八年级下册二次根式复习含答案

合集下载

八年级初二数学 二次根式(讲义及答案)含答案

八年级初二数学 二次根式(讲义及答案)含答案

八年级初二数学 二次根式(讲义及答案)含答案一、选择题1.下列计算正确的是( )A =B =C =D =2.下列计算结果正确的是( )A B .3=C =D=3.下列二次根式中,是最简二次根式的是( )ABC .D4.( )A .1B .﹣1C .D -5.下列运算正确的是( )A =B =C .3=D 2= 6.下列计算正确的是( )A =B 3=C =D .21=7.化简 )ABC D8.若a b > )A .-B .-C .D .9.下列运算正确的是( )A =B .(28-=C 12=D 1=10.x ≥3是下列哪个二次根式有意义的条件( )A B C D11.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对12.与根式- )A .B .x -C .D二、填空题13.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________14.若0a >化成最简二次根式为________. 15.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-16.2==________. 17.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).18.把_____________. 19.已知整数x ,y 满足y =,则y =__________.20.能合并成一项,则a =______.三、解答题21.计算及解方程组:(1-1-) (2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.先阅读下列解答过程,然后再解答:,a b,使a b m=,使得+=,ab n22m+==a b==>)+=⨯=,==,由于437,4312m n7,12+=,=即:227===+。

数学 八年级下册 人教版 二次根式 单元复习(+答案)

数学 八年级下册 人教版 二次根式 单元复习(+答案)

第十六章单元复习二次根式一、选择题1.(青海海东模拟)下列的式子一定是二次根式的是( ) A.-x-2B.x C.x2+2D.x2-22.(新疆和田质检)要使x+12有意义,则x的取值范围为( )A.x>0 B.x≥-1 C.x<0 D.x>-13.(内蒙古包头模拟)下列二次根式中,为最简二次根式的是( )A.45B.a2+b2C.12D. 3.64.(重庆中考)计算14×7-2的结果是( )A.7 B.62C.72D.275.(恩施中考)从2,-3,-2这三个实数中任选两数相乘,所有积中小于2的有________个.( )A.0 B.1 C.2 D.36.(河北中考)与32-22-12结果相同的是( )A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-17.(甘肃定西模拟)实数a在数轴上的位置如图所示,则(a-5)2+(a-13)2化简后为( )A.8 B.-8 C.2a-18 D.无法确定8.设a=7+2,则( )A.2<a<3 B.3<a<4C.4<a<5 D.5<a<69.(宁夏石嘴山模拟)若x为实数,在“(3+1)□x”的“□”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是( )A.3+1 B.3-1 C.23D.1-310.(兰州模拟)甲、乙两人计算a+1-2a+a2的值,当a=5的时候得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是( )A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题11.(衡阳中考)若二次根式x-3有意义,则x的取值范围是____.12.(内蒙古乌兰察布模拟)2-5 的倒数是__ __.13.若两个连续整数x ,y 满足x <5 +1<y ,则x +y 的值是 __ __.14.(荆州中考)已知:a =(12 )-1+(-3 )0,b =(3 +2 )(3 -2 ),则a +b =____.15.(青海玉树模拟)计算:(12 -43 )×3 =__ __.16.当x =__ __时,2x -5 有最小值.17.(安徽中考)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是5 -1,它介于整数n 和n +1之间,则n 的值是__ __. 18.(新疆阿勒泰模拟)若|1 001-a |+a -1 002 =a ,则a -1 0012=__ __ __.三、解答题19.(1)(上海中考)计算:912 +|1-2 |-2-1×8 .(2) (仙桃中考)计算:(3-2 )0×4-(23 -6)+3-8 +12 .20.(宁夏中考)先化简,再求值:(a +1a +2 +1a -2 )÷2a 2-4,其中a =2 .21. (甘肃嘉峪关模拟)已知长方形的长为a ,宽为b ,且a =32 12 ,b =1248 .(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.22.已知a ,b ,c 满足|a -8 |+b -5 +(c -3 2 )2=0.(1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?如果能构成,请求出三角形的周长,如果不能,请说明理由.23.(乌鲁木齐模拟)观察、思考、解答:( 2 -1)2=( 2 )2-2×1×2 +12=2-2 2 +1=3-2 2 , 反之3-2 2 =2-2 2 +1=( 2 -1)2. ∴3-2 2 =( 2 -1)2,∴3-2 2 = 2 -1.(1) 仿上例,化简:6-2 5 .(2)若a +2b =m +n ,则m ,n 与a ,b 的关系是什么?并说明理由.(3)已知x =4-12 ,求⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1)的值(结果保留根号).第十六章单元复习二次根式一、选择题1.(青海海东模拟)下列的式子一定是二次根式的是(C) A.-x-2B.x C.x2+2D.x2-22.(新疆和田质检)要使x+12有意义,则x的取值范围为(B)A.x>0 B.x≥-1 C.x<0 D.x>-13.(内蒙古包头模拟)下列二次根式中,为最简二次根式的是(B)A.45B.a2+b2C.12D. 3.64.(重庆中考)计算14×7-2的结果是(B)A.7 B.62C.72D.275.(恩施中考)从2,-3,-2这三个实数中任选两数相乘,所有积中小于2的有________个.(C)A.0 B.1 C.2 D.36.(河北中考)与32-22-12结果相同的是(A)A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-17.(甘肃定西模拟)实数a在数轴上的位置如图所示,则(a-5)2+(a-13)2化简后为(A)A.8 B.-8 C.2a-18 D.无法确定8.设a=7+2,则(C)A.2<a<3 B.3<a<4C.4<a<5 D.5<a<69.(宁夏石嘴山模拟)若x为实数,在“(3+1)□x”的“□”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是(C)A.3+1 B.3-1 C.23D.1-310.(兰州模拟)甲、乙两人计算a+1-2a+a2的值,当a=5的时候得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是(D)A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题11.(衡阳中考)若二次根式x -3 有意义,则x 的取值范围是__x ≥3__.12.(内蒙古乌兰察布模拟)2-5 的倒数是.13.若两个连续整数x ,y 满足x <5 +1<y ,则x +y 的值是 __7__.14.(荆州中考)已知:a =(12 )-1+(-3 )0,b =(3 +2 )(3 -2 ),则a +b =__2__.15.(青海玉树模拟)计算:(12 -43 )×3 =__4__.16.当x =__52 __时,2x -5 有最小值.17.(安徽中考)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是5 -1,它介于整数n 和n +1之间,则n 的值是__1__. 18.(新疆阿勒泰模拟)若|1 001-a |+a -1 002 =a ,则a -1 0012=__1__002__.三、解答题19.(1)(上海中考)计算:912 +|1-2 |-2-1×8 .(2)(仙桃中考)计算:(3-2 )0×4-(23 -6)+3-8 +12 .【解析】(1)原式=912 +2 -1-12 ×22 =912 +2 -1-2 =812 .(2)原式=1×4-23 +6-2+23 =4-23 +6-2+23 =8. 20.(宁夏中考)先化简,再求值:(a +1a +2 +1a -2 )÷2a 2-4 ,其中a =2 .【解析】原式=(a +1)(a -2)+a +2a 2-4 ·a 2-42 =a 2-a -2+a +22 =a 22 , 当a =2 时,原式=(2)22=1.21. (甘肃嘉峪关模拟)已知长方形的长为a ,宽为b ,且a =32 12 ,b =12 48 .(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.【解析】(1)∵a =32 12 =3 3 ,b =12 48 =23 ,∴长方形的周长是:2(a +b )=2(3 3 +2 3 )=10 3 . (2)设正方形的边长为x ,则有x 2=ab , ∴x =ab =33×2 3 =18 =3 2 ,∴正方形的周长是4x =12 2 . 22.已知a ,b ,c 满足|a -8 |+b -5 +(c -3 2 )2=0.(1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?如果能构成,请求出三角形的周长,如果不能,请说明理由.【解析】(1)根据题意得,a -8 =0,b -5=0,c -3 2 =0, 解得a =2 2 ,b =5,c =3 2 .(2)∵2 2 +3 2 >5,即a +c >b ,∴能构成三角形, ∴C △ABC =2 2 +3 2 +5=5 2 +5. 23.(乌鲁木齐模拟)观察、思考、解答:( 2 -1)2=( 2 )2-2×1×2 +12=2-2 2 +1=3-2 2 , 反之3-2 2 =2-2 2 +1=( 2 -1)2. ∴3-2 2 =( 2 -1)2,∴3-2 2 = 2 -1.(1)仿上例,化简:6-2 5 .(2)若a +2b =m +n ,则m ,n 与a ,b 的关系是什么?并说明理由.(3)已知x =4-12 ,求⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1) 的值(结果保留根号).【解析】(1)6-2 5 =5-25+1 =(5-1)2 = 5 -1.(2)a =m +n ,b =mn ,理由:∵a +2 b =m +n , ∴a +2 b =m +2mn +n ,∴a =m +n ,b =mn ;(3)∵x =4-12 =3-23+1 =(3-1)2 = 3 -1,∴⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1) =x +2+x -2(x -2)(x +2) ·(x -2)(x +2)2(x -1) =2x (x -2)(x +2) ·(x -2)(x +2)2(x -1) =x x -1. 当x = 3 -1时,原式=3-13-1-1 =3-13-2 =(3-1)(3+2)(3-2)(3+2)=-1- 3 .。

人教版初中八年级数学下册第十六章《二次根式》复习题(含答案解析)(2)

人教版初中八年级数学下册第十六章《二次根式》复习题(含答案解析)(2)

一、选择题1.下列是最简二次根式的是( )A B CD2.已知x+y =﹣5,xy =4,则 ) A .4 B .﹣4 C .2 D .﹣23. ) A .1 B .2 C .3 D .4 4.下列二次根式中是最简二次根式的是( )A BC D 5.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=6.下列计算正确的是( )A 2=±B .22423x x x +=C .()326328a b a b -=-D .()235x x x -=÷ 7.下列算式中,正确的是( )A .3=B =C =D 4= 8.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 9.下列四个数中,是负数的是( )A .2-B .2(2)-C . D10.已知y 3,则x y 的值为( ). A .43 B .43- C .34D .34- 11.下列各式不是最简二次根式的是( )A B C D12.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 13.下列二次根式:4、12、50、12中与2是同类二次根式的个数为( ) A .1个 B .2个 C .3个 D .4个14.下列运算正确的是( ) A .628+= B .66-= C .623÷= D .()266-=15.计算-23的结果是( )A .-3B .3C .-9D .9二、填空题16.计算1248⨯的结果是________________.17.若53x =-,则()234x +-的值为__________.18.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.19.若224y x x =--,则y x 的平方根是__________.20.)3750a b b >=________.21.2210(15)=_____818+=______.22.已知a 、b 为有理数,m 、n 分别表示5721amn bn +=,则3a b +=_________.23.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___. 24.已知223y x x =--,则()x x y +的值为_________.25.使式子32xx -+有意义的x 的取值范围是______.26.220x y -=,则x y +=________.三、解答题27.先阅读,后回答问题:x ()x x 3-解:要使该二次根式有意义,需x(x-3)≥0,由乘法法则得030? x x ≥⎧⎨-≥⎩或0 30x x ≤⎧⎨-≤⎩,解得x 3≥或x 0≤,即当x 3≥或x 0≤体会解题思想后,解答:x 28.计算: (1)1301(2)(2)53π-⎛⎫+-⨯-+ ⎪⎝⎭;(2)21)-++-.29.计算:20201|1-30.计算(1)2)。

2023-2024人教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)

2023-2024人教版八年级数学下册第16章二次根式专题训练  二次根式的运算与化简求值(含答案)

第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。

人教版八年级下数学《第16章二次根式》单元测试(含答案)

人教版八年级下数学《第16章二次根式》单元测试(含答案)

第16章二次根式一、选择题1.下列式子中,属于最简二次根式的是()A. B. C. D.2.下列各式中3 ,,,,,二次根式有()个.A. 1B. 2C. 3D. 43.下列计算结果正确的是()A. + =B. 3 ﹣=3C. × =D. =54.=()A. ﹣1B. 1C. ﹣D. ﹣5.说法错误的个数是()①只有正数才有平方根;②-8是64的一个平方根③;④与数轴上的点一一对应的数是实数。

A. 1个B. 2个C. 3个D. 4个6.若x≤0,则化简|1﹣x|﹣的结果是()A. 1﹣2xB. 2x﹣1C. ﹣1D. 17.若与化成最简二次根式是可以合并的,则m、n的值为()A. m=0,n=2B. m=1,n=1C. m=0,n=2或m=1,n=1D. m=2,n=08.二次根式中x的取值范围是()A. x>2B. x≥2C. x<2D. x≤29.把m根号外的因式适当变形后移到根号内,得()A. B. - C. - D.10.在实数范围内,有意义,则x的取值范围是()A. x≥0B. x≤0C. x>0D. x<011.如果成立,那么实数a的取值范围是()A. B. C. D.12.一个长方形的长和宽分别是、,则它的面积是()A. B. 2(3 +2 ) C. D.二、填空题13.计算:(2 )2=________.14.计算:-=________15.代数式有意义的条件是________.16.化简 ________.17.当x取________时,的值最小,最小值是________;当x取________时,2-的值最大,最大值是________.18.已知x=+,y=-,则x3y+xy3=________ .19.若x、y都是实数,且y= 则x+y=________20.使式子有意义的x的取值范围是________ .21.填空:﹣1的倒数为________.22.比较大小________.(填“>”,“=”,“<”号)三、解答题23.(1)计算:(﹣)2+(2+)(2﹣)(2)因式分解:9a2(x﹣y)+4b2(y﹣x)(3)先化简,再求值:÷(a﹣1﹣),其中a2﹣a﹣6=0.24.若x、y都是实数,且y=++8,求x+y的值.25.已知y= +9,求代数式的值.参考答案一、选择题B BCD B D C D C A B C二、填空题13.2814.215.x≥﹣316.17.-5;0;5;218.1019.1120.x是实数21.22.>三、解答题23.解:(1)原式=()2﹣2××+()2+(2)2﹣()2 =2﹣2+3+12﹣6=11﹣2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)÷(a﹣1﹣)=÷=÷=•==,∵a2﹣a﹣6=0,∴a2﹣a=6,∴原式=.24.解:由题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+y=3+8=11.25.解:由题意可得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=9,则==2﹣3=﹣1。

八年级数学下册二次根式(全章)习题及答案(含答案)

八年级数学下册二次根式(全章)习题及答案(含答案)

二次根式16.1 二次根式:1. 有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 。

4. 当__________x 是二次根式。

5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

6. 2x =,则x 的取值范围是 。

7. 2x =-,则x 的取值范围是 。

8. )1x 的结果是 。

9. 当15x ≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 11x =+成立的条件是 。

12. 若1a b -+互为相反数,则()2005_____________a b -=。

13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()2311223224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。

22. 当a取什么值时,代数式1取值最小,并求出这个最小值。

23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。

16.2 二次根式的乘除1. 当0a ≤,0b__________=。

八年级数学下册第十六章二次根式总结(重点)超详细(带答案)

八年级数学下册第十六章二次根式总结(重点)超详细(带答案)

八年级数学下册第十六章二次根式总结(重点)超详细单选题1、若a =√2﹣1,则a +1a 的整数部分是( )A .0B .1C .2D .3答案:C分析:把a 的值代入,利用二次根式的混合运算法则计算得出最简结果,再估算即可求解.解:∵a =√2−1,∴a +1a =√2−1+√2−1=√2−1+√2+1=2√2,∵4<8<9, ∴2<2√2<3,∴a +1a 的整数部分是2,故选:C小提示:本题主要考查了二次根式的混合运算,无理数的估算能力,掌握二次根式的混合运算法则是解决问题的关键.2、下列计算正确的是( )A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4D .√3+2√3=3√3答案:D分析:由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案.解:32=9,故A 不符合题意;(−25)3=−8125, 故B 不符合题意;(−2a 2)2=4a 4, 故C 不符合题意;√3+2√3=3√3, 故D 符合题意;故选D小提示:本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.3、下列各式中,无意义的是( )A .√(−3)2B .√(−3)33C .√−32D .√−(−3)答案:C分析:根据二次根式的被开方数是非负数判断即可.解:A .原式=√9=3,故该选项不符合题意;B .原式=−3,故该选项不符合题意;C .原式=√−9,−9是负数,二次根式无意义,故该选项符合题意;D .原式=√3,故该选项不符合题意;故选:C .小提示:本题考查了二次根式有意义的条件,立方根,掌握二次根式的被开方数是非负数是解题的关键.4、当x >2时,√(2−x )2= ( )A .2−xB .x −2C .2+xD .±(x −2)答案:B分析:根据√a 2=|a |的进行计算即可.∵x >2,∴√(2−x )2=|2−x |=x −2,故B 正确.故选:B .小提示:本题考查了二次根式的性质与化简,熟练掌握√a 2=|a |是解题的关键.5、对于无理数√3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是( ).A .2√3−3√2B .√3+√3C .(√3)3D .0×√3答案:D分析:分别计算出各选项的结果再进行判断即可.A .2√3−3√2不能再计算了,是无理数,不符合题意;B .√3+√3=2√3,是无理数,不符合题意;C .(√3)3=3√3,是无理数,不符合题意;D .0×√3=0,是有理数,正确.故选:D .小提示:此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.6、若式子√m+2(m−1)2有意义,则实数m 的取值范围是( )A .m >﹣2B .m >﹣2且m ≠1C.m ≥﹣2D .m ≥﹣2且m ≠1答案:D分析:根据二次根式有意义的条件即可求出答案.由题意可知:{m +2≥0m −1≠0, ∴m≥﹣2且m≠1,故选D .小提示:本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.7、下列计算:(1)(√2)2=2;(2)√(−2)2=2;(3)(−2√3)2=12;(4)(√2+√3)(√2−√3)=−1,其中结果正确的个数为( )A .1B .2C .3D .4答案:D分析:根据二次根式的运算法则即可进行判断.(1)(√2)2=2,正确;(2)√(−2)2=2正确;(3)(−2√3)2=12正确;(4)(√2+√3)(√2−√3)=−1,正确,故选D.小提示:此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:(√a)2=a;√a2=|a|.8、下列二次根式中,最简二次根式是()D.√a2A.−√2B.√12C.√15答案:A分析:根据最简二次根式的两个条件逐项判定即可.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.小提示:本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、化简2√5−√5×(2−√5)的结果是()A.5B.−5C.√5D.−√5答案:A分析:先进行二次根式乘法,再合并同类二次根式即可.解: 2√5−√5×(2−√5),=2√5−2√5+5,=5.故选择A.小提示:本题考查二次根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键.10、√(−3)2化简后的结果是()A.√3B.3C.±√3D.±3答案:B试题分析:“√a”表示的是a的算术平方根,“±√a”表示的是a的平方根.√(−3)2=√9=3,故选B.填空题11、实数2﹣√3的倒数是_____.答案:2+√3分析:先根据倒数的定义写出2﹣√3的倒数,再分母有理化即可.解:2−√3的倒数是2−√3=√3(2−√3)(2+√3)=2+√34−3=2+√3,所以答案是:2+√3.小提示:本题考查实数的倒数,分母有理化.掌握利用平方差公式分母有理化的方法是解题关键.12、我们知道√5是一个无理数,设它的整数部分为a,小数部分为b,则(√5+a)·b的值是_________.答案:1分析:先根据2<√5<3,确定a=2,b=√5-2,代入所求代数式,运用平方差公式计算即可.∵2<√5<3,∴a=2,b=√5-2,∴(√5+a)·b=(√5+2)(√5-2)=5-4=1,所以答案是:1.小提示:本题考查了无理数的估算,无理数整数部分的表示法,平方差公式,正确进行无理数的估算,灵活运用平方差公式是解题的关键.13、若a>√2a+1,化简|a+√2|−√(a+√2+1)2=_____.答案:1分析:先根据a>√2a+1,判断出a<−1−√2,据此可得a+√2<−1,a+√2+1<0,再依据绝对值性质和二次根式的性质化简可得.解:∵a>√2a+1,∴(1−√2)a>1,则a<1−√2,即a<−1−√2,∴a+√2<−1,a+√2+1<0,原式=−a−√2+a+√2+1=1,所以答案是:1 .小提示:本题主要考查二次根式的应用,解题的关键是掌握二次根式的性质、绝对值的性质和解一元一次不等式的步骤.14、计算√(−2)2的结果是_________.答案:2分析:根据二次根式的性质进行化简即可.解:√(−2)2=2.所以答案是:2.小提示:此题主要考查了二次根式的化简,注意:√a2=|a|={a(a>0)0(a=0)−a(a<0).15、计算√5×√15−√12的结果是_______.答案:3√3分析:根据二次根式的运算法则计算即可得出答案.原式=√5×15−2√3=5√3−2√3=3√3,故答案为3√3.小提示:本题考查的是二次根式,比较简单,需要熟练掌握二次根式的运算法则.解答题16、计算:(1)√32−√18−√18;(2)(7+4√3)(7−4√3)−(√3−1)2.答案:(1)34√2 (2)√3−3分析:(1)先把二次根式化为最简二次根式,然后合并同类项;(2)利用平方差和完全平方公式计算.(1)原式=4√2−3√2−√24=3√24 (2)原式=49−48−(3−2√3+1)=2√3−3小提示:本题考察了二次根式的混合运算和乘法公式.先把二次根式化为最近二次根式,然后再合并同类项,平方差公式(a −b)(a +b)=a 2−b 2,完全平方公式(a ±b)2=a 2±2ab +b 2,正确化简二次根式和使用乘法公式是解题的关键.17、计算:(1)√100+√−273−2×√14(2)−√(−3)2+√6+|√6−3|答案:(1)6(2)0分析:(1)先计算算术平方根与立方根,再合并即可;(2)先求解算术平方根与绝对值,再合并即可.(1)解:√100+√−273−2×√14=10−3−2×12=10−3−1=6;(2)−√(−3)2+√6+|√6−3|=−3+√6+3−√6=0小提示:本题考查的是化简绝对值,算术平方根与立方根的含义,二次根式的加减运算,掌握以上运算是解本题的关键.18、在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.(1)√45,(2)√13,(3)√52,(4)√0.5,(5)√145.答案:(1)不是,3√5;(2)不是,√33;(3)是;(4)不是,√22;(5)不是,3√55. 分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.(1)√45=3√5,含有开得尽方的因数,因此不是最简二次根式.(2)√13=√33,被开方数中含有分母,因此它不是最简二次根式; (3)√52,被开方数不含分母,被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)√0.5=√12=√22,在二次根式的被开方数中,含有小数,不是最简二次根式; (5)√145=√95=3√55,被开方数中含有分母,因此它不是最简二次根式. 小提示:本题考查最简二次根式的定义.解决此题的关键,是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.。

人教版数学八年级下册:二次根式(含答案)

人教版数学八年级下册:二次根式(含答案)

《二次根式》1.二次根式的概念(1)一般地,我们把形如a(a≥0)的式子叫做二次根式.(2)对于a(a≥0)的讨论应注意下面的问题:①二次根号“”的根指数是2,二次根号下的a叫被开方数,被开方数可以是数字,也可以是整式、分式等.②式子a只有在条件a≥0时才叫二次根式.即a≥0是a为二次根式的前提条件.式子-2就不是二次根式,但式子(-2)2是二次根式.③a(a≥0)实际上就是非负数a的算术平方根,既可表示开方运算,也可表示运算的结果.④4是二次根式,虽然4=2,但2不是二次根式.因此二次根式指的是某种式子的“外在形态”.二次根式有两个要素:一是含有二次根号“”;二是被开方数可以不只是数字,但必须是非负的,否则无意义.【例1-1】当a为实数时,下列各式中哪些是二次根式?a+10,|a|,a2,a2-1,a2+1,(a-1)2.分析:因为a为实数,而|a|≥0,a2≥0,a2+1>0,(a-1)2≥0,所以|a|,a2,a2+1,(a-1)2是二次根式.因为a是实数时,并不能保证a+10,a2-1是非负数,即a+10,a2-1可能是负数.如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0,因此,a+10,a2-1不是二次根式.解:|a|,a2,a2+1,(a-1)2是二次根式.【例1-2】x是怎样的实数时,式子x-3在实数范围内有意义?分析:问题实质上是问当x是怎样的实数时,x-3是非负数,式子x-3有意义.解:由二次根式的定义可知被开方式x-3≥0,即x≥3,就是说当x≥3时,式子x-3在实数范围内有意义.2.二次根式的性质(1)a(a≥0)是一个非负数...a(a≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥0(a≥0),我们把这个性质叫做二次根式的非负性.【例2-1】若a+3+(b-2)2=0,则a b的值是__________.解析:由题意可知a+3=0,(b-2)2=0,所以a+3=0,b-2=0,则a=-3,b=2.所以a b=(-3)2=9.答案:9(2)(a)2=a(a≥0)由于a(a≥0)是一个非负数,表示非负数a的算术平方根,因此通过算术平方根的定义,将非负数a的算术平方根平方,就等于它本身,即(a)2=a(a≥0).【例2-2】化简:①(23)2=__________;②(x -3)2(x ≥3)=__________.解析:①直接利用公式(a )2=a (a ≥0),可得(23)2=23;②因为x ≥3,所以x -3≥0,所以由公式(a )2=a (a ≥0),可得(x -3)2=x -3(x ≥3).答案:①23②x -3(3)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).由算术平方根的定义,可得a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).a 2=a (a ≥0)表示非负数a 的平方的算术平方根等于a .【例2-3】计算: (1)(-1.5)2;(2)(a -3)2(a <3);(3)(2x -3)2(x <32).解析:错解正解(1)(-1.5)2=-1.5;(2)(a -3)2=a -3; (3)(2x -3)2=2x -3. (1)(-1.5)2=|-1.5|=1.5;(2)(a -3)2=|a -3|=3-a (a <3);(3)(2x -3)2=|2x -3|=3-2x (x <32).错因剖析:本题对性质(a )2=a (a ≥0)与a 2=|a |应用混淆,需特别注意被开方数是非负数时,a 2=a (a ≥0).思路分析:根据a 2=|a |,首先去掉根号,然后利用绝对值的定义求解.(1)(a )2=a 的前提条件是a ≥0;而a 2=|a |中的a 为一切实数.(2)a (a ≥0),|a |,a 2是三个重要的非负数,即a (a ≥0)≥0,|a |≥0,a 2≥0,在解题时应用较多.(3)a 2=(a )2成立的条件是a ≥0,否则不成立.(4)(a )2=a (a ≥0)可以逆用,即任意的一个非负数都可以写成它的算术平方根的平方形式.(5)在利用a 2进行化简时,要先得出|a |,再根据绝对值的性质进行化简,一定要弄清被开方数的底数是正还是负,这是容易出错的地方.3.求二次根式中被开方数字母的取值范围由二次根式的意义可知,a 的取值范围是:a ≥0.即当a ≥0时,a 有意义,是二次根式;当a <0时,a 无意义,不是二次根式.(1)确定形如a 的式子中的被开方数中的字母取值范围时,可根据式子a 有意义或无意义的条件,列出不等式,然后解不等式即可.(2)当被开方数是分式时,同时要求分母不等于零.求解此类问题抓住一点,就是由二次根式的定义a (a ≥0)得被开方数必须是非负数,即把问题转化为解不等式.【例3】当字母取何值时,下列各式为二次根式. (1)a 2+b 2; (2)-3x ;(3)12x ; (4)-32-x.分析:必须保证被开方数是非负数,以上式子才是二次根式,当分母上有未知数时,分母不能为0,根据这些要求列不等式解答即可.解:(1)因为a ,b 为任意实数时,都有a 2+b 2≥0, 所以当a ,b 为任意实数时,a 2+b 2是二次根式.(2)-3x ≥0,x ≤0,即当x ≤0时,-3x 是二次根式.(3)12x≥0,且x ≠0,所以x >0. 当x >0时,12x 是二次根式.(4)-32-x ≥0,故x -2≥0且x -2≠0,所以x >2. 当x >2时,-32-x 是二次根式. 4.二次根式非负性的应用(1)在实数范围内,我们知道式子a (a ≥0)表示非负数a 的算术平方根,它具有双重非负性:①a ≥0;②a ≥0.运用这两个简单的非负性,再结合非负数的简单性质“若几个非负数的和等于0,则这几个非负数都等于0”可以解决一些算术平方根问题.巧记要点:二次根式,内外一致;即二次根式根号下和根号外一致为非负数. (2)到目前为止,我们已经学过三类具有非负性的代数式: ①|a |≥0;②a 2≥0;③a ≥0(a ≥0).【例4-1】已知x ,y 都是实数,且满足y =5-x +x -5+3,求x +y 的值.分析:式子中有两个二次根式,它们的被开方数都应该是非负数,由此可得关于x 的不等式组.解:由题意知⎩⎪⎨⎪⎧ 5-x ≥0,x -5≥0,∴⎩⎪⎨⎪⎧x ≤5,x ≥5,∴x =5.当x =5时,y =5-5+5-5+3=3.∴x +y =5+3=8.两个算术平方根,当被开方数互为相反数时,只有它们同时为零,这两个式子才能都有意义.【例4-2】已知x ,y 为实数,且y =12+8x -1+1-8x ,则x ∶y =__________.解析:因为y 为实数,所以隐含着两个算术平方根都有意义,即被开方数均为非负数.实际上,若a 和-a 都有意义,则a =0.即依题意得⎩⎪⎨⎪⎧8x -1≥0,1-8x ≥0.解得x =18,于是y =12+0+0=12.故x ∶y =1∶4.答案:1∶4,5.式子(a )2的意义和运用二次根式的一个性质是:(a )2=a (a ≥0).因为2=(2)2,35=(35)2,所以上面的性质又可以写成:a =(a )2(a ≥0).可见,利用这个式子我们可以把任何一个非负数写成一个数的平方的形式.二次根式中的23表示2×3,这与带分数212表示2+12是不一样的,因此,以后遇到32×3应写成323,而不能写成1123.【例5-1】计算:(1)(23)2;(2)(-212)2;(3)(-5×3)2.解:(1)(23)2=22×(3)2=12. (2)(-212)2=(-2)2×(12)2=2. (3)(-5×3)2=(-1)2×(5×3)2=15.【例5-2】把多项式n 5-6n 3+9n 在实数范围内分解因式.分析:按照因式分解的一般步骤,先对多项式n 5-6n 3+9n 提取公因式,得n (n 4-6n 2+9),再利用完全平方公式分解,得n (n 2-3)2,要求在实数范围内分解,所以可以将3写成(3)2,再运用平方差公式进行因式分解.解:n 5-6n 3+9n =n (n 4-6n 2+9)=n (n 2-3)2=n (n +3)2(n -3)2.6.二次根式与相反数和绝对值的综合应用(1)二次根式具有非负性,一个数的绝对值,完全平方数也是一个非负数,因此可以把这几者结合出题.(2)绝对值、算术平方根、完全平方数为非负数,即:|a |≥0,b ≥0(b ≥0),c 2≥0.非负数有一个重要的性质,即若干个非负数的和等于零,那么每一个非负数分别为零.即:|a |+b =0⇒a =0,b =0; |a |+c 2=0⇒a =0,c =0; b +c 2=0⇒b =0,c =0; |a |+b +c 2=0⇒a =0, b =0,c =0.【例6-1】若|a -b +1|与a +2b +4互为相反数,则(a +b )2 011=______.解析:|a -b +1|与a +2b +4互为相反数,∴|a -b +1|+a +2b +4=0.而|a -b +1|≥0,a +2b +4≥0,∴⎩⎪⎨⎪⎧ a -b +1=0,a +2b +4=0.∴⎩⎪⎨⎪⎧a =-2,b =-1.∴(a +b )2 011=(-2-1)2 011=(-3)2 011=-32 011. 答案:-32 011【例6-2】若a 2+b -2=4a -4,求ab 的值.分析:通过变形将等式转化为两个非负数的和等于零的形式,即(a -2)2+b -2=0,由二次根式的性质可知b -2≥0,由完全平方数的意义可知(a -2)2≥0,而它们的和为零,则a -2=0,b -2=0,从而可求出a ,b 的值.解:由a 2+b -2=4a -4,得a 2-4a +4+b -2=0,即(a -2)2+b -2=0.∵(a -2)2≥0,b -2≥0且(a -2)2+b -2=0,∴a -2=0,b -2=0,解得a =2,b =2. ∴ab =2,即ab 的值为2.7.二次根式(a )2=a (a ≥0)与a 2=|a |的区别、运用(a )2=a (a ≥0)与a 2=|a |是二次根式的两个极为重要的性质,是正确地进行二次根式化简、运算的重要依据.(1)正确理解(a )2与a 2的意义学习了二次根式的定义以后,我们知道a ≥0(a ≥0),即a 是一个非负数,a 是非负数a 的算术平方根,那么(a )2就是非负数a 的算术平方根的平方,但只有当a ≥0时,a 才能有意义.对于a 2,则表示a 2的算术平方根,由于a 2中的被开方数是一个完全平方式,所以a 无论取什么值,a 2总是非负数,即a 2总是有意义的.(2)(a )2与a 2的区别和联系区别:①表示的意义不同.(a )2表示非负实数a 的算术平方根的平方;a 2表示实数a 的平方的算术平方根.②运算的顺序不同.(a )2是先求非负实数a 的算术平方根,然后再进行平方运算;而a 2则是先求实数a 的平方,再求a 2的算术平方根.③取值范围不同.在(a )2中,a 只能取非负实数,即a ≥0;而在a 2中,a 可以取一切实数.④写法不同.在(a )2中,幂指数2在根号的外面;而在a 2中,幂指数2在根号的里面.⑤结果不同.(a )2=a (a ≥0),而a 2=⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即(a )2≥0,a 2≥0. ③仅当a ≥0时,有(a )2=a 2.如果先做二次根式运算,后做平方运算,只有一种可能;如果先做平方运算,再做二次根式运算,答案需分情况讨论.___________________________________________________________________________ __________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________【例7-1】已知x <2,则化简x 2-4x +4的结果是( ). A .x -2 B .x +2 C .-x -2 D .2-x 解析:x 2-4x +4=(x -2)2=(2-x )2,因为x <2,2-x >0,所以x 2-4x +4=2-x . 答案:D【例7-2】化简1-6x +9x 2-(2x -1)2得( ). A .-5x B .2-5x C .x D .-x解析:错解正解原式=(1-3x )2-(2x -1)=(1-3x )-(2x -1)=2-5x ,故选B. 由2x -1,知2x -1≥0,得x ≥12,从而有3x -1≥0,所以原式=(1-3x )2-(2x -1)=(3x -1)2-(2x -1)=(3x -1)-(2x -1)=x .故选C. 错因剖析:本题错在忽视了二次根式成立的隐含条件.题目中2x -1有意义,说明隐含了条件2x -1≥0,即x ≥12,可知3x -1≥0.思路分析:本题主要应用二次根式的性质:(1)a 2=|a |=()()0,0.a a a a ≥⎧⎪⎨⎪⎩-< (2)(a )2=a (a ≥0) .正确应用二次根式的性质是解决本题的关键. 答案:C【例7-3】若m 满足关系式3x +5y -2-m +2x +3y -m =x -199+y ·199-x -y ,试确定m 的值.分析:挖掘题目中隐含的算术平方根的两个非负性,并在解题过程中有机地配合应用,是解决本题的关键.解:由算术平方根的被开方数的非负性,得⎩⎪⎨⎪⎧ x -199+y ≥0,199-x -y ≥0,即⎩⎪⎨⎪⎧x +y ≥199,x +y ≤199.∴x +y =199. ∴x -199+y ·199-x -y =0. ∴3x +5y -2-m +2x +3y -m =0.再由算术平方根的非负性及两个非负数的和为零,得⎩⎪⎨⎪⎧ 3x +5y -2-m =0,2x +3y -m =0.①②由①-②,得x +2y =2.解方程组⎩⎪⎨⎪⎧ x +y =199,x +2y =2,得⎩⎪⎨⎪⎧x =396,y =-197.∴m =2x +3y =2×396+3×(-197)=201.点拨:(1)运用二次根式的定义得出:x ≥a 且x ≤a ,故有x =a ,这是由不等关系推出相等关系的一种十分有效的方法,在前面的解题中已用到.(2)由⎩⎪⎨⎪⎧a ≥0,b ≥0,a +b =0推出a =b =0,这也是求一个方程中含有多个未知数的有效方法之一.。

人教版初中八年级数学下册第十六章《二次根式》经典复习题(含答案解析)

人教版初中八年级数学下册第十六章《二次根式》经典复习题(含答案解析)

一、选择题1.下列是最简二次根式的是( )A B CD2.下列说法:①带根号的数是无理数;③实数与数轴上的点是一一对应的关系;④两个无理数的和一定是无理数;⑤已知a =2b =2a 、b 是互为倒数.其中错误的个数有( )A .1个B .2个C .3个D .4个3.下列计算正确的是( )A =±B .=C =D 2=4.x 的取值范围为( )A .x 2≥B .x 2≠C .x 2>D .x 2<5.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 6.当x在实数范围内有意义( ) A .1x > B .1≥x C .1x < D .1x ≤7.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤18.( )A .B .C .D .无法确定 9.下列式子中无意义的是( )A .B .C .D . 10.下列算式中,正确的是( )A .3=B =C =D 4=11.下列计算正确的是( )A . 3B .1122+=C.3=D312.)A.1个B.2个C.3个D.4个13.下列各式中,一定是二次根式的个数为()10),232a a a⎫+<⎪⎭A.3个B.4个C.5个D.6个14.n为().A.2 B.3 C.4 D.515.)0a<得()A B.C D.二、填空题16.3+=__________.17.化简题中,有四个同学的解法如下:========他们的解法,正确的是___________.(填序号)18.________________.19.已知b>0=_____.20.23()a-=______(a≠0),2-=______,1-=______.21.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为6,则图中阴影部分的面积是__________.22.已知5ab =,则b a a b=__. 23.比较大小:310524.已知223y x x =--,则()x x y +的值为_________. 25.已知8817y x x =--,则x y +的平方根为_________.26.(1031352931643-⎛⎫++= ⎪⎝⎭__________. 三、解答题27.计算:(183(26)27+(211513(1)(0.5)2674÷; (3)52311x y x y +=⎧⎨+=⎩; (4)4(2)153123x y y x +=-⎧⎪+⎨=-⎪⎩. 28.(1232;(2)计算:122729.计算(1)3222(2333 30.计算:(11850(2)73)(73)。

人教版八年级下册第十六章 二次根式: 二次根式化简计算的几种常见类型(含答案)

人教版八年级下册第十六章 二次根式: 二次根式化简计算的几种常见类型(含答案)

二次根式化简计算的几种常见类型学校:___________姓名:___________班级:___________考号:___________一、选择题1. 下列二次根式中,是最简二次根式的是( )A. 25B. 13C. 13D. 242. 如果(2a−1)2=1−2a,则a的取值范围是( )A. a<12B. a⩽12C. a>12D. a⩾123. 已知实数a,b在数轴上的对应点的位置如图所示,则化简a2+(a+1)2−(b−1)2结果为( )A. 2a+bB. −2a+bC. 2a−bD. −2a−b4. 若二次根式,32n的值是整数,则下列n的取值符合条件的是( )A. n=12B. n=15C. n=16D. n=185. 将一组数3,6,3,23,15,…,87,310按下面的方式进行排列: 3, 6, 3, 23, 15,32, 21, 26, 33, 30, ⋮按这样的方式进行下去,将15所在的位置记为(1,5),26所在的位置记为(2,3),那么62所在的位置应记为( )A. (2,5)B. (5,4)C. (6,2)D. (6,3)二、填空题6. 代数式x−6在实数范围内有意义时,x应满足的条件是.7. 细心观察图形,认真分析各式,然后解答问题.OA22=(1)2+1=2,S1=12;OA32=12+(2)2=3,S2=22;OA42=12+(3)2=4,S3=32….请用含有n(n是正整数)的等式表示上述变规律:OA n2=,S n=;8. 如图,从一个大正方形中截去面积分别为x2和y2的两个小正方形(空白部分).已知x=2−3,y=2+3,则留下阴影部分面积为.9. 已知x=7+1,x的整数部分为a,小数部分为b,则ab的值.10. 用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.则(−2)※3.三、计算题11. 计算:(1)52−22(2)(23+6)(23−6)(3)239x+6x4四、解答题12. 已知最简二次根式5a−5b与2a+4是同类二次根式,且(a−3c)2+b−5c=0,求15a+b−125c的值.13. 阅读下列计算过程:12+1=1×(2−1)(2+1)(2−1)=2−1;13+2=1×(3−2)(3+2)(3−2)=3−2;15+2=1×(5−2)(5+2)(5−2)=5−2.(1)根据上面运算方法,直接写出1n+1+n=____________;(2)利用上面的解法,请化简:12021+2020+12020+2019+12019+2018+⋅⋅⋅+12+1;(3)根据上面的知识化简1n+1+n.14. 阅读理解:已知x=2+1,求代数式x2−2x−5的值.王红的做法是:根据x=2+1得(x−1)2=2,∴x2−2x+1=2,得:x2−2x=1.把x2−2x作为整体代入:得x2−2x−5=1−5=−4.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x=3−2,求代数式x2+4x−5的值;(2)已知x=5−12,求代数式x3+x2+1的值.15. 如图,在下列网格中,每个小正方形的边长都为1.(1)在图1中,画一个有一条边长为5,面积为8的平行四边形;(2)在图2中,画一个有一条边长为5,面积为10的矩形,并直接写出这个矩形的周长.周长=_______________.答案1. C2. B3. D4. D5. B6. x ≥67. n n 28. 29. 7+2 10. 3 3 11. 解:(1) 5 2−2 2 = 3 2 ;(2) (2 3+ 6)(2 3− 6)=(2 3)2−( 6)2=12−6=6 ;(3) 239x +6 x 4=23×3 x +6×12x =2 x +3 x =5 x .12. 解:∵最简二次根式 5a− 5b 与 2a +4是同类二次根式,∴5a− 5b =2a +4,即3a = 5b +4,∵(a−3c)2+ b− 5c =0,∴a−3c =0,b− 5c =0,∴a =3c ,b = 5c ,∴9c =5c +4,解得:c =1,∴a =3,b = 5,∴ 15a +b− 125c = 55×3+ 5−5 5×1=−1755. 13. 解:(1) n +1− n ;(2)1 2021+ 2020+1 2020+ 2019+1 2019+ 2018+…+1 2+1= 2021− 2020+ 2020− 2019+ 2019− 2018+…+ 2−1= 2021−1;(3)1 n +1+ n =1×( n +1− n )( n +1+ n )( n +1− n )= n +1− n n +1−n = n +1− n 1= n +1− n . 14. (1) ∵x = 3−2 ,∴x +2= 3 ,∴(x +2)2=( 3)2 ,∴x 2+4x =−1 ,∴x 2+4x−5=−6 ;(2) ∵x = 5−12,∴2x +1= 5 ,∴(2x+1)2=(5)2,变形整理得:x2+x=1,∴x3+x2+1=x(x2+x)+1=x+1=5−12+1=5+12.15.(1)解:如图所示,AB=5,AD=4,平行四边形ABCD的面积为4×2=8;(2)解:如图所示,AB=CD=5,BC=AD=25,BD=5,∴BD2=AB2+AD2,∴△BAD是直角三角形,且∠BAD=90∘,同理可得∠B=∠C=∠D=90∘,面积为AB×AD=10,∴四边形ABCD的周长为2(5+25)=65,故答案为:65.。

人教版数学八年级下册:二次根式(含答案)

人教版数学八年级下册:二次根式(含答案)

二次根式》1.二次根式的概念(1) 一般地,我们把形如a(a≥0)的式子叫做二次根式.(2) 对于a(a≥0)的讨论应注意下面的问题:①二次根号“ ”的根指数是2,二次根号下的 a 叫被开方数,被开方数可以是数字,也可以是整式、分式等.②式子a只有在条件a≥0 时才叫二次根式.即a≥0 是a为二次根式的前提条件.式子-2就不是二次根式,但式子(-2)2是二次根式.③a(a≥0)实际上就是非负数 a 的算术平方根,既可表示开方运算,也可表示运算的结果.④4是二次根式,虽然4=2,但 2 不是二次根式.因此二次根式指的是某种式子的“外在形态”.二次根式有两个要素:一是含有二次根号“” ;二是被开方数可以不只是数字,但必须是非负的,否则无意义.【例1-1】当a为实数时,下列各式中哪些是二次根式?a+10,|a|,a2,a2-1,a2+1,(a-1)2.分析:因为 a 为实数,而|a|≥0,a2≥0,a2+1> 0,(a-1)2≥0,所以|a|,a2,a2+1,(a-1)2是二次根式.因为 a 是实数时,并不能保证a+10,a2- 1 是非负数,即a+10,a2-1 可能是负数.如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0,因此,a+10,a2-1 不是二次根式.解:|a|,a2,a2+1,(a-1)2是二次根式.【例1-2】x 是怎样的实数时,式子x-3在实数范围内有意义?分析:问题实质上是问当x是怎样的实数时,x-3 是非负数,式子x-3有意义.解:由二次根式的定义可知被开方式x-3≥0,即x≥3,就是说当x≥3 时,式子x-3在实数范围内有意义.2.二次根式的性质(1) a(a≥0)是一个非.负.数.a (a≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥0(a≥0),我们把这个性质叫做二次根式的非负性.【例2-1】若a+3+(b-2)2=0,则a b的值是__________ .解析:由题意可知a+3=0,(b-2)2=0,所以a+3=0,b-2=0,则a=-3,b=2.所以a b=(-3)2=9.答案:9(2) ( a)2=a(a≥0)由于a(a≥0)是一个非负数,表示非负数 a 的算术平方根,因此通过算术平方根的定义,将非负数 a 的算术平方根平方,就等于它本身,即( a)2=a(a≥0).例② ( x -3)2(x ≥3)= ________ .解析: ①直接利用公式 ( a)2=a(a ≥ 0),可得 ( 32)2=23; ②因为 x ≥ 3,所以 x -3≥0, 所以由公式 ( a)2=a(a ≥0),可得 ( x -3)2= x -3(x ≥3).2 答案: ①32 ② x - 33a(a ≥ 0), 由算术平方根的定义,可得 a 2= |a|= -a(a<0). a 2=a(a ≥0)表示非负数 a 的平方的算术平方根等于 a. 【例 2-3】 计算:(1) (- 1.5)2;(2) (a -3)2(a < 3);(3) (2x3)2( x 32)(1) ( a)2=a 的前提条件是 a ≥0;而 a 2=|a|中的 a 为一切实数.(2) a(a ≥ 0), |a|,a 2 是三个重要的非负数,即 a(a ≥0)≥0,|a|≥0,a 2≥0,在解题时 应用较多.(3) a 2=( a)2 成立的条件是 a ≥ 0,否则不成立.(4) ( a)2= a(a ≥ 0)可以逆用,即任意的一个非负数都可以写成它的算术平方根的平方 形式.(5) 在利用 a 2进行化简时,要先得出 |a|,再根据绝对值的性质进行化简,一定要弄清 被开方数的底数是正还是负,这是容易出错的地方.3.求二次根式中被开方数字母的取值范围 由二次根式的意义可知, a 的取值范围是: a ≥0.即当 a ≥ 0 时, a 有意义,是二次根 式;当 a <0 时, a 无意义,不是二次根式.(1) 确定形如 a 的式子中的被开方数中的字母取值范围时,可根据式子 a 有意义或无 意义的条件,列出不等式,然后 解不等式即可.(2)当被开方数是分式时,同时要求分母不等于零.(3) a 2= |a|=a(a ≥ 0),- a(a<0).求解此类问题抓住一点,就是由二次根式的定义a(a ≥ 0)得被开方数必须是非负数,即把问题转化为解不等式.【例 3】 当字母取何值时,下列各式为二次根式.(1) a 2+ b 2; (2) - 3x ;分析: 必须保证被开方数是非负数,以上式子才是二次根式,当分母上有未知数时, 分母不能为 0,根据这些要求列不等式解答即可.解: (1)因为 a , b 为任意实数时,都有 a 2+b 2≥0,所以当 a ,b 为任意实数时, a 2+b 2是二次根式.(2)- 3x ≥ 0, x ≤ 0,即当 x ≤0 时, - 3x 是二次根式.1(3) ≥ 0,且 x ≠0,所以 x > 0. 2x4.二次根式非负性的应用(1)在实数范围内,我们知道式子 a(a ≥ 0)表示非负数 a 的算术平方根,它具有双重非 负性:① a ≥0;② a ≥0.运用这两个简单的非负性,再结合非负数的简单性质“若几个非负数的和等于 这几个非负数都等于 0”可以解决一些算术平方根问题. 巧记要点: 二次根式,内外一致;即二次根式根号下和根号外一致为非负数. (2)到目前为止,我们已经学过三类具有非负性的代数式:① |a|≥ 0;②a 2≥0;③ a ≥0(a ≥0).【例 4- 1】已知 x ,y 都是实数,且满足 y = 5-x + x - 5+ 3,求 x +y 的值. 分析: 式子中有两个二次根式,它们的被开方数都应该是非负数,由此可得关于 x 的 不等式组.当 x =5时, y = 5-5+ 5-5+3=3. ∴x +y =5+3= 8.两个算术平方根,当 被开方数互为相反数时,只有它们同时为零,这两个 式子才能都有意义.1【例 4- 2】已知 x ,y 为实数,且 y =2+ 8x -1+ 1- 8x ,则 x ∶ y = _______ 解析: 因为 y 为实数,所以隐含着两个算术平方根都有意义,即被开方数均为非负1 1 1解得 x =8,于是 y =2+ 0+0=2.故 x ∶y = 1∶4.(4) ≥ 0, 2-x故 x -2≥0 且 x - 2≠0,所以 x >2.0,则 解: 由题意知 5 - x ≥ 0,x ≤5, ∴ x = 5.x - 5≥ 0, x ≥5, 数.实际上,若 a 和 - a 都有意义,则 a =0.即依题意得8x -1≥0,1- 8x ≥0.(3)-3答案:1∶4,5.式子( a)2的意义和运用二次根式的一个性质是:( a)2=a(a≥0).因为2=( 2)2,35=( 53)2,所以上面的性质又可以写成:a=( a)2(a≥0).可见,利用这个式子我们可以把任何一个非负数写成一个数的平方的形式.二次根式中的 2 3表示2× 3,这与带分数221表示2+12是不一样的,因此,以后遇到32× 3应写成32 3,而不能写成121 3.【例5-1】计算:(1)(2 3)2;(2)( -2 21)2;(3)(-5×3)2.解:(1)(2 3)2=22×( 3)2=12.(2)(-2 21)2=(-2)2×( 12)2= 2.(3) (-5× 3)2=(-1)2× ( 5× 3)2=15.【例5-2】把多项式n5-6n3+9 n 在实数范围内分解因式.分析:按照因式分解的一般步骤,先对多项式n5-6n3+9n 提取公因式,得n(n4-6n2+9),再利用完全平方公式分解,得n(n2-3)2,要求在实数范围内分解,所以可以将3写成( 3)2,再运用平方差公式进行因式分解.解:n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+3)2(n-3)2.6.二次根式与相反数和绝对值的综合应用(1)二次根式具有非负性,一个数的绝对值,完全平方数也是一个非负数,因此可以把这几者结合出题.(2)绝对值、算术平方根、完全平方数为非负数,即:|a|≥0,b≥0(b≥0),c2≥0.非负数有一个重要的性质,即若干个非负数的和等于零,那么每一个非负数分别为零.即:|a|+b=0? a=0,b=0;|a|+c2=0? a=0,c=0;b+c2=0? b=0,c=0;|a|+b+c2=0? a=0,b=0,c=0.【例6-1】若|a-b+1|与a+2b+4互为相反数,则(a+b)2 011= ____ .解析:|a-b+1|与a+2b+4互为相反数,∴ |a-b+1|+a+2b+4=0.而|a -b+1|≥0 , a +2b+ 4 ≥0 ,a-b+1=0,a=-2,a+2b+4=0. b=- 1.∴(a+b)2 011=(-2-1)2 011=(-3)2 011=-32 011. 答案:-32 011【例6-2】若a2+b-2=4a-4,求ab的值.分析:通过变形将等式转化为两个非负数的和等于零的形式,即(a-2)2+b-2=0,由二次根式的性质可知b-2≥0,由完全平方数的意义可知(a-2)2≥0,而它们的和为零,则a-2=0,b-2=0,从而可求出a,b 的值.解:由a2+b-2=4a-4,得a2-4a+4+b-2=0,即(a-2)2+b-2=0.∵(a-2)2≥0,b-2≥0 且(a-2)2+b-2=0,∴ a-2=0,b-2=0,解得a=2,b=2.∴ ab=2,即ab的值为 2.7.二次根式( a)2=a( a≥0)与a2=|a|的区别、运用( a)2=a(a≥0)与a2=|a|是二次根式的两个极为重要的性质,是正确地进行二次根式化简、运算的重要依据.(1)正确理解( a)2与a2的意义学习了二次根式的定义以后,我们知道a≥0(a≥0),即a是一个非负数,a是非负数a的算术平方根,那么( a)2就是非负数 a 的算术平方根的平方,但只有当a≥0 时,a才能有意义.对于a2,则表示a2的算术平方根,由于a2中的被开方数是一个完全平方式,所以 a 无论取什么值,a2总是非负数,即a2总是有意义的.(2)( a)2与a2的区别和联系区别:①表示的意义不同.( a)2表示非负实数 a 的算术平方根的平方;a2表示实数a 的平方的算术平方根.②运算的顺序不同.( a)2是先求非负实数 a 的算术平方根,然后再进行平方运算;而a2则是先求实数 a 的平方,再求a2的算术平方根.③取值范围不同.在( a)2中,a只能取非负实数,即a≥0;而在a2中,a可以取一切实数.④写法不同.在( a)2中,幂指数 2 在根号的外面;而在a2中,幂指数 2 在根号的里面.a(a> 0),⑤结果不同.( a)2=a(a≥0),而a2=0(a=0),-a(a< 0).联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即( a)2≥0,a2≥0.③仅当a≥0 时,有( a)2=a2. 如果先做二次根式运算,后做平方运算,只有一种可能;如果先做平方运算,再做二次根式运算,答案需分情况讨论.【例7-1】已知x< 2,则化简x2-4x+4的结果是( ).A.x-2 B.x+2 C.-x- 2 D.2-x解析:x2-4x+4=(x-2)2=(2-x)2,因为x<2,2-x>0,所以x2-4x+4=2-x.答案:D【例7-2】化简1-6x+9x2-( 2x-1)2得( ).A .-5xB .2-5x C.x D.-x解析:错解正解由 2x -1,知 2x -1≥ 0,得 x ≥1,从而有原式= (1-3x )2- (2x -=(1-3x )-(2x - 1)=2-5x , 3x - 1≥ 0,所以原式= (1- 3x )2- (2x -1) = 故选 B. (3x -1)2-(2x -1)=(3x -1)-(2x -1)=x.故 选 C. 错因剖析:思路分析: 本题错在忽视了二次根式成本题主要应用二次根式的性质: 立的隐含条件.题目中a a 0 , (1) a 2= |a|= a a 0 ,2x - 1有意义, 说明隐含了 - a a <0 .1 条件 2x -1≥ 0,即 x ≥2,可(2)( a)2=a(a ≥0) . 知 3x -1≥ 0.正确应用二次根式的性质是解决本题的关键 . 答案: C【 例 7 - 3 】 若 m 满 足 关 系 式 3x +5y -2-m + 2x +3y -m = x - 199+y · 199- x -y ,试确定 m 的值. 分析: 挖掘题目中隐含的算术平方根的两个非负性,并在解题过程中有机地配合应 用,是解决本题的关键.解: 由算术平方根的被开方数的非负性,得x - 199+ y ≥ 0, x + y ≥ 199,即 ∴x +y = 199.199-x - y ≥ 0, x + y ≤ 199.x - 199+ y · 199-x -y =0.+5y -2- m + 2x + 3y -m =0. 再由算术平方根的非负性及y =- 197. ∴m =2x +3y =2×396+3×(-197)=201.点拨: (1)运用二次根式的定义得出: x ≥a 且 x ≤a ,故有 x = a ,这是由不等关系推出相等关系的一种十分有效的方法,在前面的解题中已用到.a ≥ 0,(2)由 b ≥ 0, 推出 a = b =0,这也是求一个方程中含有多个未知数的有效方法之a +b = 0 两个非负数的和为零,① 3x + 5y -2-m =0,得 2x + 3y -m =0. 由①-②,得 x +2y = 2.x + y =199 , 解方程组 得 x +2y = 2, x = 396,。

人教版八年级下册 第十六章 二次根式 复习题(含答案)

人教版八年级下册 第十六章  二次根式 复习题(含答案)

人教版八年级下册第十六章二次根式复习题(含答案)一、选择题1.(2019·南阳南召县期末)下列选项中,属于最简二次根式的是(C)A.12B. 4 C.10 D.82.若xy<0,则x2y化简后的结果是(D)A.x y B.x-yC.-x-y D.-x y3.可以与-5合并的二次根式是(C)A.10B.15C.20D.25 4.(2018·聊城)下列计算正确的是(B)A.310-25=5B.711×(117÷111)=11C.(75-15)÷3=25D.1318-389=25.(2019·洛阳第二外国语学校月考)如图,长方形内有两个相邻的正方形,面积分别为3和9,那么图中阴影部分的面积为(B)A.33-6B.33-3C.33-2D .6-236.(2019·洛阳洛龙区期中)下列计算正确的是(A )A .212= 2B .2+3=5C .43-33=1D .3+22=527.(2019·云南)要使x +12有意义,则x 的取值范围为(B )A .x ≤0B .x ≥-1C .x ≥0D .x ≤-18.把-a -1a 中根号外面的因式移到根号内的结果是(A )A .-aB .- aC .--aD .a9.(2018·德阳)下列计算或运算中,正确的是(B )A .2a 2= a B .18-8=2 C .615+23=345 D .-33=2710.(2019·重庆A 卷)估计(23+62)×13的值应在(C )A .4和5之间B .5和6之间C .6和7之间D .7和8之间11.(2019·郑州一中中考模拟)已知实数a ,b 在数轴上的位置如图所示,化简|a +b|-(b -a )2,其结果是(A )A .-2aB .2aC .2bD .-2b二、填空题12.(2019·广西)若二次根式x +4有意义,则x 的取值范围是x ≥-4.13.(2018·天津)计算(6+3)(6-3)的结果等于3.14.(2018·潍坊)用教材中的计算器进行计算,开机后依次按下 3x 2= .把显示结果输入下侧的程序中,则输出的结果是 15.(教材P19复习题T5变式)(2019·菏泽)已知x =6+2,那么x 2-22x 的值是4.16.已知16-n 是整数,则自然数n 所有可能的值为0,7,12,15,16. 三、解答题17.计算:(1)2×(1-2)+8;解:原式=2-22+22 =2.(2)(43+36)÷23;解:原式=43÷23+36÷23=2+32 2.(3)1232-275+0.5-3127; 解:原式=22-103+22-33=(2+12)×2+(-10-13)×3 =522-313 3.(4)(32-23)(32+23).解:原式=(32)2-(23)2=9×2-4×3=6.18.计算:23÷5×15. 解:原式=23×15×15 =235.19.小明在学习中发现了一个“有趣”的现象:∵23=22×3=22×3=12,①-23=(-2)2×3=(-2)2×3=12,②∴23=-2 3.③∴2=-2.④(1)上面的推导过程中,从第②步开始出现错误(填序号); (2)写出该步的正确结果.解:-23=-22×3=-22×3=-12.20.计算: (1)(3+1)(3-1)-16+(12)-1;解:原式=3-1-4+2=0.(2)(3+2-6)2-(2-3+6)2.解:原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.21.已知x=3+7,y=3-7,试求代数式3x2-5xy+3y2的值.解:当x=3+7,y=3-7时,原式=3(x2-2xy+y2)+xy=3(x-y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.22.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数)解:正方形壁画的边长分别为800 cm,450 cm.镶壁画所用的金彩带长为4×(800+450 )=4×(202+15 2 )=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小明的金彩带不够用.197.96-120=77.96≈78(cm).故还需买约78 cm长的金彩带.23.已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得a-8=0,b-5=0,c-18=0,∴a=22,b=5,c=3 2.(2)∵22+32=52>5,32-22=2<5,∴以a,b,c为边能构成三角形.三角形的周长为22+32+5=52+5.。

第16章二次根式期末综合复习知识点分类训练(附答案)2020-2021学年八年级数学人教版下册

第16章二次根式期末综合复习知识点分类训练(附答案)2020-2021学年八年级数学人教版下册

2021年人教版八年级数学下册《第16章二次根式》期末综合复习知识点分类训练(附答案)一.二次根式的定义及其意义1.下列各式中是二次根式的是()A.B.C.﹣D.22.下列各式一定是二次根式的是()A.B.C.D.3.若是二次根式,则a的值不可以是()A.4B.C.90D.﹣24.若代数式有意义,则实数x的取值范围是()A.x>2B.x≥2C.x<2D.x≤25.若式子有意义,则x的取值范围为()A.x>4B.x<4C.x≥4D.x≤46.使代数式有意义,则a的取值范围为()A.a≥﹣2且a≠1B.a≠1C.a≥﹣2D.a>﹣27.设x,y为实数,且,则|y﹣x|的值是()A.1B.9C.4D.58.若a,b为实数,且b=++4,则a+b的值为()A.﹣13B.13C.﹣5D.5二.二次根式的性质与化简9.下列各式中正确的是()A.=﹣2B.=2C.=2D.=±210.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与11.若,则a的取值范围是()A.a B.a>C.a<D.a12.若3<a<4,则﹣|a﹣4|等于()A.2a﹣7B.﹣1C.7﹣2a D.113.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣b B.b C.﹣2a﹣b D.﹣2a+b三.最简二次根式与二次根式的乘除14.下列二次根式中,是最简二次根式的是()A.B.C.D.15.下列式子是最简二次根式的是()A.B.C.D.16.化简:=;=;(2)2=.17.计算÷的结果是.18.计算:=.四.二次根式的加减19.计算﹣的结果是.20.计算﹣+2的结果是.21.如果最简二次根式与可以合并,则x=.22.若与最简二次根式3可以合并,则a=.23.如果最简二次根式和可以合并,则ab=.五.二次根式的混合计算与化简求值24.下列计算正确的是()A.=B.=2C.=D.(3﹣)2=7 25.下列计算:①()2=2,②=﹣2,③(﹣2)2=12,④=2,⑤﹣=,⑥()(﹣)=﹣1,其中结果正确的个数为()A.1B.2C.3D.426.下列各式计算正确的是()A.2﹣=2B.2×=2C.=2D.﹣=27.计算:=.28.计算(2﹣3)÷=.29.已知a=,b=,求ab的值为.30.已知a=3+,b=3﹣,则代数式的值是.31.已知x=﹣1,则代数式x2﹣5x﹣6=.32.已知(a﹣3)2+|b﹣4|=0,则a+的值是.33.已知m+n=10,则的最小值=.六.分母有理化与二次根式的应用34.分母有理化:=.35.已知长方形的面积为18,一边长为2,则长方形的另一边为.36.若x=+1,y=﹣1,则的值为.37.若直角三角形的边长分别是3,m,5.(1)求m;(2)先化简再求值.38.(1)已知a=3+2,b=3﹣2,求代数式a2b﹣ab2的值.(2)(﹣)÷,其中x=﹣2.39.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化,根据上述材料,计算:+++…+=.40.阅读材料:如果一个三角形的三边长分别为a,b,c,记p=,那么这个三角形的面积为S=.这个公式叫“海伦公式”,它是利用三角形的三条边的边长直接求三角形面积的公式,中国秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦﹣﹣秦九韶公式”.完成下列问题:如图,在△ABC中,a=5,b=3,c=4.(1)求△ABC的面积;(2)过点A作AD⊥BC,垂足为D,求线段AD的长.参考答案一.二次根式的定义及其意义1.解:A、是三次根式,不合题意;B、根号下部分是负数,无意义,不是二次根式,不合题意;C、﹣,符合二次根式的定义,符合题意;D、2不是二次根式,不合题意.故选:C.2.解:A、x<0时,不是二次根式,故A不符合题意;B、是二次根式,故B符合题意;C、二次根式的被开方数是非负数,故C不符合题意;D、,根指数不是2,不是二次根式,故D不符合题意;故选:B.3.解:∵是二次根式,∴a≥0,故a的值不可以是﹣2.故选:D.4.解:由题意得:x﹣2≥0,解得:x≥2,故选:B.5.解:∵式子有意义,∴x﹣4>0,解得x>4,即x的取值范围为x>4,故选:A.6.解:由题意得a+2≥0且a﹣1≠0,解得a≥﹣2且a≠1,故选:A.7.解:∵,∴5﹣x≥0,5﹣x≤0,∴5﹣x=0,解得x=5,∴y=4,∴|y﹣x|=|4﹣5|=1.故选:A.8.解:由题意得:,解得a=9,∴b=4,∴a+b=9+4=13.故选:B.二.二次根式的性质与化简9.A.算术平方根具有非负性,不符合题意;B.负数的立方根是负数,不符合题意;C.负数的平方等于正数,符合题意;D.算术平方根只有一个,不符合题意.故选:C.10.解:∵=2,2与﹣2互为相反数,故A选项符合题意;=﹣2,故B选项不符合题意;(﹣)2=2,故C选项不符合题意;|﹣|=,故D选项不符合题意.故选:A.11.解:∵,∴3﹣2a≥0,解得:a≤.故选:D.12.解:∵3<a<4,∴﹣|a﹣4|=a﹣3﹣(4﹣a)=a﹣3﹣4+a=2a﹣7.故选:A.13.解:由数轴可得:﹣2<a<﹣1,0<b<1,则a﹣b<0,故原式=﹣a+b﹣a=﹣2a+b.故选:D.三.最简二次根式与二次根式的乘除14.解:A,,被开方数含有分母,不是最简二次根式,故此选项不符合题意;B,,是最简二次根式,故此选项符合题意;C,被开方数不是整数,不是最简二次根式,故此选项不符合题意;D,=,被开方数含有开的尽方的因数,不是最简二次根式,故此选项不符合题意.故选:B.15.解:A.==,不符合题意;B.=2,不符合题意;C.是最简二次根式,符合题意;D.=,不符合题意.故选:C.16.解:=3;=;(2)2=12.故答案为:3,,12.17.解:÷===2,故答案为:2.18.解:原式=4÷5×=×==.故答案为:.四.二次根式的加减法19.解:原式=﹣2=﹣.故答案为:﹣.20.解:原式=(+2)﹣=3﹣.故答案为:3﹣.21.解:∵最简二次根式与可以合并,∴2x+1=5,∴x=2.故答案为:2.22.解:∵=2,∴3=4﹣2a,∴a=,故答案为:.23.解:最简二次根式和是同类二次根式,∴b+1=2且2a+3=a+3b,解得a=0,b=1,∴ab=0.故答案为:0.五.二次根式的混合计算与化简求值24.解:A、+=3+,故此选项错误;B、﹣=2,故此选项正确;C、==,故此选项错误;D、(3﹣)2=9+2﹣6=11﹣6,故此选项错误;故选:B.25.解:①()2=2,故①正确.②=2,故②错误.③(﹣2)2=12,故③正确.④=,故④错误.⑤与不是同类二次根式,故⑤错误,⑥()(﹣)=2﹣3=﹣1,故⑥正确.故选:B.26.解:A、原式=,故A错误.B、原式=2,故B正确.C、原式==,故C错误.D、与不是同类二次根式,故不能合并,故D错误.故选:B.27.解:原式=﹣2=2﹣2.故答案为2﹣2.28.解:原式=2﹣3=8﹣9=﹣1.故答案为﹣1.29.解:a=,b=,∴ab=()()=3﹣2=1.故答案为:1.30.解:∵a=3+,b=3﹣,∴a+b=(3+)+(3﹣)=6,ab=(3+)(3﹣)=9﹣5=4,∴===2,故答案为:2.31.解:∵x=﹣1,∴x2﹣5x﹣6=(x+1)(x﹣6)=(﹣1+1)(﹣1﹣6)=(﹣7)=5﹣7.故答案为5﹣7.32.解:由题意可知:a﹣3=0,b﹣4=0,∴a=3,b=4,∴原式=3+2=5,故答案为:5.33.解:如图,∠CAB=∠DBA=90°,AB=10,AC=5,BD=7,设AP=m,BP=n,则PC=,PD=,∵PC+PD≥CD(当且仅当C、P、D共线时取等号),∴PC+PD的最小值为CD,过D点作DE⊥AC于E,如图,易得四边形ABDE为矩形,∴AE=BD=7,DE=AB=10,在Rt△CDE中,CD===2,∴的最小值为2.故答案为2.六.分母有理化与二次根式的应用34.解:===2.故答案为:2﹣.35.解:∵长方形的面积为18,一边长为2,∴长方形的另一边为:18÷2=3.故答案为:3.36.解:∵x=+1,y=﹣1,∴x+y=(+1)+(﹣1)=2,则====,故答案为:.37.解:(1)当m为斜边时,m=;当m为直角边时,m==4.综上,m的值为4或;(2)原式==|m﹣3|﹣|m﹣7|,当m=4时,原式=m﹣3﹣7+m=2m﹣10=2×4﹣10=﹣2;当m=时,原式=m﹣3﹣7+m=2m﹣10=2×﹣10=2﹣10,综上原式的值为﹣2或2﹣10,38.解:(1)∵a=3+2,b=3﹣2,∴ab=(3+2)(3﹣2)=1,a﹣b=(3+2)﹣(3﹣2)=4,∴a2b﹣ab2=ab(a﹣b)1×4=4;(2)原式=(﹣)×=×=,当x=﹣2时,原式==.39.解:原式=﹣1+﹣+﹣+…+﹣=﹣1.故答案为:﹣1.40.解:(1)∵a=5,b=3,c=4,∴p==6,∴△ABC的面积S==6;(2)如图,∵△ABC的面积=BC•AD,∴×5×AD=6,∴AD=.。

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。

八年级初二数学二次根式复习题含答案

八年级初二数学二次根式复习题含答案

八年级初二数学二次根式复习题含答案一、选择题1.下列计算正确的是( )A =B .3=C 2=D 2.下列式子为最简二次根式的是( )A B C D3.已知5x =-,则2101x x -+的值为( )A.-B .C .2- D .04.下列二次根式是最简二次根式的是( )A B C D5.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D =6.下列各式计算正确的是( )A B .C .D 7.下列各式计算正确的是( )A +=B .26=(C 4=D =8.的下列说法中错误的是( )A 12的算术平方根B .34<<C 不能化简D 是无理数9.x 的取值范围是( )A .x ≥1B .x >1C .x ≤1D .x <110.下列计算正确的是( )A =B =C 4=D 3=-11.设0a >,0b >=的值是( )A .2B .14C .12D .3158 12.下列属于最简二次根式的是( )A B C D 二、填空题13.设4 a,小数部分为 b.则1a b -= __________________________.14.732x y -=-,则2x ﹣18y 2=_____. 15.已知x =,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______16.把17.===据上述各等式反映的规律,请写出第5个等式:___________________________.18.已知x ,y 为实数,y 求5x +6y 的值________.19.已知4a |2|a -=_____.20.n 的最小值为___三、解答题21.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的:因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3.所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题:(1)计算:= - . (2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;(3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可.【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===, 则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.已知m ,n 满足m 4n=3+. 【答案】12015【解析】【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46.【解析】试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案; (2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ , ∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=,∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++∴225a m n =+,62mn = ,又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =,即a 的值为:46或14.24.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】 (1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.26.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22m m-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m -+当m﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.计算(1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.28.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.29.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【详解】解:(1)原式=1(23⨯⨯=-⨯=3⎫⨯⎪⎪⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.30.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的运算法则逐项计算即可判断.【详解】解:AB 、C 2÷=2,故错误;D ,故正确.故选D.【点睛】本题考查了二次根式的四则运算.2.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB|a|,可以化简,故不是最简二次根式;C==,可以化简,故不是最简二次根式;D2故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.D解析:D【分析】把x的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D.【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.4.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A是最简二次根式,此项符合题意B=x<C、当0D=不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.5.D解析:D由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案.【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确;故选:D .【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.6.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;3==,故正确.故选D.7.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 8.C解析:C根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A12的算术平方根,故该项正确;B、34<<,故该项正确;C=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.9.A解析:A【分析】根据二次根式有意义的条件:被开方数x-1≥0,解不等式即可.【详解】解:根据题意,得x-1≥0,解得x≥1.故选A.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.10.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.11.C【分析】=变形后可分解为:)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a=+15b,∴+)=0,=,a=25b,1.2故选C.【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.12.B解析:B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】解:A,不符合题意;BC=2,不符合题意;D故选B.【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.二、填空题13.【分析】根据实数的估算求出a,b,再代入即可求解.∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=1故填:12-. 【点睛】此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.14.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y ﹣2,﹣x+7+x ﹣9=3y ﹣2,整理得:=3y ,∴x ﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x ≥11,|7﹣x =3y ﹣2,﹣x +7+x ﹣9=3y ﹣2,=3y ,∴x ﹣11=9y 2,则2x ﹣18y 2=2x ﹣2(x ﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.15.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<<∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a、b的值.16.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.17.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.18.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16 解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16.故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解.19.-5【分析】根据a的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵4a,∴a+3<0,2-a>0,|2|a-=-a-3-2+a=-5,故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.5【分析】因为是整数,且,则5n是完全平方数,满足条件的最小正整数n为5.∵,且是整数,∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.三、解答题21.无22.无23.无24.无25.无26.无27.无29.无30.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册二次根式复习
启智培优二次根式
一.选择题(共10小题)
1.已知m=,则有()
2.若,则代数式x y的值为()
C.3.在二次根式,,,,,中,最简二次根式的个数是()
4.化简二次根式的结果是()
.C D.5.若a<0,化简其结果是()
6.如果最简根式和是同类二次根式,那么a、b的值可以是()
7.若实数a满足方程,则[a]=(),其中[a]表示不超过a的最大整数.
8.设正整数a、m、n满足=﹣,则这样的a、m、n的取值()
9.已知,,则的值为()
10.已知是正整数,则实数a的最大整数值为()
二.填空题(共12小题)
11.已知,,则代数式的值为_________.
12.实数a,b在数轴上的位置如图所示,则的化简结果为_________.
13.要使式子有意义,则a的取值范围为_________.
14.若m<1,化简=_________.
15.设实数a、b在数轴上对应的位置如图所示,化简的结果是_________.
16.把通过分母有理化化成最简二次根式为_________.
17.计算:++…++=_________.
18.当﹣4≤x≤1时,不等式始终成立,则满足条件的最小整数m=_________.19.当m<0时,化简的结果是_________.
20.当1<x<3时,=_________.
21.若m<0,化简:2m+|m|+=_________.
22.化简=_________.
三.解答题(共8小题)
23.若x、y为实数,且满足,求的值.
24.若x,y,a,b满足关系式+=×,试求x,y的值.25.已知m、n是实数,且m=++1,求2m﹣3n的值.
26.若x、y为实数,且y=++1,求的值.
27.比较与2﹣的大小.
28.若+=3,求﹣的值.
29.实数a、b在数轴上的位置如图所示,化简.
30.观察下列计算:
==;==;
==;…
则:
(1)=_________,=_________;
(2)从计算结果找出规律:_________;
(3)利用这一规律计算:
(+++…+)()的值.
八年级下册二次根式复习
参考答案与试题解析
一.选择题(共10小题)
1.(2012•杭州)已知m=,则有()

(﹣

3
=
∵<,

2.(2012•温岭市模拟)若,则代数式x y的值为()
C.

3.(2012•汉川市模拟)在二次根式,,,,,中,最简二次根式的个数是()
=3,,=

4.(2004•淄博)化简二次根式的结果是()
.C D.解:若二次根式有意义,则﹣
=
5.(2002•温州)若a<0,化简其结果是()
6.(2002•四川)如果最简根式和是同类二次根式,那么a、b的值可以是()
解:∵和
∴,解得,
7.若实数a满足方程,则[a]=(),其中[a]表示不超过a的最大整数.
﹣﹣
(负值舍去)
8.设正整数a、m、n满足=﹣,则这样的a、m、n的取值()
=1××
∵﹣,
=
a=
9.已知,,则的值为()
=b=﹣
∴=5
10.已知是正整数,则实数a的最大整数值为()
是整数,且,则
解:∵是整数,且=
==
二.填空题(共12小题)
11.(2013•沙市区一模)已知,,则代数式的值为3.
,﹣
)﹣
∴=
12.(2012•呼和浩特)实数a,b在数轴上的位置如图所示,则的化简结果为﹣b.

13.(2011•随州)要使式子有意义,则a的取值范围为a≥﹣2且a≠0.
14.(2011•花都区二模)若m<1,化简=1.
得出

时,时,
15.(2003•泸州)设实数a、b在数轴上对应的位置如图所示,化简的结果是2b.
16.把通过分母有理化化成最简二次根式为﹣1.
分子,分母同时乘
=
故答案为:
17.计算:++…++=.
故答案为:
18.当﹣4≤x≤1时,不等式始终成立,则满足条件的最小整数m=4.
不等式两边平方得:
最大为
19.当m<0时,化简的结果是1.
,推出
﹣﹣
时,
20.当1<x<3时,=2.
=a=0时,
21.若m<0,化简:2m+|m|+=m.
22.化简=﹣.
即可得出


=|b|=
三.解答题(共8小题)
23.(2010•巫山县模拟)若x、y为实数,且满足,求的值.
解:由二次根式有意义可得:→
)当
)当
24.若x,y,a,b满足关系式+=×,试求x,y的值.
+
y=

25.已知m、n是实数,且m=++1,求2m﹣3n的值.
+
++1=0+0+1=1

26.若x、y为实数,且y=++1,求的值.
先根据二次根式的基本性质:
+
=.
的值是.
27.比较与2﹣的大小.
﹣表示为
﹣=
2=+4++
∴,即2.
﹣表示为再比较分母的大28.若+=3,求﹣的值.
的值,再求出﹣
解:∵+
(+
a+
)a+
﹣=3
∴==+.

29.实数a、b在数轴上的位置如图所示,化简.
∴,
30.观察下列计算:
==;==;
==;…
则:
(1)=,=;
(2)从计算结果找出规律:=(n是正整数);
(3)利用这一规律计算:
(+++…+)()的值.

=(
++)
((+)
++(
=。

相关文档
最新文档