分析】利用二项式定理写出522()ax x -二项展开式的通项公式,令x 的幂指数为1-,求出r 的值,利用其系数为40-得到关于a 的方程,解方程即可求解.【详解】由二项式定理可得,522()ax x -二项展开式的通项公式为()()5553155222rrr r r r r r T C ax C a x x ---+⎛⎫=⋅⋅-=⋅-⋅⋅ ⎪⎝⎭,令531r -=-,解得2r ,所以522()ax x-的展开式中1x -的系数为()2235240C a ⋅-⋅=-,解得1a =-. 故答案为:1- 【点睛】本题考查利用二项式定理由二项展开式中某项的系数求参数;考查运算求解能力;利用二项式定理写出二项展开式的通项公式是求解本题的关键;属于中档题、常考题型.14.【分析】因为分别令和即可求得答案【详解】令原式化为令得故答案为:【点睛】本题主要考查了多项式展开式系数和解题关键是掌握求多项式系数和的解题方法考查了分析能力和计算能力属于中档题解析:34【分析】因为()()()()()8210201210143212121x x a a x a x a x +-=+-+-++-,分别令1x =和12x =,即可求得答案. 【详解】()()()()()8210201210143212121x x a a x a x a x +-=+-+-++-令1x =.∴原式化为012102a a a a =++++.令12x =,得054a =, ∴121053244a a a +++=-=. 故答案为: 34. 【点睛】本题主要考查了多项式展开式系数和,解题关键是掌握求多项式系数和的解题方法,考查了分析能力和计算能力,属于中档题.15.【分析】由的指数是1得到然后由的指数是2得到然后即可算出答案【详解】因为的指数是1所以得到又因为的指数是2得到所以项的系数为故答案为:【点睛】在解决本类问题时应将其中两项看成一个整体来处理 解析:1512-【分析】()()8833x y z x y z +-=+-⎡⎤⎣⎦,由z 的指数是1,得到()()7183C x y z +-,然后由y 的指数是2,得到()22573C x y ,然后即可算出答案.【详解】()()8833x y z x y z +-=+-⎡⎤⎣⎦因为z 的指数是1,所以得到()()7183C x y z +-又因为y 的指数是2,得到()22573C xy所以52x y z 项的系数为()12287131512C C -=-故答案为:1512- 【点睛】在解决本类问题时应将其中两项看成一个整体来处理.16.42【分析】根据题意不同的安排方法的数目等于所有排法减去甲值16号或乙值14号的排法数再加上甲值16号且乙值14号的排法进而计算可得答案【详解】解:根据题意不同的安排方法的数目为:所有排法减去甲值1解析:42 【分析】根据题意,不同的安排方法的数目等于所有排法减去甲值16号或乙值14号的排法数,再加上甲值16号且乙值14号的排法,进而计算可得答案. 【详解】解:根据题意,不同的安排方法的数目为:所有排法减去甲值16号或乙值14号的排法数,再加上甲值16号且乙值14号的排法,即221211645443242C C C C C C -⨯+=, 故答案为:42. 【点睛】本题考查组合数公式的运用,注意组合与排列的不同以及各种排法间的关系,避免重复、遗漏.17.240【分析】根据题意分2步进行分析:先选出一个重灾区分配有两个医疗队再为剩下的3个重灾区各分配一个医疗队由分步计数原理计算可得答案【详解】根据题意将5个医疗队分派到4个重灾区每个重灾区至少分配一个解析:240 【分析】根据题意,分2步进行分析:先选出一个重灾区分配有两个医疗队,再为剩下的3个重灾区各分配一个医疗队,由分步计数原理计算可得答案. 【详解】根据题意,将5个医疗队分派到4个重灾区,每个重灾区至少分配一个医疗队, 则其中有一个重灾区安排两个医疗队,剩下3个重灾区各安排一个医疗队. 分2步进行分析:先选出一个重灾区分配有两个医疗队,有1245C C 种分配法,再为剩下的3个重灾区各分配一个医疗队,有33A 种分配法,所以不同的分配方案数共有123453240C C A =.故答案为:240. 【点睛】本题考查排列组合,属于基础题.18.【分析】将已知等式等价变形为结合二项展开式的通项即可求得【详解】展开后含有的项为:故答案为:【点睛】本题主要考查二项式定理的应用注意根据题意分析所给代数式的特点考查理解辨析能力与运算求解能力 解析:272【分析】将已知等式等价变形为5[2(1)1][3(1)1]x x -+-+,结合二项展开式的通项即可求得5a . 【详解】55(21)(32)[2(1)1][3(1)1]x x x x --=-+-+,展开后含有5(1)x -的项为:0551445552(1)2(1)3(1)272(1)C x C x x x ⋅⋅-+⋅⋅-⋅-=-,5272a ∴=.故答案为:272 【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,考查理解辨析能力与运算求解能力.19.【分析】利用分步乘法计数原理可得结果【详解】解:根据题意得第一步先排本校老师先排甲2种排法再排剩下的两名本校老师有中排法;第二步排外校老师乙有两种排法再排剩下的两名外校老师有种排法;据分步乘法计数原 解析:16【分析】利用分步乘法计数原理可得结果. 【详解】解:根据题意得,第一步先排本校老师,先排甲2种排法,再排剩下的两名本校老师有22A 中排法;第二步,排外校老师乙有两种排法,再排剩下的两名外校老师有22A 种排法;据分步乘法计数原理得共有22222216A A ⨯⨯⨯=种安排方案; 故答案为:16. 【点睛】本题考查有限制条件的排列组合问题,属于中档题.20.【分析】因为所以从这五个数中每次取出两个不同的数分别为共可得到的不同值的个数可看作共可得到多少个不同的数【详解】解:首先从这五个数中任取两个不同的数排列共种排法因为所以从这五个数中每次取出两个不同的 解析:18【分析】 因为lg lg lgaa b b-=,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数可看作共可得到多少个不同的数a b. 【详解】解:首先从1,3,5,7,9这五个数中任取两个不同的数排列,共2520A =种排法, 因为3913=,1339=, 所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b , 共可得到lg lg a b -的不同值的个数为:20218-=, 故答案为:18. 【点睛】本题考查了排列组合及简单的计数问题,属于基础题.三、解答题21.(1)1(2)证明见解析; 【分析】(1)根据13-=n n a ,得到()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n n nn nn n C x x C x x x x --++-+=-+=+求解.(2)易得21n a n =-,则(),F x n ()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C xx ,再转化为(),F x n ()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x ()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,利用二项式定理及组合数公式求解.【详解】(1)由题意得:13-=n n a ,∴()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n nnn nn n C x x C x x x x --++-+=-+=+,∴()()20201,2020121F -=-=;(2)证明:若数列{}n a 是公差为2的等差数列,则21n a n =-.()()()()10111121,111---+=-+-++-+n n n n n nn n n n n n F x n a C x a C x x a C x x a C x ,()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C x x ,()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,由二项式定理知,()()()10122211(1)11---+-+-=-+=⎡⎤⎣++⎦nn n n n nn n nnC x C x x C x x x x C x ,因为()()()()111!!!!1!!kk nn n n kC k n C k n k k n n k --⋅-=⋅=⋅=---,所以()1122212(1)---+-++n n n n n nn C x x C x nC x x ()112211111(1)------=-+-++n n n n n n n nC x x n x x nC x C()1012111111(1)n n n n n n n nx C x C x x C x -------=⎦-+-++⎡⎤⎣()11-=-+=⎡⎤⎣⎦n nx x x nx ,所以(),12F x n nx =+.(),202014040F x x =+.【点睛】本题主要考查二项式定理及其展开式以及组合数公式,等差数列,等比数列的通项公式,还考查了运算求解的能力,属于中档题.22.(1)2520种(2)5040种(3)3600种(4)576种(5)1440种 【分析】(1)按照排列的定义求解..(2)分两步完成,先选4人站前排进行排列,余下3人站后排进行排列,然后相乘求解.. (3)先考虑甲,再其余6人进行排列,然后相乘求解.(4)将女生看作一个整体与3名男生一起全排列,再将女生全排列,然后相乘求解. (5)先排女生,再在女生之间及首尾5个空位中任选3个空位安排男生,然后相乘求解. 【详解】(1)从7人中选5人排列,有57765432520A =⨯⨯⨯⨯=(种). (2)分两步完成,先选4人站前排,有47A 种方法,余下3人站后排,有33A 种方法,共有4373A A 5040=(种).(3)(特殊元素优先法)先排甲,有5种方法,其余6人有66A 种排列方法,共有6653600A ⨯=(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有44A 种方法,再将女生全排列,有44A 种方法,共有4444A A 576=(种).(5)(插空法)先排女生,有44A 种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有35A 种方法,共有4345A A 1440=(种). 【点睛】本题主要考查了对排列的理解和排列数的计算,还考查了理解辨析的能力,属于中档题. 23.(1)144;(2)360;(3)108 【分析】(1)根据题意,用插空法分2步进行分析:①、先将3名男生排成一排,②、男生排好后有4个空位,在4个空位中任选3个,安排3名女生,由分步计数原理计算可得答案; (2)根据题意,先不考虑甲乙的情况,将6人排成一排,又由女生甲在女生乙的前面和女生甲在女生乙的后面的排法是一样的,即可得答案;(3)根据题意,分3步进行分析:①、先将3名男生看成一个整体,考虑三人之间的顺序,②、将除之外的两名女生和三名男生的整体全排列,③、分析女生甲的安排方法,由分步计数原理计算可得答案. 【详解】(1)根据题意,分2步进行分析: ①先将3名男生排成一排,有33A 种情况,②男生排好后有4个空位,在4个空位中任选3个,安排3名女生,有34A 种情况, 则有3334144A A ⨯=种不同的出场顺序;(2)根据题意,将6人排成一排,有66A 种情况,其中女生甲在女生乙的前面和女生甲在女生乙的后面的排法是一样的,则女生甲在女生乙的前面的排法有6622360A A =种;(3)根据题意,分3步进行分析:①先将3名男生看成一个整体,考虑三人之间的顺序,有33A 种情况, ②将除之外的两名女生和三名男生的整体全排列,有33A 种情况, ③女生甲不在第一个出场,则女生甲的安排方法有13C 种, 则有313333108A C A =种符合题意的安排方法. 【点睛】本题考查排列、组合的应用,考查逻辑推理能力、运算求解能力,求解时注意分步、分类计数原理的应用. 24.(1)(2)(3)【解析】 【分析】(1)由赋值法得到相应的数值;(2)将参数值代入表达式得到其通项公式为,由不等式,可得到,进而得到;(3)按照组合数的展开公式,分组求和即可. 【详解】 (1)若,,令,则, 令,则所以.(2)若,其通项公式为,由不等式解得,且,∴.所以.(3)若,【点睛】本题考查二项式定理的应用,以及组合数公式的相关运算,考查推理能力与计算能力,属于中等题。

北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(答案解析)

北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(答案解析)

一、选择题1.从4名优秀学生中选拔参加池州一中数学、物理、化学三学科培优研讨会,要求每名学生至多被一学科选中,则每学科至少要选用一名学生的情况有( )种 A .24B .36C .48D .602.()()4221x x x -+-的展开式中x 项的系数为( )A .9-B .5-C .7D .83.某班某天上午有五节课,需安排的科目有语文,数学,英语,物理,化学,其中语文和英语必须连续安排,数学和物理不得连续安排,则不同的排课方法数为( ) A .60 B .48 C .36 D .24 4.把4个不同的小球全部放人3个不同的盒子中,使每个盒子都不空的放法总数为( )A .1333C AB .3242C AC .132442C C CD .2343C A5.数列129,,,a a a ⋅⋅⋅中,恰好有6个7,3个4,则不相同的数列的个数( ) A .69AB .39AC .39CD .36C6.袋中有大小相同的四个白球和三个黑球,从中任取两个球,两球同色的概率为( ) A .47B .37C .27D .8217.10名同学合影,站成前排4人后排6人,现摄影师要从后排6人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( ) A .2263C AB .2666C AC .2266C AD .2265C A8.5(3)(2)x x -+的展开式中3x 的系数为( ) A .10B .40-C .200D .2409.在12202011x x ⎛⎫++ ⎪⎝⎭的展开式中, 2x 项的系数为( ) A .10B .25C .35D .6610.现有甲、乙、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、乙、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为( ) A .14B .16C .18D .2011.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( ) A .1 B .9C .-1或-9D .1或912.41(1)x x++的展开式中常数项为( ) A .18B .19C .20D .21二、填空题13.函数()y f x =的定义域D 和值域A 都是集合{12,3},的非空真子集,如果对于D 内任意的x ,总有()()x f x xf x ++的值是奇数,则满足条件的函数()y f x =的个数是_____;14.若9m x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为84,则m =_________.15.若在83(3)(1)a x x +-关于x 的展开式中,常数项为4,则2x 的系数是______________.16.在二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式中,该二项展开式中系数最大的项为___________.17.有5本不同的书,全部借给3人,每人至少1本,共有______种不同的借法.18.植树造林,绿化祖国.某班级义务劳动志愿者小组参加植树活动,准备在一抛物线形地块上的ABCDGFE 七点处各种植一棵树苗,且关于抛物线的如图所示,其中A 、B 、C 分别与E 、F 、G 关于抛物线的对称轴对称,现有三种树苗,要求每种树苗至少种植一棵,且关于抛物线的对称轴对称的两点处必须种植同一种树苗,则共有不同的种植方法数是_____(用数字作答).19.将5名上海世博会的志愿者分配到中国馆、美国馆、英国馆工作,要求每个国家馆至少分配一名志愿者且其中甲、乙两名志愿者不同时在同一个国家馆工作,则不同的分配方案有________种.20.,,,,,A B C D E F 六人并排站成一排,,A B 必须站在一起,且,C D 不能相邻,那么不同的排法共有_____种(结果用数字表示).三、解答题21.若2nx x ⎛+ ⎝展开式的二项式系数之和是64.(1)求n 的值;(2)求展开式中的常数项.22.某校阅览室的一个书架上有6本不同的课外书,有5个学生想阅读这6本书,在同一时间内他们到这个书架上取书.(1)求每个学生只取1本书的不同取法种数;(2)求每个学生最少取1本书,最多取2本书的不同取法种数;(3)求恰有1个学生没取到书的不同取法种数.23.若423401234(2x a a x a x a x a x =++++ (1)求2a 的值;(2)求2202413()()a a a a a ++-+ 24.已知1(2)4n x +的展开式前三项的三项式系数的和等于37 ,求: (1)展开式中二项式系数最大的项的系数. (2)展开式中系数最大的项.25.(1)把6本不同的书分给4位学生,每人至少一本,有多少种方法? (2)由0,1,2,3,4,5这6个数字组成没有重复数字的四位偶数由多少个?(3)某旅行社有导游9人,其中3人只会英语,4人只会日语,其余2人既会英语,也会日语,现从中选6人,其中3人进行英语导游,另外3人进行日语导游,则不同的选择方法有多少种?26.有2名男生、3名女生,全体排成一行,问下列情形各有多少种不同的排法?(以下各题请用数字作答)(1)甲不在中间也不在两端; (2)甲、乙两人必须排在两端; (3)男、女生分别排在一起; (4)男女相间;【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先,根据题意,分析得出应该分两类情况,共选3人参加研讨会和4名学生都参加,之后各自应用分步计数原理求得结果,之后应用分类加法计数原理求得结果. 【详解】依题意,分两类情况:(1)每个学科选1人,共选3人参加研讨会, 从4名学生中选3名进行排列即可,有3424A =种情况; (2)4名学生都参加,则必然有2名学生参加同一学科的研讨会,先从4名学生中选2名看作一个整体,有246C =选法, 将这个整体与其他学生全排列即可,有336A =种排法, 根据分步计数原理,共有6636⨯=种情况,综上所述,根据分类计数原理可得,每学科至少 一名学生的情况有263460+=种, 故选:D. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类加法计数原理和分步乘法计数原理,属于简单题目.2.A解析:A 【分析】将()()4221x x x -+-化简为:2444(1)(1)2(1)x x x x x --+--,写出4(1)x -二项展开式的通项公式(4)14(1)rr r r T C x -+=⋅-,即可求得答案.【详解】 ()()42244421(1)(1)2(1)x x x x x x x x -+---+-=-4(1)x -二项展开式的通项公式(4)14(1)r r r r T C x -+=⋅- 24(1)x x -中不含x 项,无需求解.4(1)x x --中含x 项,即当4r =时(44444)(1)x C xx --⋅⋅=--42(1)x -中含x 项,即当3r =时(43)34328(1)C x x -⋅=-- ∴ ()()4221x x x -+-的展开式中x 项9x -故选:A. 【点睛】本题考查求二项式展开式中常数项,解题关键是掌握二项展开式的通项公式,考查分析能力和计算能力,属基础题.3.D解析:D 【分析】由排列组合中的相邻问题与不相邻问题得:不同的排课方法数为22222324A A A =,得解. 【详解】先将语文和英语捆绑在一起,作为一个新元素处理,再将此新元素与化学全排,再在3个空中选2个空将数学和物理插入即可, 即不同的排课方法数为22222324A A A =, 故选:D . 【点睛】本题考查了排列组合中的相邻问题与不相邻问题,属中档题.4.D解析:D 【分析】利用捆绑法选择两个球看成整体,再全排列得到答案. 【详解】选择两个球看成整体,共有24C 种取法,再把三个球放入三个盒子中,有33A 种放法,故共有2343C A 种放法. 故选:D. 【点睛】本题考查了排列和组合的应用,意在考查学生的应用能力,利用捆绑法是解题的关键.5.C解析:C 【分析】把129,,,a a a ⋅⋅⋅看成9个位置,从这9个位置中,任取3个位置放4(或任取6个位置放7),即得不相同的数列的个数. 【详解】把129,,,a a a ⋅⋅⋅看成9个位置,从这9个位置中,任取3个位置放4(或任取6个位置放7),其余6个位置放7(或其余3个位置放4),有39C (或69C )种不同的取法. 每种取法放3个4都有一种方法,剩下的6个位置放6个7有1种方法. 所以不相同的数列共有39C (或69C )个. 故选:C . 【点睛】本题考查排列组合,属于基础题.6.B解析:B 【分析】根据题意可知,所选的两个球均为白球或黑球,利用组合计数原理与古典概型的概率公式可求得所求事件的概率. 【详解】由题意可知,所选的两个球均为白球或黑球,由古典概型的概率公式可知,所求事件的概率为22432737C C P C +==. 故选:B. 【点睛】本题考查古典概型概率的计算,涉及组合计数原理的应用,考查计算能力,属于中等题.7.C解析:C 【分析】分两步:1.首先先从后排6人中选2人出来;2.将这2人与前排4人排列,且前排4人的相对顺序不变,可以看成有6个位置,先选2个位置排这2人,其他4人按原顺序排列,再由乘法原理计算即可. 【详解】首先先从后排6人中选2人出来,共26C 种不同选法,将这2人与前排4人排列,且前排4 人的相对顺序不变,可以看成有6个位置,先选2个位置排这2人有26A 种不同排法,其余 位置按4人原顺序排好只有1种排法,由乘法原理,得不同调整方法的总数是2266C A . 故选:C 【点睛】本题考查排列与组合的应用,涉及到定序排列问题,考查学生的逻辑推理能力,是一道中档题.8.B解析:B 【分析】首先将5(3)(2)x x -+拆开得到555((2)3(23))(2)x x x x x =+-+-+,得到5(3)(2)x x -+的展开式中3x 的系数与5(2)x +展开式中2x 项和3x 项的系数有关,化简求得结果. 【详解】555((2)3(23))(2)x x x x x =+-+-+,5(2)x +展开式中2x 项的系数为335280C ⋅=, 5(2)x +展开式中3x 项的系数为225240C ⋅=, 所以5(3)(2)x x -+的展开式中3x 的系数为8034040-⨯=-, 故选:B. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求两个二项式乘积展开式的系数问题,在解题的过程中,注意分析与哪些项有关,属于简单题目.9.D解析:D 【分析】分析12202011x x ⎛⎫++ ⎪⎝⎭的展开式的本质就是考虑12个202011x x ⎛⎫++ ⎪⎝⎭,每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,利用组合知识即可得解.【详解】12202011x x ⎛⎫++ ⎪⎝⎭的展开式考虑12个202011x x ⎛⎫++ ⎪⎝⎭, 每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,要得到2x 项,就是在12个202011x x ⎛⎫++ ⎪⎝⎭中,两个括号取x ,10个括号取1, 所以其系数为21266C =. 故选:D 【点睛】此题考查求多项式的展开式指定项的系数,关键在于弄清二项式定理展开式的本质问题,将问题转化为计数原理组合问题.10.C解析:C 【分析】根据题意,若取出的卡片上的标号恰好成等差数列分三种情况,一是标号相等时,即所得的等差数列的公差为0,二是所得的等差数列公差为1或-1,三是所得的等差数列的公差为2或-2时,分别求出其不同的取法,再求和. 【详解】根据题意,若取出的卡片上的标号恰好成等差数列分三种情况, 一是标号相等时,即全部为1、2、3、4、5、6时,有6种取法,二是所得的等差数列公差为1或-1,即1、2、3;3、2、1;…4、5、6;6、5、4等8种取法,三是所得的等差数列的公差为2或-2时,即1、3、5;5、3、1;…2、4、6;6、4、2等4种取法,所以共有68418++=种. 故选:C 【点睛】本题主要考查分类加法计算原理,还考查了分类讨论的思想和列举求解的能力,属于中档题.11.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项; ()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 ()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D 【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.12.B解析:B 【分析】 41(1)x x ++展开式的141()r r r T C x x +=+,(0r =,1,⋯,4).1()r x x+的通项公式:211()k r k k k r k k r r T C x C x x--+==,令2r k =,进而得出.【详解】 解:41(1)x x ++展开式的141()r r r T C x x+=+,(0r =,1,⋯,4). 1()r x x +的通项公式:211()k r k k k r k k r r T C x C x x--+==,令2r k =,可得:0k =时,0r =;1k =时,2r ,2k =时,4r =.41(1)x x∴++展开式中常数项21424244119C C C C =+⨯+⨯=. 故选:B . 【点睛】本题考查了二项式定理的通项公式及其应用,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】化简得因此中至少一个为奇数再分两种情况讨论得解【详解】因为所以中至少一个为奇数定义域为的都可以有种;定义域为的函数所以有种;所以共种故答案为:29【点睛】关键点睛:解答本题有两个关键:其一是解析:29【分析】化简得()()(1)(()1)1,x f x xf x x f x ++=++-因此(),f x x 中至少一个为奇数,再分两种情况讨论得解. 【详解】因为()()(1)(()1)1,x f x xf x x f x ++=++- 所以(),f x x 中至少一个为奇数,定义域为{1},{3},{1,3}的都可以,有3333=15++⨯种; 定义域为{}{}{}2,1,2,2,3的函数(2){1,3}f ∈, 所以有23223=14+⨯+⨯种; 所以共29种. 故答案为:29 【点睛】关键点睛:解答本题有两个关键:其一是分析出(),f x x 中至少一个为奇数,其二是合理分类讨论.14.【分析】由题意二项式展开式的通项为结合题意求得进而得到关于的方程即可求解【详解】求得二项式的展开式的通项为当解得此时所以解得故答案为:【点睛】求二项展开式的特定项问题实质时考查通项的特点一般需要建立解析:1-. 【分析】由题意,二项式展开式的通项为9219(1)r r r rr T m C x -+=-⋅⋅,结合题意,求得3r =,进而得到关于m 的方程,即可求解. 【详解】求得二项式9m x x ⎛⎫- ⎪⎝⎭的展开式的通项为992199()(1)r r r r r r rr m T C x m C x x --+=-=-⋅⋅,当923r -=,解得3r =,此时333349(1)T m C x =-⋅⋅,所以3339(1)84m C -⋅⋅=,解得1m =-. 故答案为:1-. 【点睛】求二项展开式的特定项问题,实质时考查通项1C rn r rr n T ab -+=的特点,一般需要建立方程求得r 的值,再将r 的值代入通项求解,同时注意r 的取值范围(0,1,2,,r n =).15.【分析】将式子转化为两个式子相加的形式再利用二项式定理计算得到答案【详解】展开式的通项为:取得到常数项为故分别取和得到的系数是:故答案为:【点睛】本题考查了二项式定理意在考查学生的计算能力和应用能力 解析:56-【分析】将式子转化为两个式子相加的形式,再利用二项式定理计算得到答案. 【详解】888(3)(1(13(1a a x x +=+,8(1展开式的通项为:(()88831881r rrr r r T C C x---+==⋅-⋅,取8r =得到常数项为1,故4a =. 分别取2r和=5r 得到2x 的系数是:()2588413156C C ⨯⨯+⨯⨯-=-.故答案为:56-. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.16.【分析】先求出展开式通项得出系数要使展开式中系数最大只需该项系数不小于前一项系数也不小于后一项系数建立关于项数的不等式求解即可【详解】二项式的展开式通项为若第系数最大需满足即整理得解得所以该二项展开 解析:20126720x【分析】先求出展开式通项,得出系数,要使展开式中系数最大,只需该项系数不小于前一项系数,也不小于后一项系数,建立关于项数r 的不等式,求解即可. 【详解】二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式通项为31212364112121(2)()2r r r r r r r T C x C x x ---+==,0,1,2,12r =,若第1r +系数最大,需满足1213112121211112122222r r r r r r r r C C C C -----+⎧≥⎨≥⎩,即12!212!!(12)!(1)!(13)!212!12!!(12)!(1)!(11)!r r r r r r r r ⨯⎧≥⎪---⎪⎨⨯⎪≥⎪-+-⎩, 整理得121321121r rr r ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,解得1013,,433r r N r ≤≤∈∴=, 8420205122126720T C x x ==,所以该二项展开式中系数最大的项为20126720x . 故答案为:20126720x . 【点睛】本题考查二项展开式定理的应用,熟记通项是解题的关键,考查计算求解能力,属于中档题.17.150【分析】将5本不同的书分成满足题意的3组有113与221两种分别计算可得分成113与分成221时的分组情况种数相加可得答案【详解】解:将5本不同的书分成满足题意的3组有113与221两种分成1解析:150 【分析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分别计算可得分成1、1、3与分成2、2、1时的分组情况种数,相加可得答案. 【详解】解:将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有3353C A 种分法,分成2、2、1时,有22353322C C A A 种分法,所以共有223335353322150C C C A A A +=种分法, 故答案为:150. 【点睛】本题考查组合、排列的综合运用,解题时,注意加法原理与乘法原理的使用.18.36【分析】先选四个位置上的重复树苗有种方法再利用相同元素的排列问题(除序法)即可解决问题【详解】解:由题意对称相当于3种树苗种四个位置有且仅有一种树苗重复有种选法;在四个位置上种植有种方法则由乘法解析:36 【分析】先选四个位置上的重复树苗有13C 种方法,再利用相同元素的排列问题(除序法)即可解决问题. 【详解】解:由题意对称相当于3种树苗种A ,B ,C ,D 四个位置,有且仅有一种树苗重复,有13C种选法;在四个位置上种植有442212A A =种方法, 则由乘法原理得131236C ⨯=种方法. 故答案为:36. 【点睛】本题考查排列组合,计数原理的应用,本题运用除序法,可以避免讨论,简化计算.属于中档题.19.114【分析】本题是一个分类计数问题每个国家馆至少分配一名志愿者则有两种不同的情况当按照221安排时共有当按照113安排时有其中包括甲和乙在一个馆里的情况减去不合题意的结果即可【详解】由题意知本题是解析:114 【分析】本题是一个分类计数问题,每个国家馆至少分配一名志愿者,则有两种不同的情况,当按照2,2,1安排时,共有223533902C C A=,当按照1,1,3安排时,有335360C A=,其中包括甲和乙在一个馆里的情况,减去不合题意的结果即可.【详解】由题意知本题是一个分类计数问题,每个国家馆至少分配一名志愿者,则有两种不同的情况,每一个馆的人数分别是2,2,1;1,1,3当按照2,2,1安排时,共有223 533902C C A=,当按照1,1,3安排时,有335360C A=,其中包括甲和乙在一个馆里的情况,当甲和乙在同一个馆里时,共有234336C A=,∴满足条件的排列法共有906036114+-=,故答案为:114.【点睛】本题考查计数原理的应用,解题的关键是先分组再做分配,考查加法原理和乘法原理的实际应用,属于中等题.20.144【分析】根据题意分2步进行分析:①将两人看成一个元素与人进行全排列易得排好后有4个空位;②在4个空位中任选2个安排由分步计数原理计算可得答案【详解】解:根据题意分2步进行分析:①将两人看成一个解析:144【分析】根据题意,分2步进行分析:①将AB两人看成一个元素,与2EF人进行全排列,易得排好后有4个空位;②在4个空位中任选2个,安排C、D,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①将AB两人看成一个元素,与2EF人进行全排列,有232312A A=种排法,排好后有4个空位,②在4个空位中任选2个,安排C、D,有2412A=种情况,则有1212144⨯=种不同的排法.故答案为:144.【点睛】本题考查排列、组合的应用,注意常见的相邻和不相邻问题的处理方法有捆绑法和插空法.三、解答题21.(1)6;(2)60 【分析】由二项式系数和求出指数n ,再写出展开式通项后可得常数项. 【详解】(1)由题意得,二项式系数之和为012264n n n n n n C C C C ++++==,6n ∴=;(2)通项公式为366622166(2)2r r rrrr r T C x xC x----+==,令3602r-=,得4r = ∴展开式中的常数项为4464256(2)60T C x x--==.【点睛】该题主要考查二项式定理,在()na b +展开式中二项式系数为2n ,只与指数n 有关,求特定项时要注意通项的正确应用. 22.(1)720(2)2520(3)7800 【分析】(1)直接利用排列公式得到答案.(2)将情况分为:每个学生只取1本书;一个学生取2本书,其余学生每人取一本书这两种情况,分别计算相加得到答案.(3)将情况分为:1个学生取3本书,3个学生每人取1本书,1个学生取0本书; 2个学生每人取2本书,2个学生每人取1本书,1个学生取0本书,计算得到答案. 【详解】(1)每个学生只取1本书的不同取法种数为56720A =种. (2)每个学生最少取1本书,最多取2本书分两种情况: 第一种,每个学生只取1本书,取法为56A ;第二种,一个学生取2本书,其余学生每人取一本书.确定取2本书的学生有15C 种方法,这个学生取哪2本书有26C 种方法,其余4个学生取剩下的4本书且每人一本有44A 种方法,故一个学生取2本书,其余学生每人取一本书取法为124564C C A . 所以,每个学生最少取1本书,最多取2本书的不同取法为5124656472018002520A C C A +=+=种.(3)恰有1个学生没取到书分两种情况:第一种,1个学生取3本书,3个学生每人取1本书,1个学生取0本书,取法种数为3565C A .第二种,2个学生每人取2本书,2个学生每人取1本书,1个学生取0本书,取法种数为22564522C C A A .所以恰有1个学生没取到书的不同取法种数为2222355356464655652222(2045)1207800C C C C C A A C A A A ⎛⎫+=+=+⨯= ⎪⎝⎭种.【点睛】 本题考查了排列组合公式的应用,意在考查学生的应用能力和理解能力. 23.(1) 72 ;(2) 1 【分析】(1)求2a 时,可通过二项展开式的通项去求解;(2)先观察式子特征,注意到可进行平方差变形;然后根据1x =±时的值来计算最终结果. 【详解】(1)因为222224C (2)a x x =,所以22224C (2)72a ==; (2)22024130123401234()()()()a a a a a a a a a a a a a a a ++-+=++++-+-+当1x =时,401234(2a a a a a ++++=;当1x =-时,401234(2a a a a a --+-+=;所以2244402413()()2)2)(34)1a a a a a ++-+==-=. 【点睛】对于230123()...nn f x a a x a x a x a x =+++++形式的展开式,奇次项系数和:(1)(1)2f f +-,偶次项系数和:(1)(1)2f f --,所有项系数和:(1)f .24.(1)358(2) 8782T x =,8892T x =. 【分析】(1)由题设条件,求得8n =,得到二项式81(2)4x +展开式中第5项的二项式系数最大,利用二项式的通项,即可求解;(2)设二项展开式的第r 项的系数最大,列出不等式组,求得78r ≤≤,得到展开式中系数最大的项为第8项及第9项,即可求解. 【详解】 (1)由1(2)4n x +的展开式前三项的三项式系数的和等于37, 即01237n n n C C C ++=,解得8n =,即二项式81(2)4x +,所以展开式中第5项的二项式系数最大,因此由444444581703524168T C x x x ⎛⎫=⋅⋅== ⎪⎝⎭可知此项的系数为358.(2)设二项展开式的第r 项的系数最大,则891188871188112244112244r rr rr r r rr r r r C C C C ------++⎧⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得78r ≤≤,所以展开式中系数最大的项为第8项及第9项,即177787881224T C x x ⎛⎫=⋅= ⎪⋅⎝⎭,088888981224T C x x ⎛⎫=⋅⋅= ⎪⎝⎭. 【点睛】本题主要考查二项式定理的通项的应用,属于中档试题,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.25.(1)1560;(2)156;(3)92. 【解析】 【分析】(1)分为3,1,1,1和2,2,1,1两类分别计算,加和得到结果;(2)分为个位是0和个位不是0两类分别计算,加和得到结果;(3)分为只会英语的人中选了3人作英语导游、选了2人作英语导游和选了1人作英语导游三类分别计算,加和得到结果. 【详解】(1)把6本不同的书分给4位学生,每人至少一本,有3,1,1,1和2,2,1,1两类分配方式为3,1,1,1时,共有:3114632433480C C C A A ⋅=种分法 分配方式为2,2,1,1时,共有:2214642422221080C C C A A A ⋅=种分法 由分类加法计数原理可得,共有:48010801560+=种分法 (2)若个位是0,共有:3560A =个 若个位不是0,共有:11224496C C A =个由分类加法计数原理可得,共有:6096156+=个(3)若只会英语的人中选了3人作英语导游,共有:3620C =种选法 若只会英语的人中选了2人作英语导游,共有:12323560C C C =种选法 若只会英语的人中选了1人作英语导游,共有:133412C C =种选法由分类加法计数原理可得,共有:20601292++=种选法 【点睛】本题考查排列组合的综合应用问题,涉及到分组分配问题、元素位置有限制的排列组合问题等知识,关键是能够根据题目的要求进行合理的分类,最终通过分类加法计数原理得到结果.26.(1)48;(2)12;(3)24;(4)12. 【分析】(1)特殊元素优先安排,甲不在中间也不在两端,先将甲排好,其余全排列即可; (2)特殊元素优先安排,先排甲、乙,其余人全排列; (3)相邻问题用捆绑; (4)不相邻问题用插空; 【详解】解:(1)依题意甲不在中间也不在两端,首先安排甲有12A 种排法,其余人全排列有44A ,按照分步乘法计数原理可得一共有142448A A =(种)(2)先排甲、乙有22A 种排法,其余人全排列有33A ,按照分步乘法计数原理可得一共有232312A A =(种)(3)将男女分别捆绑再排列有22322324A A A =(种)(4)男女相间用插空法,先排女生有33A 种排法,再将男生插入女生所形成的2个空档里有22A 种排法,故共有323212A A =(种) 【点睛】本题主要考查排列组合的实际应用,常见的排列问题的处理方法的应用,属于中档题.。

北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(包含答案解析)(2)

北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(包含答案解析)(2)

一、选择题1.4(12)x -的展开式中2x 的系数为( )A .6B .24C .32D .482.若多项式()210011x x a a x +=++()()91091011a x a x +++++,则9a =( )A .9B .10C .-9D .-103.如图,在杨辉三角形中,斜线l 的上方从 1 按箭头所示方向可以构成一个“锯齿形”的数列: 1,3,3,4,6,5,10,...,记此数列的前n 项之和为n S ,则 21S 的值为( )A .66B .153C .295D .3614.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为 A .14B .16C .20D .485.已知1021001210(12)...x a a x a x a x -=++++,则1231023...10a a a a ++++=( )A .20-B .15-C .15D .206.若2020220200122020(12)x a a x a x a x -=+++⋯+,则下列结果不正确的是( )A .01220201a a a a +++⋯+=B .20201352019132a a a a -++++⋯+=C .20200242020132a a a a ++++⋯+=D .202012220201222a a a ++⋯+=- 7.若10521001210(1)(1)(1)x x a a x a x a x -=+-+-+⋅⋅⋅+-,则5a 为( ) A .251B .250C .252D .2498.现某路口对一周内过往人员进行健康码检查安排7名工作人员进行值班,每人值班1天,每天1人,其中甲乙两人需要安排在相邻两天,且甲不排在周三,则不同的安排方法有( ) A .1440种B .1400种C .1320种D .1200种9.某医院计划从3名医生,9名护士中选派5人参加湖北新冠肺炎疫情狙击战,要求选派的5人中至少要有2名医生,则不同的选派方法有( ) A .495种 B .288种 C .252种 D .126种 10.现有6位同学站成一排照相,甲乙两同学必须相邻的排法共有多少种?( )A .720B .360C .240D .12011.五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且宫、羽不相邻,且位于角音阶的同侧,可排成的不同音序有( ) A .20种B .24种C .32种D .48种12.式子22223459C C C C ++++=( )A .83B .84C .119D .120二、填空题13.已知正整数n ,二项式322nx x ⎛⎫+ ⎪⎝⎭的展开式中含有7x 的项,则n 的最小值是________.14.83被5除所得的余数是_____________.15.某校在高二年级开设选修课,其中数学选修课开四个班.选课结束后,有四名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有______(用数字作答) 16.有4位同学和2位教师一起合影.若教师不能坐在两端,也不坐在一起,则有_________种坐法.17.已知集合{}()*1,2,,,2U n n N n =⋅⋅⋅∈≥,对于集合U 的两个非空子集A ,B ,若AB =∅,则称(),A B 为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为()f n (视(),A B 与(),B A 为同一组“互斥子集”).那么()f n =______.18.从0,1,2,3,4,5这6个数字中任取3个组成一个无重复数字的三位数,其中奇数的个数是__________.19.若()626012612x a a x a x a x -=++++,则126a a a +++的值为__________.20.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数是_____.三、解答题21.将8本不同的书,全部分给小赵、小钱、小孙、小李四人,在下列不同的情形下,分别有多少种不同的分法?(写出必要的数学式,结果用数字作答.) (1)每人分得2本;(2)有1人分得5本,其余3人各分得1本. 22.已知,n ∈N *.(1)设f (x )=a 0+a 1x +a 2x 2+…+a n x n ,①求a 0+a 1+a 2+…+a n ;②若在a 0,a 1,a 2,…,a n 中,唯一的最大的数是a 4,试求n 的值; (2)设f (x )=b 0+b 1(x +1)+b 2(x +1)2+…+b n (x +1)n ,求.23.若()()()()()821020121011222x x a a x a x a x +-=+-+-+⋅⋅⋅+-.(Ⅰ)求12310a a a a +++⋅⋅⋅+的值;(Ⅱ)求13579a a a a a ++++的值.24.在杨辉三角形中,从第3行开始,除1以外,其它没一个数值是它肩上的两个数之和,这三角形数阵开头几行如图所示. (1)证明:111mm m n nn C C C ++++=;(2)求证:第m 斜列中(从右上到左下)的前K 个数之和一定等于第m +1斜列中的第K个数,即()11111*112212m m m m m m m m m m m k m k C C C C C C m m k N ------+++-+-++++⋯+=≥∈,,(3)在杨辉三角形中是否存在某一行,该行中三个相邻的数之比为3:8:14?若存在,试求出这三个数;若不存在,请说明理由.25.一个盒子中装有大小相同的小球n 个,在小球上分别标有1,2,3…,n 的号码,已知从盒子中随机取出两个球,两球号码的最大值为n 的概率为14. (Ⅰ)盒子中装有几个小球?(Ⅱ)现从盒子中随机地取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量X (如取标号分别为2,4,6,8的小球时1X =;取标号分别为1,2,4,6的小球时2X =;取标号分别为1,2,3,5的小球时3X =),求(2)P X =的值. 26.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.(要求每问要有适当的分析过程,列式并算出答案) (1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人; (3)全体站成一排,男、女各站在一起; (4)全体站成一排,男生不能站在一起; (5)全体站成一排,甲不站排头也不站排尾.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用二项展开式的通项可得14(2),0,1,2,3,4r rr T C x r +=-=,令2r 可求得结果.【详解】因为4(12)x -的第1r +项展开式14(2),0,1,2,3,4rrr T C x r +=-=, 令2r,则含2x 项系数为224(2)24C -=, 故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有二项展开式通项的应用,项的系数,属于简单题目.2.D解析:D 【解析】()()9011010019910999991...1[...]nn n x C C x C x a x a C C x C x +=++⇒+=++,()10101a x +=019910101010101010(...)a C C x C x C x ++++,根据已知条件得9x 的系数为0,10x 的系数为19999910101010101010011a a C a C a a C =-⎧⋅+⋅=⎧⇒⇒⎨⎨=⋅=⎩⎩ 故选D. 3.D解析:D 【解析】试题分析:观察杨辉三角结合其中数的来源,可得到这个数列的通项公式.n a 当n 为偶数时,42n n a +=;当n 为奇数时,0212322233551,3,6,C C C C C C ======,所以()()232138n n n n a C +++==,所以21S =()()()()22221352124620124622224622758a a a a a a a a ⎡⎤+++++++++=++++++++++⎣⎦()122423112475286753618⎡⎤=⨯⨯+⨯+=+=⎣⎦,故选D. 考点:归纳推理与数列求和.4.B解析:B 【解析】由间接法得32162420416C C C -⋅=-=,故选B .5.D解析:D【分析】观察所求系数的和,可知原式两边求导,再赋值求解. 【详解】原式两边求导数,得()99212310201223...10x a a x a x a x --=++++当1x =时,123102023...10a a a a =++++. 故选:D 【点睛】本题考查二项式定理系数和,导数计算,重点考查转化的思想,属于中档题型.6.B解析:B 【分析】令1x =,得到0120201a a a ++⋯+=,令1x =-,求得202001220203a a a a =-++⋯+,令0x =,求得01a =,进而逐项判定,即可求解.【详解】由题意,二项展开式2020220200122020(12)x a a x a x a x -=+++⋯+,令1x =,可得01220202020(12)1a a a a +++⋯+-==,①令1x =-,可得2020012202020203(123)a a a a a -=+-++⋯+=,②令0x =,可得20020(10)1a =-=,③由①-②,可得20201352019132a a a a -+++⋯+=, 由①+②,可得2020024*******a a a a ++++⋯+=, 令12x =,可得20202020120220201(12)12222a a a a +++⋯+=-⨯=, 所以202012220201222a a a ++⋯+=-. 综上可得,A 、C 、D 是正确的,B 是错误的. 故选:B. 【点睛】本题主要考查了二项展开式的系数问题的求解,其中解答中合理利用二项展开式的形式,合理赋值是解答的关键,着重考查推理与计算能力.7.A解析:A 【分析】根据题意,5a 是展开式中()51x -的系数,因此将等式左边变形为关于1x -的二项式,再求()51x -的系数. 【详解】由题意,()()1051051111x x x x -=-+--+, 又()()()()10109011010101011111x C x C x C x -+=⋅-+⋅-++⋅-,()()()()55401555511111x C x C x C x -+=⋅-+⋅-++⋅-,因为,()()()21010501210111x x a a x a x a x -=+-+-+⋅⋅⋅+-,即55101251a C =-=.故选:A. 【点睛】本题考查了二项式定理中展开式的系数,关键是将已知等价变形,得到关于()1nx -的二项式,属于基础题.8.D解析:D 【分析】根据题意,分2步进行分析: ①将甲、乙按要求安排,②将剩下的5人全排列,安排在剩下的5天,由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①要求甲、乙安排在相邻两天,且甲不排在周三,先把周一周二、周二周三、⋯、周六周日看作6个位置,任选一个位置,排上甲乙两人,有126212A A =种方法,其中甲排在周三去掉,则甲乙的安排方法有1262210A A -=种,②将剩下的5人全排列,安排在剩下的5天,有55120A =种情况; 由分步计数乘法原理知,则有101201200⨯=种安排方法. 故选:D 【点睛】本题主要考查了排列、组合的实际应用,涉及分步计数原理的应用,属于中档题.9.B解析:B 【分析】题意分两种情况,①选派2名医生,3名护士,②选派3名医生,2名护士,分别计算,再根据分类加法计算原理计算可得; 【详解】解:依题意分两种情况,①选派2名医生,3名护士,则有2339252C C =(种); ②选派3名医生,2名护士,则有323936C C =(种);按照分类加法计算原理可知,一共有2332393936252288C C C C +=+=(种).故选:B 【点睛】本题考查简单的组合问题,分类加法计算原理,属于中档题.10.C解析:C 【分析】6名同学排成一排,其中甲、乙两人必须排在一起,这是相邻问题,一般用“捆绑法”.将甲乙两名同学“捆绑”在一起,看成一个元素,再与剩下的4人一起全排列,根据分步计数原理即可得出结果. 【详解】将甲乙“捆绑”在一起看成一个元素,与其余4人一起排列, 而甲和乙之间还有一个排列, 共有5252240A A =. 故选:C. 【点睛】本题考查了排列组合、两个基本原理的应用,相邻问题“捆绑法”求解,属于基础题.11.C解析:C 【分析】根据角所在的位置,分两类:角排在一或五;角排在二或四.根据分类计数原理和排列组合的知识可得. 【详解】若角排在一或五,有22232A A =24种;若角排在二或四,有22222A A 8=. 根据分类计数原理可得,共有24832+=种. 故选:C . 【点睛】本题考查排列组合和计数原理,属于基础题.12.C解析:C 【分析】根据组合数的计算公式111rr r n n n C C C ++++=,化简运算,即可求解.【详解】由题意,根据组合数的计算公式111rr r n n n C C C ++++=,可得22223459C C C C ++++=32222334591C C C C C +++++-322244591C C C C =++++-32235591011119C C C C =+++-==-=.故选:C. 【点睛】本题主要考查了组合数的化简与运算,其中解答中熟记组合数的运算公式,准确运算是解答的关键,着重考查了计算能力.二、填空题13.【分析】确定展开式的通项令的指数为即可求得结论【详解】二项式的展开式通项为令可得当时取最小值故答案为:【点睛】本题考查二项展开式通项的应用考查学生的计算能力属于中等题 解析:4【分析】确定展开式的通项,令x 的指数为7,即可求得结论. 【详解】二项式322nx x ⎛⎫+ ⎪⎝⎭的展开式通项为()3351222kn k k k kn k k n n T C x C x x --+⎛⎫=⋅=⋅ ⎪⎝⎭. 令357n k -=,可得573k n +=,当1k =时,n 取最小值4. 故答案为:4. 【点睛】本题考查二项展开式通项的应用,考查学生的计算能力,属于中等题.14.1【分析】变形利用二项式定理展开即可求出被除所得的余数【详解】因为所以转化为求被除所得的余数因为所以被除所得的余数是1故答案为:1【点睛】本题主要考查了利用二项式定理研究整除问题考查了推理运算能力属解析:1 【分析】变形883(52)=-,利用二项式定理展开即可求出被5除所得的余数. 【详解】 因为883(52)=-0817262778088888855(2)5(2)5(2)5(2)C C C C C =⋅+⋅⨯-+⋅⨯-++⋅⨯-+⋅⨯- 071625277808888885(55(2)5(2)(2))5(2)C C C C C =⋅+⋅⨯-+⋅⨯-++-+⋅⨯-,所以转化为求80885(2)256C ⋅⨯-=被5除所得的余数, 因为2565151=⨯+, 所以83被5除所得的余数是1, 故答案为:1 【点睛】本题主要考查了利用二项式定理研究整除问题,考查了推理运算能力,属于中档题.15.【分析】由题意分三种情况讨论:①每个班接收1名同学;②其中一个班接收2名其余两个班各接收1名;③其中两个班不接收另两个班各接收2名由分类计数原理结合排列组合的知识计算即可得解【详解】由题意满足要求的 解析:204【分析】由题意,分三种情况讨论:①每个班接收1名同学;②其中一个班接收2名,其余两个班各接收1名;③其中两个班不接收,另两个班各接收2名,由分类计数原理结合排列、组合的知识,计算即可得解. 【详解】由题意,满足要求的情况可分为三种:①每个班接收1名同学,分配方案共有4424A =种;②其中一个班接收2名,其余两个班各接收1名,分配方案共有2133423422144C C A C A ⋅⋅⋅=种;③其中两个班不接收,另两个班各接收2名,分配方案共有224436C C ⋅=种; 所以不同的分配方案有2414436204++=种. 故答案为:204. 【点睛】本题考查了计数原理的综合应用,考查了运算求解能力与分类讨论思想,属于中档题.16.144【分析】先排4位同学将教师插入4位同学产生的3个空位中再由乘法原理即可得到答案【详解】先排4位同学共有种不同排法由于教师不能坐在两端也不坐在一起将2位老师插入4位同学产生的3个空位中共种不同排解析:144 【分析】先排4位同学,将教师插入4位同学产生的3个空位中,再由乘法原理即可得到答案. 【详解】先排4位同学共有44A 种不同排法,由于教师不能坐在两端,也不坐在一起,将2位老师插 入4位同学产生的3个空位中,共23A 种不同排法,由乘法原理,共有4243144A A =种不同排 法.故答案为:144 【点睛】本题考查排列的实际应用,涉及到特殊元素分析法,考查学生的逻辑推理能力,是一道中档题.17.【分析】根据任意一个元素只能在集合之一中以及的非空子集个数即可求得【详解】根据题意任意一个元素只能在集合之一中则这个元素在集合中共有种;其中为空集的种数为为空集的种数为个故可得均为非空子集的种数为又解析:()113212nn +-+ 【分析】根据任意一个元素只能在集合(),,U A B C C A B =⋃之一中,以及,A B 的非空子集个数,即可求得. 【详解】根据题意,任意一个元素只能在集合(),,U A B C C A B =⋃之一中, 则这n 个元素在集合,,A B C 中,共有3n 种; 其中A 为空集的种数为2n ,B 为空集的种数为2n 个, 故可得,A B 均为非空子集的种数为1321n n +-+, 又因为(),A B 与(),B A 为同一组“互斥子集, 故()()113212nn f n +=-+. 故答案为:()113212nn +-+. 【点睛】本题考查集合新定义,涉及排列组合的求解,属综合中档题.18.48【分析】根据题意分3步进行分析:①从135三个数中取一个排个位;②0不能在百位则百位的安排方法有4种;③在剩下的4个数中任选1个安排在十位由分步计数原理计算可得答案【详解】解:根据题意分3步进行解析:48 【分析】根据题意,分3步进行分析:①从1、3、5三个数中取一个排个位;②0不能在百位,则百位的安排方法有4种;③在剩下的4个数中任选1个,安排在十位,由分步计数原理计算可得答案. 【详解】解:根据题意,分3步进行分析:①从1、3、5三个数中取一个排个位,有3种安排方法, ②0不能在百位,则百位的安排方法有4种,③在剩下的4个数中任选1个,安排在十位,有4种情况, 则符合题意的奇数的个数是为34448⨯⨯=个. 故答案为:48. 【点睛】本题考查排列组合及简单的计算原理,采用特殊元素特殊位置优先考虑的方法.19.0【分析】在所给的等式中分别令令从而求得的值【详解】解:令可得再令可得故答案为:0【点睛】本题考查二项式定理的应用二项展开式的通项公式二项式系数的性质利用赋值法是解题的关键【分析】在所给的等式中,分别令0x =,令1x =,从而求得126a a a ++⋯+的值.【详解】解:6260126(12)x a a x a x a x -=+++⋯+,令0x =,可得01a =,再令1x =,可得12611a a a +++⋯+=,1260a a a ∴++⋯+=,故答案为:0.【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,利用赋值法是解题的关键.20.【分析】因为所以从这五个数中每次取出两个不同的数分别为共可得到的不同值的个数可看作共可得到多少个不同的数【详解】解:首先从这五个数中任取两个不同的数排列共种排法因为所以从这五个数中每次取出两个不同的 解析:18【分析】 因为lg lg lg a a b b-=,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数可看作共可得到多少个不同的数a b . 【详解】解:首先从1,3,5,7,9这五个数中任取两个不同的数排列,共2520A =种排法, 因为3913=,1339=, 所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数为:20218-=,故答案为:18.【点睛】本题考查了排列组合及简单的计数问题,属于基础题.三、解答题21.(1)2520;(2)1344.【分析】(1)将8本不同的书依次分给小赵、小钱、小孙、小李四人,每人2本,利用组合数原理可求得分法种数;(2)先选定一人分得5本,其余3本每人1本,利用分步乘法计数原理可求得分法种数.(1)将8本不同的书依次分给小赵、小钱、小孙、小李四人,每人2本,由组合数原理可知,不同的分法种数为222286422520C C C C=种;(2)先选定一人分得5本,其余3本每人1本,由分步乘法计数原理可知,不同的分法种数为5138431344C C A=种.【点睛】本题考查排列组合综合问题,考查了平均分组以及分步乘法计数原理的应用,考查计算能力,属于中等题.22.(1)①;②n=12或13;(2)(2n+1﹣2﹣n)【解析】【分析】(1)①可令x=1,代入计算可得所求和;②可得f(x)=(x+2)n=(2+x)n的通项公式,a r最大即为a r≥a r﹣1,且a r≥a r+1,化简计算,结合不等式的解,可得所求值;(2)由f(x)=[1+(x+1)]n,可得b r=C,r=0,1,…,n,推得,再由二项式定理,计算可得所求和.【详解】解:(1)①由(x+2)n=a0+a1x+a2x2+…+a n x n,可令x=1,可得3n=a0+a1+a2+…+a n,即a0+a1+a2+…+a n=3n;②f(x)=(x+2)n=(2+x)n,可得a r2n﹣r x r,r=0,1,…,n,若在a0,a1,a2,…,a n中,a r最大,可得,即为,化为,由于r=4时为a4唯一的最大值,可得n=12,13;(2)由f(x)=b0+b1(x+1)+b2(x+1)2+…+b n(x+1)n,且f(x)=[1+(x+1)]n,可得b r=C,r=0,1,…,n,则,由••,则(C )(2n +1﹣2﹣n ).【点睛】 本题考查二项式定理,考查赋值法求系数和,考查组合数的性质.解题关键是掌握二项式展开式通项公式,在展开式中第项系数为,则由可得系数最大项的项数. 23.(Ⅰ)2555(Ⅱ)1280【分析】(Ⅰ)令2x =,则05a =,再取3x =代入计算得到答案.(Ⅱ)令1x =得到012310+0a a a a a --+⋅⋅⋅+=,联立(1)中方程计算得到答案.【详解】(Ⅰ)令2x =,则05a =.令3x =,则012310++2560a a a a a ++⋅⋅⋅+=,所以12310+2555a a a a ++⋅⋅⋅+=; (Ⅱ)令1x =,则012310+0a a a a a --+⋅⋅⋅+=,故13579+1280a a a a a +++=.【点睛】本题考查了二项展开式中的系数和,取特殊值是解题的关键.24.(1)见解析(2)见解析(3)45,120,210【分析】(1)化成阶乘处理即可.(2)将这列数表示出来,利用(1)的结论即可得到.(3)假设存在第n 行的第r-1,r ,r+1个数满足这三个数之比为3:8:14,列方程求r ,若n ,r 为不小于2的正整数,即为所求.【详解】解:(1)1mm n n C C ++=()!!!n m n m -+()()!1!1!n m n m +-- =()()()!11!!n m m n m ++-+()()()!1!!n n m m n m -+- =()()()!11!!n m n m m n m ++-+- =()()()()1!1!11!n m n m +⎡⎤++-+⎣⎦=11m n C ++.所以原式成立.(2)由(1)得111m m m n nn C C C ++++= 左边=1111122m m m m m m mm m m k C C C C C ----+++-++++⋯+ =1111122m m m m m m m m k C C C C ---++++-+++⋯+=…=122m m m k m k C C -+-+-+=1m m k C +-=右边∴原命题成立(3)设在第n 行的第r -1,r ,r +1个数满足3:8:14即113814r r r n n n C C C -+=::::解的{103n r ==∴三个数依次为45,120,210【点睛】本题考查了二项式定理的性质,组合数的性质的证明,主要考查组合数的计算,考查观察、归纳、总结的能力.属于中档题.25.(Ⅰ)8个;(Ⅱ)4(2)7P X ==. 【分析】(Ⅰ)由题意计算出两球号码的最大值为n 的情况共有11n C -种,利用古典概型概率公式可得11214n n C C -=,即可得解; (Ⅱ)由题意,未被选中的4个小球会形成5个空位(包括两端),取出的小球相当于要插入这些空位中(可以多个小球插入同一空位),将2X =分为“4个小球仅有2个小球的编号连续”和“4个小球有2个小球的编号连续,另外2个小球的编号也连续”两种情况分类计算,最后由古典概型概率公式即可得解.【详解】(Ⅰ)从盒子中随机取出两个球,两球号码的最大值为n 的情况共有11n C -种, 则11214n n C C -=,解得8n =, 所以盒中共有8个小球;(Ⅱ)由题意,未被选中的4个小球会形成5个空位(包括两端),取出的小球相当于要插入这些空位中(可以多个小球插入同一空位),2X =表示取出的4个小球的编号连续的个数的最大值为2,可分为两类:①4个小球仅有2个小球的编号连续,则要在5个空位中选出三个,其中一个放入2个小球,所以共有取法315330C C ⋅=种;②4个小球有2个小球的编号连续,另外2个小球的编号也连续,则只需在5个空位中选出两个,所以共有取法2510C =种; 综上,4830104(2)7P X C +===. 【点睛】本题考查了计数原理的综合应用及古典概型概率的求解,考查了转化化归思想与分类讨论思想,属于中档题.26.(1)2520;(2)5040;(3)288;(4)1440;(5)3600.【分析】相邻问题一般看作一个整体处理,利用捆绑法,不相邻问题一般用插空法,特殊位置优先考虑,即可求解.【详解】解:(1)从7人中选其中5人排成一排,共有55752520C A =种排法; (2)排成前后两排,前排3人,后排4人,共有775040A =种排法;(3)全体站成一排,男、女各站在一起,属于相邻问题,男生必须站在一起,则男生全排列,有33A 种排法,女生必须站在一起,则女生全排列,有44A 种排法,男生女生各看作一个元素,有22A 种排法;由分布乘法的计数原理可知,共有234234288A A A =种方法; (4)全体站成一排,男生不能站在一起,属于不相邻问题,先安排女生,有44A 种排法,把3个男生插在女生隔成的5个空位中,有35A 种排法, 由分布乘法的计数原理可知,共有43451440A A =种方法;(5)全体站成一排,男不站排头也不站排尾,则优先安排甲,从除去排头和排尾的5个位置中安排甲,有15A 种排法,再对剩余的6人进行全排列,有66A 种排法,所以共有16563600A A =种方法.【点睛】本题考查排列和组合的实际应用,涉及相邻和不相邻问题,利用了捆绑法、插空法和特殊位置优先考虑的方法,考查分析和计算能力.。

最新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)(2)

最新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)(2)

一、选择题1.设()929012913x a a x a x a x -=+++⋅⋅⋅+,则0129a a a a +++⋅⋅⋅+的值为( ) A .94B .93C .92D .92-2.5250125(21)(1)(1)(1)x a a x a x a x -=+-+-+⋯+-,则2a =( )A .40B .40-C .80D .80-3.“岂曰无衣,与子同袍”,“山川异域,风月同天”.自新冠肺炎疫情爆发以来,全国各省争相施援湖北,某医院组建了由7位援助专家组成的医疗队,按照3人、2人、2人分成了三个小组,负责三个不同病房的医疗工作,则不同的安排方案共有( ) A .105种B .210种C .630种D .1260种4.甲、乙、丙、丁4人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( ) A .840B .2226C .2100D .23525.我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为3的“六合数”共有( ) A .18个B .15个C .10个D .9个6.3450(1)(1)(1)x x x ++++++的展开式中3x 的系数是( )A .351CB .450C C .451CD .447C7.已知8290129(3)(23)(1)(1)(1)x x a a x a x a x --=+-+-+⋅⋅⋅+-,则6a =( )A .1792-B .1792C .5376-D .53768.某医院计划从3名医生,9名护士中选派5人参加湖北新冠肺炎疫情狙击战,要求选派的5人中至少要有2名医生,则不同的选派方法有( ) A .495种B .288种C .252种D .126种9.安排3名志愿者完成5项工作,每人至少完成1项,每项工作至少由1人完成,则不同的安排方式共有多少种( ) A .120种B .180种C .240种D .150种10.公元五世纪,数学家祖冲之估计圆周率π的值的范围是:3.1415926<π<3.1415927,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们把小数点后的7位数字1,4,1,5,9,2,6进行随机排列,整数部分3不变,那么可以得到大于3.14的不同数字有( ) A .2280B .2120C .1440D .72011.5名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法的种数为( ) A .35 B .53C .35AD .35C12.将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为( )A .192181020C C CB .1921810202C C C C .1921910202C C C D .192191020C C C二、填空题13.若在8(3)(1a x +关于x 的展开式中,常数项为4,则2x 的系数是______________.14.若将五本不同的书全部分给三个同学,每人至少一本,则有________种不同的分法.15.若62ax ⎛ ⎝⎭的展开式中常数项为150,则22a b +的最小值为______. 16.已知()723801238()(21)x m x a a x a x a R x a x m +-=+++++∈,若127a =,则()81ii i a =⋅∑的值为_______.17.已知集合{}123456,,,,,AB C a a a a a a =,且集合{}123,,A B C a a a =,则集合A 、B 、C 所有可能的情况有__________种.18.二项式122x ⎛ ⎝,则该展开式中的常数项是______. 19.已知集合{}()*1,2,,,2U n n N n =⋅⋅⋅∈≥,对于集合U 的两个非空子集A ,B ,若AB =∅,则称(),A B 为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为()f n (视(),A B 与(),B A 为同一组“互斥子集”).那么()f n =______.20.某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学、物理作业不在同一天完成,则完成作业的不同顺序种数为______.三、解答题21.已知n二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n 的值;(2)求展开式中3x 项的系数(3)计算式子01231010101010102481024C C C C C -+-++的值.22.某校阅览室的一个书架上有6本不同的课外书,有5个学生想阅读这6本书,在同一时间内他们到这个书架上取书.(1)求每个学生只取1本书的不同取法种数;(2)求每个学生最少取1本书,最多取2本书的不同取法种数; (3)求恰有1个学生没取到书的不同取法种数. 23.设(,)(1)n f x n x =+,*n N ∈.(1)设260126(,6)f x a a x a x a x =++++,求0246a a a a +++的值;(2)求12320192019201920192019232019C C C C +++⋯+的值; (3)*n N ∈,化简01122310144444n n n n n n n n n n C C C C C -----++++.24.设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子,现将这五个小球放入5个盒子中.(1)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法? (2)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法? 25.已知数列是等差数列,且,,是展开式的前三项的系数.(1)求的值; (2)求展开式的中间项; (3)当时,用数学归纳法证明:.26.已知n 为给定的正整数,t 为给定的实数,设(t +x )n =a 0+a 1x +a 2x 2+…+a n x n . (1)当n =8时.①若t =1,求a 0+a 2+a 4+a 6+a 8的值; ②若t =23,求数列{a n }中的最大值; (2)若t=23,当13x =时,求()0nkk k n k a x =-∑的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由()913x -的展开式的通项为()193rrr T C x +=-,可得10a <,30a <,50a <,70a <,90a <,则01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+-,再令1x =-即可得解; 【详解】解:因为()929012913x a a x a x a x -=+++⋅⋅⋅+,()913x -的展开式的通项为()193rr r T C x +=-,所以10a <,30a <,50a <,70a <,90a <,所以01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+- 令1x =-得901234567894a a a a a a a a a a -+-+-+-+-= 所以901294a a a a +++⋅⋅⋅+= 故选:A 【点睛】本题考查赋值法求二项式展开式的系数和的问题,属于中档题.2.A解析:A 【分析】易得[]55(21)2(1)1x x --=+,求出展开式通项后可得55152(1)rrr r T C x --+=⋅⋅-,令3r =可得出2a 的值. 【详解】由于[]55(21)2(1)1x x --=+,所以展开式的通项为:[]5551552(1)12(1)rrr r r r r T C x C x ---+=⋅-⋅=⋅⋅-,令3r =可得:322352(1)T C x =⋅⋅-,则3225240a C =⋅=. 故选:A . 【点睛】本题考查二项式定理的应用,解题关键是得出[]55(21)2(1)1x x --=+进而进行计算,考查逻辑思维能力和计算能力,属于常考题.3.C解析:C 【分析】先对7名专家进行分组,然后进行全排列即可得解. 【详解】7位援助专家组成的医疗队,按照3人、2人、2人分成三个小组,负责三个不同病房的医疗工作,不同法人安排方法有:3223742322630C C C A A ⋅⋅⋅=(种). 故选:C. 【点睛】本题考查分堆与分配的问题,考查逻辑思维能力和分析能力,属于常考题.4.B解析:B【分析】分成三类:一类每个台阶站1人;二类一个台阶站2人,一个台阶1人,一个台阶1人;三类一个台阶站2人,一个台阶站2人,分类用加法原理可得. 【详解】每个台阶站1人有47840A =,一个台阶站2人,一个台阶1人,一个台阶1人有23471260C A , 一个台阶站2人,一个台阶站2人有273126A 所以共有840+1260+126=2226 故选:B. 【点睛】本题考查使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.5.C解析:C 【分析】首位数字是3,则后三位数字之和为3,按一个为3,两个和为3及三个和为3进行分类排列可得. 【详解】由题知后三位数字之和为3,当一个位置为3时有003,030,300三个;当两个位置和为3时有336A =个,;当三个位置和为3时只有111一个,一共有10个. 故选:C 【点睛】本题考查求解排列问题.其主要方法: 直接法:把符合条件的排列数直接列式计算. 优先法:优先安排特殊元素或特殊位置.捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列. 插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中.6.C解析:C 【分析】利用等比数列的求和公式,化简得5133450(1)(1)(1)(1)(1)x x x x x x+-+++++++=,再结合二项式定理,即可求解. 【详解】 由题意,可得3485133450(1)(1)1(1)(1)(1)(1)(1)x x x x x x x xx⎡⎤++-+-+⎣⎦++++++==,所以3450(1)(1)(1)x x x ++++++的展开式中3x 的系数就是51(1)x +的展开式中4x 的系数,即为451C .故选:C . 【点睛】本题主要考查二项式定理,以及等比数列的前n 项和公式,考查考生分析问题、解决问题的能力、化归与转化能力、运算求解能力.7.D解析:D 【分析】将原式改写成88(3)(23)[2(1)][2(1)1]x x x x --=----,利用二项式定理解决系数问题即可得解. 【详解】88(3)(23)[2(1)][2(1)1]x x x x --=----290129(1)(1)(1)a a x a x a x =+-+-+⋅-+⋅⋅,所以26356882C 2C 2358417925376.a =⨯⨯+⨯=+= 故选:D 【点睛】此题考查二项式定理的理解辨析和应用,关键在于熟练掌握定理公式,根据公式处理系数关系.8.B解析:B 【分析】题意分两种情况,①选派2名医生,3名护士,②选派3名医生,2名护士,分别计算,再根据分类加法计算原理计算可得; 【详解】解:依题意分两种情况,①选派2名医生,3名护士,则有2339252C C =(种); ②选派3名医生,2名护士,则有323936C C =(种);按照分类加法计算原理可知,一共有2332393936252288C C C C +=+=(种). 故选:B 【点睛】本题考查简单的组合问题,分类加法计算原理,属于中档题.9.D解析:D 【分析】根据题意,分2步进行分析:①、分两种情况讨论将5项工作分成3组的情况数目,②、将分好的三组全排列,对应3名志愿者由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①将5项工作分成3组若分成1、1、3的三组,有3115212210C C CA=种分组方法,若分成1、2、2的三组,有2215312215C C CA=种分组方法,则将5项工作分成3组,有101525+=种分组方法;②将分好的三组全排列,对应3名志愿者,有336A=种情况;所以不同的安排方式则有256150⨯=种.故选:D.【点睛】本题考查排列、组合的应用,以及部分平均分配问题,注意分组时要进行分类讨论. 10.A解析:A【分析】整体上用间接法求解,先算出1,4,1,5,9,2,6这7位数字随机排列的种数,注意里面有两个1,多了22A倍,要除去,再减去小于3.14的种数,小于3.14的数只有小数点前两位为11或12,其他全排列.【详解】由于1,4,1,5,9,2,6这7位数字中有2个相同的数字1,故进行随机排列,可以得到的不同情况有7722AA,而只有小数点前两位为11或12时,排列后得到的数字不大于3.14,故小于3.14的不同情况有552A,故得到的数字大于3.14的不同情况有75752222280 AAA-=.故选:A【点睛】本题主要考查数字的排列问题,还考查了理解辨析的能力,属于中档题. 11.B解析:B【分析】把不同的报名方法可分5步完成,结合分步计数原理,即可求解.【详解】由题意,不同的报名方法可分5步完成:第一步:第一名同学报名由3种方法 第二步:第二名同学报名由3种方法 第三步:第三名同学报名由3种方法 第四步:第四名同学报名由3种方法 第五步:第五名同学报名由3种方法根据分步乘法计数原理,共有5333333⨯⨯⨯⨯=种方法. 故选:B. 【点睛】本题主要考查了分步计数原理的应用,其中解答中认真审题,合理分步求解是解答的关键,着重考查了分析问题和解答问题的能力.12.A解析:A 【分析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果. 【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有1020C 种结果, 而满足条件的事件是2名学生干部恰好被分在不同组内共有19218C C 中结果,根据古典概型的概率公式得192181020=C C P C . 故选:A. 【点睛】本题主要考查古典概型和组合问题,属于基础题.二、填空题13.【分析】将式子转化为两个式子相加的形式再利用二项式定理计算得到答案【详解】展开式的通项为:取得到常数项为故分别取和得到的系数是:故答案为:【点睛】本题考查了二项式定理意在考查学生的计算能力和应用能力 解析:56-【分析】将式子转化为两个式子相加的形式,再利用二项式定理计算得到答案. 【详解】888(3)(1(13(1a a x x +=+,8(1展开式的通项为:(()88831881r rrr r r T C C x---+==⋅-⋅,取8r =得到常数项为1,故4a =.分别取2r和=5r 得到2x 的系数是:()2588413156C C ⨯⨯+⨯⨯-=-.故答案为:56-. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.14.150【分析】先将五本书分成三堆有和种不同的分法再把三堆分给三个同学即得解【详解】由题意先将五本书分成三堆有和种不同的分法故有种分堆方式再分给三个同学有种不同方法故答案为:150【点睛】本题考查了排解析:150 【分析】先将五本书分成三堆,有1,1,3和2,2,1种不同的分法,再把三堆分给三个同学即得解 【详解】由题意,先将五本书分成三堆,有1,1,3和2,2,1种不同的分法故有1132215435312222C C C C C C A A +种分堆方式 再分给三个同学,有113221354353132222()150C C C C C C A A A +=种不同方法 故答案为:150 【点睛】本题考查了排列组合综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题15.【分析】由题意在二项式定理的通项公式中令x 的幂指数等于零求得r 的值可得展开式的常数项再根据展开式的常数项为150求得ab 的值再利用基本不等式求得a2+b2的最小值【详解】的展开式中通项公式为Tr+1解析:【分析】由题意在二项式定理的通项公式中,令x 的幂指数等于零,求得r 的值,可得展开式的常数项,再根据展开式的常数项为150,求得ab 的值,再利用基本不等式求得a 2+b 2的最小值. 【详解】62ax ⎛+ ⎝⎭的展开式中通项公式为 T r +1=()62612366rrrr rrrr C ax x C ax ----=令12﹣3r =0,求得r =4,则展开式的常数项为T 5=422226=15C a b a b根据展开式中的常数项为150,得15a 2b 2=150,∴a 2b 2=10,ab ∴=∴a 2+b 2≥2ab =当且仅当|a|=b =1410时,取等号.故答案为:. 【点睛】本题主要考查二项式定理的通项公式、基本不等式的应用,确定常数项是关键,属于基础题.16.43【分析】因为的展开通项为:根据求的将所给等式两边求导即可求得的值【详解】的展开通项为:又等式两边求导可得:令得:故答案为:【点睛】本题解题关键是掌握多项式系数的求法和导数基础知识考查了分析能力和解析:43 【分析】因为7(21)x -的展开通项为:777177(2)(1)(1)2rrr rr r r r T C x C x ---+=⋅⋅-⋅-⋅⋅=,根据127a =,求的m ,将所给等式两边求导,即可求得()81i i i a =⋅∑的值.【详解】7(21)x -的展开通项为:777177(2)(1)(1)2r r r rr r r r T C x C x ---+=⋅⋅-⋅-⋅⋅= 又777()(21)(21)(21)x m x x x m x +--+-=∴7661777011(1)2(1)211427a C m C m =⨯-⋅+⨯--+==⋅∴2m =80187(2)(21)x x a a x a x +-=++⋯+等式两边求导可得:762712381(21)(2)7(21)2238x x x a a x a x a x ⋅-++⋅⋅-⋅=+++⋯+6(21)(211428)x x x =--++67128(1627)(21)28x x a a x a x =+-=++⋯+令1x =,得:1282843a a a ++⋯=+∴()8143i i i a =⋅=∑故答案为:43 【点睛】本题解题关键是掌握多项式系数的求法和导数基础知识,考查了分析能力和计算能力,属于中档题.17.【分析】由可知集合均含有元素作出韦恩图可知元素可以放在除之外的个区域中每个元素有个选择利用分步乘法计数原理可得结果【详解】如下图所示集合被分为了个区域由可知集合均含有元素则元素可以放在除之外的个区域 解析:216【分析】 由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,作出韦恩图,可知元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,利用分步乘法计数原理可得结果. 【详解】如下图所示,集合A 、B 、C 被分为了7个区域,由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,则元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,由分步乘法计数原理可知,所有可能的情况种数为36216=. 故答案为:216. 【点睛】本题考查排列组合问题,考查分步乘法计数原理的应用,考查运算求解能力,属于中等题.18.【分析】直接利用二项式定理计算得到答案【详解】二项式的展开式的通项为:取得到常数项为故答案为:【点睛】本题考查了二项式定理意在考查学生的计算能力和应用能力 解析:552-【分析】直接利用二项式定理计算得到答案. 【详解】二项式1232x x ⎛ ⎝的展开式的通项为: ()412312121121231221rrr r r rrr xx x T C C --+-⎛=-⋅ ⎝⎛⎫⎛⎫=⋅⋅ ⎪ ⎪⎝⎭⎝⎭,取9r =得到常数项为()1299129152512C -⎛⎫⋅- =-⎪⎝⎭. 故答案为:552-.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.19.【分析】根据任意一个元素只能在集合之一中以及的非空子集个数即可求得【详解】根据题意任意一个元素只能在集合之一中则这个元素在集合中共有种;其中为空集的种数为为空集的种数为个故可得均为非空子集的种数为又 解析:()113212nn +-+ 【分析】根据任意一个元素只能在集合(),,U A B C C A B =⋃之一中,以及,A B 的非空子集个数,即可求得. 【详解】根据题意,任意一个元素只能在集合(),,U A B C C A B =⋃之一中, 则这n 个元素在集合,,A B C 中,共有3n 种; 其中A 为空集的种数为2n ,B 为空集的种数为2n 个, 故可得,A B 均为非空子集的种数为1321n n +-+, 又因为(),A B 与(),B A 为同一组“互斥子集, 故()()113212nn f n +=-+. 故答案为:()113212nn +-+. 【点睛】本题考查集合新定义,涉及排列组合的求解,属综合中档题.20.【分析】分两类:①一天科另一天科第一步安排数学物理两科作业第二步安排另科一组科一组科第三步完成各科作业②两天各科数学物理两科各一组另科每组分科第一步安排数学物理两科作业第二步安排另科每组科第三步完成 解析:1200【分析】分两类:①一天2科,另一天4科,第一步,安排数学、物理两科作业,第二步,安排另4科一组1科,一组3科,第三步,完成各科作业.②两天各3科,数学、物理两科各一组,另4科每组分2科,第一步,安排数学、物理两科作业,第二步,安排另4科每组2科,第三步,完成各科作业. 【详解】分两类:一天2科,另一天4科或每天各3科. ①第一步,安排数学、物理两科作业,有22A 种方法; 第二步,安排另4科一组1科,一组3科,有132432C C A 种方法; 第三步,完成各科作业,有4242A A 种方法.所以共有213242243242768A C C A A A =种.②两天各3科,数学、物理两科各一组,另4科每组分2科, 第一步,安排数学、物理两科作业,有22A 种方法;第二步,安排另4科每组2科,有22242222C C A A ⨯种方法; 第三步,完成各科作业,有3333A A 种方法.所以共有22223342223322432C C A A A A A ⨯=种. 综上,共有7684321200+=种. 故答案为:1200 【点睛】本题主要考查排列组合在实际问题中的应用,还考查了分类讨论的思想方法,属于中档题.三、解答题21.(1)10n =;(2)180;(3)1. 【解析】试题分析: 本题主要考查二项式定理的应用,二项展开式的通项公式,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,属于基础题.第一问,直接利用条件可得3283n n C C =,求得n 的值;第二问,在二项展开式的通项公式中,令x的幂指数等于3,求出r 的值,即可求得展开式中x 3项的系数.第三问,在10二项展开式中,令x=1,可得式子01231010101010102481024C C C C C -+-++的值.试题(1)由第4项的二项式系数与第3项的二项式系数的比为8:3,可得3283n n C C =,化简可得2833n -=,求得10n =. (2)由于n 二项展开式的通项公式为5110(2)r r rr T C x -+=-,令53r -=,求得2r,可得展开式中3x 项的系数为2210(2)180C -=. (3)由二项式定理可得105100(2)n r r rr C x -==-∑, 所以令x=1得01231010101010102481024C C C C C -+-++10(12)1=-=.考点:二项式定理的应用;二项式系数的性质.22.(1)720(2)2520(3)7800【分析】(1)直接利用排列公式得到答案.(2)将情况分为:每个学生只取1本书;一个学生取2本书,其余学生每人取一本书这两种情况,分别计算相加得到答案.(3)将情况分为:1个学生取3本书,3个学生每人取1本书,1个学生取0本书; 2个学生每人取2本书,2个学生每人取1本书,1个学生取0本书,计算得到答案. 【详解】(1)每个学生只取1本书的不同取法种数为56720A =种. (2)每个学生最少取1本书,最多取2本书分两种情况: 第一种,每个学生只取1本书,取法为56A ;第二种,一个学生取2本书,其余学生每人取一本书.确定取2本书的学生有15C 种方法,这个学生取哪2本书有26C 种方法,其余4个学生取剩下的4本书且每人一本有44A 种方法,故一个学生取2本书,其余学生每人取一本书取法为124564C C A . 所以,每个学生最少取1本书,最多取2本书的不同取法为5124656472018002520A C C A +=+=种.(3)恰有1个学生没取到书分两种情况:第一种,1个学生取3本书,3个学生每人取1本书,1个学生取0本书,取法种数为3565C A .第二种,2个学生每人取2本书,2个学生每人取1本书,1个学生取0本书,取法种数为22564522C C A A . 所以恰有1个学生没取到书的不同取法种数为2222355356464655652222(2045)1207800C C C C C A A C A A A ⎛⎫+=+=+⨯= ⎪⎝⎭种.【点睛】 本题考查了排列组合公式的应用,意在考查学生的应用能力和理解能力. 23.(1)32.(2)201820192⨯.(3)54n.【分析】(1)利用赋值法求解,令1x =和1x =-,两式相加可得;(2)利用11k k n n kC nC --=可求;(3)结合式子特点构造(41)n +可求. 【详解】(1)令1x =,得60126264a a a a +++⋯+== ① 令1x =-,得01260a a a a -+-⋯+= ②①+②得024632a a a a +++=;(2)因为11k k n n kC nC --=所以12320192019201920192019232019C C C C ++++=()12201820182018201820182019C C C C ++++201820192=⨯;(3)01122310144444n n n n n n n n n n C C C C C -----+++⋯++011221144444n n n n nn n n nnC C C CC ---⎡⎤=+++++⎣⎦15(41)44nn=+=. 【点睛】本题主要考查二项式定理的应用,结合组合数的性质,侧重考查数学解题模型的构建能力. 24.(1)119种(2)31种 【分析】(1)利用间接法可得满足题意的方法数.(2)由分类加法计数原理结合分步乘法计数原理可得满足题意的方法数. 【详解】(1)利用间接法可知满足题意的投放方法为:551119A -=种. (2)分为三类:第一类,五个球的编号与盒子的编号完全相同的投放方法有1种;第二类,三个球的编号与盒子的编号相同,球的编号与盒子的编号相同的投放方法有35C 种,球的编号与盒子的编号不同的投放方法有1种,所以投放方法有35110C ⨯=种; 第三类,两个球的编号与盒子的编号相同,球的编号与盒子的编号相同的投放方法有25C 种,球的编号与盒子的编号不同的投放方法有2种,所以投放方法有35220C ⨯=种. 根据分类加法计数原理得,所有的投放方法有1102031++=种. 【点睛】本题主要考查间接法的应用,分类加法计数原理和分步乘法计数原理及其应用等知识,意在考查学生的转化能力和计算求解能力. 25.(1)(2)(3)见证明【解析】 【分析】 (1)先写出展开式的通项,得到,,,根据数列是等差数列,列出等式,即可得出结果;(2)根据(1)的结果,确定中间项为第5项,进而可求出结果; (3)根据数学归纳法的一般步骤,直接证明即可. 【详解】解:(1)展开式的通项为,依题意,,,由可得(舍去)或.(2)所以展开式的中间项是第五项为:.(3)证:由(1),①当时,结论成立;当时,;②设当时,,则时,,由,可知,即.综上①②,当时,成立.【点睛】本题主要考查二项展开式以及数学归纳法,只需熟记二项式定理以及数学归纳法的一般步骤即可,属于常考题型.26.(1)①128,②44827;(2)23n【分析】(1)①设f(x)=(1+x)8=a0+a1x+a2x2+…+a8x8,f(1)=28=a0+a1+a2+…+a8,f(-1)=0=a 0-a 1+a 2-…+a 8,a 0+a 2+a 4+a 6+a 8= [f (1)+ f (-1)] ÷2即可得解;②8823rr n a C -⎛⎫= ⎪⎝⎭,通过不等式组891888718822332233r rr r r rr r C C C C -----+⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩即可得解; (2)处理()()002133n kkn nkk k nk k n k a x n k C -==⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭∑∑0021213333n kk n kknnk k nn k k nC kC --==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑1110021*******n kk n kk nn k k n n k k n nC C -----==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑,利用二项式定理逆用即可得解.【详解】(1)设f (x )=(t +x )n =a 0+a 1x +a 2x 2+…+a n x n , 当n =8时.①若t =1,f (x )=(1+x )8=a 0+a 1x +a 2x 2+…+a 8x 8, f (1)=28=a 0+a 1+a 2+…+a 8,f (-1)=0=a 0-a 1+a 2-…+a 8, a 0+a 2+a 4+a 6+a 8= [f (1)+ f (-1)]÷2=128 ②若t =23,(23+x )n =a 0+a 1x +a 2x 2+…+a n x n , 所以8823rr n a C -⎛⎫= ⎪⎝⎭,设第r 项最大,则891888718822332233rrr r r rr r C C C C -----+⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩, ()()123921381r r r r ⎧≥⎪-⎪⎨⎪≥⎪-+⎩解得222755r ≤≤,所以=5r 数列{a n }中的最大值35582448327a C ⎛⎫==⎪⎝⎭(2)若t=23,当13x =时,求()0nkk k n k a x =-∑的值.(23+x )n =a 0+a 1x +a 2x 2+…+a n x n , 当2n ≥时,()()002133n kknnk k k n k k n k a x n k C -==⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭∑∑021213333n kk n kknnk k nn k k nC kC --==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑1110021*******n kk n kk nn k k n n k k n nC C -----==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑121333n n n -⎛⎫=-+ ⎪⎝⎭23n =, 当n =1时也满足,所以()0nkkk n k a x=-∑23n =. 【点睛】此题考查二项式定理的应用,根据展开式求解系数关系,涉及组合数计算公式,二项式定理的逆用,综合性强.。

新北师大版高中数学高中数学选修2-3第一章《计数原理》测试卷(有答案解析)

新北师大版高中数学高中数学选修2-3第一章《计数原理》测试卷(有答案解析)

一、选择题1.杨辉是我国南宋末年的一位杰出的数学家.在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角形数阵(如图所示),称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果.它比西方的“帕斯卡三角形”早了393年.若用i j a -表示三角形数阵的第i 行第j 个数,则1003a -=( )A .5050B .4851C .4950D .50002.4(12)x -的展开式中2x 的系数为( ) A .6B .24C .32D .483.某校高一开设4门选修课,有4名同学选修,每人只选1门,恰有2门课程没有同学选修,则不同的选课方案有( ) A .96种B .84种C .78种D .16种4.新冠疫情期间,为支援社区抗疫工作,现将6名医护人员安排到4个社区,每个社区至少安排1名医护人员,则不同的安排方案共有( ) A .2640种B .4800种C .1560种D .7200种5.从4名优秀学生中选拔参加池州一中数学、物理、化学三学科培优研讨会,要求每名学生至多被一学科选中,则每学科至少要选用一名学生的情况有( )种 A .24 B .36 C .48 D .60 6.1180被9除的余数为( )A .1-B .1C .8D .8-7.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ) A .720B .360C .72D .以上都不对8.若(2)n x -的展开式中二项式系数最大的项只有第6项,则展开式的各项系数的绝对值...之和为( ) A .111B .102C .103D .1139.5(3)(2)x x -+的展开式中3x 的系数为( ) A .10B .40-C .200D .24010.5名师生站成一排照相留念,其中教师1人,男生2人,女生2人,则两名女生相邻而站的概率是()A.15B.25C.35D.4511.将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为( )A.192181020C CCB.1921810202C CCC.1921910202C CCD.192191020C CC12.设2*012(12),(N)n nnx a a x a x a x n+=+++⋯⋯+∈若12728na a a++⋯+=,则展开式中二项式系数最大的项是( )A.3160x B.260x C.4240x D.320x二、填空题13.若2sin c(s)oa x x dxπ=-⎰,则6axx⎛⎫⎪⎝⎭-的展开式中常数项为_________.14.用红、黄、蓝、绿四种颜色给图中五个区域进行涂色,要求相邻区域所涂颜色不同,共有______种不同的涂色方法.(用数字回答)15.若将五本不同的书全部分给三个同学,每人至少一本,则有________种不同的分法. 16.6人排成一排合影,甲乙相邻但乙丙不相邻,共有____(用数字)种不同的排法. 17.若6(1)2xxx⎛+-⎝展开式中的常数项是60,则实数a的值为_____.18.若212626x xC C-=,则x=__________.19.甲、乙、丙等7人排成一排,甲站最中间,乙丙相邻,且乙、丙与丁均不相邻,共有______种不同排法.(用数字作答)20.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lg lga b-的不同值的个数是_____.三、解答题21.已知()22nx n Nx+⎫∈⎪⎭的展开式中第二项与第三项的二项式系数之和为36.(1)求n 的值;(2)求展开式中二项式系数最大的项.22.从1,3,5,7,9中任取2个数,从0,2,4,6中任取2个数, (1)能组成多少个没有重复数字的四位数?(2)若将(1)中所有个位是5的四位数从小到大排成一列,则第100个数是多少? 23.有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选5人排成一排;(2)排成前后两排,前排4人,后排3人; (3)全体排成一排,甲不站排头也不站排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻.24.已知n 为给定的正整数,设201223nn n x a a x a x a x ⎛⎫+=++++ ⎪⎝⎭,x ∈R .(1)若4n =,求01,a a 的值;(2)若13x =,求0()nkk k n k a x =-∑的值.25.已知8件不同的产品中有3件次品,现对它们一一进行测试,直至找到所有次品. (1)若在第5次测试时找到最后一件次品,则共有多少种不同的测试方法? (2)若至多测试5次就能找到所有次品,则共有多少种不同的测试方法? 26.2名女生、4名男生排成一排,求: (1)2名女生不相邻的不同排法共有多少种?(2)女生甲必须排在女生乙的左边(不一定相邻)的不同排法共有多少种?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】依据二项展开式系数可知,得到第i 行第j 个数应为11j i C --,即可求得1003a -的值.【详解】依据二项展开式系数可知,第i 行第j 个数应为11j i C --, 故第100行第3个数为299999848512C ⨯== 故选:B . 【点睛】本题考查二项展开式的应用,其中解答中得出第i 行第j 个数应为11j i C --是解答的关键,着重考查推理与运算能力,属于基础题.2.B解析:B 【分析】利用二项展开式的通项可得14(2),0,1,2,3,4r rr T C x r +=-=,令2r 可求得结果.【详解】因为4(12)x -的第1r +项展开式14(2),0,1,2,3,4rrr T C x r +=-=, 令2r,则含2x 项系数为224(2)24C -=, 故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有二项展开式通项的应用,项的系数,属于简单题目.3.B解析:B 【解析】先确定选的两门:246C = ,再确定学生选:24214-= ,所以不同的选课方案有61484,⨯=选B.4.C解析:C 【分析】本题首先可以将6名医护人员分为4组,共有65种分组方法,然后将分好的四组全排列,有24种情况,最后两者相乘,即可得出结果. 【详解】先将6名医护人员分为4组,有两种分组方法: 若分为3、1、1、1的四组,则有3620C =种分组方法;若分为2、2、1、1的四组,则有2226422245C C C A 种分组方法,则一共有204565种分组方法,再将分好的四组全排列,对应四个社区,有4424A =种情况, 则有65241560种不同的安排方式, 故选:C. 【点睛】本题考查通过排列组合求出所有的安排方案的数目,可分两步进行,先求出有多少种分组,再求出有多少种排列,考查计算能力,是中档题.5.D解析:D 【分析】首先,根据题意,分析得出应该分两类情况,共选3人参加研讨会和4名学生都参加,之后各自应用分步计数原理求得结果,之后应用分类加法计数原理求得结果. 【详解】依题意,分两类情况:(1)每个学科选1人,共选3人参加研讨会, 从4名学生中选3名进行排列即可,有3424A =种情况; (2)4名学生都参加,则必然有2名学生参加同一学科的研讨会,先从4名学生中选2名看作一个整体,有246C =选法, 将这个整体与其他学生全排列即可,有336A =种排法, 根据分步计数原理,共有6636⨯=种情况,综上所述,根据分类计数原理可得,每学科至少 一名学生的情况有263460+=种, 故选:D. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类加法计数原理和分步乘法计数原理,属于简单题目.6.C解析:C 【分析】将1180转化为()11811-,利用二项式定理,即可得解. 【详解】()111180811=-()()()()2101101210111110911111111111818118118111C C C C C =⋅+⋅⋅-+⋅⋅-++⋅⋅-+⋅-1210111110911111111181818181C C C C =-⋅+⋅++⋅- 1211109111181818111811C C =-⋅+⋅++⨯- 121110911118181811081811C C =-⋅+⋅++⨯+-12111091111818181108180C C =-⋅+⋅++⨯+ 121110911118181811081728C C =-⋅+⋅++⨯++12111091111818181108172C C -⋅+⋅++⨯+可以被9整除,所以1180被9除的余数为8. 故选:C. 【点睛】本题考查利用二项式定理解决余数问题,将原式变形为()11811-是本题的解题关键,属于中档题.7.C解析:C 【分析】因为A 不参加物理、化学竞赛,它是一个特殊元素,故对A 参加不参加竞赛进行讨论,利用分类的思想方法解决,最后结果结合加法原理相加即可. 【详解】 解:根据题意,若选出4人中不含A ,则有44A 种;若选出4人中含有A ,则有313423C C A 种.4313442372A C C A ∴+=.故选:C . 【点睛】本题主要考查排列、组合及简单计数问题,解排列、组合及简单计数问题时遇到特殊元素时,对特殊元素要优先考虑,属于中档题.8.C解析:C 【分析】根据二项展开式中只有第6项的二项式系数最大知10n =,再令1x =-即可求得可得展开式的各项系数的绝对值之和. 【详解】根据题意知(2)n x -的展开式共有11项,10n ∴=,1001001919910101010101022(2)2C x C x C x x x C =-+-+-,令1x =-可得展开式的各项系数的绝对值之和为103. 故选:C 【点睛】本题考查二项展开式各项的系数和,属于中档题.9.B解析:B 【分析】首先将5(3)(2)x x -+拆开得到555((2)3(23))(2)x x x x x =+-+-+,得到5(3)(2)x x -+的展开式中3x 的系数与5(2)x +展开式中2x 项和3x 项的系数有关,化简求得结果. 【详解】555((2)3(23))(2)x x x x x =+-+-+,5(2)x +展开式中2x 项的系数为335280C ⋅=, 5(2)x +展开式中3x 项的系数为225240C ⋅=, 所以5(3)(2)x x -+的展开式中3x 的系数为8034040-⨯=-, 故选:B. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求两个二项式乘积展开式的系数问题,在解题的过程中,注意分析与哪些项有关,属于简单题目.10.B解析:B 【分析】这是一个古典概型,先确定5名师生站成一排站法数,记“两名女生相邻而站”为事件A , 两名女生站在一起,视为一个元素与其余3个人全排,计算出事件A 共有不同站法数,再代入公式求解. 【详解】5名师生站成一排共有55120A =种站法, 记“两名女生相邻而站”为事件A ,两名女生站在一起有222A =种,视为一个元素与其余3个人全排,有4424A =种排法, 则事件A 共有不同站法242448A A ⋅=种, 所以()4821205p A ==, 两名女生相邻而站的概率是25. 故选:B 【点睛】本题主要考查古典概型的概率,还考查了理解辨析,运算求解的能力,属于中档题.11.A解析:A 【分析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果. 【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有1020C 种结果, 而满足条件的事件是2名学生干部恰好被分在不同组内共有19218C C 中结果,根据古典概型的概率公式得192181020=C C P C .故选:A. 【点睛】本题主要考查古典概型和组合问题,属于基础题.12.A解析:A 【分析】由题意得,当1x =时,0123nn a a a a +⋯⋯+=++,利用二项展开式的通项公式求出0021n a C =⋅=,结合条件求得6n =,利用二项式系数的性质,得出二项式系数最大的项为 33362C x ⋅,即可求出结果. 【详解】解:由题可知,2012(12)nnn x a a x a x a x +=+++⋯⋯+, 当1x =时,0123nn a a a a +⋯⋯+=++,(12)n x +的展开式中,通项公式为:12r r rr nT C x +=, 则常数项对应的系数为:0a ,即0r =,得00021n a C =⋅=, 所以1231728n na a a =-+⋯=+⋯+,解得:6n =, 则6(12)x +展开式中二项式系数最大为:36C , 则二项式系数最大的项为: 333362160C x x ⋅=. 故选:A. 【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,组合数的计算公式.二、填空题13.240【分析】求定积分得值在二项展开式的通项公式中令的幂指数为0求出r 的值即可得到常数项【详解】展开式的通项公式为令即的展开式中常数项是故答案为:240【点睛】本题考查定积分的计算和二项式定理的应用解析:240 【分析】求定积分得a 值,在二项展开式的通项公式中令x 的幂指数为0,求出r 的值,即可得到常数项. 【详解】002sin cos (2cos sin )(|()20)(20)4a x x dx x x ππ=-=--=----=⎰,∴64x ⎛ ⎝展开式的通项公式为(()6366216614C 4C rr rrr rrr T xx ---+⎛⎫=-= ⎪⎝⎭,令3602r-=,即4r =.∴64x ⎛ ⎝的展开式中,常数项是()4644641C =240--, 故答案为:240. 【点睛】本题考查定积分的计算和二项式定理的应用,利用二项展开式的通项公式求展开式中某项的系数是解题关键.14.240【分析】根据分步计数原理与分类计数原理列出每一步骤及每种情况计算即可【详解】从开始涂色有4种方法有3种方法①若与涂色相同则共有种涂色方法;②若与涂色不相同则有2种涂色方法当涂色相同时有3种涂色解析:240 【分析】根据分步计数原理与分类计数原理,列出每一步骤及每种情况,计算即可. 【详解】从A 开始涂色,A 有4种方法,B 有3种方法, ①若E 与B 涂色相同,则,C D 共有23A 种涂色方法; ②若E 与B 涂色不相同,则E 有2种涂色方法,当,C E 涂色相同时,D 有3种涂色方法;当,C E 涂色不相同时,C 有2种涂法,D 有2种涂色方法.共有()2343432322240A ⨯⨯+⨯⨯⨯+⨯=种涂色方法.故答案为:240. 【点睛】本题考查排列组合,考查两种计数原理的应用,属于中档题.15.150【分析】先将五本书分成三堆有和种不同的分法再把三堆分给三个同学即得解【详解】由题意先将五本书分成三堆有和种不同的分法故有种分堆方式再分给三个同学有种不同方法故答案为:150【点睛】本题考查了排解析:150 【分析】先将五本书分成三堆,有1,1,3和2,2,1种不同的分法,再把三堆分给三个同学即得解 【详解】由题意,先将五本书分成三堆,有1,1,3和2,2,1种不同的分法故有1132215435312222C C C C C C A A +种分堆方式 再分给三个同学,有113221354353132222()150C C C C C C A A A +=种不同方法故答案为:150【点睛】本题考查了排列组合综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题16.192【分析】先将甲乙两人捆绑在一起看成一个人且内部自排再与除丙外的其他人排列最后将丙插空放入保证与乙不相邻即可【详解】第一步:甲乙相邻共有种排法;第二步:将甲乙看成一个人与除丙外的其他人排列共有:解析:192【分析】先将甲乙两人捆绑在一起看成一个人且内部自排,再与除丙外的其他3人排列,最后将丙插空放入,保证与乙不相邻即可.【详解】第一步:甲乙相邻,共有222A=种排法;第二步:将甲乙看成一个人,与除丙外的其他3人排列,共有:4424A=种排法;第三步:将丙插空放入,保证与乙不相邻,共有:144A=种排法;根据分步计数原理可得,共有2244192⨯⨯=种排法.故答案为: 192【点睛】本题主要考查有限制条件的排列问题,属于中档题.解有限制条件的排列问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确,分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终,同时需掌握有限制条件的排列问题的求解方法.17.【分析】先得到的通项公式为若得到常数项当取1时令当取x时令解得再根据常数项为60求解【详解】因为的通项公式为若得到常数项当取1时令当取x时令解得或(舍)所以因为展开式的常数项为60所以解得故答案为:解析:2±【分析】先得到62x⎛-⎝的通项公式为1rT+=36626(1)2rr r r rC a x--+-⨯⨯⨯⨯,若得到常数项,当(1)x+取1时,令3602r-=,当(1)x+取x时,令3612r-=-,解得r,再根据常数项为60求解.【详解】因为62x⎛-⎝的通项公式为16(1)r rr T C +=-⨯⨯636626(1)22rrr r r r r x C a x ---+⎛⎫⨯=-⨯⨯⨯⨯ ⎪⎝⎭, 若得到常数项,当(1)x +取1时,令3602r -=,当(1)x +取x 时,令3612r -=-, 解得4r =或143r =(舍), 所以4r =,因为6(1)2x x ⎛+⋅- ⎝展开式的常数项为60, 所以446446(1)260C a -+-⨯⨯⨯=,解得2a =±. 故答案为:2± 【点睛】本题主要考查二项式展开式的通项公式以及常数项的应用,还考查了运算求解的能力,属于中档题.18.1或9【分析】由再根据组合的互补性质可得即可解得的值【详解】解:由可得:解得:又根据组合的互补性质可得可得:解得:故答案为:1或9【点睛】本题考查了组合及组合数公式的应用掌握组合数的性质和组合数公式解析:1或9 【分析】由212626x x C C -=,再根据组合的互补性质可得26(21)2626x x C C --=,即可解得x 的值.【详解】解:由212626x x C C -=,可得:21x x =-,解得:1x =,又根据组合的互补性质可得26(21)2626x x C C --=,可得:26(21)x x =--,解得:9x =. 故答案为:1或9. 【点睛】本题考查了组合及组合数公式的应用,掌握组合数的性质和组合数公式是解题的关键.19.【分析】根据乙丙相邻所以捆在一起有种排法又因为乙丙与丁均不相邻且甲站最中间则剩余3人全排列从产生的4个空中选2个将乙丙与丁排列再用分类乘法计数原理求解【详解】因为乙丙相邻所以捆在一起有种排法又因为乙 解析:144【分析】根据乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,且甲站最中间,则剩余3人全排列,从产生的4个空中选2个,将乙、丙与丁排列,再用分类乘法计数原理求解.【详解】因为乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,因为甲站最中间,则剩余3人全排列有33A 种排法,,从产生的4个空中选2个,将乙、丙与丁排列,有24A 种排法,所以共有232234144A A A ⨯⨯=种排法故答案为:144 【点睛】本题主要考查分类乘法计数原理,还考查了运算求解的能力,属于中档题.20.【分析】因为所以从这五个数中每次取出两个不同的数分别为共可得到的不同值的个数可看作共可得到多少个不同的数【详解】解:首先从这五个数中任取两个不同的数排列共种排法因为所以从这五个数中每次取出两个不同的 解析:18【分析】 因为lg lg lgaa b b-=,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg lg a b -的不同值的个数可看作共可得到多少个不同的数a b. 【详解】解:首先从1,3,5,7,9这五个数中任取两个不同的数排列,共2520A =种排法, 因为3913=,1339=, 所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b , 共可得到lg lg a b -的不同值的个数为:20218-=, 故答案为:18. 【点睛】本题考查了排列组合及简单的计数问题,属于基础题.三、解答题21.(1)8;(2)611120x⋅. 【分析】(1)由条件利用二项式系数的性质求得n 的值;(2)首先求出二项式展开式的通项,进而得到展开式中二项式系数最大的项. 【详解】(1)由题意知,第二项的二项式系数为1n C ,第三项的二项式系数为2n C ,1236n n C C ∴+=,得2720n n +-=,(9)(8)0n n ∴+-=得8n =或9n =-(舍去).(2)822x ⎫⎪⎭的通项公式为: 858218822(1)2kkk k k k kk T C C x x --+⎛⎫=-=- ⎪⎝⎭,又由8n =知第5项的二项式系数最大,此时5611120T x =⋅. 【点睛】本题第一问考查二项式系数的性质,第二问考查二项式系数最大的项,熟记二项式展开式的通项为解题的关键,属于中档题. 22.(1) 1260 ;(2) 7205. 【分析】(1)需要分两类:第一类,不选0时;第二类,选0时,根据分类计数原理可得;(2)先分5种情况,形如①“1××5",②"2××5",③“3××5”,④“4××5”,⑤“6××5”,再寻找规律,问题得以解决. 【详解】解:(1)不选0时,有224534720C C A ⋅⋅=个;选0时,0不能排在首位, 21135333540C C A A ⋅⋅⋅=,根据分类计数原理,共有720+540=1260个四位数.(2)①“1××5”,中间所缺的两数只能从0,2,4,6中选排,有2412A =个; ②“2××5",中间所缺的两数是奇偶数各一个,有112432C C A 24⋅⋅=个; ③“3××5",仿“1××5”,也有2412A =个; ④“4××5",仿“2××5",也有112432C C A 24⋅⋅=个; ⑤“6××5”也有112432C C A 24⋅⋅=个;即小于7000的数共有96个,故第97个数是7025,第98个数是7045,第99个数是7065,第100个数是7205. 【点睛】本题主要考查了分类计数原理,关键是分类,要不重不漏,属于中档题. 23.(1)2520种(2)5040种(3)3600种(4)576种(5)1440种 【分析】(1)按照排列的定义求解..(2)分两步完成,先选4人站前排进行排列,余下3人站后排进行排列,然后相乘求解.. (3)先考虑甲,再其余6人进行排列,然后相乘求解.(4)将女生看作一个整体与3名男生一起全排列,再将女生全排列,然后相乘求解. (5)先排女生,再在女生之间及首尾5个空位中任选3个空位安排男生,然后相乘求解. 【详解】(1)从7人中选5人排列,有57765432520A =⨯⨯⨯⨯=(种).(2)分两步完成,先选4人站前排,有47A 种方法,余下3人站后排,有33A 种方法,共有4373A A 5040=(种).(3)(特殊元素优先法)先排甲,有5种方法,其余6人有66A 种排列方法,共有6653600A ⨯=(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有44A 种方法,再将女生全排列,有44A 种方法,共有4444A A 576=(种).(5)(插空法)先排女生,有44A 种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有35A 种方法,共有4345A A 1440=(种). 【点睛】本题主要考查了对排列的理解和排列数的计算,还考查了理解辨析的能力,属于中档题.24.(1)01681a =,13227a =.(2)23n 【分析】(1)利用二项式定理可求出0a 和1a 的值;(2)利用组合数公式得出11k k n n kC nC --=,可得出()00121213333n kk n kkn nnkk k k nn k k k n k a x nC nC --===⎛⎫⎛⎫⎛⎫⎛⎫-=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑,然后利用二项式定理即可求得答案. 【详解】(1)因为4n =,所以0404216C ()381a ==,1314232C ()327a ==;(2)当13x =时,21C ()()33k k n k k k na x -=, 又因为11!(1)!C C !()!(1)!()!kk n n n n k kn n k n k k n k ---===---, 当1n =时,011022()C ()33nk k k n k a x =-==∑;当2n ≥时,0021()()C ()()33nnkk n k kk n k k n k a x n k -==-=-∑∑012121C ()()C ()()3333nn k n k k k n k knnk k n k --===-∑∑ 1112121()C ()()3333n n k n k kn k n n ---==+-∑ 1111121C ()()333n k n k k n k n n ----==-∑11212()3333n n n n -=-+=,当1n =时,也符合.所以0()nkk k n k a x =-∑的值为23n .【点睛】本题考查二项式定理求指定项的系数,同时也考查了利用二项式定理化简求值,解题的关键就是二项展开式通项和二项式定理的逆用,考查计算能力,属于中等题. 25.(1)720种(2)936种 【分析】(1)由题意可知前四次中有两件次品两件正品,第五次为次品,所以选出排列即可. (2)至多五次能找到,包括检测3次都是次品,检测四次测出3件次品,检测五次测出3件次品或着检测五次全是正品,剩下的为次品,以此求出每种情况求和可得结果. 【详解】解:(1)若在第五次检测出最后一件次品,则前四次中有两件次品两件正品,第五次为次品.则不同的检测方法共有412445720C A A =种.(2)检测3次可测出3件次品,不同的测试方法有336A =种 检测4次可测出3件次品,不同的测试方法有13253390C A A =种;检测5次测出3件次品,分为两类:一类是恰好第5次测到次品,一类是前5次测到都是正品,不同的测试方法共有41524455840C A A A +=种.所以共有936种测试方法 【点睛】本题考查排列组合的实际应用,考查分步计数的原理以及学生处理实际问题的能力,最后一次的问题一定要注意最后一次是确定的事件,本题属于中档题. 26.(1)480种(2)360种 【分析】(1)不相邻问题利用插空法法;(2)女生顺序已定,先排女生,再排男生,最后根据分步乘法计算原理计算可得; 【详解】解:(1)2名女生不相邻的排列可以分成2步完成: 第一步 将4名男生排成一排,有44A 种排法;第二步 排2名女生.由于2名女生不相邻,可以在每2名男生之间及两端共5个位置中选出2个排2名女生,有25A 种排法.根据分步计数原理,不同的排法种数是42452420480A A =⨯=. (2)女生甲必须排在女生乙左边的排列可以分成2步完成:第一步:排2名女生,女生的顺序已经确定,这2名女生的排法种数为从6个位置中选出2个位置的组合数,即为26C ;第二步:排4名男生.将4名男生在剩下的4个位置上进行排列的方法数有44A 种. 根据分步计数原理,不同的排法种数是24641524360C A =⨯=.答:分别有480和360种不同的排法.【点睛】本题考查简单的排列组合问题,属于中档题.。

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测(含答案解析)(2)

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测(含答案解析)(2)

一、选择题1.4(12)x -的展开式中2x 的系数为( )A .6B .24C .32D .48 2.在(1-x 3)(1+x )10的展开式中x 5的系数是( )A .-297B .-252C .297D .2073.733x x ⎛⎫- ⎪ ⎪⎝⎭展开式中含32x -的项是( ) A .第8项 B .第7项 C .第6项 D .第5项 4.有6个人排成一排拍照,其中甲和乙相邻,丙和丁不相邻的不同的排法有( ) A .240种B .144种C .72种D .24种5.将红、黄、蓝三种颜色的三颗棋子分别放入33⨯方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,则不同方法共有几种( )A .12B .16C .24D .366.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ) A .720B .360C .72D .以上都不对7.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ) A .2264A CB .22642A CC .2264A AD .262A8.二项式3nx x 的展开式中第13项是常数项,则n =( )A .18B .21C .20D .309.在12202011x x ⎛⎫++ ⎪⎝⎭的展开式中, 2x 项的系数为( ) A .10 B .25 C .35 D .6610.有4个不同的小球放入3个盒子中,每个盒子至少放一个小球,则不同的放法共有( ) A .12种B .18种C .24种D .36种11.2101()x x+的展开式中含5x 项的系数为( ) A .160B .210C .120D .25212.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( ) A .1 B .9 C .-1或-9 D .1或9二、填空题13.现有不同的红球、黄球、绿球各两个排成一排,要求红球不相邻,黄球也不相邻,红球不在两端有__________种不同的排法.14.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则不同的安排方式共有________种15.某学校组织劳动实习,其中两名男生和两名女生参加农场体验活动,体验活动结束后,农场主人与四名同学站一排合影留念.已知农场主人站在中间,两名男生不相邻,则不同的站法共有______种.16.已知423401234(21)(1)(1)(1)(1)x a a x a x a x a x -=++++++++,则1234a a a a +++=___________.17.将编号为1,2,3,4,5,6,7的七个小球放入编号为1,2,3,4,5,6,7的七个盒中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为______.18.某中学安排,,,A B C D 四支小队去3所不同的高校参观,上午每支小队各参观一所高校,下午A 小队有事返回学校,其余三支小队继续参观.要求每支小队上下午参观的高校不能相同,且每所高校上午和下午均有小队参观,则不同的安排有_____种.19.甲、乙、丙等7人排成一排,甲站最中间,乙丙相邻,且乙、丙与丁均不相邻,共有______种不同排法.(用数字作答)20.已知2⎛+ ⎝nx 的展开式的二项式系数之和为32,则其展开式中常数等于________.三、解答题21.一天的课表有7节课,其中上午4节,下午3节,要排语文,数学,外语,微机,体育,地理,物理7节课.(1)语文课排第1节课,共有多少种不同的排课方法?(用数字作答) (2)数学课不排第7节课,共有多少种不同的排课方法?(用数字作答)(3)体育课不排第1节课,微机课不排第7节课,共有多少种不同的排课方法?(用数字作答)22.红星高中2019年五一演讲比赛将在体育馆举行,所有参加人员凭票入场.(1)若将6张连号的门票分给明明、慧慧等六位老师,每人1张,且明明、慧慧分得的门票连号,则一共有多少种不同的分法?(2)高二年级准备从甲、乙等八名同学中选派四名同学参加,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加时,他们的演讲顺序不能相邻,那么高二年级不同的演讲顺序一共有多少种?23.有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?()1甲不在中间也不在两端; ()2甲、乙两人必须排在两端; ()3男女相间.24.已知在333nx x ⎡⎤-⎢⎥⎣⎦的展开式中,第6项为常数项. (1)求n ;(2)求展开式中所有的有理项(只需说明第几项是有理项). 25.现在有6副互不相同的手套打乱了放在一起.(1)从中选取4只,求4只恰好能凑出1副手套的取法数; (2)从中选取5只,求5只中至少能凑出1副手套的取法数.26.在杨辉三角形中,从第3行开始,除1以外,其它没一个数值是它肩上的两个数之和,这三角形数阵开头几行如图所示. (1)证明:111mm m n nn C C C ++++=;(2)求证:第m 斜列中(从右上到左下)的前K 个数之和一定等于第m +1斜列中的第K个数,即()11111*112212m m m m m m m m m m m k m k C C C C C C m m k N ------+++-+-++++⋯+=≥∈,,(3)在杨辉三角形中是否存在某一行,该行中三个相邻的数之比为3:8:14?若存在,试求出这三个数;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用二项展开式的通项可得14(2),0,1,2,3,4rrr T C x r +=-=,令2r 可求得结果.【详解】因为4(12)x -的第1r +项展开式14(2),0,1,2,3,4rrr T C x r +=-=,令2r,则含2x 项系数为224(2)24C -=, 故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有二项展开式通项的应用,项的系数,属于简单题目.2.D解析:D 【解析】试题分析:因为31010310(1)(1)(1)(1)x x x x x -+=+-+所以310(1)(1)x x -+展开式中的5x 的系数是10(1)x +的展开式的中5x 的系数减去10(1)x +的2x 的系数由二项式定理,10(1)x +的展开式的通项为110r rr T C x += 令=5r ,则10(1)x +的展开式的中5x 的系数为510C 令2r,则10(1)x +的展开式的中2x 的系数为210C所以5x 的系数是510C -210C 25245207=-= 故答案选D 考点:二项式定理.【易错点晴】()n a b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指kn C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.[学_科_3.C解析:C 【分析】根据二项展开式的通项公式,求得含32x -项对应的r 即可得到结论. 【详解】解:7⎫⎝展开式的通项公式为:()21172722217713133rr r r r rr T C x x C x ---+⎛⎫⎛⎫=⋅⋅-⋅=-⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭; 令73522r r -=-⇒=; 故展开式中含32x -的项是第6项. 故选:C.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4.B解析:B 【分析】甲和乙相邻,捆绑法,丙和丁不相邻用插空法,即先捆甲和乙,再与丙和丁外的两人共“3人”排列,再插空排丙和丁. 【详解】甲和乙相邻,捆绑在一起有22A 种,再与丙和丁外的两人排列有33A 种, 再排丙和丁有24A 种,故共有22A 33A 24A 144=种. 故选:B 【点睛】本题考查了排列中的相邻问题和不相邻问题,属于中档题.5.D解析:D 【分析】直接利用乘法原理计算得到答案. 【详解】第一颗棋子有339⨯=种排法,第二颗棋子有224⨯=种排法,第三颗棋子有1种排法, 故共有94136⨯⨯=种排法. 故选:D. 【点睛】本题考查了乘法原理,意在考查学生的应用能力.6.C解析:C 【分析】因为A 不参加物理、化学竞赛,它是一个特殊元素,故对A 参加不参加竞赛进行讨论,利用分类的思想方法解决,最后结果结合加法原理相加即可. 【详解】 解:根据题意,若选出4人中不含A ,则有44A 种;若选出4人中含有A ,则有313423C C A 种. 4313442372A C C A ∴+=.故选:C . 【点睛】本题主要考查排列、组合及简单计数问题,解排列、组合及简单计数问题时遇到特殊元素时,对特殊元素要优先考虑,属于中档题.7.B解析:B 【分析】先将4名学生均分成两组,注意重合的部分要去掉,再从6个班级中选出2个班进行排列,最后根据分步计数原理得到合要求的安排方法数. 【详解】解:先将4名学生均分成两组方法数为2412C , 再分配给6个年级中的2个分配方法数为26A ,∴根据分步计数原理合要求的安排方法数为224612C A .故选:B . 【点睛】本题先考查的是平均分组问题,是一个易出错的问题,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.8.D解析:D 【分析】直接利用二项式定理计算得到答案. 【详解】二项式n的展开式中第13项1210121212313n n n n T C C x --⎛== ⎝, 令1003n-=,得30n =. 故选:D. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.9.D解析:D 【分析】分析12202011x x ⎛⎫++ ⎪⎝⎭的展开式的本质就是考虑12个202011x x ⎛⎫++ ⎪⎝⎭,每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,利用组合知识即可得解.【详解】12202011x x ⎛⎫++ ⎪⎝⎭的展开式考虑12个202011x x ⎛⎫++ ⎪⎝⎭,每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,要得到2x 项,就是在12个202011x x ⎛⎫++ ⎪⎝⎭中,两个括号取x ,10个括号取1, 所以其系数为21266C =. 故选:D 【点睛】此题考查求多项式的展开式指定项的系数,关键在于弄清二项式定理展开式的本质问题,将问题转化为计数原理组合问题.10.D解析:D 【分析】先把小球分3组共有24C 种分法,再将3组小球全排列,放入对应3个盒子即可.【详解】根据题意,分2步安排,第一步,把4个小球分成3组,其中1组2只,剩余2组各1只,分组方法有246C =种, 第二步,把这3组小球全排列,对应3个盒子,有336A =种, 根据分步计数原理可得所有的不同方法共有6636⨯=种. 故选:D 【点睛】本题主要考查了计数原理,排列与组合的应用,属于中档题.11.D解析:D 【分析】由二项式定理及其二项展开式通项得:210203110101()()rrr r rr T C x C x x--+==,令2035r -=,解得r 的值,进而求得其系数.【详解】()102203110101rrrr rr T C xC xx --+⎛⎫== ⎪⎝⎭, 当=5r 时,555610252T C x x ==. 故选:D. 【点睛】本题考查了二项式定理及其二项式展开式的通项,属于基础题.12.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项; ()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 ()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D 【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.二、填空题13.120【分析】用六个位置去放这六个球分步:第一步放红球第二步放黄球第三步放绿球然后由乘法原理计算【详解】6个球占据6个位置在这6个位置中间四个位置中选2个放红球有3种选法放法是剩下4个位置中只有2个解析:120 【分析】用六个位置去放这六个球,分步:第一步放红球,第二步放黄球,第三步放绿球.然后由乘法原理计算. 【详解】6个球占据6个位置,在这6个位置中间四个位置中选2个放红球,有3种选法,放法是223A ,剩下4个位置中只有2个是相邻的,选2个放黄球放法是2242A A -,最后还有两个位置放绿球有22A 种放法,因此共有方法数为222224223()120A A A A -=. 故答案为:120. 【点睛】关键点点睛:本题考查排列的应用,解题关键是确定完成事件的方法:分类还是分步?另外对特殊元素,特殊位置要优先考虑.本题中红球要不相邻又不能放在两端,因此我们设想有6个位置放这6个球,先放红球于中间4个位置中的两个,然后再放黄球,最后放绿球.分步完成,从而得出结论.14.150【分析】先根据题意确定分组分式则分组方法是113或221得到分组方法种数再分配到3个社区利用分步计数原理求解【详解】安排5名学生去3个社区进行志愿服务且每人只去一个社区要求每个社区至少有一名学解析:150 【分析】先根据题意,确定分组分式则分组方法是1,1,3或2,2,1,得到分组方法种数,再 分配到3个社区,利用分步计数原理求解. 【详解】安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则分组分式是1,1,3或2,2,1,故分组方法有:112231545322312225C C C C C C A A+=,分配到3个社区的分配方法有336A =种,由分步计数原理得:不同的安排方式共有256150⨯=种, 故答案为:150 【点睛】方法点睛:排列组合的综合题目,一般是先取出符合要求的元素组合(分组),再对取出的元素排列,分组时要注意“平均分组”与“不平均分组”的差异及分类的标准.15.16【分析】根据正难则反原理可求男生相邻的情况再拿所有情况减去即可【详解】农场主在中间共有种站法农场主在中间两名男生相邻共有种站法故所求站法共有种故答案为:16【点睛】本题考查计数原理考查了正难则反解析:16 【分析】根据正难则反原理,可求男生相邻的情况,再拿所有情况减去即可. 【详解】农场主在中间共有4424A =种站法,农场主在中间,两名男生相邻共有222228A A ⋅=种站法, 故所求站法共有24816-=种. 故答案为:16 【点睛】本题考查计数原理,考查了正难则反原理,考查逻辑推理能力,属于中档题.16.【分析】取得出再取得出最后由得出答案【详解】取得出取得出则故答案为:【点睛】本题主要考查了二项式定理与数列求和的应用属于中档题解析:80-【分析】取0x =,得出012341a a a a a ++++=,再取1x =-,得出081a =,最后由1234012340a a a a a a a a a a +++++++=-得出答案.【详解】取0x =,得出401234()11a a a a a -=+++=+ 取1x =-,得出4013)8(a -==则012341234018180a a a a a a a a a a ++++++=--=-+= 故答案为:80- 【点睛】本题主要考查了二项式定理与数列求和的应用,属于中档题.17.315【分析】根据题意有且只有三个盒子的编号与放入的小球的编号相同再由排列组台及计数原理即可求解【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同共种不同取法;第二步:再将剩下的个小球放入到解析:315 【分析】根据题意,有且只有三个盒子的编号与放入的小球的编号相同,再由排列组台及计数原理,即可求解. 【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同,共3735C =种不同取法; 第二步:再将剩下的4个小球放入到4个盒子中,且小球编号与放入的小球的编号不相同,共()113219C C +=种不同放法;因而有且只有三个盒子的编号与放入的小球的编号相同的不同放法种数为359315⨯=种. 故答案为:315 【点睛】本题考查了排列组合及计数原理,考查理解辨析能力与运算求解能力,属中档题.18.【分析】本题属于分组分配问题可按上午参观时A 是否与其他小队分在一组进行讨论分上下午两步安排参观即可得出答案【详解】若与中的某一支小队分在一组上午有种参观方法下午参观时三支小队不去各自上午参观的高校有解析:【分析】本题属于分组分配问题,可按上午参观时A 是否与其他小队分在一组进行讨论,分上下午两步安排参观,即可得出答案. 【详解】若A 与B 、C 、D 中的某一支小队分在一组,上午有1333C A ⋅种参观方法, 下午参观时B 、C 、D 三支小队不去各自上午参观的高校,有2种方法,故有1333236C A ⋅⋅=种;若B 、C 、D 中某两支队分在一组,上午有2333C A ⋅种参观方法,下午再安排时,也有2种方法,故有2333236C A ⋅⋅=种.所以一共有363672+=种.故答案为:72.【点睛】本题考查考查分组分配问题,注意其中的分类分步,属于中档题. 19.【分析】根据乙丙相邻所以捆在一起有种排法又因为乙丙与丁均不相邻且甲站最中间则剩余3人全排列从产生的4个空中选2个将乙丙与丁排列再用分类乘法计数原理求解【详解】因为乙丙相邻所以捆在一起有种排法又因为乙 解析:144【分析】根据乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,且甲站最中间,则剩余3人全排列,从产生的4个空中选2个,将乙、丙与丁排列,再用分类乘法计数原理求解.【详解】因为乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,因为甲站最中间,则剩余3人全排列有33A 种排法,,从产生的4个空中选2个,将乙、丙与丁排列,有24A 种排法,所以共有232234144A A A ⨯⨯=种排法 故答案为:144【点睛】本题主要考查分类乘法计数原理,还考查了运算求解的能力,属于中档题.20.【分析】根据二项式系数和可求得根据二项展开式通项公式可求得的值代入可求得结果【详解】展开式二项式系数和为解得:展开式通项公式为:令解得:展开式中常数为故答案为:【点睛】本题考查二项展开式中指定项的求 解析:80【分析】根据二项式系数和可求得n ,根据二项展开式通项公式可求得r 的值,代入可求得结果.【详解】22n x x ⎛+ ⎝展开式二项式系数和为32,232n ∴=,解得:5n =, 522n x x⎛⎛∴+= ⎝⎝展开式通项公式为:51010221552rr r r r r r T C x C x --+=⋅=.令51002r -=,解得:4r =,∴展开式中常数为445216580C =⨯=. 故答案为:80.【点睛】本题考查二项展开式中指定项的求解问题,关键是熟练掌握二项式系数和的性质和二项展开式通项公式的形式.三、解答题21.(1)720;(2)4320;(3)3720.【分析】(1)语文课排第一节,相当于其余六节课全排列即可得结果;(2)数学课不排第7节课,先从前六节课中选一节给数学,有6种选法,其余6节课全排,利用分步计数原理求得结果;(3)当体育课排在第7节课时有66A 种排法,当体育课排在中间5节课时,有5种排法,微机课也有5种排法,其余五节课全排列,有5525A 种排法,之后应用分类加法计数原理求得结果.【详解】(1)语文课排第一节,相当于其余六节课全排列,即有66720A =种;(2)数学课不排第7节课,先从前六节课中选一节给数学,有6种选法,其余6节课全排,利用分步计数原理得6664320A =种; (3)当体育课排在第7节课时有66A 种排法,当体育课排在中间5节课时,有5种排法,微机课也有5种排法,其余五节课全排列,有5525A 种排法,之后应用分类加法计数原理,有6565253720A A +=种. 【点睛】该题考查的是有关排列的综合题,涉及到的知识点有具有特殊元素的排列数的求解,分步计数原理,分类计数原理,属于简单题目.22.(1)240种;(2)1140种【分析】(1)先从6张门票中选出两张连号的门票,有5种选法,剩下的4张门票分给其余四位老师属于排列问题,有44A 种,又因为两张连号的门票分明明、慧慧两位老师,有22A 种分法,由分步乘法计数原理即可求得结果;(2)先分类再分步.一类是甲、乙两人中恰有一人参加,先从甲、乙中选出1人,再从其余6人中选出3人,最后将参加的4人全排列,有134264960C C A ⋅⋅=种;另一类是甲、乙两人都参加,有22C 种.除甲、乙外,再选2名,有26C 种.其余两人先排好有22A 种,甲、乙不相邻采用插空法有23A 种,用分步乘法计数原理22222623C C A A ⋅⋅⋅计算.最后再将两类的结果加起来.【详解】解:(1)门票连号有5种,分给其余四位老师有44A 种,明明、慧慧分得的门票连号,一共有42425240A A ⨯⨯=种;(2)就甲、乙两名同学中实际参与演讲比赛的人数进行分类计数:第一类,甲、乙两名同学中实际参与演讲比赛的恰有一人,满足题意的不同的演讲顺序的种数为134264960C C A ⋅⋅=;第二类,甲、乙两名同学中实际参与演讲比赛的恰有两人,满足题意的不同的演讲顺序种数为22222623180C C A A ⋅⋅⋅=.因此满足题意的不同的演讲顺序的种数为9601801140+=.【点睛】本题考查了两个计数原理的综合应用,其中甲、乙不相邻采用“插空法”,属于中档题. 23.()1241920种;()210080种;()32880种.【分析】 ()1先排甲,有6种,剩下的8个元素全排列有88A 种,根据分步计数原理得出结果; ()2先排甲、乙,再排其余7人,再根据分步计数原理得出结果;()3先排4名男生有44A 种方法,再将5名女生插在男生形成的5个空上有55A 种方法,再根据分步计数原理得出结果.【详解】解:()1先排甲有6种,其余有88A 种, ∴共有886241920A ⋅=种排法.()2先排甲、乙,再排其余7人,共有272710080A A ⋅=种排法.()3先排4名男生有44A 种方法,再将5名女生插在男生形成的5个空上有55A 种方法, 故共有45452880A A ⋅=种排法.【点睛】本题考查排列组合问题,结合元素分析法(优先考虑特殊元素),位置分析法(优先考虑特殊位置),直接法,间接法(排除法),捆绑法,等机会法,插空法等常见的解题思路. 24.(1)10;(2)第3项,第6项与第9项为有理项.【分析】(1)先求出1k T +()233n k k kn C x -=-,解方程1003n -=即得解;(2)由题得1023010k Zk k Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,分析即得解.【详解】(1)通项公式为()3313n k kk kk n T C x x --+=-()233n k k kn C x -=-.∵第6项为常数项,∴5k =时,有203n k -=,即10n =. (2)根据通项公式, 由题意得1023010k Zk k Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,令1023k r -=(r Z ∈),则1023k r -=,即352k r =-. ∵k Z ∈,∴r 应为偶数.于是r 可取2,0,2-,即k 可取2,5,8. 故第3项,第6项与第9项为有理项.【点睛】本题主要考查二项式定理的通项,考查二项式展开式的常数项和有理项的求法,意在考查学生对这些知识的理解掌握水平.25.(1)240.(2)600.【解析】【分析】(1)先选出1副手套,再从剩余5副手套中各抽取2副手套,每副手套再抽1只,利用概率计算公式求解即可;(2)先求6副手套中抽取5只的所有取法,减去都没有成双的,即为至少能凑出1副手套的取法.【详解】(1)根据题意只需先选出1副手套,再从剩余5副手套中各抽取2副手套, 每副手套再抽1只所以有12116522240C C C C =种取法.(2)从6副手套中抽取5只共有512792C =种取法,5只手套都没有成双的有511111622222192C C C C C C =种取法,所以5只中至少能凑出1副手套的取法数为792-192=600.【点睛】本题考查概率公式的应用,注意乘法公式的应用是解决本题的关键.26.(1)见解析(2)见解析(3)45,120,210【分析】(1)化成阶乘处理即可.(2)将这列数表示出来,利用(1)的结论即可得到.(3)假设存在第n 行的第r-1,r ,r+1个数满足这三个数之比为3:8:14,列方程求r ,若n ,r 为不小于2的正整数,即为所求.【详解】解:(1)1mm n n C C ++=()!!!n m n m -+()()!1!1!n m n m +-- =()()()!11!!n m m n m ++-+()()()!1!!n n m m n m -+- =()()()!11!!n m n m m n m ++-+- =()()()()1!1!11!n m n m +⎡⎤++-+⎣⎦=11m n C ++.所以原式成立.(2)由(1)得111m m m n nn C C C ++++= 左边=1111122m m m m m m mm m m k C C C C C ----+++-++++⋯+ =1111122m m m m m m m m k C C C C ---++++-+++⋯+=…=122m m m k m k C C -+-+-+=1m m k C +-=右边∴原命题成立(3)设在第n 行的第r -1,r ,r +1个数满足3:8:14即113814r r r n n n C C C -+=::::解的{103n r ==∴三个数依次为45,120,210【点睛】本题考查了二项式定理的性质,组合数的性质的证明,主要考查组合数的计算,考查观察、归纳、总结的能力.属于中档题.。

(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》检测(包含答案解析)(4)

(常考题)北师大版高中数学高中数学选修2-3第一章《计数原理》检测(包含答案解析)(4)

一、选择题1.某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.已知某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率( ) A .112125B .80125C .113125D .1241252.星期天上午,甲、乙、丙、丁到绿博园、四牟园、湿地公园、蟹岛游玩,每人只去一个地方,设事件A 为“4个人去的地方各不相同”,事件B 为“甲独自去一个地方”,则()P A B =( )A .29B .13C .49D .593.设随机变量X 服从正态分布()0,9N ,则()36P X <<=( )(附:若()2~,X N μσ,则()0.6826P X μσμσ-<<+≈,(2)0.9544P X μσμσ+<<+=)A .0.0456B .0.1359C .0.2718D .0.31744.某班有18名学生数学成绩优秀,若从该班随机找出6名学生,其中数学成绩优秀的学生数1~6,3X B ⎛⎫ ⎪⎝⎭,则()21E X +=( ) A .13B .12C .5D .45.下列命题中真命题是( )(1)在18的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)6.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为X ,则X 的均值为( ) A .20B .25C .30D .407.设随机变量ξ服从正态分布()0,1N ,则下列结论正确的是( )①()()()()0P a P a P a a ξξξ<=<+>->;②()()()210P a P a a ξξ<=<->; ③()()()120P a P a a ξξ<=-<>;④()()()10P a P a a ξξ<=-≥>.A .①②B .②③C .①④D .②④8.某学校高三模拟考试中数学成绩X 服从正态分布()75,121N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.参考数据:()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=) A .261B .341C .477D .6839.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b ==B .3,10a b ==C .5,6a b ==D .6,5a b ==10.已知随机变量X 的分布列如表,其中a ,b ,c 为等差数列,若1()3E X =,则()D X 等于( )X 1- 0 1PabcA .49B .59C .13D .2311.某校高一(1)班共有54人,如图是该班期中考试数学成绩的频率分布直方图,则成绩在[]100,120内的学生人数为A .36B .27C .22D .1112.设X 为随机变量,且1:,3X B n ⎛⎫ ⎪⎝⎭,若随机变量X 的方差()43D X =,则()2P X == ( )A .4729B .16C .20243D .80243二、填空题13.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这6位乘客在第20层下电梯的人数,则(4)P X ==________. 14.在高三的一个班中,有14的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生人数1(5,)4B ξ~,则()P k ξ=取最大值时k =_______.15.袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是______.16.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,两小时以上且不超过三小时还车的概率分别是12,14,两人租车时间都不会超过四小时,则甲、乙两人所付的租车费用相同的概率为_______.17.某同学解答两道试题,他能够解出第一道题的概率为0.8,能够解出第二道题的概率为0.6,两道试题能够解答与否相互独立,记该同学解出题目的个数为随机变量X ,则X 的数学期望()E X =______.18.随机变量X 服从正态分布()2~10,X N σ,()12P X m >=,1(8)0P X n ≤≤=,则21m n+的最小值为_____. 19.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为P ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X=0)=,则随机变量X的数学期望E (X )=___________.20.某班甲、乙、丙3名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710,则恰有1名同学当选的概率为____. 三、解答题21.《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“行让行人”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让行人”行为的统计数据:x 之间的回归直线方程ˆˆˆy bx a =+;(2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让行人”情况达到“理想状态”.试判断6月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起15天内需完成罚款缴纳,记录5月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为X ,若X 服从正态分布()~8,9X N ,求该月没能在 14天内缴纳人数. 参考公式:()()()112211ˆˆˆ,nniii ii i nniii i x x yyx y nxybay bx x x xnx====---===---∑∑∑∑()()()0.6826,220.9544,330.9974P Z P Z P Z μσμσμσμσμσμσ-<<+=-<<+=-<<+=22.某射手每次射击击中目标的概率均为23,且各次射击的结果互不影响. (1)假设这名射手射击3次,求至少2次击中目标的概率;(2)假设这名射手射击3次,每次击中目标得10分,未击中目标得0分.在3次射击中,若有2次连续击中目标,而另外1次未击中目标,则额外加5分;若3次全部击中,则额外加10分.用随机变量ζ表示射手射击3次后的总得分,求ζ的分布列和数学期望. 23.某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了100名职工进行测试,得到频数分布表如下:(1)现从参与测试的日组装个数少于175的职工中任意选取3人,求至少有1人日组装个数少于165的概率;(2)由频数分布表可以认为,此次测试得到的日组装个数Z 服从正态分布(),169N μ,μ近似为这100人得分的平均值(同一组数据用该组区间的中点值作为代表).(i )若组装车间有20000名职工,求日组装个数超过198的职工人数;(ii )为鼓励职工提高技能,企业决定对日组装个数超过185的职工日工资增加50元,若在组装车间所有职工中任意选取3人,求这三人增加的日工资总额的期望.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.24.某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为23,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的. (1)求乙同学答对2个题目的概率;(2)若甲、乙两位同学答对题目个数分别是m ,n ,分别求出甲、乙两位同学答对题目个数m ,n 的概率分布和数学期望.25.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率. 26.甲、乙两名运动员进行射击训练,已知他们击中的环数都稳定在7、8、9、10环,且每次射击成绩互不影响.根据以往的统计数据,甲、乙射击环数的频率分布条形图如下:若将频率视为概率,回答下列问题:(1)甲、乙各射击一次,求甲、乙同时击中10环的概率; (2)求甲射击一次,击中9环以上(含9环)的概率;(3)甲射击3次,X 表示这3次射击中击中9环以上(含9环)的次数,求X 的分布列及数学期望()E X .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用n 次独立重复试验中事件A 恰好发生k 次概率计算公式能求出该参赛者答完三道题后至少答对两道题的概率. 【详解】解:某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率: 3223441112()()()555125P C =+=.故选:A . 【点睛】本题考查概率的求法,考查n 次独立重复试验中事件A 恰好发生k 次概率计算公式等基础知识,考查运算求解能力,属于中档题.2.A解析:A 【分析】甲独自去一个景点,有14C 种方法,其余3人去剩下的3个景点,有3327=种方法,由分步计数原理可求得甲独自去一个景点的有1427C ⋅种选择方法.若4个人去的地方各不相同,则属于排列问题,有44A 种.根据条件概率计算公式,即可求出相应的概率. 【详解】甲单独去一个景点有14C 4=种方法,其余3人去剩下的3个景点,有3327=种方法, 则甲独自去一个景点,有427108⨯=种方法, 而4个人去的地方各不相同,有4424A =种方法, 则242()1089P A B ==. 故选:A. 【点睛】本题考查了条件概率,分步乘法计数原理,排列问题,属于中档题.3.B【分析】由随机变量X 符合正态分布()0,9N ,得0μ=,3σ=,则所求(36)P X <<,即为(2)P X μσμσ+<<+,根据3σ原则,以及正态曲线的对称性即可求值.【详解】因为随机变量X 符合正态分布()0,9N ,则0μ=,3σ=, 所以(36)(2)P X P X μσμσ<<=+<<+, 由()0.6826P X μσμσ-<<+≈,()220.9544P X μσμσ-<<+=,以及正态曲线的对称性,可知()00.3413P X μσ<<+≈,(02)0.4772P X μσ<<+=,则(36)0.47720.34130.1359P X <<=-=. 故选:B. 【点睛】本题考查了正态分布曲线的对称性,两个变量μ和σ的应用,3σ原则,属于中档题.4.C解析:C 【分析】根据1~6,3X B ⎛⎫ ⎪⎝⎭得到()2E X =,再根据()()2121E X E X +=+,计算得到答案. 【详解】1~6,3X B ⎛⎫⎪⎝⎭,则()1623E X =⨯=,故()()21215E X E X +=+=.故选:C . 【点睛】本题考查了二项分布的均值,同时也考查了期望性质的应用,意在考查学生的计算能力.5.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3,所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确.故选:D.【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.6.B解析:B【分析】先求得抛掷一次的得到2枚正面向上,3枚反面向上的概率,再利用二项分布可得结果.【详解】由题,抛掷一次恰好出现2枚正面向上,3枚反面向上的概率为:2555 216 C=因为5枚硬币正好出现2枚正面向上,3枚反面向上的概率是一样的,且各次试验是相互独立的,所以X服从二项分布5(80,)16 X B则5()802516E X=⨯=故选B【点睛】本题咔嚓了二项分布,掌握二项分布是解题的关键,属于中档题.7.D解析:D【解析】【分析】随机变量ξ服从正态分布N(0,1),根据概率和正态曲线的性质,即可得到答案【详解】因为P(|ξ|<a)=P(-a<ξ<a),所以①不正确;因为P(|ξ|<a)=P(-a<ξ<a)=P(ξ<a)-P(ξ<-a)=P(ξ<a)-P(ξ>a)=P(ξ<a)-(1-P(ξ<a))=2P(ξ<a)-1,所以②正确,③不正确;因为P(|ξ|<a)+P(|ξ|≥a)=1,所以P(|ξ|<a)=1-P(|ξ|≥a)(a>0),所以④正确.故选D【点睛】本题是一道关于正态分布的题目,解题的关键是正确理解正态分布曲线的特点,属于中档题。

北师大版高中数学高中数学选修2-3第一章《计数原理》测试(包含答案解析)

北师大版高中数学高中数学选修2-3第一章《计数原理》测试(包含答案解析)

一、选择题1.重阳节,农历九月初九,谐音是“久”,有长久之意,人们常在此日感恩敬老,是我国民间的传统节日.某校在重阳节当日安排6位学生到两所敬老院开展志愿服务活动,要求每所敬老院至少安排2人,则不同的分配方案数是( ) A .50B .40C .35D .302.若21299m m C C --=且m N +∈;则()21mx -的展开式4x 的系数是( ) A .4- B .6-C .6D .43.排一张5个独唱和3个合唱的节目单,如果合唱不排两头,且任何两个合唱不相邻,则这种事件发生的概率是( ) A .14B .1144C .18D .1144.若2020220200122020(12)x a a x a x a x -=+++⋯+,则下列结果不正确的是( )A .01220201a a a a +++⋯+=B .20201352019132a a a a -++++⋯+=C .20200242020132a a a a ++++⋯+=D .202012220201222a a a ++⋯+=- 5.甲乙和其他2名同学合影留念,站成两排两列,且甲乙两人不在同一排也不在同一列,则这4名同学的站队方法有( ) A .8种B .16种C .32种D .64种6.二项式n的展开式中第13项是常数项,则n =( )A .18B .21C .20D .307.有5位同学参加青少年科技创新大赛的3个不同项目,要求每位同学参加一个项目且每个项目至少有一位同学,则不同的参加方法种数为( ) A .80B .120C .150D .3608.在12202011x x ⎛⎫++ ⎪⎝⎭的展开式中, 2x 项的系数为( ) A .10B .25C .35D .669.现某路口对一周内过往人员进行健康码检查安排7名工作人员进行值班,每人值班1天,每天1人,其中甲乙两人需要安排在相邻两天,且甲不排在周三,则不同的安排方法有( ) A .1440种B .1400种C .1320种D .1200种10.5名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法的种数为( ) A .35B .53C .35AD .35C11.如图所示,将四棱锥S-ABCD 的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为( )A .240B .360C .420D .96012.式子22223459C C C C ++++=( )A .83B .84C .119D .120二、填空题13.若9m x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为84,则m =_________.14.如图所示的五个区域中,中心区E 域是一幅图画,现要求在其余四个区域中涂色.........,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为______.15.已知()()()()2*01211...1nnn x a a x a x a x n N =+++++++∈对任意的x ∈R 恒成立,若450a a +=,则n =______.16.若62b ax x ⎛⎫+ ⎪ ⎪⎝⎭的展开式中常数项为150,则22a b +的最小值为______. 17.多项式()5122x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数是________. 18.二项式1232x x ⎛ ⎝,则该展开式中的常数项是______. 19.有3个本校老师和3个外校老师被安排到高三地理选考考试的3个考场,要求一个试场有一个本校老师和一个外校老师负责监考,且本校老师甲不能监考1号试场,外校老师乙不监考2号试场,则共有_____种不同安排方案.20.某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学、物理作业不在同一天完成,则完成作业的不同顺序种数为______.三、解答题21.某工厂生产的10件产品中,有8件合格品、2件不合格品,合格品与不合格品在外观上没有区别.从这10件产品中任意抽检2件,计算: (1)抽出的2件产品恰好都是合格品的抽法有多少种? (2)抽出的2件产品至多有1件不合格品的抽法有多少种?(3)如果抽检的2件产品都是不合格品,那么这批产品将被退货,求这批产品被退货的概率. 22.已知,n ∈N *.(1)设f (x )=a 0+a 1x +a 2x 2+…+a n x n ,①求a 0+a 1+a 2+…+a n ;②若在a 0,a 1,a 2,…,a n 中,唯一的最大的数是a 4,试求n 的值; (2)设f (x )=b 0+b 1(x +1)+b 2(x +1)2+…+b n (x +1)n ,求.23.若()*42nx n N x ∈展开式中各项的二项式系数和为256. (1)求n ;(2)求展开式中含x 的项.24.(1)求122332C C -,233443C C -,345664C C -,346774C C -的值,设*,m n ∈N ,k m ,判断(1)m k k C +与11(1)k mm C +++的关系,不用证明;(2)求1111112969793282349798C C C C C A +++++的值. 25.已知2nm x x ⎛ ⎝(m 是正实数)的展开式中前3项的二项式系数之和等于37. (1)求n 的值;(2)若展开式中含1x项的系数等于112,求m 的值. 26.某毕业班级中有6人要拍毕业照留念.(1)若分成两排合影,前排2人,后排4人,有多少种不同的排法? (2)若排成一排合影,甲乙相邻但乙丙不相邻,有多少种不同的排法?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先把6人分成两组,再安排到两所敬老院,由此可得.【详解】先分组再安排:6人可按3,3分组或2,4分组,然后再安排到敬老院,方法为32266222()50C C A A +⨯=.故选:A 【点睛】关键点点睛:本题考查分组分配问题,涉及到平均分组和不平均分组,平均分组时要除以组数的阶乘.n 个不同元素按12,,,k m m m 分成k 组,若12,,,k m m m 两两不等,则分组数为312112kkmm m m n n m n m m m C C C C ---,若12,,,k m m m 中仅有i 个数相等,则分组数为312112kkm m m m n n m n m m mi iC C C C A---.2.C解析:C 【分析】 先根据21299m m C C --=求出4m =,再代入()21mx -,直接根据()na b +的展开式的第1r +项为1C r n r rr n T a b -+= ,即可求出展开式4x 的系数.【详解】 因为21299m m C C --=且m N +∈所以21294m m m -+-=⇒=()421x -展开式的第1r + 项为214()r r r T C x +=-展开式中4x 的系数为246C = 故选C 【点睛】本题考查二项式展开式,属于基础题.3.D解析:D 【分析】首先计算所有可能的排法有88A ,再由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,最后根据古典概率的概率计算公式计算出结果. 【详解】解:排一张5个独唱和3个合唱的节目单一共有8840320A =种,记合唱不排两头,且任何两个合唱不相邻的为事件M ,则由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,根据分布乘法计数原理可得一共有53542880A A ⋅=种根据古典概型的概率公式得()288014032014P M == 故选:D 【点睛】本题考查古典概型的概率计算问题,分步计数原理,考查元素的不相邻问题,一般解决不相邻问题时,采用插空法,属于基础题.4.B解析:B 【分析】令1x =,得到0120201a a a ++⋯+=,令1x =-,求得202001220203a a a a =-++⋯+,令0x =,求得01a =,进而逐项判定,即可求解.【详解】由题意,二项展开式2020220200122020(12)x a a x a x a x -=+++⋯+,令1x =,可得01220202020(12)1a a a a +++⋯+-==,①令1x =-,可得2020012202020203(123)a a a a a -=+-++⋯+=,②令0x =,可得20020(10)1a =-=,③由①-②,可得20201352019132a a a a -+++⋯+=, 由①+②,可得2020024*******a a a a ++++⋯+=, 令12x =,可得20202020120220201(12)12222a a a a +++⋯+=-⨯=, 所以202012220201222a a a ++⋯+=-. 综上可得,A 、C 、D 是正确的,B 是错误的. 故选:B. 【点睛】本题主要考查了二项展开式的系数问题的求解,其中解答中合理利用二项展开式的形式,合理赋值是解答的关键,着重考查推理与计算能力.5.A解析:A 【分析】根据题意,分3步进行讨论:先在4个位置中任选一个安排甲,再安排乙,最后将剩余的2个人,安排在其余的2个位置,分别求出每一步的情况数目,由分步计数原理计算可得答案.【详解】根据题意,分3步进行讨论:1、先安排甲,在4个位置中任选一个即可,有14C 4=种选法;2、在与甲所选位置不在同一排也不在同一列只有一个位置,安排乙,即1种选法;3、将剩余的2个人,安排在其余的2个位置,有222A =种安排方法; 则这4名同学的站队方法有4128⨯⨯=种; 故选:A . 【点睛】本题主要考查排列、组合的综合应用,注意要优先分析受到限制的元素,属于中档题.6.D解析:D 【分析】直接利用二项式定理计算得到答案. 【详解】二项式n的展开式中第13项1210121212313n n n n T C C x --⎛== ⎝, 令1003n-=,得30n =. 故选:D. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.7.C解析:C 【分析】根据题意,分清楚有两种情况,利用公式求得结果. 【详解】根据题意,可知有两种情况,一种是有三位同学去参加同一个项目,一种是有两个项目是两位同学参加,所以不同的参加方法种数为22333535332210310661502C C C A A A ⋅⨯⋅+⋅=⨯+⨯=种, 故选:C. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类计数加法计数原理,排列组合综合题,属于中档题目.8.D解析:D 【分析】分析12202011x x ⎛⎫++ ⎪⎝⎭的展开式的本质就是考虑12个202011x x ⎛⎫++ ⎪⎝⎭,每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,利用组合知识即可得解.【详解】12202011x x ⎛⎫++ ⎪⎝⎭的展开式考虑12个202011x x ⎛⎫++ ⎪⎝⎭, 每个括号内各取202011,,x x之一进行乘积即可得到展开式的每一项,要得到2x 项,就是在12个202011x x ⎛⎫++ ⎪⎝⎭中,两个括号取x ,10个括号取1, 所以其系数为21266C =. 故选:D 【点睛】此题考查求多项式的展开式指定项的系数,关键在于弄清二项式定理展开式的本质问题,将问题转化为计数原理组合问题.9.D解析:D 【分析】根据题意,分2步进行分析: ①将甲、乙按要求安排,②将剩下的5人全排列,安排在剩下的5天,由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①要求甲、乙安排在相邻两天,且甲不排在周三,先把周一周二、周二周三、⋯、周六周日看作6个位置,任选一个位置,排上甲乙两人,有126212A A =种方法,其中甲排在周三去掉,则甲乙的安排方法有1262210A A -=种,②将剩下的5人全排列,安排在剩下的5天,有55120A =种情况; 由分步计数乘法原理知,则有101201200⨯=种安排方法. 故选:D 【点睛】本题主要考查了排列、组合的实际应用,涉及分步计数原理的应用,属于中档题.10.B解析:B 【分析】把不同的报名方法可分5步完成,结合分步计数原理,即可求解. 【详解】由题意,不同的报名方法可分5步完成:第一步:第一名同学报名由3种方法 第二步:第二名同学报名由3种方法 第三步:第三名同学报名由3种方法 第四步:第四名同学报名由3种方法 第五步:第五名同学报名由3种方法根据分步乘法计数原理,共有5333333⨯⨯⨯⨯=种方法. 故选:B. 【点睛】本题主要考查了分步计数原理的应用,其中解答中认真审题,合理分步求解是解答的关键,着重考查了分析问题和解答问题的能力.11.C解析:C 【分析】可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论. 【详解】由题设,四棱锥S-ABCD 的顶点S 、A 、B 所染的颜色互不相同,它们共有54360⨯⨯=种染色方法.设5种颜色为1,2,3,4,5,当S 、A 、B 染好时,不妨设其颜色分别为1、2、3, 若C 染2,则D 可染3或4或5,有3种染法;若C 染4,则D 可染3或5,有2种染法,若C 染5,则D 可染3或4,有2种染法. 可见,当S 、A 、B 已染好时,C 、D 还有7种染法,故不同的染色方法有607420⨯=(种). 故选:C 【点睛】本题考查分类加法原理、分步乘法原理的综合应用,考查学生的分类讨论的思想、逻辑推理能力,是一道中档题.12.C解析:C 【分析】根据组合数的计算公式111rr r n n n C C C ++++=,化简运算,即可求解.【详解】由题意,根据组合数的计算公式111rr r n n n C C C ++++=,可得22223459C C C C ++++=32222334591C C C C C +++++-322244591C C C C =++++-32235591011119C C C C =+++-==-=.故选:C. 【点睛】本题主要考查了组合数的化简与运算,其中解答中熟记组合数的运算公式,准确运算是解答的关键,着重考查了计算能力.二、填空题13.【分析】由题意二项式展开式的通项为结合题意求得进而得到关于的方程即可求解【详解】求得二项式的展开式的通项为当解得此时所以解得故答案为:【点睛】求二项展开式的特定项问题实质时考查通项的特点一般需要建立解析:1-. 【分析】由题意,二项式展开式的通项为9219(1)r r r rr T m C x -+=-⋅⋅,结合题意,求得3r =,进而得到关于m 的方程,即可求解. 【详解】求得二项式9m x x ⎛⎫- ⎪⎝⎭的展开式的通项为992199()(1)r r r r r r rr m T C x m C x x --+=-=-⋅⋅,当923r -=,解得3r =,此时333349(1)T m C x =-⋅⋅,所以3339(1)84m C -⋅⋅=,解得1m =-. 故答案为:1-. 【点睛】求二项展开式的特定项问题,实质时考查通项1C rn r rr n T ab -+=的特点,一般需要建立方程求得r 的值,再将r 的值代入通项求解,同时注意r 的取值范围(0,1,2,,r n =).14.84【分析】按照选取的颜色个数分类:(1)用四种颜色涂色颜色都不同;(2)用三种颜色或同色;(3)用两种颜色涂色同色同色根据分类甲法原理即可求出结论【详解】分三种情况:(1)用四种颜色涂色有种涂法;解析:84 【分析】按照选取的颜色个数分类:(1)用四种颜色涂色,,,,A B C D 颜色都不同;(2)用三种颜色,,A C 或,B D 同色;(3)用两种颜色涂色,,A C 同色,,B D 同色,根据分类甲法原理,即可求出结论. 【详解】 分三种情况:(1)用四种颜色涂色,有4424A =种涂法; (2)用三种颜色涂色,有34248A =种涂法; (3)用两种颜色涂色,有2412A =种涂法; 所以共有涂色方法24481284++=. 故答案为:84 【点睛】本题考查排列和分类加法原理的应用,合理分类是解题的关键,属于中档题.15.【分析】先由赋值法求出再利用二项式定理以及展开式的通项公式求即可【详解】因为令则即因为由展开式的通项为得:所以解得故答案为:【点睛】本题考查了二项式展开式的通项需熟记公式属于中档题 解析:9【分析】先由赋值法求出0a ,再利用二项式定理以及展开式的通项公式求n 即可. 【详解】因为()()()()2*01211...1nnn x a a x a x a x n N =+++++++∈,令1x =-,则()01na =-,即()()011n a n ⎧⎪=⎨-⎪⎩为偶数为奇数,因为450a a +=,由()11nnx x ⎡⎤=-++⎣⎦展开式的通项为()()111n rrrr n T C x -+=-+得:()()4545110n n n n C C ---+-=,所以45n n C C =, 解得9n =. 故答案为:9 【点睛】本题考查了二项式展开式的通项,需熟记公式,属于中档题.16.【分析】由题意在二项式定理的通项公式中令x 的幂指数等于零求得r 的值可得展开式的常数项再根据展开式的常数项为150求得ab 的值再利用基本不等式求得a2+b2的最小值【详解】的展开式中通项公式为Tr+1解析:【分析】由题意在二项式定理的通项公式中,令x 的幂指数等于零,求得r 的值,可得展开式的常数项,再根据展开式的常数项为150,求得ab 的值,再利用基本不等式求得a 2+b 2的最小值. 【详解】62ax ⎛+ ⎝⎭的展开式中通项公式为 T r +1=()62612366rrrr rrrr C ax x C ax ----=令12﹣3r =0,求得r =4,则展开式的常数项为T 5=422226=15C a b a b根据展开式中的常数项为150,得15a 2b 2=150,∴a 2b 2=10,ab ∴=∴a 2+b 2 ≥2ab =当且仅当|a|=b =1410 时,取等号.故答案为:. 【点睛】本题主要考查二项式定理的通项公式、基本不等式的应用,确定常数项是关键,属于基础题.17.200【分析】根据题意由二项式定理可得的通项公式为令求出对应的值即可求解【详解】根据题意由二项式定理可得的通项公式为当时可得当时可得所以多项式的展开式中含的项为故多项式的展开式中含项的系数为故答案为解析:200 【分析】根据题意,由二项式定理可得,()52x +的通项公式为5152rrr r T C x -+=,令2,3r r ==,求出对应1r T +的值即可求解. 【详解】根据题意,由二项式定理可得,()52x +的通项公式为5152rrr r T C x -+=,当2r时,可得232235280T C x x ==,当3r =时,可得323345240T C x x ==, 所以多项式()5122x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 的项为232128040200x x x x⨯+⋅=, 故多项式()5122x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数为200. 故答案为:200 【点睛】本题考查利用二项式定理求二项展开式中某项的系数;考查运算求解能力;熟练掌握二项展开式的通项公式是求解本题的关键;属于中档题、常考题型.18.【分析】直接利用二项式定理计算得到答案【详解】二项式的展开式的通项为:取得到常数项为故答案为:【点睛】本题考查了二项式定理意在考查学生的计算能力和应用能力 解析:552-【分析】直接利用二项式定理计算得到答案. 【详解】二项式122x ⎛ ⎝的展开式的通项为:()41231212112121221rrr r r rrr xx T C C --+-⎛=-⋅ ⎝⎛⎫⎛⎫=⋅⋅ ⎪ ⎪⎝⎭⎝⎭,取9r =得到常数项为()1299129152512C -⎛⎫⋅- =-⎪⎝⎭. 故答案为:552-. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.19.【分析】利用分步乘法计数原理可得结果【详解】解:根据题意得第一步先排本校老师先排甲2种排法再排剩下的两名本校老师有中排法;第二步排外校老师乙有两种排法再排剩下的两名外校老师有种排法;据分步乘法计数原 解析:16【分析】利用分步乘法计数原理可得结果. 【详解】解:根据题意得,第一步先排本校老师,先排甲2种排法,再排剩下的两名本校老师有22A 中排法;第二步,排外校老师乙有两种排法,再排剩下的两名外校老师有22A 种排法;据分步乘法计数原理得共有22222216A A ⨯⨯⨯=种安排方案; 故答案为:16. 【点睛】本题考查有限制条件的排列组合问题,属于中档题.20.【分析】分两类:①一天科另一天科第一步安排数学物理两科作业第二步安排另科一组科一组科第三步完成各科作业②两天各科数学物理两科各一组另科每组分科第一步安排数学物理两科作业第二步安排另科每组科第三步完成 解析:1200【分析】分两类:①一天2科,另一天4科,第一步,安排数学、物理两科作业,第二步,安排另4科一组1科,一组3科,第三步,完成各科作业.②两天各3科,数学、物理两科各一组,另4科每组分2科,第一步,安排数学、物理两科作业,第二步,安排另4科每组2科,第三步,完成各科作业. 【详解】分两类:一天2科,另一天4科或每天各3科. ①第一步,安排数学、物理两科作业,有22A 种方法; 第二步,安排另4科一组1科,一组3科,有132432C C A 种方法; 第三步,完成各科作业,有4242A A 种方法.所以共有213242243242768A C C A A A=种.②两天各3科,数学、物理两科各一组,另4科每组分2科,第一步,安排数学、物理两科作业,有22A种方法;第二步,安排另4科每组2科,有22242222C CAA⨯种方法;第三步,完成各科作业,有3333A A种方法.所以共有22223342223322432C CA A A AA⨯=种.综上,共有7684321200+=种.故答案为:1200【点睛】本题主要考查排列组合在实际问题中的应用,还考查了分类讨论的思想方法,属于中档题.三、解答题21.(1)28种;(2)44种;(3)1 45【分析】(1)根据题意,利用组合数的公式,即可求得抽出的2件都是合格品的抽法种数;(2)由(1)得抽出的2件产品都是合格品的抽法,再求得恰好1件合格品1件不合格品的抽法种数,利用分类计数原理,即可求解.(3)求得基本事件的总数,得出其中抽检的2件产品都是不合格品的事件数,结合古典概型的概率计算公式,即可求解.【详解】(1)由题意,某工厂生产的10件产品中,有8件合格品、2件不合格品,所以抽出的2件都是合格品的抽法,共有208287128 21C C⨯=⨯=⨯种.(2)由(1)得抽出的2件产品都是合格品的抽法,共有20828728 21C C⨯==⨯种;恰好1件合格品1件不合格品的抽法,共有11828216C C=⨯=种,所以抽到的2件产品中至多有1件不合格品的抽法,共有281644+=种.(3)从10件产品中任意抽取2件产品的抽法,共有21010945 21C⨯==⨯种,其中抽检的2件产品都是不合格品的事件数有221C=种,得抽检的2件产品都是不合格品的概率145 P=,即这批产品被退货的概率为1 45.【点睛】本题主要考查了分类计数原理、排列组合的应用,以及古典概型的概率计算,其中解答中认真审题,合理分类,结合分类计数原理和古典概型的概率计算公式准确运算是解答的关键,着重考查了分析问题和解答问题的能力.22.(1)①;②n=12或13;(2)(2n+1﹣2﹣n)【解析】【分析】(1)①可令x=1,代入计算可得所求和;②可得f(x)=(x+2)n=(2+x)n的通项公式,a r最大即为a r≥a r﹣1,且a r≥a r+1,化简计算,结合不等式的解,可得所求值;(2)由f(x)=[1+(x+1)]n,可得b r=C,r=0,1,…,n,推得,再由二项式定理,计算可得所求和.【详解】解:(1)①由(x+2)n=a0+a1x+a2x2+…+a n x n,可令x=1,可得3n=a0+a1+a2+…+a n,即a0+a1+a2+…+a n=3n;②f(x)=(x+2)n=(2+x)n,可得a r2n﹣r x r,r=0,1,…,n,若在a0,a1,a2,…,a n中,a r最大,可得,即为,化为,由于r=4时为a4唯一的最大值,可得n=12,13;(2)由f(x)=b0+b1(x+1)+b2(x+1)2+…+b n(x+1)n,且f(x)=[1+(x+1)]n,可得b r=C,r=0,1,…,n,则,由••,则(C)(2n+1﹣2﹣n).【点睛】本题考查二项式定理,考查赋值法求系数和,考查组合数的性质.解题关键是掌握二项式展开式通项公式,在展开式中第项系数为,则由可得系数最大项的项数.23.(1)8n =;(2)5358T x = 【分析】(1)由二项式系数和为2n 可计算出n ;(2)写出展开式通项公式,整理后令x 的指数为1求得项数,得项. 【详解】解:(1)由题意,1202256n n n n n n C C C C ++++==,所以8n = (2)(443188812rrrr r r r T C C x-+--==⋅⋅, 令3414r-=,得:4r = 展开式中含x 的项为458413528T C x x =⋅⋅= 【点睛】本题考查二项式定理,掌握二项式系数的性质与二项展开式通项公式是解题关键. 24.(1)11(1)(1)m m k k k C m C +++=+;(2)33. 【分析】(1)由组合数公式,求出122332C C -,233443C C -,345664C C -,346774C C -的值,然后归纳推理即可;(2)根据(1)的结论可得121(1)2n n n C C ++=,再结合组合数的性质,即可求解. 【详解】(1)122332660C C -=-=,23344312120C C -=-=,3456646522560C C -=⨯⨯-⨯⨯=,3467740C C -=,∴11(1)(1)m m k k k C m C +++=+. (2)∵()()1111mm k k k C m C +++=+,∴1111112396972349798C C C C C +++++2222398222C C C =+++()22223982C C C =+++. 又111kkk n n n C C C ---=+, ∴()()22232232398339899222C C C C C C C +++=+++=, ∴1111131239697992298982349798233C C C C C C A A +++++==. 【点睛】本题考查归纳推理、组合数的性质的应用,考查计算求解能力,属于中档题. 25.(1)8n =(2)2m = 【分析】(1)由01237n n n C C C ++=,求解即可得出; (2)根据展开式的通项,即可得出m 的值. 【详解】 (1)01237n n n C C C ++=,2720n n ∴+-=,解得9n =-(舍)8n =(2)28m x ⎛+⎝的展开式的通项为()18225168288rrrr r r C C mx x m x -+---⎛⎫⋅ ⎪⎝⎭= 当6r =时是含1x项,所以268112m C =,解得2m = 【点睛】本题主要考查了已知指定项的系数求参数,属于中档题. 26.(1)720种(2)192种 【分析】(1)将分排的问题采用直排的方式进行全排列即可得到结果;(2)将甲乙捆绑后,当做一人与除丙外的人进行排序,将丙插空放入,根据分步乘法计数原理可求得结果. 【详解】(1)前后两排相当于一排,共有666!720A ==种排法 (2)第一步:甲乙相邻,共有222A =种排法;第二步:将甲乙看做一个人,与除丙外的其他3人排列,共有:4424A =种排法; 第三步:将丙插空放入,保证与乙不相邻,共有:144A =种排法∴共有:2244192⨯⨯=种排法【点睛】本题考查排列数的应用问题,涉及到分排问题直排法、相邻问题捆绑法、相离问题插空法、分步乘法计数原理的应用.。

高中数学 第一章 计数原理测试题 北师大版数学选修2-3(2021年最新整理)

高中数学 第一章 计数原理测试题 北师大版数学选修2-3(2021年最新整理)

高中数学第一章计数原理测试题北师大版数学选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章计数原理测试题北师大版数学选修2-3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章计数原理测试题北师大版数学选修2-3的全部内容。

第一章 计数原理(时间:120分钟 满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分)1. 教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( ) A .10种 B .32种 C .25种 D .16种2。

9(2)a b +中第9的二项式系数是 ( )A .99CB .9992C C .89CD .8892C3。

在9(1)x -的展开式中系数最大的项是 ( )A .5B .6C .5和6D .74。

如图,用4种不同的颜色涂入图中的矩形,,,A B C D 中,要求相邻的矩形涂色不同,则不同的涂法有( )A .72种B .48种C .24种D .12种5。

若nx )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于( ) A .5 B .7 C .9 D .116. 将数字1,2,3,4,5,6拼成一列,记第i 个数为(126)i a i =,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法种数为( ) A .18 B .30 C .36 D .48 7。

若29230123(1)(3)(2)(2)(2)x x a a x a x a x +-=+-+-+-1111(2)a x +⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为 ( )A 。

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(含答案解析)

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(含答案解析)

一、选择题1.将甲、乙、丙、丁四位辅导老师分配到A 、B 、C 、D 四个班级,每个班级一位老师,且甲不能分配到A 班,丁不能分配到B 班,则共有分配方案的种数为( ) A .10B .12C .14D .242.某班级8位同学分成A ,B ,C 三组参加暑假研学,且这三组分别由3人、3人、2人组成.若甲、乙两位同学一定要分在同一组,则不同的分组种数为( ) A .140B .160C .80D .1003.排一张5个独唱和3个合唱的节目单,如果合唱不排两头,且任何两个合唱不相邻,则这种事件发生的概率是( ) A .14B .1144C .18D .1144.在一个具有五个行政区域的地图上(如图),用四种颜色给这五个行政区着色,当相邻的区域不能用同一颜色时,则不同的着色方法共有( )A .72种B .84种C .180种D .390种 5.1180被9除的余数为( )A .1-B .1C .8D .8-6.为深入贯彻实施党中央布置的“精准扶贫”计划,某地方党委政府决定安排5名党员干部到4个贫困村驻村扶贫,每个贫困村至少分配1名党员干部,则不同的分配方案共有( ) A .264种B .480种C .240种D .720种7.二项式3nx x 的展开式中第13项是常数项,则n =( )A .18B .21C .20D .308.有5位同学参加青少年科技创新大赛的3个不同项目,要求每位同学参加一个项目且每个项目至少有一位同学,则不同的参加方法种数为( ) A .80B .120C .150D .3609.10名同学合影,站成前排4人后排6人,现摄影师要从后排6人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( ) A .2263C AB .2666C AC .2266C AD .2265C A10.包括甲、乙、丙3人的7名同学站成一排拍纪念照,其中丙站中间,甲不站在乙的左边,且不与乙相邻,则不同的站法有( ) A .240种B .252种C .264种D .288种11.用6个字母,,,,,A B C a b c 编拟某种信号程序(大小写有区别),把这6个字母全部排列如图所示的表格中,每个字母必须使用且只使用一次,不同的排列方式表示不同的信号,如果恰有一对字母(同一个字母的大小写)排到同一列的上下格位置,那么称此信号为“微错号”,则不同的“微错号”的总数为( )A .144B .288C .432D .57612.将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为( )A .192181020C C CB .1921810202C C C C .1921910202C C C D .192191020C C C二、填空题13.现有不同的红球、黄球、绿球各两个排成一排,要求红球不相邻,黄球也不相邻,红球不在两端有__________种不同的排法.14.已知()()()()2*01211...1nnn x a a x a x a x n N =+++++++∈对任意的x ∈R 恒成立,若450a a +=,则n =______. 15.83被5除所得的余数是_____________.16.从0、2、4中取一个数字,从1、3、5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是______(用数字作答)17.用数字6,7组成四位数,且数字6,7至少都出现一次,这样的四位数共有______个.(用数字作答)18.有4位同学和2位教师一起合影.若教师不能坐在两端,也不坐在一起,则有_________种坐法.19.若()626012612x a a x a x a x -=++++,则126a a a +++的值为__________.20.已知2020200020190120192020(x a x a x a x a =++++,则()()2202420201352019a a a a a a a a -++++++++的值为________.三、解答题21.若2nx ⎛+ ⎝展开式的二项式系数之和是64.(1)求n 的值;(2)求展开式中的常数项.22.若()*nn N ∈展开式中各项的二项式系数和为256.(1)求n;(2)求展开式中含x的项.23.某毕业班级中有6人要拍毕业照留念.(1)若分成两排合影,前排2人,后排4人,有多少种不同的排法?(2)若排成一排合影,甲乙相邻但乙丙不相邻,有多少种不同的排法?24.袋中有相同的5个白球和4个黑球,从中任意摸出3个,求下列事件发生的概率.(1)摸出的全是白球或全是黑球、(2)摸出的白球个数多于黑球个数.25.毕业季有6位好友欲合影留念,现排成一排,如果:(1)A、B两人不排在一起,有几种排法?(2)A、B两人必须排在一起,有几种排法?(3)A不在排头,B不在排尾,有几种排法?26.一次游戏有10个人参加,现将这10人分为5组,每组两人.(1)若任意两人可分为一组,求这样的分组方式有多少种?(2)若这10人中有5名男生和5名女生,要求各组人员不能为同性,求这样的分组方式有多少种?(3)若这10人恰为5对夫妻,任意两人均可分为一组,问分组后恰有一对夫妻在同组的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分为甲分配到B班和甲不分配到B班两种情况来讨论分配方案种数,利用分类加法计数原理计算可得结果.【详解】将分配方案分为甲分配到B班和甲不分配到B班两种情况:①甲分配到B班:有336A=种分配方案;②甲不分配到B班:有1122228A A A=种分配方案;由分类加法计数原理可得:共有6814+=种分配方案.故选:C.【点睛】方法点睛:本题主要考查排列数的应用.常见求法有:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.A解析:A 【分析】分两种情况讨论即甲、乙两位同学在A 组或B 组和甲、乙两位同学在C 组; 【详解】甲、乙两位同学在A 组或B 组的情况有13652120C C ⨯=种, 甲、乙两位同学在C 组的情况有336320C C =种,共计140种. 故选:A. 【点睛】本题考查计数原理的应用,考查数据处理能力.3.D解析:D 【分析】首先计算所有可能的排法有88A ,再由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,最后根据古典概率的概率计算公式计算出结果. 【详解】解:排一张5个独唱和3个合唱的节目单一共有8840320A =种,记合唱不排两头,且任何两个合唱不相邻的为事件M ,则由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,根据分布乘法计数原理可得一共有53542880A A ⋅=种根据古典概型的概率公式得()288014032014P M == 故选:D 【点睛】本题考查古典概型的概率计算问题,分步计数原理,考查元素的不相邻问题,一般解决不相邻问题时,采用插空法,属于基础题.4.A解析:A 【分析】可分2种情况讨论:若选3种颜色时,必须2,4同色且1,5同色;若4种颜色全用,只能2,4同色或1,5同色,其它不相同,从而可得结果.【详解】选用3种颜色时,必须2,4同色且1,5同色,与3进行全排列, 涂色方法有334324C A ⋅=种;4色全用时涂色方法:2,4同色或1,5同色,有2种情况, 涂色方法有142448C A ⋅=种,∴不同的着色方法共有482472+=种,故选A.【点睛】本题主要考查分步计数原理与分类计数原理的应用,属于简单题.有关计数原理的综合问题,往往是两个原理交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.5.C解析:C 【分析】将1180转化为()11811-,利用二项式定理,即可得解. 【详解】()111180811=-()()()()2101101210111110911111111111818118118111C C C C C =⋅+⋅⋅-+⋅⋅-++⋅⋅-+⋅-1210111110911111111181818181C C C C =-⋅+⋅++⋅-1211109111181818111811C C =-⋅+⋅++⨯- 121110911118181811081811C C =-⋅+⋅++⨯+- 12111091111818181108180C C =-⋅+⋅++⨯+ 121110911118181811081728C C =-⋅+⋅++⨯++12111091111818181108172C C -⋅+⋅++⨯+可以被9整除,所以1180被9除的余数为8. 故选:C. 【点睛】本题考查利用二项式定理解决余数问题,将原式变形为()11811-是本题的解题关键,属于中档题.6.C解析:C 【分析】先从5个党员干部里选2个,再从4个贫困村里选1个接受选出的2个党员,剩下的3名党员分配给3个贫困村,即得解. 【详解】先从5个党员干部里选2个,有25C 种方法,再从4个贫困村里选1个接受选出的2个党员,有14C 种方法,剩下的3名党员分配给3个贫困村,有33A 种方法.所以共有213543240C C A =种方法.故选:C. 【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平.7.D解析:D 【分析】直接利用二项式定理计算得到答案. 【详解】二项式n的展开式中第13项1210121212313nn n n T C C x --⎛== ⎝, 令1003n-=,得30n =. 故选:D. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.8.C解析:C 【分析】根据题意,分清楚有两种情况,利用公式求得结果. 【详解】根据题意,可知有两种情况,一种是有三位同学去参加同一个项目,一种是有两个项目是两位同学参加,所以不同的参加方法种数为22333535332210310661502C C C A A A ⋅⨯⋅+⋅=⨯+⨯=种, 故选:C. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类计数加法计数原理,排列组合综合题,属于中档题目.9.C解析:C 【分析】分两步:1.首先先从后排6人中选2人出来;2.将这2人与前排4人排列,且前排4人的相对顺序不变,可以看成有6个位置,先选2个位置排这2人,其他4人按原顺序排列,再由乘法原理计算即可.【详解】首先先从后排6人中选2人出来,共26C种不同选法,将这2人与前排4人排列,且前排4人的相对顺序不变,可以看成有6个位置,先选2个位置排这2人有26A种不同排法,其余位置按4人原顺序排好只有1种排法,由乘法原理,得不同调整方法的总数是2266C A.故选:C【点睛】本题考查排列与组合的应用,涉及到定序排列问题,考查学生的逻辑推理能力,是一道中档题.10.C解析:C【分析】先排甲、乙、丙外的4人,再对甲、乙、丙三人分类讨论即可得解.【详解】先排甲、乙、丙外的4人,有44A种排法,再排甲、乙2人,有两类方法:一类是甲、乙2人插空,又甲排在乙的左边,然后丙排在中间,故有4245240A C 种不同的站法;另一类是把甲、乙、丙按乙、丙、甲的顺序插入中间,有44A种不同的站法,所以共有264种不同的站法.故选:C【点睛】此题考查计数原理的应用,利用排列组合相关知识解决排位问题,需要熟练掌握计数原理相关知识.11.B解析:B【分析】根据题意,分三步进行分析:(1)先确定排到同一列的上下各位置的一对字母,由分步计数原理可得其放法数目;(2)确定好第一组数据,剩下两组数据对应四个表格,分析方法(1),则可确定第二组字母的放法数目;(3)剩最后一组字母放入最后两个位置,由排列公式即可得其放法数目.最后由分步计数原理计算即可得出答案.【详解】根据题意分析,分三步进行:(1)先选定排列到同一列上下格位置的一对字母,有3种情况,再将其放入表格中,有3种情况,再考虑这一对字母的顺序有2种不同的顺序;(2)再分析第二对字母,假设(1)中选定的为,A a,则剩下的两组字母中选一组有2种情况,再将其放入表格中有2种不同结果,再考虑这一对字母的顺序有2种不同的顺序;(3)最后一对字母放入最后两个位置有2种不同的排法.所以共有3322222288⨯⨯⨯⨯⨯⨯=个“微错号”. 故选:B. 【点睛】本题主要考查计数原理,解题的关键是弄清题目中排列的方法.12.A解析:A 【分析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果. 【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有1020C 种结果, 而满足条件的事件是2名学生干部恰好被分在不同组内共有19218C C 中结果,根据古典概型的概率公式得192181020=C C P C . 故选:A. 【点睛】本题主要考查古典概型和组合问题,属于基础题.二、填空题13.120【分析】用六个位置去放这六个球分步:第一步放红球第二步放黄球第三步放绿球然后由乘法原理计算【详解】6个球占据6个位置在这6个位置中间四个位置中选2个放红球有3种选法放法是剩下4个位置中只有2个解析:120 【分析】用六个位置去放这六个球,分步:第一步放红球,第二步放黄球,第三步放绿球.然后由乘法原理计算. 【详解】6个球占据6个位置,在这6个位置中间四个位置中选2个放红球,有3种选法,放法是223A ,剩下4个位置中只有2个是相邻的,选2个放黄球放法是2242A A -,最后还有两个位置放绿球有22A 种放法,因此共有方法数为222224223()120A A A A -=. 故答案为:120. 【点睛】关键点点睛:本题考查排列的应用,解题关键是确定完成事件的方法:分类还是分步?另外对特殊元素,特殊位置要优先考虑.本题中红球要不相邻又不能放在两端,因此我们设想有6个位置放这6个球,先放红球于中间4个位置中的两个,然后再放黄球,最后放绿球.分步完成,从而得出结论.14.【分析】先由赋值法求出再利用二项式定理以及展开式的通项公式求即可【详解】因为令则即因为由展开式的通项为得:所以解得故答案为:【点睛】本题考查了二项式展开式的通项需熟记公式属于中档题 解析:9【分析】先由赋值法求出0a ,再利用二项式定理以及展开式的通项公式求n 即可. 【详解】因为()()()()2*01211...1nnn x a a x a x a x n N =+++++++∈,令1x =-,则()01na =-,即()()011n a n ⎧⎪=⎨-⎪⎩为偶数为奇数,因为450a a +=,由()11nnx x ⎡⎤=-++⎣⎦展开式的通项为()()111n rrrr n T C x -+=-+得: ()()4545110n n n n C C ---+-=,所以45n n C C =, 解得9n =. 故答案为:9 【点睛】本题考查了二项式展开式的通项,需熟记公式,属于中档题.15.1【分析】变形利用二项式定理展开即可求出被除所得的余数【详解】因为所以转化为求被除所得的余数因为所以被除所得的余数是1故答案为:1【点睛】本题主要考查了利用二项式定理研究整除问题考查了推理运算能力属解析:1 【分析】变形883(52)=-,利用二项式定理展开即可求出被5除所得的余数. 【详解】 因为883(52)=-0817262778088888855(2)5(2)5(2)5(2)C C C C C =⋅+⋅⨯-+⋅⨯-++⋅⨯-+⋅⨯- 071625277808888885(55(2)5(2)(2))5(2)C C C C C =⋅+⋅⨯-+⋅⨯-++-+⋅⨯-,所以转化为求8885(2)256C ⋅⨯-=被5除所得的余数, 因为2565151=⨯+, 所以83被5除所得的余数是1,故答案为:1 【点睛】本题主要考查了利用二项式定理研究整除问题,考查了推理运算能力,属于中档题.16.【分析】由题意分为从024中取一个数字0从024中取一个数字不是0分类由分步乘法计数原理结合排列组合的知识即可得解【详解】由题意要从024中取一个数字从135中取两个数字组成无重复数字的三位数可以分 解析:48【分析】由题意分为从0、2、4中取一个数字0,从0、2、4中取一个数字不是0分类,由分步乘法计数原理结合排列、组合的知识即可得解. 【详解】由题意,要从0、2、4中取一个数字,从1、3、5中取两个数字,组成无重复数字的三位数,可以分成两种情况:第一种,当从0、2、4中取一个数字0,而从1、3、5中任选两个数字时,组成无重复数字的三位数有21232212C C A ⋅⋅=个;第二种,当从0、2、4中取一个数字不是0,而从1、3、5中任选两个数字时,组成无重复数字的三位数有12323336C C A ⋅⋅=个; 综上,所有不同的三位数的个数是123648+=. 故答案为:48. 【点睛】本题考查了计数原理的应用,考查了运算求解能力与分类讨论思想,属于中档题.17.14【分析】分别计算6出现一次两次三次的情况再将三种情况的结果种数相加即可【详解】①当数字中有1个63个7时共有种结果;②当数字中有2个62个7时共有种结果;③当数字中有3个61个7时共有种结果故共解析:14 【分析】分别计算6出现一次、两次、三次的情况,再将三种情况的结果种数相加即可. 【详解】①当数字中有1个6,3个7时,共有14C 4=种结果;②当数字中有2个6,2个7时,共有246C =种结果; ③当数字中有3个6,1个7时,共有14C 4=种结果. 故共有121444++=14C C C 种结果. 故答案为:14 【点睛】本题主要考查分类计数问题.对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.18.144【分析】先排4位同学将教师插入4位同学产生的3个空位中再由乘法原理即可得到答案【详解】先排4位同学共有种不同排法由于教师不能坐在两端也不坐在一起将2位老师插入4位同学产生的3个空位中共种不同排解析:144 【分析】先排4位同学,将教师插入4位同学产生的3个空位中,再由乘法原理即可得到答案. 【详解】先排4位同学共有44A 种不同排法,由于教师不能坐在两端,也不坐在一起,将2位老师插 入4位同学产生的3个空位中,共23A 种不同排法,由乘法原理,共有4243144A A =种不同排 法.故答案为:144 【点睛】本题考查排列的实际应用,涉及到特殊元素分析法,考查学生的逻辑推理能力,是一道中档题.19.0【分析】在所给的等式中分别令令从而求得的值【详解】解:令可得再令可得故答案为:0【点睛】本题考查二项式定理的应用二项展开式的通项公式二项式系数的性质利用赋值法是解题的关键解析:0 【分析】在所给的等式中,分别令0x =,令1x =,从而求得126a a a ++⋯+的值. 【详解】解:6260126(12)x a a x a x a x -=+++⋯+, 令0x =,可得01a =,再令1x =,可得12611a a a +++⋯+=, 1260a a a ∴++⋯+=,故答案为:0. 【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,利用赋值法是解题的关键.20.1【分析】令可得的值令可得的值相乘即可【详解】设令令故答案为:1【点睛】本题考查有关二项展开式项的系数和问题赋值法是解题的关键属于中档题解析:1 【分析】令1x =,可得()()02420201352019a a a a a a a a +++++++++的值,令1x =-,可得()()02420201352019a a a a a a a a ++++-++++的值,相乘即可.【详解】设02420201352019,A a a a a a a B a a +==+++++++,令20201,(1x A B ==+,令20201,(1x A B =-=-,()()2202420201352019a a a a a a a a -++++++++222020()()[(11A B A B A B =-=+-==.故答案为:1 【点睛】本题考查有关二项展开式项的系数和问题,赋值法是解题的关键,属于中档题.三、解答题21.(1)6;(2)60 【分析】由二项式系数和求出指数n ,再写出展开式通项后可得常数项. 【详解】(1)由题意得,二项式系数之和为012264n n n n n n C C C C ++++==,6n ∴=;(2)通项公式为366622166(2)2r r rrrr r T C x xC x----+==,令3602r-=,得4r = ∴展开式中的常数项为4464256(2)60T C x x --==.【点睛】该题主要考查二项式定理,在()na b +展开式中二项式系数为2n ,只与指数n 有关,求特定项时要注意通项的正确应用. 22.(1)8n =;(2)5358T x = 【分析】(1)由二项式系数和为2n 可计算出n ;(2)写出展开式通项公式,整理后令x 的指数为1求得项数,得项. 【详解】解:(1)由题意,122256n n n n n nC C C C ++++==,所以8n =(2)(443188812rrrr r r r T C C x-+--==⋅⋅, 令3414r-=,得:4r = 展开式中含x 的项为458413528T C x x =⋅⋅= 【点睛】本题考查二项式定理,掌握二项式系数的性质与二项展开式通项公式是解题关键. 23.(1)720种(2)192种 【分析】(1)将分排的问题采用直排的方式进行全排列即可得到结果;(2)将甲乙捆绑后,当做一人与除丙外的人进行排序,将丙插空放入,根据分步乘法计数原理可求得结果. 【详解】(1)前后两排相当于一排,共有666!720A ==种排法 (2)第一步:甲乙相邻,共有222A =种排法;第二步:将甲乙看做一个人,与除丙外的其他3人排列,共有:4424A =种排法; 第三步:将丙插空放入,保证与乙不相邻,共有:144A =种排法∴共有:2244192⨯⨯=种排法【点睛】本题考查排列数的应用问题,涉及到分排问题直排法、相邻问题捆绑法、相离问题插空法、分步乘法计数原理的应用. 24.(1)16(2)2542【分析】(1)从袋中任意摸出3个球有39C 种不同情况,摸出的全是白球有35C 种不同情况,摸出的全是黑球有34C 种不同情况,计算概率得到答案.(2)摸出的3个球都是白球的事件,记为M ;摸出2个白球,1个黑球的事件,记为N .计算概率得到答案. 【详解】(1)设从袋中摸出的3个球全是白球或全是黑球的事件为A , 从袋中任意摸出3个球有39C 种不同情况, 摸出的全是白球有35C 种不同情况, 摸出的全是黑球有34C 种不同情况,因为从袋中任意摸出3个球的所有情况都是等可能的,所以()3354391041846C C P A C ++===. (2)设从袋中摸出的白球个数多于黑球个数的事件为B . 事件B 包含两个基本事件:第一个,摸出的3个球都是白球的事件,记为M ; 第二个,摸出2个白球,1个黑球的事件,记为N .()3539542C P M C ==,()21543940108421C C P N C ===. 所以,()()()51025422142P B P M P N =+=+=. 【点睛】本题考查了概率的计算,意在考查学生的计算能力. 25.(1)480;(2)240;(3)504. 【分析】(1)利用插空法可求出排法种数; (2)利用捆绑法可求出排法种数;(3)分两种情况讨论:①若A 在排尾;②若A 不在排尾.分别求出每一种情况的排法种数,由加法原理计算可得出答案. 【详解】(1)将A 、B 插入到其余4人所形成的5个空中,因此,排法种数为42452420480A A =⨯=;(2)将A 、B 两人捆绑在一起看作一个复合元素和其他4人去安排, 因此,排法种数为25252120240A A =⨯=; (3)分以下两种情况讨论:①若A 在排尾,则剩下的5人全排列,故有55120A =种排法;②若A 不在排尾,则A 有4个位置可选,B 有4个位置可选,将剩下的4人全排列,安排在其它4个位置即可,此时,共有114444384C C A =种排法. 综上所述,共有120384504+=种不同的排法种数. 【点睛】本题考查了排列、组合的应用,同时也考查了插空法、捆绑法以及分类计数原理的应用,考查计算能力,属于中等题.26.(1)945;(2)120种;(3)45. 【解析】 【分析】(1)将10人平均分为5组共有2222210864255C C C C C A ,计算即可; (2)将5名男生视为5个不同的小盒,5名女生视为5个不同的小球,问题转化为将5个小球装入5个不同的盒子,每盒装一个球的不同装法种数;(3)先任选一对夫妻有15C种,再将4个丈夫视为A,B,C,D四个小球,4个妻子分别视为a,b,c,d四个盒子,则4个小球装入4个不同的盒子,每盒一个球,且与自己的字母不同,利用列举法得到结果即可.【详解】(1)将10人平均分为5组共有22222 10864255C C C C CA=945;(2)将5名男生视为5个不同的小盒,5名女生视为5个不同的小球,问题转化为将5个小球装入5个不同的盒子,每盒一个球,共有55120A 种;(3)先任选一对夫妻有15C种,再将剩余4对夫妻分组,再将4个丈夫视为A,B,C,D 四个小球,4个妻子分别视为a,b,c,d四个盒子,则4个小球装入4个不同的盒子,每盒一个球,且与自己的字母不同,有BADC,CADB,DABC,BDAC,CDAB,DCAB,BCDA,DCBA,CDBA,共有9种方法,故不同的分组方法有15C×9=45.【点睛】本题主要考查排列、组合及简单计数问题、乘法原理等基础知识,考查了分组分配问题,考查分析问题解决问题的能力,属于中档题.。

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(答案解析)

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(答案解析)

一、选择题1.()()4221x x x -+-的展开式中x 项的系数为( )A .9-B .5-C .7D .82.73⎛⎫ ⎝展开式中含32x -的项是( ) A .第8项 B .第7项 C .第6项 D .第5项3.从0,1,2,3,…,9中选出三个不同数字组成一个三位数,其中能被3整除的三位数个数为( ) A .252 B .216 C .162 D .228 4.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为( ) A .72B .48C .24D .605.若多项式()210011x x a a x +=++()()91091011a x a x +++++,则9a =( )A .9B .10C .-9D .-106.排一张5个独唱和3个合唱的节目单,如果合唱不排两头,且任何两个合唱不相邻,则这种事件发生的概率是( ) A .14B .1144C .18D .1147.数列129,,,a a a ⋅⋅⋅中,恰好有6个7,3个4,则不相同的数列的个数( ) A .69AB .39AC .39CD .36C8.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ) A .2264A CB .22642A CC .2264A AD .262A9.若(2)n x -的展开式中二项式系数最大的项只有第6项,则展开式的各项系数的绝对值...之和为( ) A .111B .102C .103D .11310.在56789(1)(1)(1)(1)(1)x x x x x -+-+-+-++的展开式中,含3x 的项的系数是( ) A .121B .-37C .-74D .-12111.某医院计划从3名医生,9名护士中选派5人参加湖北新冠肺炎疫情狙击战,要求选派的5人中至少要有2名医生,则不同的选派方法有( ) A .495种B .288种C .252种D .126种12.为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为( ) A .18B .24C .30D .36二、填空题13.若62ax ⎛ ⎝⎭的展开式中常数项为150,则22a b +的最小值为______. 14.集合{}1,2,3,,14S =的4元子集{}1234,,,T a a a a =中,任意两个元素差的绝对值都不为2,这样的4元子集T 的个数有___个15.用数字6,7组成四位数,且数字6,7至少都出现一次,这样的四位数共有______个.(用数字作答) 16.已知集合{}123456,,,,,AB C a a a a a a =,且集合{}123,,A B C a a a =,则集合A 、B 、C 所有可能的情况有__________种.17.设{}1234,,,1,0,2x x x x ∈-,那么满足123423x x x x ≤+++≤的所有有序数组()1234,,,x x x x 的组数为_________.18.高三(3)班学生要安排毕业晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,3个音乐节目恰有2个节目连排,则不同排法的种数是________.19.某中学安排,,,A B C D 四支小队去3所不同的高校参观,上午每支小队各参观一所高校,下午A 小队有事返回学校,其余三支小队继续参观.要求每支小队上下午参观的高校不能相同,且每所高校上午和下午均有小队参观,则不同的安排有_____种.20.已知2⎛+ ⎝nx 的展开式的二项式系数之和为32,则其展开式中常数等于________.三、解答题21.(1)在239(1)(1)(1)(1)x x x x ++++++++的展开式中,求2x 的系数;(2)设6260126(12)x a a x a x a x -=++++…,()x R ∈,求下列各式的值. (ⅰ)0126a a a a ++++…; (ⅱ)246a a a ++;(ⅲ)12345623456a a a a a a +++++.22.某中学将要举行校园歌手大赛,现有4男3女参加,需要安排他们的出场顺序.(结.果用数字作答......) (1)如果3个女生都不相邻,那么有多少种不同的出场顺序?(2)如果3位女生都相邻,且男生甲不在第一个出场,那么有多少种不同的出场顺序?23.若2nx ⎛+ ⎝展开式的二项式系数之和是64.(1)求n 的值;(2)求展开式中的常数项.24.一场小型晚会有3个唱歌节目和2个相声节目,要求排出一个节目单. (1)2个相声节目要排在一起,有多少种排法? (2)2个相声节目彼此要隔开,有多少种排法?(3)第一个节目和最后一个节目都是唱歌节目,有多少种排法? (4)前3个节目中要有相声节目,有多少种排法? (要求:每小题都要有过程,且计算结果都用数字表示)25.现有甲、乙等5人排成一排照相,按下列要求各有多少种不同的排法?求: (1)甲、乙不能相邻;(2)甲、乙相邻且都不站在两端; (3)甲、乙之间仅相隔1人;(4)按高个子站中间,两侧依次变矮(五人个子各不相同)的顺序排列. 26.六个人按下列要求站成一排,分别有多少种不同的站法? (1) 甲不站在两端; (2) 甲 ,乙必须相邻; (3)甲 ,乙不相邻. (4) 甲 ,乙之间恰有两人【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将()()4221x x x -+-化简为:2444(1)(1)2(1)x x x x x --+--,写出4(1)x -二项展开式的通项公式(4)14(1)rr r r T C x -+=⋅-,即可求得答案.【详解】 ()()42244421(1)(1)2(1)x x x x x x x x -+---+-=-4(1)x -二项展开式的通项公式(4)14(1)r r r r T C x -+=⋅- 24(1)x x -中不含x 项,无需求解.4(1)x x --中含x 项,即当4r =时(44444)(1)x C xx --⋅⋅=--42(1)x -中含x 项,即当3r =时(43)34328(1)C x x -⋅=-- ∴ ()()4221x x x -+-的展开式中x 项9x -故选:A. 【点睛】本题考查求二项式展开式中常数项,解题关键是掌握二项展开式的通项公式,考查分析能力和计算能力,属基础题.2.C解析:C 【分析】根据二项展开式的通项公式,求得含32x -项对应的r 即可得到结论. 【详解】解:7⎫⎝展开式的通项公式为:()21172722217713133rr r r r r r T C x x C x ---+⎛⎫⎛⎫=⋅⋅-⋅=-⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭;令73522r r -=-⇒=; 故展开式中含32x -的项是第6项. 故选:C. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.3.D解析:D 【分析】根据题意将10个数字分成三组:即被3除余1的有1,4,7;被3除余2的有2,5,8;被3整除的有3,6,9,0,若要求所得的三位数被3整除,则可以分类讨论:每组自己全排列,每组各选一个,再利用排列与组合的知识求出个数,进而求出答案. 【详解】解:将10个数字分成三组,即被3除余1的有{1,4,7},被3除余2的有{2,5,8},被3整除的有{3,6,9,0}.若要求所得的三位数被3整除,则可以分类讨论:①三个数字均取自第一组{1,4,7}中,或均取自第二组{2,5,8}中,有33212A =个; ②若三个数字均取自第三组{3,6,9,0},则要考虑取出的数字中有无数字0,共有324318A A -=个;③若三组各取一个数字,第三组中不取0,有11133333162C C C A ⋅⋅⋅=个, ④若三组各取一个数字,第三组中取0,有112332236C C A ⋅⋅⋅=个, 这样能被3整除的数共有12+18+162+36228=个. 故选:D. 【点睛】本题考查分类计数原理和排列组合知识,如何分类是关键,属于中档题.4.C解析:C 【分析】先将丙与丁捆绑,形成一个“大元素”与戊进行排列,然后再将甲、乙插空,利用分步乘法计数原理可求得排法种数. 【详解】先将丙与丁捆绑,形成一个“大元素”与戊进行排列,然后再将甲、乙插空, 由分步乘法计数原理可知,不同的排法种数为22222324A A A =种. 故选:C. 【点睛】本题考查捆绑法与插空法的综合应用,同时也考查了分步乘法计数原理的应用,考查计算能力,属于中等题.5.D解析:D 【解析】()()9011010019910999991...1[...]nn n x C C x C x a x a C C x C x +=++⇒+=++,()10101a x +=019910101010101010(...)a C C x C x C x ++++,根据已知条件得9x 的系数为0,10x 的系数为19999910101010101010011a a C a C a a C =-⎧⋅+⋅=⎧⇒⇒⎨⎨=⋅=⎩⎩ 故选D. 6.D解析:D 【分析】首先计算所有可能的排法有88A ,再由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,最后根据古典概率的概率计算公式计算出结果. 【详解】解:排一张5个独唱和3个合唱的节目单一共有8840320A =种,记合唱不排两头,且任何两个合唱不相邻的为事件M ,则由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,根据分布乘法计数原理可得一共有53542880A A ⋅=种根据古典概型的概率公式得()288014032014P M == 故选:D【点睛】本题考查古典概型的概率计算问题,分步计数原理,考查元素的不相邻问题,一般解决不相邻问题时,采用插空法,属于基础题.7.C解析:C 【分析】把129,,,a a a ⋅⋅⋅看成9个位置,从这9个位置中,任取3个位置放4(或任取6个位置放7),即得不相同的数列的个数. 【详解】把129,,,a a a ⋅⋅⋅看成9个位置,从这9个位置中,任取3个位置放4(或任取6个位置放7),其余6个位置放7(或其余3个位置放4),有39C (或69C )种不同的取法. 每种取法放3个4都有一种方法,剩下的6个位置放6个7有1种方法. 所以不相同的数列共有39C (或69C )个. 故选:C . 【点睛】本题考查排列组合,属于基础题.8.B解析:B 【分析】先将4名学生均分成两组,注意重合的部分要去掉,再从6个班级中选出2个班进行排列,最后根据分步计数原理得到合要求的安排方法数. 【详解】解:先将4名学生均分成两组方法数为2412C , 再分配给6个年级中的2个分配方法数为26A ,∴根据分步计数原理合要求的安排方法数为224612C A .故选:B . 【点睛】本题先考查的是平均分组问题,是一个易出错的问题,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.9.C解析:C 【分析】根据二项展开式中只有第6项的二项式系数最大知10n =,再令1x =-即可求得可得展开式的各项系数的绝对值之和. 【详解】根据题意知(2)n x -的展开式共有11项,10n ∴=,1001001919910101010101022(2)2C x C x C x x x C =-+-+-,令1x =-可得展开式的各项系数的绝对值之和为103. 故选:C 【点睛】本题考查二项展开式各项的系数和,属于中档题.10.B解析:B 【分析】对每个二项式的展开式进行取值,得到3x 的系数,再求和可得 【详解】5(1)x -的展开式通项15(1)k k k kT C x 令3k = 得3x 的系数335(1)C , 同理可得:33333333356789(1)+(1)+(1)+(1)+=37C C C C C 故选:B. 【点睛】本题考查二项展开式问题.其常见类型及解法(1)求展开式中的特定项或其系数.可依据条件写出第1k +项,再由特定项的特点求出k 值即可.(2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第1k +项,由特定项得出k 值,最后求出其参数.11.B解析:B 【分析】题意分两种情况,①选派2名医生,3名护士,②选派3名医生,2名护士,分别计算,再根据分类加法计算原理计算可得; 【详解】解:依题意分两种情况,①选派2名医生,3名护士,则有2339252C C =(种); ②选派3名医生,2名护士,则有323936C C =(种);按照分类加法计算原理可知,一共有2332393936252288C C C C +=+=(种). 故选:B 【点睛】本题考查简单的组合问题,分类加法计算原理,属于中档题.12.C解析:C 【分析】由甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,再去掉丙、丁两名专家在同一地工作的排列数,即可得到答案. 【详解】因为甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家 看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,即从四个中选二个和 其余二个看成三个元素的全排列共有:2343C A ⋅种; 又因为丙、丁两名专家不能安排在同一地工作,所以再去掉丙、丁两名专家在同一地工作的排列数有33A 种, 所以不同的分配方法种数有:23343336630C A A ⋅-=-= 故选:C 【点睛】本题考查了排列组合的应用,考查了间接法求排列组合应用问题,属于一般题.二、填空题13.【分析】由题意在二项式定理的通项公式中令x 的幂指数等于零求得r 的值可得展开式的常数项再根据展开式的常数项为150求得ab 的值再利用基本不等式求得a2+b2的最小值【详解】的展开式中通项公式为Tr+1解析:【分析】由题意在二项式定理的通项公式中,令x 的幂指数等于零,求得r 的值,可得展开式的常数项,再根据展开式的常数项为150,求得ab 的值,再利用基本不等式求得a 2+b 2的最小值. 【详解】62ax ⎛+ ⎝⎭的展开式中通项公式为 T r +1=()62612366rrr r rrrr C ax x C ax ----=令12﹣3r =0,求得r =4,则展开式的常数项为T 5=422226=15C a b a b根据展开式中的常数项为150,得15a 2b 2=150,∴a 2b 2=10,ab ∴=∴a 2+b 2 ≥2ab =当且仅当|a|=b =1410 时,取等号.故答案为:. 【点睛】本题主要考查二项式定理的通项公式、基本不等式的应用,确定常数项是关键,属于基础题.14.367【分析】将集合中的元素分为奇数偶数然后分类讨论4元子集中的元素:4个全是奇数;奇偶;奇偶;偶奇;4个全是偶数;再利用组合数的运算即可求解【详解】由集合其中个奇数:;个偶数:;4元子集中任意两个解析:367 【分析】将集合S 中的元素分为奇数、偶数,然后分类讨论4元子集中的元素:4个全是奇数;3奇1偶;2奇2偶;3偶1奇;4个全是偶数;再利用组合数的运算即可求解. 【详解】 由集合{}1,2,3,,14S =,其中7个奇数:1,3,5,7,9,11,13;7个偶数:2,4,6,8,10,12,14;4元子集{}1234,,,T a a a a =中,任意两个元素差的绝对值都不为2, 4个元素全是奇数:{}1,5,9,13,共1种.3个奇数1个偶数:3个奇数的取法有{}1,5,9,{}1,5,11,{}1,5,13,{}1,7,11,{}1,7,13,{}1,9,13,{}3,7,11,{}3,7,13, {}3,9,13,{}5,9,13,共10种,此时共有171070C ⨯=.2个奇数2个偶数:即奇数任意抽取2个需去除相邻项、偶数任意抽取2个需去除相邻项,即()()2277661515225C C --=⨯=.3个偶数1个奇数的情况与3个奇数1个偶数情况一样:171070C ⨯=. 4个全是偶数:{}2,6,10,14,共1种.所以满足题意的共有:170225701367++++=. 故答案为:367 【点睛】本题考查了组合数的应用,此题属于复杂的组合问题,考查了分类讨论的思想,属于中档题15.14【分析】分别计算6出现一次两次三次的情况再将三种情况的结果种数相加即可【详解】①当数字中有1个63个7时共有种结果;②当数字中有2个62个7时共有种结果;③当数字中有3个61个7时共有种结果故共解析:14 【分析】分别计算6出现一次、两次、三次的情况,再将三种情况的结果种数相加即可. 【详解】①当数字中有1个6,3个7时,共有14C 4=种结果;②当数字中有2个6,2个7时,共有246C =种结果;③当数字中有3个6,1个7时,共有14C 4=种结果. 故共有121444++=14C C C 种结果. 故答案为:14 【点睛】本题主要考查分类计数问题.对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.16.【分析】由可知集合均含有元素作出韦恩图可知元素可以放在除之外的个区域中每个元素有个选择利用分步乘法计数原理可得结果【详解】如下图所示集合被分为了个区域由可知集合均含有元素则元素可以放在除之外的个区域 解析:216【分析】 由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,作出韦恩图,可知元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,利用分步乘法计数原理可得结果. 【详解】如下图所示,集合A 、B 、C 被分为了7个区域,由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,则元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,由分步乘法计数原理可知,所有可能的情况种数为36216=. 故答案为:216. 【点睛】本题考查排列组合问题,考查分步乘法计数原理的应用,考查运算求解能力,属于中等题.17.26【分析】满足的所有有序数组分为三个-1一个0两个-1两个0一个-1两个0一个2三个0一个2共四类情况分类求解【详解】所有有序数组中满足的所有有序数组分为三个-1一个0两个-1两个0一个-1两个0解析:26 【分析】满足123423x x x x ≤+++≤的所有有序数组()1234,,,x x x x ,分为三个-1一个0,两个-1两个0,一个-1两个0一个2,三个0一个2共四类情况,分类求解. 【详解】{}1234,,,1,0,2x x x x ∈-,所有有序数组()1234,,,x x x x 中, 满足123423x x x x ≤+++≤的所有有序数组()1234,,,x x x x ,分为三个-1一个0,两个-1两个0,一个-1两个0一个2,三个0一个2共四类情况, 不同的种数为321234443426C C C C C +++= 故答案为:26 【点睛】此题考查计数原理的应用,涉及组合相关知识,关键在于准确进行分类处理.18.288【分析】先从3个音乐节目中选取2个排好后作为1个节目有种排法这样共有5个节目其中2个音乐节目不连排2个舞蹈节目不连排然后分成三类进行求解【详解】先从3个音乐节目中选取2个排好后作为1个节目有种解析:288 【分析】先从3个音乐节目中选取2个排好后作为1个节目,有23A 种排法,这样共有5个节目,其中2个音乐节目不连排,2个舞蹈节目不连排,然后分成三类进行求解. 【详解】先从3个音乐节目中选取2个排好后作为1个节目,有23A 种排法 这样共有5个节目,其中2个音乐节目不连排,2个舞蹈节目不连排如图,若曲艺节目排在1号(或5号)位置,则有22416A A =种排法 若曲艺节目排在2号(或4号)位置,则有2222416A A =种排法 若曲艺节目排在3号位置,则有22222216A A ⨯⨯=种排法 所以共有()23161616288A ⨯++=排法故答案为:288 【点睛】本题主要考查的是排列和简单的计数问题,解题的关键是对问题进行合适的分步和分类.19.【分析】本题属于分组分配问题可按上午参观时A 是否与其他小队分在一组进行讨论分上下午两步安排参观即可得出答案【详解】若与中的某一支小队分在一组上午有种参观方法下午参观时三支小队不去各自上午参观的高校有解析:【分析】本题属于分组分配问题,可按上午参观时A 是否与其他小队分在一组进行讨论,分上下午两步安排参观,即可得出答案. 【详解】若A 与B 、C 、D 中的某一支小队分在一组,上午有1333C A ⋅种参观方法, 下午参观时B 、C 、D 三支小队不去各自上午参观的高校,有2种方法, 故有1333236C A ⋅⋅=种;若B 、C 、D 中某两支队分在一组,上午有2333C A ⋅种参观方法, 下午再安排时,也有2种方法, 故有2333236C A ⋅⋅=种. 所以一共有363672+=种. 故答案为:72. 【点睛】本题考查考查分组分配问题,注意其中的分类分步,属于中档题.20.【分析】根据二项式系数和可求得根据二项展开式通项公式可求得的值代入可求得结果【详解】展开式二项式系数和为解得:展开式通项公式为:令解得:展开式中常数为故答案为:【点睛】本题考查二项展开式中指定项的求 解析:80【分析】根据二项式系数和可求得n ,根据二项展开式通项公式可求得r 的值,代入可求得结果. 【详解】22nx x ⎛+ ⎝展开式二项式系数和为32,232n ∴=,解得:5n =,522nx x⎛⎛∴+= ⎝⎝展开式通项公式为:51010221552rr r r r r r T C x C x--+=⋅=. 令51002r -=,解得:4r =,∴展开式中常数为445216580C =⨯=. 故答案为:80.【点睛】本题考查二项展开式中指定项的求解问题,关键是熟练掌握二项式系数和的性质和二项展开式通项公式的形式.三、解答题21.(1)120;(2)(ⅰ)1;(ⅱ)364;(ⅲ)12.(1)利用二项式定理求得2x 的系数的表达式,再利用组合数的计算公式,即可求解. (2) 令1x =即可求得(ⅰ)的结果,令0x =得01a =;令1x =-,计算即可求得(ⅱ)的结果,对已知条件两边求导,令1x =即可求得(ⅲ)的结果. 【详解】 (1)在239(1)(1)(1)(1)x x x x ++++++++的展开式中,2x 项的系数为2223223223232393394499910120C C C C C C C C C C C C +++=+++=+++==+==………….(2)(ⅰ)令1x =得0161a a a +++=… (ⅱ)令0x =得01a =;令1x =-,得0126729a a a a -+-+=…与(ⅰ)中式子相加得:0246365a a a a +++=,所以246364a a a ++=(ⅲ)6260126(12)x a a x a x a x -=++++…,求导可得:523451234566(2)(12)23456x a a x a x a x a x a x ⨯--=+++++令1x =得:1234562345612a a a a a a +++++=. 【点睛】本题考查了二项展开式系数,考查了二项式定理的性质及其应用、导数的应用,考查了推理能力与计算能力,属于中档题. 22.(1)1440;(2)576. 【分析】(1)采用 “插空法”, 先排4名男生,形成5个空档,将3名女生插入其中,由此可得; (2)3名女生捆绑作为一个人,优先排男生甲,然后其他人全排列. 【详解】(1)采用 “插空法”,先排4名男生,有44A 种,形成5个空档,将3名女生插入其中,有35A 种,最后由分步乘法计数原理可得,共有43451440A A ⋅=种不同的出场顺序.(2)3名女生捆绑有33A 种,然后优先排男生甲有4种选择,其余可以进行全排列44A ,所以共有3434·4A A =576. 【点睛】本题考查排列的综合应用,考查“相邻”与“不相邻”问题.排列时,相邻问题用捆绑法,不相邻问题用插空法. 23.(1)6;(2)60 【分析】由二项式系数和求出指数n ,再写出展开式通项后可得常数项. 【详解】(1)由题意得,二项式系数之和为012264nn n n n n C C C C ++++==,(2)通项公式为366622166(2)2r r r rrr r T C x xC x----+==,令3602r-=,得4r = ∴展开式中的常数项为4464256(2)60T C x x --==.【点睛】该题主要考查二项式定理,在()na b +展开式中二项式系数为2n ,只与指数n 有关,求特定项时要注意通项的正确应用.24.(1)48;(2)72;(3)36;(4)108. 【分析】(1)将2个相声节目进行捆绑,与其它3个节目形成4个元素,利用捆绑法可求得排法种数;(2)将2个相声节目插入其它3个节目所形成的空中,利用插空法可求得排法种数; (3)第一个节目和最后一个节目都是唱歌节目,则3个节目排在中间,利用分步乘法计数原理可求得排法种数;(4)在5个节目进行全排的排法种数中减去前3个节目中没有相声节目的排法种数,由此可求得结果. 【详解】(1)将2个相声节目进行捆绑,与其它3个节目形成4个元素,然后进行全排, 所以,排法种数为242448A A =种;(2)将2个相声节目插入其它3个节目所形成的4个空中,则排法种数为323472A A =种; (3)第一个节目和最后一个节目都是唱歌节目,则其它3个节目排在中间,进行全排, 由分步乘法计数原理可知,排法种数为233336A A =种;(4)在5个节目进行全排的排法种数中减去前3个节目中没有相声节目的排法种数, 可得出前3个节目中要有相声节目的排法种数为53253212012108A A A -=-=. 【点睛】本题考查排列组合综合问题,考查捆绑法、插空法、分步乘法计数原理以及间接法的应用,考查计算能力,属于中等题. 25.(1)72(2)24(3)36(4)6 【分析】(1)不相邻问题用“插空法”,再结合排列及计数原理知识即可求解; (2)相邻问题用“捆绑法”,再结合排列及计数原理知识即可求解; (3)特殊情况优先安排,再结合排列组合及计数原理知识即可求解; (4)按个子排序,即有顺序的情况,由组合及计数原理知识即可求解. 【详解】解:(1)先将除甲、乙外三人全排列,有33A 种;再将甲、乙插入4个空档中的2个, 有24A 种,由分步乘法计数原理可得,完成这件事情的方法总数为323461272N A A =⋅=⨯=种;(2)将甲、乙两人“捆绑”看成一个整体,排入两端以外的两个位置中的一个,有2122A A ⋅种;再将其余3人全排列有33A 种,故共有21322324N A A A =⋅⋅=种不同排法;(3)先从另外三人中选一插在甲乙之间,则甲、乙之间仅相隔1人共有21323336N A C A =⋅⋅=种不同排法;(4)按高个子站中间,两侧依次变矮(五人个子各不相同)的顺序排列共有1221426N C C C =⋅⋅=种不同的排法.【点睛】本题考查了排列组合及计数原理,考查理解辨析能力与运算求解能力,属中档题. 26.(1)480.(2)240(3)480(4)144. 【解析】 【分析】(1)现在中间的4个位中选一个,排上甲,再其余的人任意排,即可求解; (2)把甲、乙看成一个整体,进行全排列,即可求解;(3)先把甲、乙二人单独挑出,然后再把甲、乙插入其余4人形成的5个空中,即可求解;(4)先把甲、乙排好,再从其余的4人中选出2人放到甲、乙中间,最后把排好的这4个人看做一个整体进行排列,即可求解. 【详解】(1)现在中间的4个位中选一个,排上甲,方法有4种,其余的人任意排,方法有1545480A A =(种);(2)把甲、乙看成一个整体,这样6个人变成了5个人,全排列方法共有2525240A A =(种);(3)先把甲、乙二人单独挑出来,把其余的4个人全排列,然后再把甲、乙插入其余4人形成的5个空中,方法共有4245480A A =(种);(4)先把甲、乙排好,有22A 种方法,再从其余的4人中选出2人放到甲、乙中间,方法有24A 种.把排好的这4个人看做一个整体,再与其他的2个人进行排列,方法有33A 种. 根据分步计数原理,求得甲、乙之间间隔两人的排法共有223243144A A A ⋅⋅=(种); 【点睛】本题主要考查了排列组合的应用,其中解答中认真审题,合理分类与分步是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.。

高中数学 第一章 计数原理单元测试 北师大版选修2-3(2021年最新整理)

高中数学 第一章 计数原理单元测试 北师大版选修2-3(2021年最新整理)

高中数学第一章计数原理单元测试北师大版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章计数原理单元测试北师大版选修2-3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章计数原理单元测试北师大版选修2-3的全部内容。

高中数学第一章计数原理单元测试北师大版选修2-3(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1(山东济宁高三考试,理6)从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有()A.36种 B.30种C.42种 D.60种2五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法有( )A.60种 B.48种C.36种 D.24种3为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,若12名参赛同学中有4人获奖,且这4人来自3个不同的代表队,则不同获奖情况种数为()A.C错误!B.C36C1,2C错误!C错误!C错误!C.C错误!C错误!C错误!C错误!D.C错误!C错误!C错误!C错误!C错误!A错误!4某校需要从5名男生和5名女生中选出4人参加一项文化交流活动,由于工作需要,男生甲与男生乙至少有一个参加活动,女生丙必须参加活动,则不同的选人方式有( ) A.56种 B.49种C.42种 D.14种5(2010湖南高考,理7)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10 B.11 C.12 D.156(2009陕西高考,理6)若(1-2x)2 009=a0+a1x+…+a2 009x2 009(x∈R),则错误!+错误!+…+错误!的值为()A.2 B.0C.-1 D.-27在(x-1)·(x-2)·(x-3)·(x-4)·(x-5)的展开式中,含x4的项的系数是( ) A.-15 B.85C.-120 D.2748某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度要启动的项目,则重点项目A和一般项目B至少有一个被选中的不同选法的种数是…()A.15 B.45C.60 D.759组合数C r n(n>r≥1,n,r∈Z)恒等于( )A。

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(含答案解析)

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(含答案解析)

一、选择题1.二项式51(2)x x-的展开式中含3x 项的系数是A .80B .48C .−40D .−802.电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左右两边都有空位且甲坐在中间的坐法的种数为( ) A .40B .36C .32D .203.如图,在杨辉三角形中,斜线l 的上方从 1 按箭头所示方向可以构成一个“锯齿形”的数列: 1,3,3,4,6,5,10,...,记此数列的前n 项之和为n S ,则 21S 的值为( )A .66B .153C .295D .3614.将红、黄、蓝三种颜色的三颗棋子分别放入33⨯方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,则不同方法共有几种( )A .12B .16C .24D .365.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( ) A .2264A CB .22642A CC .2264A AD .262A6.甲乙和其他2名同学合影留念,站成两排两列,且甲乙两人不在同一排也不在同一列,则这4名同学的站队方法有( ) A .8种B .16种C .32种D .64种7.袋中有大小相同的四个白球和三个黑球,从中任取两个球,两球同色的概率为( ) A .47B .37C .27D .8218.包括甲、乙、丙3人的7名同学站成一排拍纪念照,其中丙站中间,甲不站在乙的左边,且不与乙相邻,则不同的站法有( )A .240种B .252种C .264种D .288种 9.现有6位同学站成一排照相,甲乙两同学必须相邻的排法共有多少种?( ) A .720B .360C .240D .12010.我省5名医学专家驰援湖北武汉抗击新冠肺炎疫情现把专家全部分配到A ,B ,C 三个集中医疗点,每个医疗点至少要分配1人,其中甲专家不去A 医疗点,则不同分配种数为( ) A .116B .100C .124D .9011.5名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法的种数为( ) A .35B .53C .35AD .35C12.五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且宫、羽不相邻,且位于角音阶的同侧,可排成的不同音序有( ) A .20种B .24种C .32种D .48种二、填空题13.()83x y z +-展开式中,52x y z 项的系数为__________.14.设a 为非零常数,已知(x 21x +)6a x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为2,则展开式中常数项等于_____.15.在某市举行的数学竞赛中,A ,B ,C 三所学校分别有1名、2名、3名同学获一等奖,将这6名同学排成一排合影,若要求同校的同学相邻,有____种不同的排法.(用数字作答)16.植树造林,绿化祖国.某班级义务劳动志愿者小组参加植树活动,准备在一抛物线形地块上的ABCDGFE 七点处各种植一棵树苗,且关于抛物线的如图所示,其中A 、B 、C 分别与E 、F 、G 关于抛物线的对称轴对称,现有三种树苗,要求每种树苗至少种植一棵,且关于抛物线的对称轴对称的两点处必须种植同一种树苗,则共有不同的种植方法数是_____(用数字作答).17.设{}1234,,,1,0,2x x x x ∈-,那么满足123423x x x x ≤+++≤的所有有序数组()1234,,,x x x x 的组数为_________.18.若,m n 是不大于6的正整数,则22661m nC x C y +=表示不同的椭圆个数为__________19.若()626012612x a a x a x a x -=++++,则126a a a +++的值为__________.20.若多项式()()()10112110110112111x x a a x a x a x +=+++++++,则10a =______.三、解答题21.(1)某旅行社有导游9人,其中3人只会英语,4人只日语,其余2人既会英语,也会日语,现从中选6人,其中3人进行英语导游,另外3人进行日语导游,则不同的选择方法有多少种?(2)一批零件共有100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回去:求第三次才取得合格格品的概率.22.从6名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(1)甲、乙两人必须入选且跑中间两棒; (2)甲不跑第一棒且乙不跑第四棒.23.设723456701234567(31)x a a x a x a x a x a x a x a x -=+++++++,求: (1)0246a a a a +++; (2)1357a a a a +++;(3)01234567a a a a a a a a +++++++.24.在二项式n的展开式中,前三项系数的绝对值成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.25.男运动员6名,女运动员4名,其中男女队长各1名.选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名; (2)至少有1名女运动员; (3)队长中至少有1人参加; (4)既要有队长,又要有女运动员. 26.已知数列{}n a 满足:11a =,1n na +=,*n N ∈.(1)化简:()55501kk k kC a =-∑(结果用5a 表示).(2)求证:1tan2n n a π+=,*n N ∈.【参考答案】***试卷处理标记,请不要删除1.D 解析:D 【解析】512x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()()55521551C 212C rr r r r rr r T x x x ---+⎛⎫=-=- ⎪⎝⎭, 令523r -=,1r =,所求系数为145C 280-=-,故选D .2.A解析:A 【分析】根据题意,先排好7个空座位,注意空座位是相同的,其中6个空位符合条件,将3人插入6个空位中,注意甲必须在三人中间,然后再排乙,丙,最后用分步计数原理求解. 【详解】除甲、乙、丙三人的座位外,还有7个座位,它们之间共可形成六个空, 三人从6个空中选三位置坐上去有36C 种坐法, 又甲坐在中间,所以乙、丙有22A 种方法,所以他们每人左右两边都有空位且甲坐在中间的坐法有36C 2240A ⋅=种. 故选:A . 【点睛】本题主要考查排列组合的实际应用,还考查了分析问题的能力,属于中档题.3.D解析:D 【解析】试题分析:观察杨辉三角结合其中数的来源,可得到这个数列的通项公式.n a 当n 为偶数时,42n n a +=;当n 为奇数时,0212322233551,3,6,C C C C C C ======,所以()()232138n n n n a C +++==,所以21S =()()()()22221352124620124622224622758a a a a a a a a ⎡⎤+++++++++=++++++++++⎣⎦()122423112475286753618⎡⎤=⨯⨯+⨯+=+=⎣⎦,故选D. 考点:归纳推理与数列求和.4.D解析:D直接利用乘法原理计算得到答案. 【详解】第一颗棋子有339⨯=种排法,第二颗棋子有224⨯=种排法,第三颗棋子有1种排法, 故共有94136⨯⨯=种排法. 故选:D. 【点睛】本题考查了乘法原理,意在考查学生的应用能力.5.B解析:B 【分析】先将4名学生均分成两组,注意重合的部分要去掉,再从6个班级中选出2个班进行排列,最后根据分步计数原理得到合要求的安排方法数. 【详解】解:先将4名学生均分成两组方法数为2412C , 再分配给6个年级中的2个分配方法数为26A ,∴根据分步计数原理合要求的安排方法数为224612C A .故选:B . 【点睛】本题先考查的是平均分组问题,是一个易出错的问题,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.6.A解析:A 【分析】根据题意,分3步进行讨论:先在4个位置中任选一个安排甲,再安排乙,最后将剩余的2个人,安排在其余的2个位置,分别求出每一步的情况数目,由分步计数原理计算可得答案. 【详解】根据题意,分3步进行讨论:1、先安排甲,在4个位置中任选一个即可,有14C 4=种选法;2、在与甲所选位置不在同一排也不在同一列只有一个位置,安排乙,即1种选法;3、将剩余的2个人,安排在其余的2个位置,有222A =种安排方法; 则这4名同学的站队方法有4128⨯⨯=种; 故选:A . 【点睛】本题主要考查排列、组合的综合应用,注意要优先分析受到限制的元素,属于中档题.7.B解析:B【分析】根据题意可知,所选的两个球均为白球或黑球,利用组合计数原理与古典概型的概率公式可求得所求事件的概率.【详解】由题意可知,所选的两个球均为白球或黑球,由古典概型的概率公式可知,所求事件的概率为22432737C CPC+==.故选:B.【点睛】本题考查古典概型概率的计算,涉及组合计数原理的应用,考查计算能力,属于中等题. 8.C解析:C【分析】先排甲、乙、丙外的4人,再对甲、乙、丙三人分类讨论即可得解.【详解】先排甲、乙、丙外的4人,有44A种排法,再排甲、乙2人,有两类方法:一类是甲、乙2人插空,又甲排在乙的左边,然后丙排在中间,故有4245240A C=种不同的站法;另一类是把甲、乙、丙按乙、丙、甲的顺序插入中间,有44A种不同的站法,所以共有264种不同的站法.故选:C【点睛】此题考查计数原理的应用,利用排列组合相关知识解决排位问题,需要熟练掌握计数原理相关知识.9.C解析:C【分析】6名同学排成一排,其中甲、乙两人必须排在一起,这是相邻问题,一般用“捆绑法”.将甲乙两名同学“捆绑”在一起,看成一个元素,再与剩下的4人一起全排列,根据分步计数原理即可得出结果.【详解】将甲乙“捆绑”在一起看成一个元素,与其余4人一起排列,而甲和乙之间还有一个排列,共有5252240A A=.故选:C.【点睛】本题考查了排列组合、两个基本原理的应用,相邻问题“捆绑法”求解,属于基础题.10.B解析:B 【分析】完成这件事情可分2步进行:第一步将5名医学专家分为3组;第二步将分好的3组分别派到三个医疗点,由分步计数原理计算即可得到答案. 【详解】根据已知条件,完成这件事情可分2步进行: 第一步:将5名医学专家分为3组①若分为3,1,1的三组,有3510C =种分组方法;②若分为2,2,1的三组,有22532215C C A =种分组方法, 故有101525+=种分组方法.第二步:将分好的三组分别派到三个医疗点,甲专家不去A 医疗点,可分配到,B C 医疗点中的一个,有122C =种分配方法, 再将剩余的2组分配到其余的2个医疗点,有222A =种分配方法, 则有224⨯=种分配方法.根据分步计数原理,共有254100=⨯种分配方法. 故选:B . 【点睛】本题主要考查排列、组合的应用,同时考查分步计数原理,属于基础题.11.B解析:B 【分析】把不同的报名方法可分5步完成,结合分步计数原理,即可求解. 【详解】由题意,不同的报名方法可分5步完成: 第一步:第一名同学报名由3种方法 第二步:第二名同学报名由3种方法 第三步:第三名同学报名由3种方法 第四步:第四名同学报名由3种方法 第五步:第五名同学报名由3种方法根据分步乘法计数原理,共有5333333⨯⨯⨯⨯=种方法. 故选:B. 【点睛】本题主要考查了分步计数原理的应用,其中解答中认真审题,合理分步求解是解答的关键,着重考查了分析问题和解答问题的能力.12.C解析:C 【分析】根据角所在的位置,分两类:角排在一或五;角排在二或四.根据分类计数原理和排列组合的知识可得. 【详解】若角排在一或五,有22232A A =24种;若角排在二或四,有22222A A 8=. 根据分类计数原理可得,共有24832+=种. 故选:C . 【点睛】本题考查排列组合和计数原理,属于基础题.二、填空题13.【分析】由的指数是1得到然后由的指数是2得到然后即可算出答案【详解】因为的指数是1所以得到又因为的指数是2得到所以项的系数为故答案为:【点睛】在解决本类问题时应将其中两项看成一个整体来处理 解析:1512-【分析】()()8833x y z x y z +-=+-⎡⎤⎣⎦,由z 的指数是1,得到()()7183C x y z +-,然后由y 的指数是2,得到()22573C x y ,然后即可算出答案.【详解】()()8833x y z x y z +-=+-⎡⎤⎣⎦因为z 的指数是1,所以得到()()7183C x y z +-又因为y 的指数是2,得到()22573C xy所以52x y z 项的系数为()12287131512C C -=-故答案为:1512- 【点睛】在解决本类问题时应将其中两项看成一个整体来处理.14.240【分析】根据(x2)的展开式中各项系数和为2令x=1得a=2再利用展开式的通项公式求出展开式中常数项【详解】∵(x2)的展开式中各项系数和为2∴令x=1得a=2或a=0(舍)又的通项6﹣2r 为解析:240 【分析】根据(x 21x +)6a x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为2,令x =1得a =2,再利用展开式的通项公式,求出展开式中常数项. 【详解】∵(x 21x +)6a x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为2,∴令x =1得()6212a ⋅-=,a =2或a =0(舍).又6a x x ⎛⎫- ⎪⎝⎭的通项()6216(2)0126r r r r T C x r -+=-=,,,,,6﹣2r 为偶数,故6﹣2r =﹣2即r =4. ∴2612()x x x x⎛⎫+- ⎪⎝⎭的展开式的常数项为446(2)240C -=. 故答案为:240. 【点睛】本题考查二项展开式的通项公式解决二项展开式的特定项问题;考查求展开式的各项系数和的常用方法是赋值法.15.【分析】利用捆绑法将每个学校的同学看成一个整体计算得到答案【详解】利用捆绑法将每个学校的同学看成一个整体则共有种排法故答案为:【点睛】本题考查了排列的应用意在考查学生的理解能力和应用能力 解析:72【分析】利用捆绑法将每个学校的同学看成一个整体,计算得到答案. 【详解】利用捆绑法将每个学校的同学看成一个整体,则共有32332372A A A ⋅⋅=种排法. 故答案为:72. 【点睛】本题考查了排列的应用,意在考查学生的理解能力和应用能力.16.36【分析】先选四个位置上的重复树苗有种方法再利用相同元素的排列问题(除序法)即可解决问题【详解】解:由题意对称相当于3种树苗种四个位置有且仅有一种树苗重复有种选法;在四个位置上种植有种方法则由乘法解析:36 【分析】先选四个位置上的重复树苗有13C 种方法,再利用相同元素的排列问题(除序法)即可解决问题. 【详解】解:由题意对称相当于3种树苗种A ,B ,C ,D 四个位置,有且仅有一种树苗重复,有13C种选法;在四个位置上种植有442212A A =种方法, 则由乘法原理得131236C ⨯=种方法. 故答案为:36. 【点睛】本题考查排列组合,计数原理的应用,本题运用除序法,可以避免讨论,简化计算.属于中档题.17.26【分析】满足的所有有序数组分为三个-1一个0两个-1两个0一个-1两个0一个2三个0一个2共四类情况分类求解【详解】所有有序数组中满足的所有有序数组分为三个-1一个0两个-1两个0一个-1两个0解析:26 【分析】满足123423x x x x ≤+++≤的所有有序数组()1234,,,x x x x ,分为三个-1一个0,两个-1两个0,一个-1两个0一个2,三个0一个2共四类情况,分类求解. 【详解】{}1234,,,1,0,2x x x x ∈-,所有有序数组()1234,,,x x x x 中, 满足123423x x x x ≤+++≤的所有有序数组()1234,,,x x x x ,分为三个-1一个0,两个-1两个0,一个-1两个0一个2,三个0一个2共四类情况, 不同的种数为321234443426C C C C C +++= 故答案为:26 【点睛】此题考查计数原理的应用,涉及组合相关知识,关键在于准确进行分类处理.18.12【分析】根据已知可得由组合数的性质确定出可能取到的数再由即可求出结论【详解】表示不同的椭圆可能取到的数为且所以表示不同的椭圆个数为故答案为:12【点睛】本题考查组合数的性质排列的应用属于中档题解析:12 【分析】根据已知可得16,16m n ≤≤≤≤,由组合数的性质,确定出6mC ,6nC 可能取到的数,再由66mnC C ≠,即可求出结论. 【详解】16,16m n ≤≤≤≤,15246666,C C C C ==, 22661m n C x C y +=表示不同的椭圆,66,m n C C 可能取到的数为12366666,,,C C C C ,且66m n C C ≠,所以表示不同的椭圆个数为2412A =. 故答案为:12.【点睛】本题考查组合数的性质、排列的应用,属于中档题.19.0【分析】在所给的等式中分别令令从而求得的值【详解】解:令可得再令可得故答案为:0【点睛】本题考查二项式定理的应用二项展开式的通项公式二项式系数的性质利用赋值法是解题的关键解析:0 【分析】在所给的等式中,分别令0x =,令1x =,从而求得126a a a ++⋯+的值. 【详解】解:6260126(12)x a a x a x a x -=+++⋯+, 令0x =,可得01a =,再令1x =,可得12611a a a +++⋯+=, 1260a a a ∴++⋯+=,故答案为:0. 【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,利用赋值法是解题的关键.20.【分析】由二项式定理及其展开式通项公式得展开式的通项为令解得则得解【详解】由展开式的通项为令解得则故答案为:【点睛】本题考查了二项式定理及其展开式通项公式意在考查学生对这些知识的理解掌握水平 解析:22-【分析】由二项式定理及其展开式通项公式得111122[(1)1]x x =+-展开式的通项为111112(1)(1)r r r r T C x -+=+-,令1110r -=,解得1r =,则110112(1)22a C =⨯-=-,得解.【详解】由111122[(1)1]x x =+-展开式的通项为111112(1)(1)rr r r T C x -+=+-, 令1110r -=,解得1r =,则110112(1)22a C =⨯-=-, 故答案为:22-. 【点睛】本题考查了二项式定理及其展开式通项公式,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)92;(2)91078. 【分析】(1)通过分类的方式,求得每一类别的情况,最后利用分类加法计数原理求解即可;(2)分别计算出第一次,第二次取次品的概率和第三次取合格品的概率,第三次取合格品的概率为三者之积.【详解】(1)若只会英语的人中选了3人作英语导游,共有3620C=种情况;若只会英语的人中选了2人作英语导游,共有12323560C C C=种情况;若只会英语的人中选了1人作英语导游,共有133412C C=种情况;由分类加法计数原理可得,共有:20601292++=种情况,综上:不同的选择方法有92种;(2)由题意知:次品总数为10个,合格品总数为90个,第一次取的一定是次品,概率为101 10010=;第二次取的一定是次品,概率为91 9911=;第三次取的一定是合格品,概率为9045 9849=;所以第三次才取得合格格品的概率为11459 1011491078⨯⨯=.综上:第三次才取得合格格品的概率为9 1078.【点睛】本题主要考查了排列组合,考查了分类加法计数原理和分步乘法计数原理.属于中档题. 22.(1)24,(2)252.【分析】(1)分两步,第一步,排甲乙两人,有222A=种排法,第二步,从剩下4人选出两人来跑第一棒和第四棒,有2412A=种排法,即可得出答案(2)以乙跑不跑第一棒分成两类,第一类,乙跑第一棒,有131560A A=种排法,第二类,乙不跑第一棒,有112444192A A A=种排法,即可得出答案.【详解】(1)因为甲、乙两人必须入选且跑中间两棒所以可分两步,第一步,排甲乙两人,有222A=种排法第二步,从剩下4人选出两人来跑第一棒和第四棒,有2412A=种排法所以共有21224⨯=种排法(2)以乙跑不跑第一棒分成两类第一类,乙跑第一棒,有131560A A =种排法 第二类,乙不跑第一棒,有112444192A A A =种排法 所以共有60192252+=种排法 【点睛】本题考查的是分步和分类计数原理、排列,属于基础题. 23.(1)8128-;(2)8256;(3)16384. 【分析】(1)取1x =和1x =-,代入计算,两式相加得到答案. (2)根据(1)中结论直接得到答案.(3)利用二项式定理的通项,考虑系数的正负,计算得到答案. 【详解】(1)取1x =得到7701234567(31)2a a a a a a a a +++++++=-=, 取1x =-得到7701234567(31)4a a a a a a a a -+-+-+-=--=-,两式相加得到7702462481282a a a a -+++==-.(2)根据(1)知:()713570246212881288256a a a a a a a a +++=-+++=+=.(3)7(31)x -展开式的通项为:()()71731rrrr T C x -+=-,故当r 为偶数时,对应系数为正;当r 为奇数时,对应系数为负,故()()0123456713570246a a a a a a a a a a a a a a a a +++++++=+++-+++()8128825616384=-=-.【点睛】本题考查了赋值法求系数和,二项式定理的应用,意在考查学生的计算能力和应用能力. 24.(1)8n =.(2)4337T x =,2347T x =.【分析】(1)写出展开式通项公式,得前3项系数,由等差数列的性质求出n ;(2)设第k 项系数最大,由第k 项系数不小于第1k -项和第1k +项系数,列不等式组解之可得项数,然后再得项. 【详解】(1)展开式通项公式为2311()2n rrn rrr r r nn T C C x --+==,由题意1022112()22n n n C C C ⨯=+,解得8n =(1n =舍去). (2)由(1)展开式第1r +项系数为81()2r rC ,设第k 项系数最大,则112288118811()()2211()()22k k k k k k k kC C C C ------⎧≥⎪⎪⎨⎪≥⎪⎩,解得34k ≤≤,∴3k =或4, ∴系数最大的项为:82242233381()72T C x x -⨯==,82323333481()72T C x x -⨯==.【点睛】本题考查二项式定理,解题关键是掌握二项式展开式通项公式.由通项公式得出前3项系数,从而求得n ,求系数最大的项,一般可设第k 项系数最大,由第k 项系数不小于第1k -项和第1k +项系数,列不等式组解之得项数.25.(1)120;(2)246;(3)196;(4)191. 【分析】(1)本题是一个分步计数问题,第一步计算选3名男运动员选法数,第二步计算选2名女运动员的选法数,再利用乘法原理得到结果.(2)利用对立事件,“至少有1名女运动员”的对立事件为“全是男运动员”,得到从10人中任选5人的选法数,再得到全是男运动员选法数,相减即可.(3)分三类讨论求解,第一类“只有男队长”,第二类“只有女队长”,第三类 “男女队长都入选”,然后相加即可.(4)分两类讨论求解,第一类,当有女队长时,其他人选法任意,第二类不选女队长,必选男队长,其中要减去不含女运动员的选法,然后相加即可. 【详解】(1)分两步完成,首先选3名男运动员,有3620C =种选法,再选2名女运动员,有246C =种选法, 共有3264120C C ⋅=种选法.(2)“至少有1名女运动员”的对立事件为“全是男运动员”,从10人中任选5人,有510252C =种选法,全是男运动员有566C =种选法,所以“至少有1名女运动员”的选法有55106246-=C C 种选法. (3)“只有男队长”的选法有48C 种,“只有女队长”的选法有48C 种,“男女队长都入选”的选法有38C 种,所以队长中至少有1人参加的选法共有43882196C C +=种;(4)当有女队长时,其他人选法任意,共有49C 种,不选女队长,必选男队长,共有48C 种,其中不含女运动员的选法有45C 种,此时共有4485C C -种,所以既要有队长,又要有女运动员的选法共有444985191C C C +-=种. 【点睛】本题主要考查分步,分类计数原理以及组合的分配问题,还考查了理解辨析和运算求解的能力,属于中档题.26.(1)()45551a a - (2)见解析【分析】(1)根据组合数公式可得1455k k kC C -=,代入整理即可得到结论;(2)利用数学归纳法证明,分别验证出1n =时成立后,假设()*n k k N =∈时成立,进而根据三角函数运算证得1n k =+时成立,从而得到结论. 【详解】(1)当*k N ∈时,()()()1455!4!55!5!1!41!k k kC k C k k k k -=⋅=⋅=-⎡⎤---⎣⎦,从而()()()()()555111455455455501115151151kkk kk k k k k kCa Ca a C a a a ---===-=⋅-=-⋅-=-∑∑∑.(2)证明:①当1n =时,1tan14a π==,结论成立;②假设当()*n k k N =∈时,1tan2k k a π+=成立;则当1n k =+时,1k ka +=1tan 2k +=2222tan21tan 2k k π++=-22tan 2k +=222221tan 1tan 222tan 2k k k πππ+++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭=2tan 2k π+=,所以,结论对1n k =+时也成立,由①②得:1tan 2n n a π+=,*n N ∈. 【点睛】本题考查组合数公式的应用、数学归纳法的证明问题;利用数学归纳法证明时需注意,所假设的结论必须在证明时进行应用,属于常考题型.。

新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(答案解析)

新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(答案解析)

一、选择题1.某校高一开设4门选修课,有4名同学选修,每人只选1门,恰有2门课程没有同学选修,则不同的选课方案有( ) A .96种B .84种C .78种D .16种2.()()4221x x x -+-的展开式中x 项的系数为( )A .9-B .5-C .7D .83.某班某天上午有五节课,需安排的科目有语文,数学,英语,物理,化学,其中语文和英语必须连续安排,数学和物理不得连续安排,则不同的排课方法数为( ) A .60B .48C .36D .244.10个人排队,其中甲、乙、丙、丁4人两两不相邻的排法A .5457A A 种 B .1010A -7474A A 种 C .6467A A 种D .6466A A 种5.设()929012913x a a x a x a x -=+++⋅⋅⋅+,则0129a a a a +++⋅⋅⋅+的值为( ) A .94B .93C .92D .92-6.甲、乙、丙、丁4人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( ) A .840B .2226C .2100D .23527.袋中有大小相同的四个白球和三个黑球,从中任取两个球,两球同色的概率为( ) A .47B .37C .27D .8218.3450(1)(1)(1)x x x ++++++的展开式中3x 的系数是( )A .351CB .450C C .451CD .447C9.若5个人按原来站的位置重新站成一排,恰有一人站在自己原来的位置上的概率为( ) A .34B .14C .18D .3810.包括甲、乙、丙3人的7名同学站成一排拍纪念照,其中丙站中间,甲不站在乙的左边,且不与乙相邻,则不同的站法有( ) A .240种B .252种C .264种D .288种11.现有甲、乙、丙、丁、戌5人参加社区志愿者服务活动,每人从事团购、体温测量、进出人员信息登记、司机四项工作之一,每项工作至少有一人参加.若甲、乙不会开车但能从事其他三项工作,丙、丁、戌都能胜任四项工作,则不同安排方案的种数是( ) A .234B .152C .126D .10812.已知5250125(12)...x a a x a x a x +=++++,则512025...222a a a a ++++的值为( ) A .32 B .1 C .81D .64二、填空题13.某一天上午的课程表要排入语文、数学、物理、体育共4节课,如果第一节不排体育,最后一节不排数学,那么共有排法_________种. (用数字作答)14.从编号为1,2,3,4,…,10的10个大小、形状都相同的小球中任取5个球.如果某两个球的编号相邻,那么称这两个球为一组“好球”,则任取的5个球中恰有两组“好球”的取法有_______种.(用数字作答)15.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为__________.16.北京《财富》全球论坛期间,某高校有8名志愿者参加接待工作.若每天排早、中、晚三班,每班至少2人,每人每天必须值一班且只值一班,则开幕式当天不同的排班种数为______.17.()83x y z +-展开式中,52x y z 项的系数为__________. 18.已知集合{}123456,,,,,AB C a a a a a a =,且集合{}123,,A B C a a a =,则集合A 、B 、C 所有可能的情况有__________种. 19.若212626xx C C -=,则x =__________.20.有6个人分成两排就座,每排3人,若甲和乙必须在同一排且相邻,则有__________种不同的坐法.三、解答题21.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数.(1)有女生但人数必须少于男生;(2)某男生必须包括在内,但不担任数学课代表;(3)某女生一定要担任语文课代表,某男生必须担任课代表,但不担任数学课代表. 22.(1)在239(1)(1)(1)(1)x x x x ++++++++的展开式中,求2x 的系数;(2)设6260126(12)x a a x a x a x -=++++…,()x R ∈,求下列各式的值. (ⅰ)0126a a a a ++++…; (ⅱ)246a a a ++;(ⅲ)12345623456a a a a a a +++++. 23.已知,n ∈N *.(1)设f (x )=a 0+a 1x +a 2x 2+…+a n x n ,①求a 0+a 1+a 2+…+a n ;②若在a 0,a 1,a 2,…,a n 中,唯一的最大的数是a 4,试求n 的值;(2)设f (x )=b 0+b 1(x +1)+b 2(x +1)2+…+b n (x +1)n ,求.24.从1,3,5,7,9中任取2个数,从0,2,4,6中任取2个数,(1)能组成多少个没有重复数字的四位数?(2)若将(1)中所有个位是5的四位数从小到大排成一列,则第100个数是多少?25.已知2nm x x ⎛ ⎝(m 是正实数)的展开式中前3项的二项式系数之和等于37. (1)求n 的值;(2)若展开式中含1x项的系数等于112,求m 的值. 26.已知n 为给定的正整数,t 为给定的实数,设(t +x )n =a 0+a 1x +a 2x 2+…+a n x n . (1)当n =8时.①若t =1,求a 0+a 2+a 4+a 6+a 8的值; ②若t =23,求数列{a n }中的最大值; (2)若t=23,当13x =时,求()0nkk k n k a x =-∑的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】先确定选的两门:246C = ,再确定学生选:24214-= ,所以不同的选课方案有61484,⨯=选B.2.A解析:A 【分析】将()()4221x x x -+-化简为:2444(1)(1)2(1)x x x x x --+--,写出4(1)x -二项展开式的通项公式(4)14(1)rr r r T C x -+=⋅-,即可求得答案.【详解】()()42244421(1)(1)2(1)x x x x x x x x -+---+-=-4(1)x -二项展开式的通项公式(4)14(1)r r r r T C x -+=⋅-24(1)x x -中不含x 项,无需求解.4(1)x x --中含x 项,即当4r =时(44444)(1)x C xx --⋅⋅=--42(1)x -中含x 项,即当3r =时(43)34328(1)C x x -⋅=-- ∴ ()()4221x x x -+-的展开式中x 项9x -故选:A. 【点睛】本题考查求二项式展开式中常数项,解题关键是掌握二项展开式的通项公式,考查分析能力和计算能力,属基础题.3.D解析:D 【分析】由排列组合中的相邻问题与不相邻问题得:不同的排课方法数为22222324A A A =,得解. 【详解】先将语文和英语捆绑在一起,作为一个新元素处理,再将此新元素与化学全排,再在3个空中选2个空将数学和物理插入即可, 即不同的排课方法数为22222324A A A =, 故选:D . 【点睛】本题考查了排列组合中的相邻问题与不相邻问题,属中档题.4.C解析:C 【分析】不相邻问题采用“插空法”. 【详解】解:∵10个人排成一排,其中甲、乙、丙、丁4人两两不相邻排成一排, ∴采用插空法来解,另外六人,有66A 种结果,再在排列好的六人的七个空档里,排列甲、乙、丙、丁, 有47A 种结果,根据分步计数原理知共有66A •47A , 故选C . 【点睛】本题考查排列组合及简单计数问题,在题目中要求元素不相邻,这种问题一般采用插空法,先排一种元素,再在前面元素形成的空档,排列不相邻的元素.5.A解析:A 【分析】由()913x -的展开式的通项为()193rrr T C x +=-,可得10a <,30a <,50a <,70a <,90a <,则01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+-,再令1x =-即可得解; 【详解】解:因为()929012913x a a x a x a x -=+++⋅⋅⋅+,()913x -的展开式的通项为()193rr r T C x +=-,所以10a <,30a <,50a <,70a <,90a <,所以01290123456789a a a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-+- 令1x =-得901234567894a a a a a a a a a a -+-+-+-+-= 所以901294a a a a +++⋅⋅⋅+= 故选:A 【点睛】本题考查赋值法求二项式展开式的系数和的问题,属于中档题.6.B解析:B 【分析】分成三类:一类每个台阶站1人;二类一个台阶站2人,一个台阶1人,一个台阶1人;三类一个台阶站2人,一个台阶站2人,分类用加法原理可得. 【详解】每个台阶站1人有47840A =,一个台阶站2人,一个台阶1人,一个台阶1人有23471260C A , 一个台阶站2人,一个台阶站2人有273126A 所以共有840+1260+126=2226 故选:B. 【点睛】本题考查使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.7.B解析:B 【分析】根据题意可知,所选的两个球均为白球或黑球,利用组合计数原理与古典概型的概率公式可求得所求事件的概率. 【详解】由题意可知,所选的两个球均为白球或黑球,由古典概型的概率公式可知,所求事件的概率为22432737C C P C +==. 故选:B. 【点睛】本题考查古典概型概率的计算,涉及组合计数原理的应用,考查计算能力,属于中等题.8.C解析:C 【分析】利用等比数列的求和公式,化简得5133450(1)(1)(1)(1)(1)x x x x x x+-+++++++=,再结合二项式定理,即可求解. 【详解】 由题意,可得3485133450(1)(1)1(1)(1)(1)(1)(1)x x x x x x x xx⎡⎤++-+-+⎣⎦++++++==, 所以3450(1)(1)(1)x x x ++++++的展开式中3x 的系数就是51(1)x +的展开式中4x 的系数,即为451C .故选:C . 【点睛】本题主要考查二项式定理,以及等比数列的前n 项和公式,考查考生分析问题、解决问题的能力、化归与转化能力、运算求解能力.9.D解析:D 【分析】分两步分析:①先从5个人中选1人,其位置不变,有155C =种,②对于剩下的四个人,因为每个人都不能站在自己原来的位置上,有9种,恰有一人站在自己原来的位置上包含的基本事件数为45,再求出事件总数,按照古典概型概率公式即可求解. 【详解】5个人站成一排的基本事件的总数为55A , 5个人按原来站的位置重新站成一排, 恰有一人站在自己原来的位置, 先从5个人中选1人,其位置不变, 有155C =种,对于剩下的四个人, 因为每个人都不能站在自己原来的位置上, 因此第一个人有3种站法, 被站位置的那个人也有3种站法,最后两人只有1种站法,故不同的调换方法有53345⨯⨯=,所以所求事件的概率为453 1208=.故选:D.【点睛】本题考查古典概型的概率,利用分步乘法原理和排列是解题的关键,属于中档题. 10.C解析:C【分析】先排甲、乙、丙外的4人,再对甲、乙、丙三人分类讨论即可得解.【详解】先排甲、乙、丙外的4人,有44A种排法,再排甲、乙2人,有两类方法:一类是甲、乙2人插空,又甲排在乙的左边,然后丙排在中间,故有4245240A C=种不同的站法;另一类是把甲、乙、丙按乙、丙、甲的顺序插入中间,有44A种不同的站法,所以共有264种不同的站法.故选:C【点睛】此题考查计数原理的应用,利用排列组合相关知识解决排位问题,需要熟练掌握计数原理相关知识.11.C解析:C【分析】分情况进行讨论,先计算“甲乙一起参加除了开车的三项工作之一”有多少种情况,再计算“甲和乙分别承担一份工作,丙、丁、戌三人中有两人承担同一份工作”和“甲或乙与丙、丁、戌三人中的一人承担同一份工作”的情况,相加即得.【详解】由题,分情况讨论,甲乙一起参加除了开车的三项工作之一:133318C A=种;甲乙不同时参加一项工作,又分为两种情况:①甲和乙分别承担一份工作,丙、丁、戌三人中有两人承担同一份工作,有:222 323323236C A A=⨯⨯⨯=种;②甲或乙与丙、丁、戌三人中的一人承担同一份工作:2112332272A C C A=种.由分类计数原理,可得共有183672126++=种.故选:C【点睛】本题考查计数原理,考查学生的逻辑推理能力.12.A解析:A 【分析】根据所求与已知的关系,令12x =,即可求得答案. 【详解】5250125(12)...x a a x a x a x +=++++,∴令12x =,即可得555120251...122322222a a a a ⎛⎫++++=+⨯== ⎪⎝⎭.故选:A 【点睛】本题考查二项式定理的应用,考查理解辨析能力与运算求解能力,属于基础题.二、填空题13.14【分析】分析体育课在不在最后一节采用分类加法计数原理以及排列思想计算出对应的排法数【详解】当体育课在最后一节时此时另外节课可在其余位置任意排列故有种排法;当体育课不在最后一节时此时体育课只能在第解析:14 【分析】分析体育课在不在最后一节,采用分类加法计数原理以及排列思想计算出对应的排法数. 【详解】当体育课在最后一节时,此时另外3节课可在其余位置任意排列,故有33A 种排法; 当体育课不在最后一节时,此时体育课只能在第2节或第3节,故有112222A A A 种排法, 所以一共有:31123222+=14A A A A 种排法, 故答案为:14. 【点睛】方法点睛:本题考查分类加法计数原理与排列的综合应用,属于中档题.常见排列数的求法为:(1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.14.120【分析】假定5个球排成一排5个小球之间有6个空位取空位的情况来达到使小球的编号连续的目的有两种情况:(1)有3个号码是连续;(2)分别有2组号码连续但这2组号码与另一个球的号码不相邻分别求组合解析:120假定5个球排成一排,5个小球之间有6个空位,取空位的情况来达到使小球的编号连续的目的,有两种情况:(1)有3个号码是连续;(2)分别有2组号码连续,但这2组号码与另一个球的号码不相邻,分别求组合数,可得答案.【详解】将5个小球排成一排,在5个小球中间有6个空位,5个小球的编号恰好有两组“好球”,分两种情况:(1)这5个球中有3个球的号码是连续的,另两个小球的号码的是间断的,3个小球的号码与另2个球的号码也不是连续的,有216460C C=,(2)这5个球中有2组球的号码分别连接,但这两组球的号码与另一个球的号码是不连续的,有126560C C=,故任取的5个球中恰有两组“好球”的取法有60+60120=种取法,故答案为:120.【点睛】本题考查组合知识,对于相邻问题和相间问题,常采用分析空位的方法,属于中档题. 15.【分析】将一班位同学捆绑在一起形成一个大元素与其它班位同学形成个元素然后再将二班位同学插空利用排列组合思想以及古典概型的概率公式可求得所求事件的概率【详解】将一班位同学捆绑在一起形成一个大元素与其它解析:1 20【分析】将一班3位同学捆绑在一起,形成一个大元素,与其它班5位同学形成6个元素,然后再将二班2位同学插空,利用排列组合思想以及古典概型的概率公式可求得所求事件的概率.【详解】将一班3位同学捆绑在一起,形成一个大元素,与其它班5位同学形成6个元素,然后再将二班2位同学插空,由分步乘法计数原理以及古典概型的概率公式可知,所求事件的概率为3623671010120 A A AA=.故答案为:1 20.【点睛】本题考查捆绑法与插空法的应用,同时也考查了利用古典概型的概率公式求事件的概率,考查计算能力,属于中等题.16.2940【分析】根据题意有两类分配方案第一类:224三组第二类:233三组分别求得排班种数再利用分类计数原理求解【详解】由8名志愿者根据早中晚三班且每班至少2人分为3组第一类:224三组共有种第二类解析:2940根据题意,有两类分配方案,第一类:2,2,4三组,第二类:2,3,3三组,分别求得排班种数,再利用分类计数原理求解. 【详解】由8名志愿者,根据早、中、晚三班,且每班至少2人,分为3组.第一类:2,2,4三组,共有22438643221680C C C A A ⋅=种, 第二类:2,3,3三组,共有23338633221260C C C A A ⋅=种, 所以每人每天必须值一班且只值一班,则开幕式当天不同的排班种数168012602940+=. 故答案为:2940 【点睛】本题主要考查排列组合中的分组分配问题,还考查了分析求解问题的能力,属于中档题.17.【分析】由的指数是1得到然后由的指数是2得到然后即可算出答案【详解】因为的指数是1所以得到又因为的指数是2得到所以项的系数为故答案为:【点睛】在解决本类问题时应将其中两项看成一个整体来处理 解析:1512-【分析】()()8833x y z x y z +-=+-⎡⎤⎣⎦,由z 的指数是1,得到()()7183C x y z +-,然后由y 的指数是2,得到()22573C xy ,然后即可算出答案.【详解】()()8833x y z x y z +-=+-⎡⎤⎣⎦因为z 的指数是1,所以得到()()7183C x y z +-又因为y 的指数是2,得到()22573C xy所以52x y z 项的系数为()12287131512C C -=-故答案为:1512- 【点睛】在解决本类问题时应将其中两项看成一个整体来处理.18.【分析】由可知集合均含有元素作出韦恩图可知元素可以放在除之外的个区域中每个元素有个选择利用分步乘法计数原理可得结果【详解】如下图所示集合被分为了个区域由可知集合均含有元素则元素可以放在除之外的个区域 解析:216【分析】 由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,作出韦恩图,可知元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,利用分步乘法计数原理可得结果. 【详解】如下图所示,集合A 、B 、C 被分为了7个区域,由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,则元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,由分步乘法计数原理可知,所有可能的情况种数为36216=. 故答案为:216. 【点睛】本题考查排列组合问题,考查分步乘法计数原理的应用,考查运算求解能力,属于中等题.19.1或9【分析】由再根据组合的互补性质可得即可解得的值【详解】解:由可得:解得:又根据组合的互补性质可得可得:解得:故答案为:1或9【点睛】本题考查了组合及组合数公式的应用掌握组合数的性质和组合数公式解析:1或9 【分析】由212626x x C C -=,再根据组合的互补性质可得26(21)2626x x C C --=,即可解得x 的值.【详解】解:由212626x x C C -=,可得:21x x =-,解得:1x =,又根据组合的互补性质可得26(21)2626x x C C --=,可得:26(21)x x =--,解得:9x =. 故答案为:1或9. 【点睛】本题考查了组合及组合数公式的应用,掌握组合数的性质和组合数公式是解题的关键.20.【分析】先把甲和乙捆在一起再进行分组再排列即可得答案【详解】先进行分组并保证甲和乙在一起共有种再进行排列∴共有故答案为:【点睛】本题考查排列数的应用考查逻辑推理能力运算求解能力求解时注意先捆绑再分组 解析:192【分析】先把甲和乙捆在一起,再进行分组,再排列即可得答案. 【详解】先进行分组,并保证甲和乙在一起,共有14C 4=种,再进行排列, ∴共有113423(22)192N C C A =⋅⋅⨯⋅=. 故答案为:192. 【点睛】本题考查排列数的应用,考查逻辑推理能力、运算求解能力,求解时注意先捆绑、再分组、再排列的思路.三、解答题21.(1)5400种;(2)3360种;(3)360种. 【分析】(1)有女生但人数必须少于男生,先取后排即可; (2)先取后排,但先安排该男生;(3)先从除去该男生该女生的6人中选3人有36C 种,再安排该男生有13C 种,其余3人全排即可. 【详解】解:(1)先选后排,先取可以是2女3男,也可以是1女4男,先取有32415353C C C C +种,后排有55A 种,共()32415535355400C C C C A +⋅=(种).(2)先选后排,但先安排该男生,有4147443360C C A ⋅⋅=(种).(3)先从除去该男生、该女生的6人中选3人有36C 种,再安排该男生有13C 种,其中3人全排有33A 种,共313633360C C A ⋅⋅=(种). 【点睛】排列组合问题在实际问题中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件,属于中档题. 22.(1)120;(2)(ⅰ)1;(ⅱ)364;(ⅲ)12. 【分析】(1)利用二项式定理求得2x 的系数的表达式,再利用组合数的计算公式,即可求解. (2) 令1x =即可求得(ⅰ)的结果,令0x =得01a =;令1x =-,计算即可求得(ⅱ)的结果,对已知条件两边求导,令1x =即可求得(ⅲ)的结果. 【详解】(1)在239(1)(1)(1)(1)x x x x ++++++++的展开式中,2x 项的系数为2223223223232393394499910120C C C C C C C C C C C C +++=+++=+++==+==………….(2)(ⅰ)令1x =得0161a a a +++=… (ⅱ)令0x =得01a =;令1x =-,得0126729a a a a -+-+=…与(ⅰ)中式子相加得:0246365a a a a +++=,所以246364a a a ++=(ⅲ)6260126(12)x a a x a x a x -=++++…,求导可得:523451234566(2)(12)23456x a a x a x a x a x a x ⨯--=+++++令1x =得:1234562345612a a a a a a +++++=. 【点睛】本题考查了二项展开式系数,考查了二项式定理的性质及其应用、导数的应用,考查了推理能力与计算能力,属于中档题. 23.(1)①;②n =12或13;(2)(2n +1﹣2﹣n )【解析】 【分析】(1)①可令x =1,代入计算可得所求和;②可得f (x )=(x +2)n =(2+x )n 的通项公式,a r 最大即为a r ≥a r ﹣1,且a r ≥a r +1,化简计算,结合不等式的解,可得所求值; (2)由f (x )=[1+(x +1)]n ,可得b r =C ,r =0,1,…,n ,推得,再由二项式定理,计算可得所求和. 【详解】解:(1)①由(x +2)n =a 0+a 1x +a 2x 2+…+a n x n , 可令x =1,可得3n =a 0+a 1+a 2+…+a n , 即a 0+a 1+a 2+…+a n =3n ; ②f (x )=(x +2)n =(2+x )n , 可得a r2n ﹣r x r ,r =0,1,…,n ,若在a 0,a 1,a 2,…,a n 中,a r 最大,可得,即为,化为,由于r =4时为a 4唯一的最大值,可得n =12,13;(2)由f (x )=b 0+b 1(x +1)+b 2(x +1)2+…+b n (x +1)n ,且f (x )=[1+(x +1)]n ,可得b r =C ,r =0,1,…,n , 则,由••,则(C)(2n +1﹣2﹣n ).【点睛】本题考查二项式定理,考查赋值法求系数和,考查组合数的性质.解题关键是掌握二项式展开式通项公式,在展开式中第项系数为,则由可得系数最大项的项数.24.(1) 1260 ;(2) 7205. 【分析】(1)需要分两类:第一类,不选0时;第二类,选0时,根据分类计数原理可得;(2)先分5种情况,形如①“1××5",②"2××5",③“3××5”,④“4××5”,⑤“6××5”,再寻找规律,问题得以解决. 【详解】解:(1)不选0时,有224534720C C A ⋅⋅=个;选0时,0不能排在首位, 21135333540C C A A ⋅⋅⋅=,根据分类计数原理,共有720+540=1260个四位数.(2)①“1××5”,中间所缺的两数只能从0,2,4,6中选排,有2412A =个; ②“2××5",中间所缺的两数是奇偶数各一个,有112432C C A 24⋅⋅=个; ③“3××5",仿“1××5”,也有2412A =个; ④“4××5",仿“2××5",也有112432C C A 24⋅⋅=个; ⑤“6××5”也有112432C C A 24⋅⋅=个;即小于7000的数共有96个,故第97个数是7025,第98个数是7045,第99个数是7065,第100个数是7205. 【点睛】本题主要考查了分类计数原理,关键是分类,要不重不漏,属于中档题. 25.(1)8n =(2)2m = 【分析】(1)由01237n n n C C C ++=,求解即可得出; (2)根据展开式的通项,即可得出m 的值. 【详解】 (1)01237n n n C C C ++=,2720n n ∴+-=,解得9n =-(舍)8n =(2)28m x x ⎛+ ⎝的展开式的通项为()18225168288rrr r r r C C mx x m x -+---⎛⎫⋅ ⎪⎝⎭=当6r =时是含1x项,所以268112m C =,解得2m = 【点睛】本题主要考查了已知指定项的系数求参数,属于中档题. 26.(1)①128,②44827;(2)23n【分析】(1)①设f (x )=(1+x )8=a 0+a 1x +a 2x 2+…+a 8x 8,f (1)=28=a 0+a 1+a 2+…+a 8,f (-1)=0=a 0-a 1+a 2-…+a 8,a 0+a 2+a 4+a 6+a 8= [f (1)+ f (-1)] ÷2即可得解;②8823rr n a C -⎛⎫= ⎪⎝⎭,通过不等式组891888718822332233r rr r r rr r C C C C -----+⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩即可得解; (2)处理()()002133n kkn nkk k nk k n k a x n k C -==⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭∑∑0021213333n kkn kknnk k n n k k nC kC --==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑1110021*******n kk n kk nn k k n n k k n nC C -----==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑,利用二项式定理逆用即可得解.【详解】(1)设f (x )=(t +x )n =a 0+a 1x +a 2x 2+…+a n x n , 当n =8时.①若t =1,f (x )=(1+x )8=a 0+a 1x +a 2x 2+…+a 8x 8, f (1)=28=a 0+a 1+a 2+…+a 8,f (-1)=0=a 0-a 1+a 2-…+a 8, a 0+a 2+a 4+a 6+a 8= [f (1)+ f (-1)]÷2=128 ②若t =23,(23+x )n =a 0+a 1x +a 2x 2+…+a n x n , 所以8823rr n a C -⎛⎫= ⎪⎝⎭,设第r 项最大,则891888718822332233r rr r r rr r C C C C -----+⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩, ()()123921381r r r r ⎧≥⎪-⎪⎨⎪≥⎪-+⎩解得222755r ≤≤,所以=5r数列{a n }中的最大值35582448327a C ⎛⎫==⎪⎝⎭(2)若t=23,当13x =时,求()0nkk k n k a x =-∑的值.(23+x )n =a 0+a 1x +a 2x 2+…+a n x n , 当2n ≥时,()()002133n kknnkk k nk k n k a x n k C -==⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭∑∑021213333n kkn kknnk k n n k k nC kC --==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑ 1110021*******n kkn kk nn k k nn k k n nC C -----==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑121333n n n -⎛⎫=-+ ⎪⎝⎭23n =, 当n =1时也满足,所以()0nk k k n k a x =-∑23n =. 【点睛】此题考查二项式定理的应用,根据展开式求解系数关系,涉及组合数计算公式,二项式定理的逆用,综合性强.。

新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(含答案解析)

新北师大版高中数学高中数学选修2-3第一章《计数原理》测试题(含答案解析)

一、选择题1.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252C .297D .2072.今有8件不同的奖品,从中选6件分成三份,两份各1件,另一份4件,不同的分法有( )种 A .420 B .840 C .30 D .120 3.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为( ) A .72B .48C .24D .604.某班某天上午有五节课,需安排的科目有语文,数学,英语,物理,化学,其中语文和英语必须连续安排,数学和物理不得连续安排,则不同的排课方法数为( ) A .60B .48C .36D .245.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为 A .14B .16C .20D .486.5(3)(2)x x -+的展开式中3x 的系数为( ) A .10 B .40-C .200D .2407.若5个人按原来站的位置重新站成一排,恰有一人站在自己原来的位置上的概率为( ) A .34B .14C .18D .388.用6个字母,,,,,A B C a b c 编拟某种信号程序(大小写有区别),把这6个字母全部排列如图所示的表格中,每个字母必须使用且只使用一次,不同的排列方式表示不同的信号,如果恰有一对字母(同一个字母的大小写)排到同一列的上下格位置,那么称此信号为“微错号”,则不同的“微错号”的总数为( )A .144B .288C .432D .576 9.现有6位同学站成一排照相,甲乙两同学必须相邻的排法共有多少种?( ) A .720B .360C .240D .12010.五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且宫、羽不相邻,且位于角音阶的同侧,可排成的不同音序有( ) A .20种B .24种C .32种D .48种11.若()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( ) A .1 B .9C .-1或-9D .1或912.41(1)x x++的展开式中常数项为( ) A .18B .19C .20D .21二、填空题13.某学校组织劳动实习,其中两名男生和两名女生参加农场体验活动,体验活动结束后,农场主人与四名同学站一排合影留念.已知农场主人站在中间,两名男生不相邻,则不同的站法共有______种.14.如图所示的五个区域中,中心区E 域是一幅图画,现要求在其余四个区域中涂色.........,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为______.15.从0、2、4中取一个数字,从1、3、5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是______(用数字作答)16.若6(1)2xx x ⎛+- ⎝展开式中的常数项是60,则实数a 的值为_____. 17.已知集合{}123456,,,,,AB C a a a a a a =,且集合{}123,,A B C a a a =,则集合A 、B 、C 所有可能的情况有__________种. 18.当n 为正奇数时,011221777...7nn n n n n n n C C C C ---++++除以9的余数是______.19.某班共有40学生.某次考试中,甲、乙、丙3位同学的成绩都在班级前10名.甲的成绩比乙高,乙的成绩比丙高,全班没有并列名次.如果把甲、乙的成绩排名依次作为横坐标x 、纵坐标y ,那么这样的点坐标(),x y 共有_________个.20.已知()()()()52012213211x x a a x a x --=+-+-()()565611a x a x +⋅⋅⋅+-+-,则5a =______.三、解答题21.某大学师范学院的两名教授带领四名实习学生外出实习,实习前在学院门口合影留念,实习结束后四名实习生就被安排在三所中学任教,请回答以下问题.(用数字作答) (1)若站成两排合影,两名教授站在前排,四名实习学生站在后排,则共有多少种不同的排法?(2)若站成一排合影,两名教授必须相邻,则共有多少种不同的排法?(3)实习结束后,四名实习生被安排在三所中学任教,若每个中学至少一人去,则共有多少种不同的安排方法?22.若12nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和是64.(1)求n 的值;(2)求展开式中的常数项.23.将7名应届师范大学毕业生分配到3所中学任教.(最后结果用数字表示) (1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?(2)一所学校安排4个人,一所学校安排2个人,一所学校1个人,有多少种不同的分配方案?(3)其中有两所学校都各安排3个人,另一所学校安排1个人,有多少种不同的分配方案?24.已知1(21)n x ++展开式的二项式系数和比(31)n x -展开式的偶数项的二项式系数和大48,求22nx x ⎛⎫- ⎪⎝⎭的展开式中: (1)二项式系数最大的项; (2)系数的绝对值最大的项.25.在AOB ∠的OA 边上有4个异于O 点的点,OB 边上有5个异于O 点的点,以这10个点(含O 点)为顶点,能得到多少个不同的三角形? 26.已知数列是等差数列,且,,是展开式的前三项的系数.(1)求的值; (2)求展开式的中间项; (3)当时,用数学归纳法证明:.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:因为31010310(1)(1)(1)(1)x x x x x -+=+-+所以310(1)(1)x x -+展开式中的5x 的系数是10(1)x +的展开式的中5x 的系数减去10(1)x +的2x 的系数由二项式定理,10(1)x +的展开式的通项为110r r r T C x += 令=5r ,则10(1)x +的展开式的中5x 的系数为510C 令2r,则10(1)x +的展开式的中2x 的系数为210C所以5x 的系数是510C -210C 25245207=-= 故答案选D 考点:二项式定理.【易错点晴】()n a b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指kn C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.[学_科_2.A解析:A 【分析】分两步进行:(1)先从8件不同的奖品中选6件;(2)将6件不同的奖品分成三份,两份各1件,另一份4件.利用分步乘法计数原理可求得分法种数. 【详解】分两步进行:(1)先从8件不同的奖品中选6件,有68C 种分法;(2)将6件不同的奖品分成三份,两份各1件,另一份4件,分法种数为46C . 由分步乘法计数原理可知,不同的分法种数为64862815420C C =⨯=. 故选:A. 【点睛】本题考查部分平均分组问题,考查分类乘法计数原理的应用,考查计算能力,属于中等题.3.C解析:C 【分析】先将丙与丁捆绑,形成一个“大元素”与戊进行排列,然后再将甲、乙插空,利用分步乘法计数原理可求得排法种数. 【详解】先将丙与丁捆绑,形成一个“大元素”与戊进行排列,然后再将甲、乙插空, 由分步乘法计数原理可知,不同的排法种数为22222324A A A =种. 故选:C. 【点睛】本题考查捆绑法与插空法的综合应用,同时也考查了分步乘法计数原理的应用,考查计算能力,属于中等题.4.D解析:D【分析】由排列组合中的相邻问题与不相邻问题得:不同的排课方法数为22222324A A A =,得解. 【详解】先将语文和英语捆绑在一起,作为一个新元素处理,再将此新元素与化学全排,再在3个空中选2个空将数学和物理插入即可, 即不同的排课方法数为22222324A A A =, 故选:D . 【点睛】本题考查了排列组合中的相邻问题与不相邻问题,属中档题.5.B解析:B 【解析】由间接法得32162420416C C C -⋅=-=,故选B .6.B解析:B 【分析】首先将5(3)(2)x x -+拆开得到555((2)3(23))(2)x x x x x =+-+-+,得到5(3)(2)x x -+的展开式中3x 的系数与5(2)x +展开式中2x 项和3x 项的系数有关,化简求得结果. 【详解】555((2)3(23))(2)x x x x x =+-+-+,5(2)x +展开式中2x 项的系数为335280C ⋅=, 5(2)x +展开式中3x 项的系数为225240C ⋅=, 所以5(3)(2)x x -+的展开式中3x 的系数为8034040-⨯=-, 故选:B. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求两个二项式乘积展开式的系数问题,在解题的过程中,注意分析与哪些项有关,属于简单题目.7.D解析:D 【分析】分两步分析:①先从5个人中选1人,其位置不变,有155C =种,②对于剩下的四个人,因为每个人都不能站在自己原来的位置上,有9种,恰有一人站在自己原来的位置上包含的基本事件数为45,再求出事件总数,按照古典概型概率公式即可求解. 【详解】5个人站成一排的基本事件的总数为55A ,5个人按原来站的位置重新站成一排,恰有一人站在自己原来的位置,先从5个人中选1人,其位置不变,有155C=种,对于剩下的四个人,因为每个人都不能站在自己原来的位置上,因此第一个人有3种站法,被站位置的那个人也有3种站法,最后两人只有1种站法,故不同的调换方法有53345⨯⨯=,所以所求事件的概率为453 1208=.故选:D.【点睛】本题考查古典概型的概率,利用分步乘法原理和排列是解题的关键,属于中档题.8.B解析:B【分析】根据题意,分三步进行分析:(1)先确定排到同一列的上下各位置的一对字母,由分步计数原理可得其放法数目;(2)确定好第一组数据,剩下两组数据对应四个表格,分析方法(1),则可确定第二组字母的放法数目;(3)剩最后一组字母放入最后两个位置,由排列公式即可得其放法数目.最后由分步计数原理计算即可得出答案.【详解】根据题意分析,分三步进行:(1)先选定排列到同一列上下格位置的一对字母,有3种情况,再将其放入表格中,有3种情况,再考虑这一对字母的顺序有2种不同的顺序;(2)再分析第二对字母,假设(1)中选定的为,A a,则剩下的两组字母中选一组有2种情况,再将其放入表格中有2种不同结果,再考虑这一对字母的顺序有2种不同的顺序;(3)最后一对字母放入最后两个位置有2种不同的排法.所以共有3322222288⨯⨯⨯⨯⨯⨯=个“微错号”.故选:B.【点睛】本题主要考查计数原理,解题的关键是弄清题目中排列的方法.9.C解析:C【分析】6名同学排成一排,其中甲、乙两人必须排在一起,这是相邻问题,一般用“捆绑法”.将甲乙两名同学“捆绑”在一起,看成一个元素,再与剩下的4人一起全排列,根据分步计数原理即可得出结果.【详解】将甲乙“捆绑”在一起看成一个元素,与其余4人一起排列, 而甲和乙之间还有一个排列, 共有5252240A A =. 故选:C. 【点睛】本题考查了排列组合、两个基本原理的应用,相邻问题“捆绑法”求解,属于基础题.10.C解析:C 【分析】根据角所在的位置,分两类:角排在一或五;角排在二或四.根据分类计数原理和排列组合的知识可得. 【详解】若角排在一或五,有22232A A =24种;若角排在二或四,有22222A A 8=. 根据分类计数原理可得,共有24832+=种. 故选:C . 【点睛】本题考查排列组合和计数原理,属于基础题.11.D解析:D 【分析】根据题意分析常数项由()2x a +中的某项与511x ⎛⎫- ⎪⎝⎭中的某项项相乘所得,再二项式定理的通项公式求解即可. 【详解】由题可得,()2x a +中含2x 项与511x ⎛⎫- ⎪⎝⎭中含21x 项相乘可得常数项; ()2x a +中含x 项与511x ⎛⎫- ⎪⎝⎭中含1x 项相乘可得常数项; ()2x a +中的常数项与511x ⎛⎫- ⎪⎝⎭中的常数项相乘可得常数项.故()5211x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 ()()()2134522122551112111010x C ax C a a a x x ⎛⎫⎛⎫⋅⋅⋅-+⋅⋅⋅-+⋅-=-+- ⎪ ⎪⎝⎭⎝⎭.故22101011090a a a a -+-=-⇒-+=,解得1a =或9a =. 故选:D【点睛】本题主要考查了利用二项式定理,根据常数项求解参数的方法.需要根据题意分析常数项的所有可能组成,属于中档题.12.B解析:B 【分析】 41(1)x x ++展开式的141()r r r T C x x +=+,(0r =,1,⋯,4).1()r x x+的通项公式:211()k r k k k r k k r r T C x C x x--+==,令2r k =,进而得出.【详解】 解:41(1)x x ++展开式的141()r r r T C x x+=+,(0r =,1,⋯,4). 1()r x x +的通项公式:211()k r k k k r k k r r T C x C x x--+==,令2r k =,可得:0k =时,0r =;1k =时,2r ,2k =时,4r =.41(1)x x∴++展开式中常数项21424244119C C C C =+⨯+⨯=. 故选:B . 【点睛】本题考查了二项式定理的通项公式及其应用,考查了推理能力与计算能力,属于中档题.二、填空题13.16【分析】根据正难则反原理可求男生相邻的情况再拿所有情况减去即可【详解】农场主在中间共有种站法农场主在中间两名男生相邻共有种站法故所求站法共有种故答案为:16【点睛】本题考查计数原理考查了正难则反解析:16 【分析】根据正难则反原理,可求男生相邻的情况,再拿所有情况减去即可. 【详解】农场主在中间共有4424A =种站法,农场主在中间,两名男生相邻共有222228A A ⋅=种站法, 故所求站法共有24816-=种. 故答案为:16 【点睛】本题考查计数原理,考查了正难则反原理,考查逻辑推理能力,属于中档题.14.84【分析】按照选取的颜色个数分类:(1)用四种颜色涂色颜色都不同;(2)用三种颜色或同色;(3)用两种颜色涂色同色同色根据分类甲法原理即可求出结论【详解】分三种情况:(1)用四种颜色涂色有种涂法;解析:84 【分析】按照选取的颜色个数分类:(1)用四种颜色涂色,,,,A B C D 颜色都不同;(2)用三种颜色,,A C 或,B D 同色;(3)用两种颜色涂色,,A C 同色,,B D 同色,根据分类甲法原理,即可求出结论. 【详解】 分三种情况:(1)用四种颜色涂色,有4424A =种涂法; (2)用三种颜色涂色,有34248A =种涂法; (3)用两种颜色涂色,有2412A =种涂法; 所以共有涂色方法24481284++=. 故答案为:84 【点睛】本题考查排列和分类加法原理的应用,合理分类是解题的关键,属于中档题.15.【分析】由题意分为从024中取一个数字0从024中取一个数字不是0分类由分步乘法计数原理结合排列组合的知识即可得解【详解】由题意要从024中取一个数字从135中取两个数字组成无重复数字的三位数可以分 解析:48【分析】由题意分为从0、2、4中取一个数字0,从0、2、4中取一个数字不是0分类,由分步乘法计数原理结合排列、组合的知识即可得解. 【详解】由题意,要从0、2、4中取一个数字,从1、3、5中取两个数字,组成无重复数字的三位数,可以分成两种情况:第一种,当从0、2、4中取一个数字0,而从1、3、5中任选两个数字时,组成无重复数字的三位数有21232212C C A ⋅⋅=个;第二种,当从0、2、4中取一个数字不是0,而从1、3、5中任选两个数字时,组成无重复数字的三位数有12323336C C A ⋅⋅=个; 综上,所有不同的三位数的个数是123648+=. 故答案为:48. 【点睛】本题考查了计数原理的应用,考查了运算求解能力与分类讨论思想,属于中档题.16.【分析】先得到的通项公式为若得到常数项当取1时令当取x 时令解得再根据常数项为60求解【详解】因为的通项公式为若得到常数项当取1时令当取x 时令解得或(舍)所以因为展开式的常数项为60所以解得故答案为:解析:2±【分析】先得到62x ⎛- ⎝的通项公式为1r T +=36626(1)2rr r r r C a x --+-⨯⨯⨯⨯,若得到常数项,当(1)x +取1时,令3602r -=,当(1)x +取x 时,令3612r -=-,解得r ,再根据常数项为60求解. 【详解】因为62x ⎛- ⎝的通项公式为16(1)r rr T C +=-⨯⨯636626(1)22rrr r r r r x C a x ---+⎛⎫⨯=-⨯⨯⨯⨯ ⎪⎝⎭, 若得到常数项,当(1)x +取1时,令3602r -=,当(1)x +取x 时,令3612r -=-, 解得4r =或143r =(舍), 所以4r =,因为6(1)2x x ⎛+⋅- ⎝展开式的常数项为60, 所以446446(1)260C a -+-⨯⨯⨯=,解得2a =±. 故答案为:2± 【点睛】本题主要考查二项式展开式的通项公式以及常数项的应用,还考查了运算求解的能力,属于中档题.17.【分析】由可知集合均含有元素作出韦恩图可知元素可以放在除之外的个区域中每个元素有个选择利用分步乘法计数原理可得结果【详解】如下图所示集合被分为了个区域由可知集合均含有元素则元素可以放在除之外的个区域 解析:216【分析】 由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,作出韦恩图,可知元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,利用分步乘法计数原理可得结果. 【详解】如下图所示,集合A 、B 、C 被分为了7个区域,由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,则元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,由分步乘法计数原理可知,所有可能的情况种数为36216=. 故答案为:216. 【点睛】本题考查排列组合问题,考查分步乘法计数原理的应用,考查运算求解能力,属于中等题.18.【分析】利用二项式定理结合组合数的运算即可容易求得结果【详解】因为为正奇数故上式可化简为:该式除以余数为故答案为:【点睛】本题考查由二项式定理解决余数问题属中档题 解析:7【分析】利用二项式定理,结合组合数的运算,即可容易求得结果. 【详解】011221777...7n n n n n n n n C C C C ---++++()711n=+- ()911n=--()()()101119919111n nn n n nn n n n C C C C ---=+⋅-++-+--因为n 为正奇数,故上式可化简为:()()101119919197n n n n n n n C C C ---+⋅-++--+该式除以9,余数为7. 故答案为:7. 【点睛】本题考查由二项式定理解决余数问题,属中档题.19.120【分析】设丙的成绩排名为则将所求问题转化为从小于等于10的正整数中选取3个数最大那个数为最小那个数为即可【详解】设丙的成绩排名为由题意所求问题相当于从小于等于10的正整数中选取3个数最大那个数解析:120 【分析】设丙的成绩排名为z ,则110x y z ≤<<≤,将所求问题转化为从小于等于10的正整数中选取3个数,最大那个数为z ,最小那个数为x 即可. 【详解】设丙的成绩排名为z ,由题意,110x y z ≤<<≤,所求问题相当于从小于等于10的正整数中选取3个数,最大那个数为z ,最小那个数为x ,则共有3101120C ⋅=种,故甲、乙的成绩排名依次作为横坐标x 、纵坐标y ,那么这样的点坐标(),x y 共有120个. 故答案为:120 【点睛】本题考查排列组合的综合应用,考查学生转化与化归思想,是一道中档题.20.【分析】将已知等式等价变形为结合二项展开式的通项即可求得【详解】展开后含有的项为:故答案为:【点睛】本题主要考查二项式定理的应用注意根据题意分析所给代数式的特点考查理解辨析能力与运算求解能力 解析:272【分析】将已知等式等价变形为5[2(1)1][3(1)1]x x -+-+,结合二项展开式的通项即可求得5a . 【详解】55(21)(32)[2(1)1][3(1)1]x x x x --=-+-+,展开后含有5(1)x -的项为:0551445552(1)2(1)3(1)272(1)C x C x x x ⋅⋅-+⋅⋅-⋅-=-,5272a ∴=.故答案为:272 【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,考查理解辨析能力与运算求解能力.三、解答题21.(1) 48 (2) 240 (3) 36 【分析】(1)先排教授,再排学生由分步乘法计数原理可得答案.(2)将2名教授看作是一个整体,和4名实习学生一起排列,再将两名教授进行排列, 由分步乘法计数原理可得答案.(3)把4名实习学生按1 , 1 , 2分成3组, 再将三组分别分配到三所中学任教可得答案.【详解】(1 )先排2名教授,有222A =(种)不同的排法, 再排4名实习学生,有4424A =(种)不同的排法,故由分步乘法计数原理可得,共有22448⨯= (种)不同的排法(2) 将2名教授看作是一个整体,和4名实习学生一起排列有55120A = (种)不同的排法 又2名教授,有222A =(种)不同的排法, 所以共有2120240⨯= (种)不同的排法(3 )把4名实习学生按1 , 1 , 2分成3组,有214222C C A 种分组方法. 再将三组分别分配到三所中学任教故共有2134232236C C A A ⨯= (种)不同的排法. 【点睛】方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数. 22.(1)6;(2)60 【分析】由二项式系数和求出指数n ,再写出展开式通项后可得常数项. 【详解】(1)由题意得,二项式系数之和为012264n n n n n n C C C C ++++==,6n ∴=;(2)通项公式为366622166(2)2r r rrrr r T C x xC x----+==,令3602r-=,得4r = ∴展开式中的常数项为4464256(2)60T C x x --==.【点睛】该题主要考查二项式定理,在()na b +展开式中二项式系数为2n ,只与指数n 有关,求特定项时要注意通项的正确应用.23.(1)105种(2)630种(3)420种 【分析】(1)利用组合的知识求解(2)先不均匀分组,再分配到学校即可求解(3)先不均匀分组,再分配即可 【详解】(1)421731105C C C ⋅⋅=(种) (2)42137313630C C C A ⋅⋅⋅=(种)(3)3313741322420C C C A A =(种) 【点睛】本题考查分组分配问题,注意是否为均匀分组,是易错题 24.(1)8064-;(2)415360x --. 【分析】(1)分别求出11)n +展开式的二项式系数和,(31)n x -展开式的偶数项的二项式系数和,利用两者差48列方程,解方程求出n 的值,22nx x ⎛⎫- ⎪⎝⎭二项式系数最大项为第1n +,即可求解;(2)设第1k +项系数绝对值最大,化简二项展开式的通项公式,利用系数绝对值最大项比前后两项的系数绝对值都大列不等式组,解不等式组求得k 的取值范围,由此求得k 的值 【详解】(1)依题意112248,232,5n n n n +--==∴=, 102x x ⎛⎫- ⎪⎝⎭的展开式中第6项二项式系数最大, 即5556102()8064T C x x=-=-;(2)设第1k +项的系数的绝对值最大,则10102110102()(1)2k k k k kk k k T C xC x x--+=⋅⋅-=-⋅⋅⋅, 1110101110102222k k k k k k k k C C C C --++⎧⋅≤⋅∴⎨⋅≥⋅⎩,得110101101022k k k k C C C C -+⎧≤∴⎨≥⎩, 即2221202k k k k -≥⎧⎨+≥-⎩,1922,733k k ∴≤≤∴=, 所以系数的绝对值最大的是第8项, 即77744810(1)215360T C x x --=-⋅⋅=-.【点睛】本题考查二项式系数和、二项式系数最大项、系数绝对值最大项,考查计算求解能力,属于中档题. 25.90 【分析】根据三种情况分别利用组合公式可得对应情况下能组成的三角形的个数,再根据分类计数加法原理,将三种情况能组成三角形的个数相加,可得答案.【详解】解:由题意可分三种情况考虑:①O为顶点的三角形,另外两个顶点分别在OA OB、上,共有:114520C C=个;②O不为顶点的三角形,两个顶点分别在OB上,一个顶点在OA上,共有:124540C C=个;③O不为顶点的三角形,两个顶点分别在OA上,一个顶点在OB上,共有:214530C C=个;故可得:一共有20403090++=不同的三角形.【点睛】本题主要考查几何中的排列组合问题,属于基础题型,注意分情况进行讨论后利用分类计数原理相加.26.(1)(2)(3)见证明【解析】【分析】(1)先写出展开式的通项,得到,,,根据数列是等差数列,列出等式,即可得出结果;(2)根据(1)的结果,确定中间项为第5项,进而可求出结果;(3)根据数学归纳法的一般步骤,直接证明即可.【详解】解:(1)展开式的通项为,依题意,,,由可得(舍去)或.(2)所以展开式的中间项是第五项为:.(3)证:由(1),①当时,结论成立;当时,;②设当时,,则时,,由,可知,即.综上①②,当时,成立.【点睛】本题主要考查二项展开式以及数学归纳法,只需熟记二项式定理以及数学归纳法的一般步骤即可,属于常考题型.。

北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(2)

北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(2)

一、选择题1.4(12)x -的展开式中2x 的系数为( )A .6B .24C .32D .482.22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ) A .180 B .90 C .180- D .90- 3.10个人排队,其中甲、乙、丙、丁4人两两不相邻的排法A .5457A A 种 B .1010A -7474A A 种 C .6467A A 种D .6466A A 种4.某科技小组有四名男生两名女生.现从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为( ) A .36CB .1225C CC .12212424C C C C +D .36A5.我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为3的“六合数”共有( ) A .18个B .15个C .10个D .9个6.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设(0)a b m m >,,为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为(mod )a b m =.若012220202020202022...2a C C C C =++++,(mod8)a b =,则b 的值可以是( ) A .2015B .2016C .2017D .20187.包括甲、乙、丙3人的7名同学站成一排拍纪念照,其中丙站中间,甲不站在乙的左边,且不与乙相邻,则不同的站法有( ) A .240种B .252种C .264种D .288种8.为支援湖北抗击新冠疫情,无锡市某医院欲从6名医生和4名护士中抽选3人(医生和护士均至少有一人)分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,则分配方案共有( ) A .264种B .224种C .250种D .236种9.现某路口对一周内过往人员进行健康码检查安排7名工作人员进行值班,每人值班1天,每天1人,其中甲乙两人需要安排在相邻两天,且甲不排在周三,则不同的安排方法有( ) A .1440种 B .1400种C .1320种D .1200种10.有4个不同的小球放入3个盒子中,每个盒子至少放一个小球,则不同的放法共有( ) A .12种 B .18种C .24种D .36种11.从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和为奇数,则不同取法种数有( )A .60B .66C .72D .12612.为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为( ) A .18B .24C .30D .36二、填空题13.某学校安排5名高三教师去3个学校进行交流学习,且每位教师只去一个学校,要求每个学校至少有一名教师进行交流学习,则不同的安排方式共有______种.14.在二项式251x )x-(的展开式中,含4x 的项的系数是________. 15.从编号为1,2,3,4,…,10的10个大小、形状都相同的小球中任取5个球.如果某两个球的编号相邻,那么称这两个球为一组“好球”,则任取的5个球中恰有两组“好球”的取法有_______种.(用数字作答)16.设n a是(3n 展开式中x 的一次项系数(2)n ≥,则2323333lim ()nn na a a →+∞+++=_____ 17.七位同事(四男三女)轮值办公室每周的清洁工作,每人轮值一天,其中男同事甲必须安排周日清洁,且三位女同事任何两位的安排不能连在一起,则不同的安排方法种数是_______(用数字作答)18.已知423401234(21)(1)(1)(1)(1)x a a x a x a x a x -=++++++++,则1234a a a a +++=___________.19.六个人从左至右排成一行,最右端只能排成甲或乙,最左端不能排甲,则不同的排法共有________种(请用数字作答).20.某班共有40学生.某次考试中,甲、乙、丙3位同学的成绩都在班级前10名.甲的成绩比乙高,乙的成绩比丙高,全班没有并列名次.如果把甲、乙的成绩排名依次作为横坐标x 、纵坐标y ,那么这样的点坐标(),x y 共有_________个.三、解答题21.一场小型晚会有3个唱歌节目和2个相声节目,要求排出一个节目单. (1)2个相声节目要排在一起,有多少种排法? (2)2个相声节目彼此要隔开,有多少种排法?(3)第一个节目和最后一个节目都是唱歌节目,有多少种排法? (4)前3个节目中要有相声节目,有多少种排法? (要求:每小题都要有过程,且计算结果都用数字表示)22.(1)求122332C C -,233443C C -,345664C C -,346774C C -的值,设*,m n ∈N ,k m ,判断(1)m k k C +与11(1)k mm C +++的关系,不用证明;(2)求1111112969793282349798C C C C C A +++++的值.23.在AOB ∠的OA 边上有4个异于O 点的点,OB 边上有5个异于O 点的点,以这10个点(含O 点)为顶点,能得到多少个不同的三角形?24.有3名男生,4名女生,按下列要求排成一行,求不同的方法总数 (1)甲只能在中间或者两边位置; (2)男生必须排在一起; (3)男女各不相邻; (4)甲乙两人中间必须有3人.25.将4个编号为1、2、3、4的小球放人编号为1、2、3、4的盒子中. (1)恰好有一个空盒,有多少种放法?(2)每个盒子放一个球,且恰好有一个球的编号与盒子的编号相同,有多少种放法? (3)把4个不同的小球换成4个相同的小球,恰有一个空盒,有多少种放法? 26.一个盒子中装有大小相同的小球n 个,在小球上分别标有1,2,3…,n 的号码,已知从盒子中随机取出两个球,两球号码的最大值为n 的概率为14. (Ⅰ)盒子中装有几个小球?(Ⅱ)现从盒子中随机地取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量X (如取标号分别为2,4,6,8的小球时1X =;取标号分别为1,2,4,6的小球时2X =;取标号分别为1,2,3,5的小球时3X =),求(2)P X =的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用二项展开式的通项可得14(2),0,1,2,3,4rrr T C x r +=-=,令2r 可求得结果.【详解】因为4(12)x -的第1r +项展开式14(2),0,1,2,3,4rrr T C x r +=-=, 令2r,则含2x 项系数为224(2)24C -=, 故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有二项展开式通项的应用,项的系数,属于简单题目.2.A解析:A 【分析】利用二项式系数的对称性求得10n =,然后写出二项展开式的通项,令x 的指数为零,求出参数的值,代入通项即可得解. 【详解】22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,10n ∴=,故22nx ⎫⎪⎭展开式的通项公式为()5105211010222rrr rrr T C C x x --+⎛⎫=⋅-=-⋅ ⎪⎭⋅⋅⎝, 令5502r -=,解得2r ,所以展开式中的常数项为22102180C ⨯=. 故选:A. 【点睛】本题考查利用二项式定理求指定项的系数,同时也考查了利用二项式系数的对称性求参数,考查计算能力,属于中等题.3.C解析:C 【分析】不相邻问题采用“插空法”. 【详解】解:∵10个人排成一排,其中甲、乙、丙、丁4人两两不相邻排成一排, ∴采用插空法来解,另外六人,有66A 种结果,再在排列好的六人的七个空档里,排列甲、乙、丙、丁, 有47A 种结果,根据分步计数原理知共有66A •47A , 故选C . 【点睛】本题考查排列组合及简单计数问题,在题目中要求元素不相邻,这种问题一般采用插空法,先排一种元素,再在前面元素形成的空档,排列不相邻的元素.4.C解析:C 【分析】分只有一名女生入选和有二名女生入选两种情况,结合分步乘法计数原理以及分类加法计数原理,即可得出答案. 【详解】当只有一名女生入选时,先选1名女生,有12C 种,再选2名男生,有24C 种,则根据分步乘法计数原理可知,有1224C C 种当有二名女生入选时,选选2名女生,有22C 种,再选1名男生,有14C 种,则根据分步乘法计数原理可知,有2124C C 种所以从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为12212424C C C C +故选:C 【点睛】本题主要考查了组合的应用,涉及了分步乘法计数原理以及分类加法计数原理的应用,属于中档题.5.C解析:C 【分析】首位数字是3,则后三位数字之和为3,按一个为3,两个和为3及三个和为3进行分类排列可得. 【详解】由题知后三位数字之和为3,当一个位置为3时有003,030,300三个;当两个位置和为3时有336A =个,;当三个位置和为3时只有111一个,一共有10个. 故选:C 【点睛】本题考查求解排列问题.其主要方法: 直接法:把符合条件的排列数直接列式计算. 优先法:优先安排特殊元素或特殊位置.捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列. 插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中.6.C解析:C 【分析】根据已知中a 和b 对模m 同余的定义,结合二项式定理,我们可以求出a 的值,结合(mod8)a b =,比照四个答案中的数字,即可求解.【详解】0122202020202020202022...2=(12)3a C C C C =+⋅+⋅++⋅+=,又201010012210101010101039(18)888C C C C ==+=+⋅+⋅⋅⋅⋅+⋅a ∴被8除得的余数为1,同理b 被8除得的余数也要为1,观察四个选项,可知选C. 故选:C 【点睛】本题考查的知识点是同余定理,其中正确理解a 和b 对模m 同余,是解答本题的关键,同时利用二项式定理求出a 的值,也很关键.7.C解析:C 【分析】先排甲、乙、丙外的4人,再对甲、乙、丙三人分类讨论即可得解. 【详解】先排甲、乙、丙外的4人,有44A 种排法,再排甲、乙2人,有两类方法: 一类是甲、乙2人插空,又甲排在乙的左边,然后丙排在中间, 故有4245240A C =种不同的站法;另一类是把甲、乙、丙按乙、丙、甲的顺序插入中间,有44A 种不同的站法, 所以共有264种不同的站法. 故选:C 【点睛】此题考查计数原理的应用,利用排列组合相关知识解决排位问题,需要熟练掌握计数原理相关知识.8.A解析:A 【分析】分类计数,考虑选取1名医生2名护士和选取2名医生1名护士两类情况求解. 【详解】当选取的是1名医生2名护士,共有126436C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有2224A =种,即一共364144⨯=种方案;当选取的是2名医生1名护士,共有216460C C =种选法,分配到A ,B ,C 三个地区参加医疗救援(每个地区一人),方案要求医生不能去A 地区,共有222A =种,即一共602120⨯=种方案.综上所述:分配方案共有264种. 故选:A 【点睛】此题考查分类计数原理和分步计数原理综合应用,涉及排列组合相关知识,综合性强.9.D解析:D 【分析】根据题意,分2步进行分析: ①将甲、乙按要求安排,②将剩下的5人全排列,安排在剩下的5天,由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①要求甲、乙安排在相邻两天,且甲不排在周三,先把周一周二、周二周三、⋯、周六周日看作6个位置,任选一个位置,排上甲乙两人,有126212A A=种方法,其中甲排在周三去掉,则甲乙的安排方法有1262210A A-=种,②将剩下的5人全排列,安排在剩下的5天,有55120A=种情况;由分步计数乘法原理知,则有101201200⨯=种安排方法.故选:D【点睛】本题主要考查了排列、组合的实际应用,涉及分步计数原理的应用,属于中档题. 10.D解析:D【分析】先把小球分3组共有24C种分法,再将3组小球全排列,放入对应3个盒子即可.【详解】根据题意,分2步安排,第一步,把4个小球分成3组,其中1组2只,剩余2组各1只,分组方法有246C=种,第二步,把这3组小球全排列,对应3个盒子,有336A=种,根据分步计数原理可得所有的不同方法共有6636⨯=种.故选:D【点睛】本题主要考查了计数原理,排列与组合的应用,属于中档题.11.A解析:A【分析】要使四个数的和为奇数,则取数时奇数的个数必须是奇数个,再根据排列组合及计数原理知识,即可求解.【详解】从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和要为奇数,则取数时奇数的个数必须是奇数个:所以共有1331545460C C C C+=种取法.故选:A【点睛】本题考查了排列组合及简单的计数问题,属于简单题.12.C解析:C【分析】由甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,再去掉丙、丁两名专家在同一地工作的排列数,即可得到答案.【详解】因为甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家 看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,即从四个中选二个和 其余二个看成三个元素的全排列共有:2343C A ⋅种; 又因为丙、丁两名专家不能安排在同一地工作,所以再去掉丙、丁两名专家在同一地工作的排列数有33A 种, 所以不同的分配方法种数有:23343336630C A A ⋅-=-= 故选:C 【点睛】本题考查了排列组合的应用,考查了间接法求排列组合应用问题,属于一般题.二、填空题13.150【分析】分2步分析:先将5名高三教师分成3组分2种情况分类讨论再将分好的三组全排列对应三个学校由分步计数原理计算可得答案;【详解】解:分2步分析:先将5名高三教师分成3组由两种分组方法若分成3解析:150 【分析】分2步分析:先将5名高三教师分成3组,分2种情况分类讨论,再将分好的三组全排列,对应三个学校,由分步计数原理计算可得答案; 【详解】 解:分2步分析:先将5名高三教师分成3组,由两种分组方法,若分成3、1、1的三组,有3510C =种分组方法, 若分成1、2、2的三组,有1225422215C C C A =种分组方法, 则一共有101525+=种分组方法;再将分好的三组全排列,对应三个学校,有336A =种情况, 则有256150⨯=种不同的安排方式; 故答案为:150. 【点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.14.10【解析】分析:先根据二项展开式的通项公式求含的项的项数再确定对应项系数详解:所以令得即含的项的系数是点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项可依据条件写出第项再由特解析:10 【解析】分析:先根据二项展开式的通项公式求含4x 的项的项数,再确定对应项系数. 详解:251031551()()(1)rrr r r r r T C x C x x--+=-=- , 所以令1034r -=得2r,即含4x 的项的系数是225(1)=10.C -点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.15.120【分析】假定5个球排成一排5个小球之间有6个空位取空位的情况来达到使小球的编号连续的目的有两种情况:(1)有3个号码是连续;(2)分别有2组号码连续但这2组号码与另一个球的号码不相邻分别求组合解析:120 【分析】假定5个球排成一排,5个小球之间有6个空位,取空位的情况来达到使小球的编号连续的目的,有两种情况:(1)有3个号码是连续;(2)分别有2组号码连续,但这2组号码与另一个球的号码不相邻,分别求组合数,可得答案. 【详解】将5个小球排成一排,在5个小球中间有6个空位,5个小球的编号恰好有两组“好球”,分两种情况:(1)这5个球中有3个球的号码是连续的,另两个小球的号码的是间断的,3个小球的号码与另2个球的号码也不是连续的,有216460C C =,(2)这5个球中有2组球的号码分别连接,但这两组球的号码与另一个球的号码是不连续的,有126560C C =,故任取的5个球中恰有两组“好球”的取法有60+60120=种取法, 故答案为:120. 【点睛】本题考查组合知识,对于相邻问题和相间问题,常采用分析空位的方法,属于中档题.16.18【分析】首先根据二项式展开式的知识求得然后利用裂项求和法求得的和进而求得极限的值【详解】展开式中一次项为故所以所以所以【点睛】本小题主要考查求二项式指定项的系数考查裂项求和法考查极限的计算属于中解析:18 【分析】首先根据二项式展开式的知识求得 n a ,然后利用裂项求和法求得2323333nna a a +++的和,进而求得极限的值. 【详解】(3n展开式中一次项为2222233n n nn C C x --⋅⋅=⋅⋅,故223n n n a C -=⋅,所以()23918111811n n n a C n n n n ⎛⎫===- ⎪--⎝⎭,所以2323333111111812231nn a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦11818118n n ⎡⎤=-=-⎢⎥⎣⎦,所以232333318lim ()lim (18)18n n n n a a a n→+∞→+∞+++=-=.【点睛】本小题主要考查求二项式指定项的系数,考查裂项求和法,考查极限的计算,属于中档题.17.144【分析】优先安排男同事甲在星期日轮值有1种再安排其余3位男同事作全排列有最后安排女同事插在三个男同事中有最后根据分步用乘法的原理得:【详解】解:第一步:先安排男同事甲在星期日轮值有1种第二步:解析:144 【分析】优先安排男同事甲在星期日轮值有1种,再安排其余3位男同事作全排列有33A ,最后安排女同事插在三个男同事中有34A ,最后根据分步用乘法的原理得:331A ⨯34144A =. 【详解】解:第一步:先安排男同事甲在星期日轮值有1种, 第二步:其余3位男同事作全排列有33A ,第三步:因为三位女同事任何两位的安排不能连在一起,所以后3位女同事插空安排有34A ,分步完成共有方法种数为:1⨯33A 34144A =. 故答案为:144. 【点睛】本题主要考查分步计数原理与排列,属于中档题.18.【分析】取得出再取得出最后由得出答案【详解】取得出取得出则故答案为:【点睛】本题主要考查了二项式定理与数列求和的应用属于中档题 解析:80-【分析】取0x =,得出012341a a a a a ++++=,再取1x =-,得出081a =,最后由1234012340a a a a a a a a a a +++++++=-得出答案.【详解】取0x =,得出401234()11a a a a a -=+++=+取1x =-,得出4013)8(a -==则012341234018180a a a a a a a a a a ++++++=--=-+=故答案为:80-【点睛】本题主要考查了二项式定理与数列求和的应用,属于中档题. 19.【分析】分两种情况讨论:①甲在最右边;②乙在最右边分别计算出两种情况下的排法种数利用分类加法计数原理可求得结果【详解】分两种情况讨论:①甲在最右边则其他位置的安排没有限制此时排法种数为;②乙在最右边解析:216【分析】分两种情况讨论:①甲在最右边;②乙在最右边.分别计算出两种情况下的排法种数,利用分类加法计数原理可求得结果.【详解】分两种情况讨论:①甲在最右边,则其他位置的安排没有限制,此时排法种数为55A ; ②乙在最右边,甲在除了最左边和最右边以外的四个位置,再对剩下四个进行排列,此时,排法种数为1444C A .综上所述,不同的排法种数为514544216A C A +=.故答案为:216.【点睛】本题考查排列组合,解题的关键就是要对甲的位置分类讨论,考查计算能力,属于中等题. 20.120【分析】设丙的成绩排名为则将所求问题转化为从小于等于10的正整数中选取3个数最大那个数为最小那个数为即可【详解】设丙的成绩排名为由题意所求问题相当于从小于等于10的正整数中选取3个数最大那个数 解析:120【分析】设丙的成绩排名为z ,则110x y z ≤<<≤,将所求问题转化为从小于等于10的正整数中选取3个数,最大那个数为z ,最小那个数为x 即可.【详解】设丙的成绩排名为z ,由题意,110x y z ≤<<≤,所求问题相当于从小于等于10的正整数中选取3个数,最大那个数为z ,最小那个数为x ,则共有3101120C ⋅=种,故甲、乙的成绩排名依次作为横坐标x 、纵坐标y ,那么这样的点坐标(),x y 共有120个.故答案为:120【点睛】本题考查排列组合的综合应用,考查学生转化与化归思想,是一道中档题.三、解答题21.(1)48;(2)72;(3)36;(4)108.【分析】(1)将2个相声节目进行捆绑,与其它3个节目形成4个元素,利用捆绑法可求得排法种数;(2)将2个相声节目插入其它3个节目所形成的空中,利用插空法可求得排法种数; (3)第一个节目和最后一个节目都是唱歌节目,则3个节目排在中间,利用分步乘法计数原理可求得排法种数;(4)在5个节目进行全排的排法种数中减去前3个节目中没有相声节目的排法种数,由此可求得结果.【详解】(1)将2个相声节目进行捆绑,与其它3个节目形成4个元素,然后进行全排, 所以,排法种数为242448A A =种;(2)将2个相声节目插入其它3个节目所形成的4个空中,则排法种数为323472A A =种; (3)第一个节目和最后一个节目都是唱歌节目,则其它3个节目排在中间,进行全排, 由分步乘法计数原理可知,排法种数为233336A A =种;(4)在5个节目进行全排的排法种数中减去前3个节目中没有相声节目的排法种数, 可得出前3个节目中要有相声节目的排法种数为53253212012108A A A -=-=.【点睛】本题考查排列组合综合问题,考查捆绑法、插空法、分步乘法计数原理以及间接法的应用,考查计算能力,属于中等题.22.(1)11(1)(1)m m k k k C m C +++=+;(2)33.【分析】(1)由组合数公式,求出122332C C -,233443C C -,345664C C -,346774C C -的值,然后归纳推理即可;(2)根据(1)的结论可得121(1)2n n n C C ++=,再结合组合数的性质,即可求解.【详解】(1)122332660C C -=-=,23344312120C C -=-=,3456646522560C C -=⨯⨯-⨯⨯=,3467740C C -=, ∴11(1)(1)m m k k k C m C +++=+.(2)∵()()1111m m k k k C m C +++=+, ∴1111112396972349798C C C C C +++++2222398222C C C =+++()22223982C C C =+++. 又111k k k n n n C C C ---=+,∴()()22232232398339899222C C C C C C C +++=+++=, ∴1111131239697992298982349798233C C C C C C A A +++++==. 【点睛】本题考查归纳推理、组合数的性质的应用,考查计算求解能力,属于中档题.23.90【分析】根据三种情况分别利用组合公式可得对应情况下能组成的三角形的个数,再根据分类计数加法原理,将三种情况能组成三角形的个数相加,可得答案.【详解】解:由题意可分三种情况考虑:①O 为顶点的三角形,另外两个顶点分别在OA OB 、上,共有:114520C C =个;②O 不为顶点的三角形,两个顶点分别在OB 上,一个顶点在OA 上,共有:124540C C =个;③O 不为顶点的三角形,两个顶点分别在OA 上,一个顶点在OB 上,共有:214530C C =个;故可得:一共有20403090++=不同的三角形.【点睛】本题主要考查几何中的排列组合问题,属于基础题型,注意分情况进行讨论后利用分类计数原理相加.24.(1)2160;(2)720;(3)144;(4)720.【分析】(1)利用元素分析法(特殊元素优先安排),甲为特殊元素,故先安排甲,左、右、中共三个位置可供甲选择,问题得以解决;(2)利用捆绑法,先将男生捆绑在一起算一个大元素,与女生进行全排,在将男生内部全排得到结果;(3)男女各不相邻,先排四名女生,之后将3名男生插在四个空中,正好得到所要的结果;(4)从除甲、乙之外的5人中选3人排在甲、乙中间,之后再排,问题得以解决.【详解】(1)甲为特殊元素,所以先安排甲,左、右、中共三个位置可供甲选择,有13A 种选择,其余6人全排列,有66A种排法,由分步计数原理得共有16362160A A⋅=种;(2)捆绑法,先将男生排在一起,和四名女生合在一起,有55A种排法,再将三名男生内部排列,有33A种排法,由分步计数原理得共有5353720A A⋅=种;(3)男女各不相邻,即为女生排好后男生插入中间的三个空即可,所以有4343144A A⋅=种;(4)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有35A种排法,甲、乙两人有22A种排法,甲、乙以及中间的三人与其余2人共有33A种排法,由分步计数原理得共有323523720A A A⋅⋅=种.【点睛】该题考查的是有关具有特殊要求的排列问题,在解题的过程中,注意处理原则和解题方法为:特殊元素优先考虑,不邻问题插空法,相邻问题捆绑法等,属于简单题目. 25.(1)144 (2)8 (3)12【分析】(1)有一个盒子中有两个球,把它们选出作为一个球与其他两个放到三个盒子中即可;(2)分步,第一步1个球的编号与盒子编号相同,第二步其它三个球与盒子编号不相同,由分步乘法原理计算;(3)分步,第一步选三个盒子放球,第二步选一个盒子放2个球,由此可得.【详解】(1)选取2个球作为一个球与其它两个球分别放到三个盒子中,共有2344144C A=种方法.(2)1个球的编号与盒子的编号相同的选法有14C种,当1个球与1个盒子编号相同时,其余3个球的投放方法有2种,故共有1428C⨯=种方法.(3)先从四个盒子中选出三个盒子,有34C种选法,再从三个盒子中选出一个盒子放两个球,余下两个盒子各放一个,由于球是相同的,即没有顺序,由分步乘法计数原理知,共有314312C C=种方法.【点睛】本题考查排列组合的应用,解题关键是确定事件完成的方法,是分步还是分类.26.(Ⅰ)8个;(Ⅱ)4 (2)7 P X==.【分析】(Ⅰ)由题意计算出两球号码的最大值为n的情况共有11n C-种,利用古典概型概率公式可得11214n n C C -=,即可得解; (Ⅱ)由题意,未被选中的4个小球会形成5个空位(包括两端),取出的小球相当于要插入这些空位中(可以多个小球插入同一空位),将2X =分为“4个小球仅有2个小球的编号连续”和“4个小球有2个小球的编号连续,另外2个小球的编号也连续”两种情况分类计算,最后由古典概型概率公式即可得解.【详解】(Ⅰ)从盒子中随机取出两个球,两球号码的最大值为n 的情况共有11n C -种, 则11214n n C C -=,解得8n =, 所以盒中共有8个小球;(Ⅱ)由题意,未被选中的4个小球会形成5个空位(包括两端),取出的小球相当于要插入这些空位中(可以多个小球插入同一空位),2X =表示取出的4个小球的编号连续的个数的最大值为2,可分为两类:①4个小球仅有2个小球的编号连续,则要在5个空位中选出三个,其中一个放入2个小球,所以共有取法315330C C ⋅=种;②4个小球有2个小球的编号连续,另外2个小球的编号也连续,则只需在5个空位中选出两个,所以共有取法2510C =种; 综上,4830104(2)7P X C +===. 【点睛】本题考查了计数原理的综合应用及古典概型概率的求解,考查了转化化归思想与分类讨论思想,属于中档题.。

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(含答案解析)(3)

新北师大版高中数学高中数学选修2-3第一章《计数原理》检测题(含答案解析)(3)

一、选择题1.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481252.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为( ) A .0.2484B .0.25C .0.90D .0.39243.已知ξ的分布列如图所示,设2-5ηξ=,则()=E η( )A .12B .13C .23D .324.已知,a b 为实数,随机变量X ,Y 的分布列如下:X 1- 0 1P13 1216Y 1-1Pabc若()(1)E Y P Y ==-,随机变量ξ满足XY ξ=,其中随机变量X ,Y 相互独立,则()E ξ取值范围的是( )A .3,14⎡⎤-⎢⎥⎣⎦ B .1,018⎡⎤-⎢⎥⎣⎦ C .1,118⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦5.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为800元,则所需检测费的均值为( ) A .2800元B .2880元C .3500元D .3600元6.已知离散型随机变量X 服从二项分布(),X B n p ,且2EX =,DX q =,则21p q+的最小值为( ) A .274B .92C .3D .47.已知在5件产品中混有2件次品,现需要通过逐一检测直至查出2件次品为止,每检测一件产品的费用是10元,则所需检测费的均值为( ) A .32元B .34元C .35元D .36元8.设随机变量ξ的概率分布列为1()()3kP k a ξ==,其中0,1,2k =,那么a 的值为( )A .35B .2713C .919D .9139.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072910.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( ) A .0.32 B .0.68 C .0.36 D .0.64 11.已知随机变量X 的方差()D X m =,设32Y X =+,则()D Y =( )A .9mB .3mC .mD .32m +12.如下五个命题:①在线性回归模型中,2R 表示解释变量对于预报变量变化的贡献率,在对女大学生的身高预报体重的回归分析数据中,算得20.64R ≈,表明“女大学生的体重差异有64%是由身高引起的”②随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越大;③正态曲线关于直线x σ=对称,这个曲线只有当()3,3x σσ∈-时,才在x 轴上方; ④正态曲线的对称轴由μ确定,当μ一定时,曲线的形状由σ决定,并且σ越大,曲线越“矮胖”;⑤若随机变量()~0,1N ξ,且()1,P p ξ>=则()1102P p ξ-<<=-; 其中正确命题的序号是 A .②③B .①④⑤C .①④D .①③④二、填空题13.A ,B ,C ,D 四人之间进行投票,各人投自己以外的人1票的概率都是13(个人不投自己的票),则仅A 一人是最高得票者的概率为________. 14.随机变量()2,XN μσ,()()222x f x μσ--=满足:(1)x R ∀∈,()()f x f x ''-=-;(2)()12f eσπ'-=, 则()12P X <≤=________.附:()0.6827P X μσμσ-<≤+≈;()220.9545P X μσμσ-<≤+≈;()330.9973P X μσμσ-<≤+≈.15.若随机变量~(2,)X B p ,随机变量~(3,)Y B p ,若4(2)9P X ==,则(21)E Y +的值为_______.16.一批排球中正品有m 个,次品有n 个,()10m n m n +=≥,从这批排球中每次随机 取一个,有放回地抽取10次,X 表示抽到的次品个数若 2.1DX =,从这批排球中随机一次取两个,则至少有一个次品的概率p =___________17.随机变量ξ服从正态分布()240,N σ,若()300.2P ξ<=,则()3050P ξ<<=______.18.已知随机变量X 服从正态分布()2,1N . 若()130.6826P X ≤≤=,则()3P X >等于______________.19.已知随机变量2~(1,)N ξσ,且(1)0.1P ξ≤-=,(23)0.15P ξ≤≤=,则(02)P ξ≤≤=_______.20.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________.三、解答题21.为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如下.[0,5)[5,10)[10,15)[15,20)[20,25)[25,30)性别男6 9 10 10 9 4女5 12 13 86 8学段 初中 x 8 11 11 10 7(Ⅱ)从参加公益劳动时间[25,30)的学生中抽取3人进行面谈,记X为抽到高中的人数,求X的分布列;(Ⅲ)当5x=时,高中生和初中生相比,哪学段学生平均参加公益劳动时间较长.(直接写出结果)22.设甲、乙两位同学上学期间,每天7:10之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的每周五天中7:10之前到校的天数,求随机变量X的分布列和数学期望;(2)记“上学期间的某周的五天中,甲同学在7:10之前到校的天数比乙同学在7:10之前到校的天数恰好多3天”为事件M,求事件M发生的概率.23.某公司的一次招聘中,应聘者都要经过三个独立项目A,B,C的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过A,B,C每个项目测试的概率都是1 2 .(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X,求X的概率分布和数学期望.24.已知从A地到B地有两条道路可以到达,走道路①准点到达的概率为34,不准点到达的概率为14;走道路②准点到达的概率为p,不准点到达的概率为(1)p-.若甲乙两车走道路①,丙车由于其他原因走道路②,且三辆车是否准点到达相互之间没有影响.(1)若三辆车中恰有一辆车没有准点到达的概率为716,求走道路②准点到达的概率p;(2)在(1)的条件下,求三辆车中准点到达车辆的辆数的分布列和数学期望. 25.2020年寒假是特殊的寒假,因为抗击疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为11:13,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.(1)完成22⨯列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;8名学生中抽取3名学生,作线上学习的经验介绍,其中抽取男生的个数为ξ,求出ξ的分布列及期望值.参考公式:附:22()()()()()n ad bc K a b a c b d c d -=++++26.某单位选派甲、乙、丙三人组队参加知识竞赛,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是34,甲、丙两人都答错的概率是112,乙、丙两人都答对的概率是14,规定每队只要有一人答对此题则该队答对此题. (1)求该单位代表队答对此题的概率;(2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得10-分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1分).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.2.D解析:D 【分析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案. 【详解】由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=;两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D. 【点睛】本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题.3.C解析:C 【分析】根据分布列的性质,求得13m =,由期望的公式,可得17()6E ξ=,再根据()()5E E ηξ=-,即可求解.【详解】由题意,根据分布列的性质,可得1111663m +++=,解得13m =,所以随机变量ξ的期望为111117()123466336E ξ=⨯+⨯+⨯+⨯=, 又由2-5ηξ=,可得172()2563E η=⨯-=.【点睛】本题主要考查了随机变量的期望的计算,其中解答中熟记分布列的性质和期望的计算公式是解答的关键,着重考查了计算能力.4.B解析:B 【分析】由()(1)E Y P Y ==-及1a b c ++=,可知13b a =-,2c a =;又因为0,,1a b c ≤≤,可求出103a ≤≤;由题意知1()6E a ξ=-,从而可求出()E ξ取值范围.【详解】解:由()(1)E Y P Y ==-知,a c a -+= ,即2c a = ,又1a b c ++= ,所以13b a =-;因为0,,1a b c ≤≤ ,所以0131021a a ≤-≤⎧⎨≤≤⎩ ,解得103a ≤≤.又()1110366E X =-++=- ,且X ,Y 相互独立,XY ξ=,所以()()()11(),0618E E XY E X E Y a ξ⎡⎤===-∈-⎢⎥⎣⎦. 故选:B. 【点睛】本题考查了数学期望,考查了分布列的性质,考查了推理能力和计算能力.本题的关键是由条件求出a 的取值范围.5.A解析:A 【分析】设检测机器所需检测费为X ,则X 的可能取值为2000,3000,4000,分别求出相应的概率,由此能求出所需检测费的均值. 【详解】设检测机器所需检测费为X ,则X 的可能取值为1600,2400,3200,211(1600)5410P X ==⨯=,2313213213(2400)54354354310P X ==⨯⨯+⨯⨯+⨯⨯=,133(3200)110105P X ==--=, 则133()160024003200280010105E X =⨯+⨯+⨯=.【点睛】本题考查了独立事件概率的求法,离散型随机变量的数学期望的求法,考查对立事件概率计算公式,是中档题.6.B解析:B 【分析】根据二项分布的均值与方差公式,可得,p q 的等量关系.利用“1”的代换,结合基本不等式即可求得21p q+的最小值. 【详解】离散型随机变量X 服从二项分布(),XB n p ,且2EX =,DX q =由二项分布的均值与方差公式可得()21npq np p =⎧⎨=-⎩, 化简可得22p q +=,即12qp +=由基本不等式化简可得21p q+221p q q p ⎛⎫=+ ⎪⎛⎫+ ⎪⎝⎝⎭⎭2525922q p p q ≥+=++= 即21p q +的最小值为92故选:B 【点睛】本题考查了二项分布的简单应用,均值与方差的求法,利用“1”的代换结合基本不等式求最值,属于中档题.7.C解析:C 【解析】 【分析】随机变量X 的可能取值为20,30,40,结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】X 的可能取值为20,30,40,()222521202010A P X A ====;()311232323562323306010A C C A P X A +⋅⋅+⨯⨯====; ()()()1334012030110105P X P X P X ==-=-==--=,数学期望2030403510105EX =⨯+⨯+⨯=, 即需检测费的均值为35,故选C. 【点睛】本题主要考查组合的应用、古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.8.D解析:D 【解析】分析:根据离散型随机变量分布列的性质,变量取各个量对应的概率和等于1,建立关于a 的等量关系式,最后求得结果.详解:根据分布列的性质可得,()()()0121110121333P P P a a a ξξξ⎛⎫⎛⎫⎛⎫=+=+==++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得913a =,故选D. 点睛:解决该题的关键是明确离散型随机变量的分布列的性质,从而找到关于参数a 所满足的等量关系式,最后求得结果.9.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭.故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.10.C解析:C 【解析】如图,由正态曲线的对称性可得(4)12()0.36P a X a P X a ≤<-=-<=.故选C.11.A解析:A 【解析】∵()D X m =,∴2()(32)3()D Y D X D X =+=9()D X =9m =,故选A .12.B解析:B 【解析】对于命题①,因为2R 表示解释变量对于预报变量变化的贡献率,所以算得20.64R ≈,表明“女大学生的体重差异有64%是由身高引起的”,故该命题①是正确的;对于命题②,由于随机变量的方差和标准差都反映了随机变量取值偏离于均值的整齐程度,因此方差或标准差越小,则随机变量偏离于均值的差异越大,命题②是错误;对于命题③,由于整个正太曲线都在轴上方,所以命题③的说法是不正确的;对于命题④,由于正态曲线的对称轴由μ确定,当μ一定时,曲线的形状由σ决定,并且σ越大,曲线越贴近于轴,因此命题④的说法是正确的;对于命题⑤,由于随机变量()~0,1N ξ,且()1P p ξ>= ,所以依据正太曲线的对称性可得()1P p ξ<-= ,故()1112,P p ξ-<<=- 所以()1102P p ξ-<<=-,即命题⑤是正确的,综上应选答案B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数学选修2--3) 第一章 计数原理[基础训练A 组] 一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有( )A .81B .64C .12D .142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机 各1台,则不同的取法共有( ) A .140种 B.84种 C.70种 D.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( ) A .33A B .334A C .523533A A A - D .2311323233A A A A A + 4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a不能当副组长, 不同的选法总数是( ) A.20 B .16 C .10 D .65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人. 6.在812x⎛- ⎝的展开式中的常数项是( )A.7B .7- C .28D .28-7.5(12)(2)x x -+的展开式中3x的项的系数是( )A.120 B .120- C .100 D .100- 822nx ⎛⎫ ⎪⎝⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( ) A .180B .90C .45D .360二、填空题1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有 种选法.(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.2.4名男生,4名女生排成一排,女生不排两端,则有种不同排法. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在10(x-的展开式中,6x的系数是 .5.在220-展开式中,如果第4r项和第2r+项(1)x的二项式系数相等,则r=,T= .4r6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x .8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。

3.解方程432(1)140;x x A A =112311(2)n n n n n n n nC C C C +--+-+=++4.已知21nx x ⎛⎫- ⎪⎝⎭展开式中的二项式系数的和比7(32)a b +展开式的二项式系数的和大128,求21nx x ⎛⎫- ⎪⎝⎭展开式中的系数最大的项和系数量小的项. 5.(1)在n(1+x )的展开式中,若第3项与第6项系数相等,且n等于多少?(2)1n⎛⎝的展开式奇数项的二项式系数之和为128,则求展开式中二项式系数最大项。

6.已知5025001250(2),a a x a x a x-=++++ 其中01250,,,a a a a 是常数,计算22024*******()()a a a a a a a a ++++-++++数学选修2-3 第一章 计数原理 [基础训练A 组] 一、选择题1.B 每个小球都有4种可能的放法,即44464⨯⨯=2.C 分两类:(1)甲型1台,乙型2台:1245C C ;(2)甲型2台,乙型1台:2145C C 1221454570C C C C +=3.C 不考虑限制条件有55A ,若甲,乙两人都站中间有2333A A ,523533A A A -为所求4.B 不考虑限制条件有25A ,若a偏偏要当副组长有14A ,215416A A -=为所求 5.B 设男学生有x 人,则女学生有8x-人,则2138390,x x C C A -= 即(1)(8)30235,3x x x x --==⨯⨯= 6.A 1488888331888111()((1)()(1)()222r rrrrr rrrrrrr xT C C xC x------+=-=-=-令6866784180,6,(1)()732r r T C --===-=7.B 555332255(12)(2)2(12)(12)...2(2)(2)...x x x x x C x xC x -+=-+-=+-+-+233355(416)...120...C C x x =-+=-+8.A 只有第六项二项式系数最大,则10n =,551021101022()2rrrr r rr T C C xx--+==,令2310550,2,41802r r T C -====二、填空题1.(1)103510C =;(2) 5455C =;(3)14446414C C -=2.8640先排女生有46A ,再排男生有44A ,共有44648640A A ⋅=3.480既不能排首位,也不能排在末尾,即有14A ,其余的有55A ,共有1545480A A ⋅= 4.189010110(r rrr T C x -+=,令466510106,4,91890r r T C x x-==== 5.1530204,C x - 4111521515302020162020,41120,4,()r r C C r r r T C x C x-+=-++===-=- 6.840先排首末,从五个奇数中任取两个来排列有25A ,其余的27A ,共有2257840A A ⋅= 7.2 当0x ≠时,有4424A =个四位数,每个四位数的数字之和为145x+++ 24(145)288,2x x +++==;当0x =时,288不能被10整除,即无解8.11040 不考虑0的特殊情况,有32555512000,C C A =若0在首位,则314544960,C C A = 3253145555441200096011040C C A C C A -=-=三、解答题 1.解:(1)①是排列问题,共通了211110A =封信;②是组合问题,共握手21155C =次。

(2)①是排列问题,共有21090A =种选法;②是组合问题,共有21045C =种选法。

(3)①是排列问题,共有2856A =个商;②是组合问题,共有2828C =个积。

2.解:(1)甲固定不动,其余有66720A =,即共有66720A =种;(2)甲有中间5个位置供选择,有15A ,其余有66720A =,即共有16563600A A =种;(3)先排甲、乙、丙三人,有33A ,再把该三人当成一个整体,再加上另四人,相当于5人的全排列,即55A ,则共有5353720A A =种;(4)从甲、乙之外的5人中选2个人排甲、乙之间,有25A ,甲、乙可以交换有22A ,把该四人当成一个整体,再加上另三人,相当于4人的全排列, 则共有224524960A A A =种;(5)先排甲、乙、丙之外的四人,有44A ,四人形成五个空位,甲、乙、丙三人排这五个空位,有35A ,则共有34541440A A =种; (6)不考虑限制条件有77A ,甲在乙的左边(不一定相邻),占总数的一半,即77125202A =种;(7)先在7个位置上排甲、乙、丙之外的四人,有47A ,留下三个空位,甲、乙、丙三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即47840A =(8)不考虑限制条件有77A ,而甲排头有66A ,乙排当中有66A ,这样重复了甲排头,乙排当中55A 一次,即76576523720A A A -+=3.解:43212143(1)140(21)2(21)(22)140(1)(2)x x x x A A x Nx x x x x x x ++≥⎧⎪≥⎪=⇔⎨∈⎪⎪+--=--⎩23(21)(21)35(2)3435690x x Nx x x x x Nx x ≥⎧⎪⇔∈⎨⎪+-=-⎩⎧≥⎪⇔∈⎨⎪-+=⎩得3x =22122122311222122(2),(1),2,42n n n n n n n n n n C C C C C C C C n n C C n n +++++++=+++=+-=+==4.解:722128,8n n -==,821x x ⎛⎫- ⎪⎝⎭的通项281631881()()(1)rrr r r rr T C x C xx--+=-=-当4r =时,展开式中的系数最大,即4570T x=为展开式中的系数最大的项;当3,5r =或时,展开式中的系数最小,即72656,56T x T x=-=-为展开式中的系数最小的项。

5.解:(1)由已知得257n n C C n =⇒= (2)由已知得1351...128,2128,8n n n n C C C n -+++===,而展开式中二项式系数最大项是4444418(70T C x+==6.解:设50()(2)f x =-,令1x =,得5001250(2a a a a ++++=-令1x =-,得5001250(2a a a a -+-+=+22024*******()()a a a a a a a a ++++-++++=50500125001250()()(2(21a a a a a a a a ++++-+-+=-+=。

相关文档
最新文档