高一数学2.1《函数的概念》说课稿立
函数概念的说课稿档
尊敬的评委,大家下午好:我是099班的….,我说说课的内容是“函数的概念”选自新人教A版高中数学必修一第一章第二节。
我将从以下六个环节展开我的说课。
首先,教材分析:函数作为初等数学的核心内容,贯穿着初等数学整个体系之中。
这一章在高中数学中,起着承上启下的作用,是对初中函数概念的承接深化。
而本节概念课是这一章的开启课,实现了函数的变量说到对应说的转化,在这里起到一个上承集合,下引函数的作用。
根据教材的特点,我将引导学生理解函数的模型化思想,用集合与对应的语言来刻画函数作为本节课的重点,而引导学生理解函数概念中“非空数集”、对应关系y=f(x),“任一与唯一对应”的含义,以及掌握函数定义域和值域的区间表示则是我教学过程中需要突破的难点。
高一的学生已经经历了变量下的函数定义,对函数有一定的感性认识。
此外,上节课的集合知识学习,也为本节课的展开奠定了良好的基础。
但由于初中的函数定义相对肤浅,学生在刚接触抽象性比较强的函数概念时,理解和掌握上都具有一定难度。
基于以上分析,我确定了以下三维目标:知识技能方面:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。
在此基础上学习用集合与对应的语言来刻画函数,并且理解函数的概念。
第二,学会用函数的定义进行函数判断,学会求简单函数的定义域和值域。
并且能够运用区间正确地表示他们。
通过在过程中参与函数从具体到抽象,从特殊到一般的生成过程,培养学生抽象概括能力和逻辑思维能力;强化他们在理解过程中运用联系、对应、对比等辩证思想的习惯。
情感态度价值观:带领学生经历函数从初中的变量说到高中的对应说的发展,感受函数适当渗透、螺旋上升的动态美。
同时感受函数的本质特点以及应用性,促进学生从更高的角度认识高中数学,作好进一步学习的心理准备。
为了夯实重点,突破难点,本节课我采用了“观察法”“提问法”“讨论探索法”以及引导归纳法进行教学,将理解函数概念作为课堂主线,将观察—提问—讨论—归纳贯穿在整个课堂中,层层递进。
2024年《函数的概念》说课稿(7篇)
2024年《函数的概念》说课稿(7篇)《函数的概念》说课稿1一、本课时在教材中的地位及作用教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。
__节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。
这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节课《函数的概念》是函数这一章的起始课。
概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。
也为进一步学习函数这一章的其它内容提供了方法和依据二、教学目标理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
三、重难点分析确定根据上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是__的难点。
四、教学基本思路及过程本节课《函数的概念》是函数这一章的起始课。
概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。
⑴学情分析一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
函数的概念说课稿一等奖
函数:程序设计的基础函数是程序设计中的基础概念之一,是指一个具有特定功能的可重用代码块。
通过函数,程序能够将复杂的任务分解成一系列小而简单的步骤,从而更加高效地完成任务。
本文将从函数的定义、语法、调用以及常见应用方面进行介绍。
一、函数的定义函数是一段预先编写的代码块,可以在程序中任意位置进行调用,以完成特定的功能。
函数通常具有以下特点:1. 函数具有名称,用于在程序中进行调用;2. 函数具有返回值,用于将计算结果返回给主程序;3. 函数可以接收一个或多个参数,用于完成指定的任务。
函数的定义格式如下:def 函数名(参数列表):代码块return 返回值二、函数语法在Python中,函数定义以def关键字开始,并在函数名称后面加上一对圆括号。
如果函数需要接收多个参数,则可以在圆括号中加上逗号分隔的参数列表。
在函数主体中,通过缩进实现代码块的定义。
例如:def Add(x, y):return x + y三、函数调用在程序中,函数可以被多次调用,以完成不同的任务。
函数的调用格式与定义格式类似,例如:print(Add(2,3)) # 输出 5四、函数的应用函数在程序中具有非常广泛的应用,主要包括以下方面:1. 代码的复用:通过函数,可以让程序代码更加简洁,可维护性更高,减少代码冗余;2. 参数的传递:函数可以接收参数,并对参数进行操作,从而可以实现数据的处理和传递;3. 结构的分解:通过将程序分解成多个小的模块,实现程序结构的分解,便于程序的设计和维护。
总之,函数是程序设计的基础,掌握函数的定义、语法、调用以及应用,对于编写清晰、高效、易维护的程序具有重要的意义。
最新北师大版高中数学必修一《函数的概念(说课稿)》教师招聘精品获奖完美优秀实用观摩课赛教公开课说课稿
前言:要想成为一名优秀的教师,不仅要对教材有所了解,还要对学生的情况有清晰明了的掌握,站在学生的角度思考问题,这样才能了解学生真正的学习需求,做到因材施教、有的放矢。
在教学过程中,学生是学习的主体,教师是学习的组织者,引导者,教学的一切活动都必须以强调学生的主动性,积极性为出发点。
《函数的概念》说课稿(最新精品获奖说课稿)尊敬的各位考官大家好,我是今天的×号考生,今天我说课的题目是《函数的概念》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。
函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。
又是沟通代数、方程、、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。
函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。
二、说学情接下来谈谈学生的实际情况。
新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。
本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。
所以,学生对本节课的学习是相对比较容易的。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。
函数的概念说课稿
函数的概念说课稿各位评委、各位老师,今天我要说的课题是“函数的概念及性质”。
我将从教材分析、学情分析、教学目标分析、教法与学法、教学过程设计、教学效果评价六个方面进行说明。
一、教材分析一)教学内容函数的概念及性质”是苏教版高中数学必修1第二章第一节内容。
本节课为第一课时,主要讲解函数的概念、定义域、值域等基本内容。
这节课是后面研究函数的性质的理论基础,为后面研究指数函数、对数函数以及三角函数的图像和性质提供了研究方法和理论基础。
同时,这节课内容蕴含着数形结合等丰富的数学思想,是培养学生观察能力、概括能力、探究能力和创新意识的重要题材。
二)教材的地位和作用本节内容是继学生在初中研究了简单的一次函数、反比例函数、二次函数的基础上展开的,因此这节课有承前启后的作用,是本章和本节的重点内容之一。
三)教学重难点分析本节课的重点是函数的概念及其定义域、值域。
为了突出重点,教师应启发引导,让学生自主探索,用集合的语言描述出函数的概念,并通过课堂例题及练巩固所学知识。
本节课的难点是用集合的语言描述函数的概念。
为了突破此难点,关键是让学生理解函数自变量和变量的本质,并引导学生从集合的角度理解函数的定义域和值域。
二、学情分析通过初中函数知识的研究,学生在知识上已经具备了一定的知识经验和基础,在能力上,已经初步具备了运用数形结合思想解决问题的能力。
但数形结合的意识和思维的深刻性还有待进一步加强。
在情感方面,多数学生对教学新内容的研究,有相当的研究兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不均衡,需要教师创设民主和谐平等的课堂气氛,加以调动。
三、教学目标分析根据教学大纲的要求,本节教材的特点,学生的认知规律,确定了以下目标:1.知识与技能目标:掌握并理解函数的概念,会求一些简单函数的定义域和值域。
2.过程与方法目标:通过让学生积极参与、亲身经历用集合的语言描述函数概念的获得过程,进一步理解函数的概念,培养学生从感性上升到理性的能力,以及使用数学语言的逻辑性与严谨性。
函数的概念说课稿
数学《函数的概念》说课稿作者姓名:于龙单位:北京市昌平职业学校函数的概念说课稿汽车系于龙各位老师、评委们大家好!下面由我根据自己实际上的这节“三有”课,从教材分析、学情分析、教学目标及重难点分析、教法学法、教学过程、板书设计、整体思路等方面进行简单说明。
一、教材分析本节内容选自中等职业教育课程改革国家规划新教材数学(基础模块上册),是40分钟的教学单元,函数是贯穿整个中职数学课程的主线之一,也是数学学习中的重点和基础,紧密的联系着各个章节,它所蕴含的数学思想方法,渗透到科技和生活的各个领域,是现代数学的基础.学好这章不仅在知识方面,更重要的是在函数的思想、方法方面,将会让学生在今后的学习、工作和生活中受益无穷。
二、学情分析本节课我授课的班级是汽修11-2班,全班实到29名男生,他们已经经过一学期高一数学的学习,在知识方面,已经学习了集合的概念,为重新定义函数的概念提供了知识保证,但多数学生数学基础不扎实,对于初中数学中所讲的函数概念很模糊。
在能力方面通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力,多数同学对数学还是充满信心,课堂能够保证安静,能听从组织安排,考虑到学生的已有的认知结构和心理特征,我制定了如下的教学目标:三、教学目标知识目标:1.理解函数的概念,明确函数是两个变量之间的一种依赖关系;2.掌握求函数值、定义域的方法;3.理解函数的三要素及符号y=f(x)。
能力目标:1.会求分式型和偶次根式型函数的定义域;2.通过给定的自变量x值,能求出函数值;3.培养学生归纳总结、抽象概括能力,让学生通过观察对比,发现不同,找到问题。
情感、态度、价值观目标:1.通过课堂活动培养学生团队意识,明确团队的力量依赖每一个人的智慧,揭示函数之间依赖关系;2.通过列举实例,体现数学源于实践又应用于实践。
教学重点:正确理解函数的概念教学难点:理解函数符号y=f(x)四、教法与学法(一)教法本节课是学生接触函数的概念的第一节课,结合大纲的要求,根据教学内容、教学目标和学生的认知水平,我主要采用教师启发讲授,学生通过实例自主观察、归纳、总结,由教师抽象概括出函数的概念,辅之多媒体课件使教学内容形象化,并渗透函数的概念中两个变量的依赖关系,从而揭示函数概念的本质。
高中数学必修一函数的概念PPT说课稿(共27张)PPT讲稿思维导图[PPT课件白板课件]
情景3:国民生产总值(GDP)
是综合反映某一个国家(地区)在一定时期(通常 为一年)内的经济活动的成果的最概括、最主要 的指标。国民生产总值越高,表示该国家(地区)
经济水平增长越快。下表给出了近年来惠州市 GDP总值变化的情况:
时间 (年)
2004
2005
2006
2007
2008
2009
2010
总值 (亿元)
685
803
933 1085 1280 1410 1730
仿照之前两个情景,描述上表中总值(亿元)与时
间(年)的关系
2、自主探究,合作交流
【解决重点,突破难点】
引导学生分析、归纳三个实例的共同点
用新观点分析初中熟悉的三个函数
(1)引导学生分析三个实例的共同点
【探究活动一】 将学生分成若干小组,让学生分析、归纳三个实
符号的理解
函数符号 y f (x) 表示“y关于x的函数”,
有时简记作函数 f (x) 对应关系 f
并不是f 与x相乘
(2)用新观点分析初中所学的三个函数
【探究活动二】 请同学们用集合与对应的观点分析初中所学的
一次函数,二次函数和反比例函数,并说出它们的 定义域和值域。
3、巩固练习,深化知识
2 教学目标 ●知识与技能
理解函数的概念、函数的符号,会用函 数的定义判断函数,会求函数值。
●过程与方法目标
让学生积极参与、亲身经历用集合的语 言描述函数概念的获得过程,进一步理解函 数概念。
●情感与价值目标
主动探究、合作学习互相交流,感受探 索的乐趣与喜悦。
3 教法学法
1、教法分析
启发探究法为主 讨论法、练习法为辅
3 教法与学法
北师大版高一数学必修一函数的概念说课稿
北师大版高一数学必修一函数的概念说课稿尊敬的各位考官大家好,我是今天的06号考生,今天我说课的题目是函数的概念。
接下来我将从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材《函数的概念》选自北师大版必修一第2章第二节,函数是高中数学学习的一条主线,对整个高中阶段的学习起着至关重要的作用。
二、说学情深入了解学生是新课标要求下教师的必修课,在初中阶段,学生已经根据变量的观点初步探讨函数的概念,高中也学习了集合的相关知识,这为学生重新定义函数的概念提供了必要的知识储备.三、说教学目标依据学生的知识水平和年龄特点,以及本节课在教材中所处的地位及作用,我制定了以下教学目标:1、理解函数的概念,了解构成函数的要素,能去简单函数的定义域。
2、学生经过讨论和思考的过程,提高发现问题和解决问题的能力。
3、提升学生数学抽象素养和数学运算素养。
四、说教学重难点要上好一节数学课,在教学内容上一定要做到突出重点、突破难点。
根据本节课的内容,确定教学重点为理解函数单调性的概念。
教学难点为理解f(x)的含义,从具体实例中抽象出函数的概念。
五、说教法和学法结合本节课的内容和学生的认知规律,我主要采用讲授法、启发法、小组合作、自主探究等教学方法。
在学法上,我主要采用观察法、合作交流法、归纳总结法等教学方法。
六、说教学过程古语说“凡事预则立,不预则废”,为了更好的以学定教,我会让学生在课前完成一份前置作业(预习单),分为两部分:1.是旧知连接,出一些本课知识紧密相关的已经学过的练习题,这样可以很好的摸清学生基础。
2.是新知速递,是让学生自己先进行预习,完成一些与本课知识相关的基础的练习,从而培养学生的预习能力。
为了实现这节课的教学目标,突出重点,突破难点,整节课的教学分几个部分进行1、新课导入:我将向学生提出问题:在初中所学的一次函数,反比例函数,一元二次函数,这些函数的基本特征是什么。
对于每一个x的取值,都有唯一确定的y值与之对应,这是函数的基本特征。
函数的概念说课稿3人教课标版(优秀教案)
03
函数性质探究与证明
奇偶性、周期性等性质介绍
奇偶性
函数图像关于原点对称的是奇函 数,关于y轴对称的是偶函数。通 过判断f(-x)与f(x)的关系,可以确
定函数的奇偶性。
周期性
函数在某个特定的非零周期长度p 内,图像呈现重复出现的特性,即 f(x+p)=f(x)。周期函数具有周期性 和对称性。
对称性
函数定义及表示方法
函数的定义
函数是一种特殊的对应关系,它描述了两个变量之间的依赖关系。通常记作f(x) ,其中x是自变量,f(x)表示当自变量取值为x时对应的因变量的取值。
函数的表示方法
函数的表示方法有多种,包括解析法、列表法和图象法。解析法是用数学表达式 来表示函数关系;列表法是通过列出自变量和对应因变量的数值表来表示函数关 系;图象法则是通过绘制函数的图象来表示函数关系。
关于x轴、y轴或原点的对称变换 ,可以通过改变函数的符号或自 变量与函数值的对应关系来实现
。
复杂函数图像绘制策略分享
01
02
03
04
分段函数
根据自变量的不同取值范围, 分别绘制各段函数的图像,注
意各段之间的连接点。
复合函数
首先确定内层函数的值域作为 外层函数的定义域,然后逐层
绘制函数的图像。
抽象函数
07
总结回顾与展望未来
关键知识点总结回顾
函数定义与性质
回顾了函数的概念、定义域、值域、对应关系等基本要素,以及函数 的单调性、奇偶性、周期性等性质。
函数表示法
总结了函数的三种表示法——解析法、列表法和图象法,以及它们各 自的特点和适用范围。
函数运算
回顾了函数的四则运算,包括函数的加减、乘除、复合等运算规则及 其性质。
函数的概念说课稿
《函数概念说课稿》各位评委老师大家好:我说课的内容是数学人教版普通高中新课程标准实验教科书必修1函数第一课时。
我将从教材解读,学情分析、教材目标设计、教学重难点、教法与学法选择、教学过程设计、及课时总结七个方面来汇报我对这节课的教学设想。
一、教材解读《函数的概念》是人教版高中数学(必修)第一册第一章“集合与函数概念”的第二节内容。
适合于高中一年级学生,在初中阶段我们已经学习了一次函数、二次函数、反比例函数等这为过渡到本课题的学习起到了过渡的作用。
本节课的学习既可以对集合的概念知识进一步的巩固和深化,又可以为后面学习初等函数、分析函数的性质以及函数的应用打下坚实的基础。
函数的概念贯穿于整个初等数学体系之中,是对初中数学中函数概念的深化、归纳。
它在整个教材中起着承上启下的作用。
因此本节课设定的教学重点是“函数的概念形成”。
二、学情分析从学生的知识层面上看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过第一节“集合”的学习,对集合思想的认识也有一定的了解,为学习函数,从根本上解释函数的定义提供了知识保证。
从学生能力层面上看:通过以前的学习学生已经有了一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。
教学中由实例抽象概括出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生能力要求比较高,因此我认为发展学生的抽象思维能力和对函数概念的本质理解是本节课的教学难点。
三、教学目标❖理解并掌握函数的概念❖掌握函数的三要素,理解函数相等的含义❖准确把握函数记号的含义,熟练掌握函数的几种表示方法。
四、教学重点理解函数的模型化思想,用集合与对应的语言来刻画函数。
五、教学难点符号“y=f(x)”的含义及函数概念的理解六、教法与学法的选择1.问题式教学本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法,以问题为主线,通过课本中的具体实例,发现问题中的两个变量的关系,让学生归纳概括出函数的本质。
《函数的概念》说课稿
《函数的概念》说课稿《函数的概念》说课稿「篇一」【高考要求】:三角函数的有关概念(B)。
【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化。
理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切。
【教学重难点】:终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义。
【知识复习与自学质疑】一、问题。
1、角的概念是什么?角按旋转方向分为哪几类?2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?4、弧度制下圆的弧长公式和扇形的面积公式是什么?5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?6、你能在单位圆中画出正弦、余弦和正切线吗?7、同角三角函数有哪些基本关系式?二、练习。
1.给出下列命题:(1)小于的角是锐角;(2)若是第一象限的角,则必为第一象限的角;(3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;(5)相等的角必是终边相同的角;终边相同的角不一定相等;(6)角2 与角的终边不可能相同;(7)若角与角有相同的终边,则角(的终边必在轴的非负半轴上。
其中正确的命题的序号是2.设P 点是角终边上一点,且满足则的值是3.一个扇形弧AOB 的面积是1 ,它的周长为4 ,则该扇形的中心角= 弦AB 长=4.若则角的终边在象限。
5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是6.若是第三象限的角,则- ,的终边落在何处?【交流展示、互动探究与精讲点拨】例1.如图,分别是角的终边。
(1)求终边落在阴影部分(含边界)的所有角的集合;(2)求终边落在阴影部分、且在上所有角的集合;(3)求始边在OM位置,终边在ON位置的所有角的集合。
例2。
(1)已知角的终边在直线上,求的值;(2)已知角的终边上有一点A ,求的值。
2.1.1函数的概念(第一课时)说课稿
及时反馈与调节原
[认知理论]
一切事物 都是相互联 系的辨证唯 物主义观。
4.总结提高
(1)函数的定义
一般地,设A,B是两个非空的数集,如果按某种对应法则f,对 于集合A中的每一个元数x,在集合B中都有唯一确定的元素y和它 对应,那么这样的对应叫做从A到B的一个函数(function),通常 记为
y=f(x),x∈A.
(1)每一个问题均涉及两个非空的数集A,B.
例如,在第一个问题中,一个集合A是由年份数组成,即 A={1949,1954,1959,1964,1969,1974,1979,1984,1989,1994,1999} 另一个集合B是由人口数(百万人)组成的,即 B={542,603,672,705,807,909,975,1035,1107,1177,1246}
4.总结提高过程的设计意图 指导思想与原则 认知理论
[设计意图]
[指导思想与原则 ]
使学生能够准
确理解并把握函 数的定义及函数 的三要素。
系统性与循序渐进 性相结合的原则。
[认知理论]
认识要不断 的深入和发展。
5.实践创新
例1:根据函数的定义判断下列对应是否为函数:
(1)x 2 , x 0, x R; x
古语中“函”通“含”。
(2)函数概念的分析
对于函数的意义,应从以下几个方面去理解:
(1) 对于变量x允许取的每一个值组成的集合A为函数y=f(x)的定义 域. (2)对于变量y可能取到的每一个值组成的集合B为函数y=f(x)的值 域. (3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都 有唯一确定的值与它对应。
若一物体下落2s,你能求出它下落距离吗? 这是通过代数表达式来体现:距离随时间的变化而变化
《函数的概念》说课教案5篇
《函数的概念》说课教案5篇《函数的概念》说课教案1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用”区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一引入课题1. 复习初中所学函数的概念,强调函数的模型化思想;2. 阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国2003年4月份非典疫情统计:日期 22 23 24 25 26 27 28 29 30新增确诊病例数 106 105 89 103 113 126 98 152 1013. 引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4. 根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二新课教学(一)函数的有关概念1.函数的概念:设AB是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意:○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2 函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f 乘x.2. 构成函数的三要素:定义域对应关系和值域3.区间的概念(1)区间的分类:开区间闭区间半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数二次函数反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1 函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1 构成函数三个要素是定义域对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
函数的概念说课稿
函数的概念第一.教材分析1.教材地位函数这一章在高中数学中,起着承上启下的作用.本节《函数的概念》是函数这一章的起始课.它上承集合,下引性质.是派生数学概念的强大“固着点”.2.学情分析在初中学生已经学习了变量观点下的函数定义;但对涉及函数本质的内容,要求是初步的. 从认知能力看,高一学生抽象思维能力相对较弱,要从函数实例中抽象出函数概念还有较大的困难.3.目标分析高中阶段要建立函数的“对应说”,强调用集合与对应语言来描述函数概念.4.教学重难点教学重点为:在研究已有函数实例的过程中,感受两个数集a,b之间所存在的对应关系f,进而用集合、对应的语言刻画这一关系,获得函数概念.教学难点也在于从主观知识抽象出函数的客观概念这一过程地突破以及对函数符号y=f(x)的理解。
第二.教法学法针对以上重难点的分析,第二个环节教法学法作如下考虑:1.教法思路以问题串为线索进行教学过程设计,为学生设计适当的认知过程,顺利实现从“变量说”到“对应说”的螺旋上升.2.学法指导众所周知,越是基础性的概念,其统摄性就越强,学生从中领悟到的数学就越本质,但事物总有两面性,这些概念的理解和掌握往往难度大、时间长,需要更多的经验积累.因此本节课在学法上强调在列举大量实际背景的前提下对所给出实例观察,类比,归纳,分析,探究,合作,提炼,感悟函数概念的“本来面目”.第三.教学设计在对函数概念这一课时有了充分认识之后,我的第三个环节教学设计将按以下五个步骤逐层推进:回顾迎新,引入课题,从初中“变量说”下的函数概念出发;接着,以变量说为切入点,结合三个示例反复设问,实现概念认识的螺旋上升;在此基础上,概括抽象出对应观念下的函数概念;概念形成后,针对关键词,重点处理,加深本质理解;最后通过学生的自我总结和论述,达到认识上的升华.1.变量说首先抛出问题,请学生叙述举例.实际教学中,学生对函数的描述,容易与学过的多项式,等式,方程的概念相混淆,这时通过学生的合作探究,思维碰撞,去芜存菁,把其中最错误的认识去除掉.初步统一到函数是一个表示变化过程的概念.并在此基础上共同回顾初中函数概念变量说,学生易于理解,不涉及抽象符号,因此以此为突破口,展开概念的推进.接下来请学生举例,这一过程的教学要让学生广泛参与,大胆讲述.根据学生的举例,在自变量范围,因变量范围,对应关系三个问题上反复追问,让学生体会对应在判断函数概念中的核心地位.例如在正方形面积与边长的例子中要求学生先用概念解释问题,了解他们对函数本质的理解状况;接下来要特别要求指出对应关系是什么;最后要追问边长和面积的取值范围,感受数集的存在及因变量的构成情况.通过这样的设问让学生体会函数实例中存在的共性.对每一个举例都同样处理.通过一问一答的思维活动,在说理与反驳中逐步让学生树立对应关系和2个数集的认识.3.对应说经过这三个例题的学习,学生已经获得了对函数的进一步认识,黑板上也出现了这样一副板书.在教学中一方面要强调让学生在亲身体验中获得内心感悟,另一方面还要依靠明确具体的语言指引,加速领悟过程.这时也来到了第三个环节概括抽象,形成概念.由于前面的一系列铺垫,通过循序渐进地渗透和提高,这时再让学生描述函数就显得水到渠成了.通过右边三个式子直观上的强烈冲击,学生已经能够归纳出函数的主要特征.这时再由教师把”式”, ”图” ,”表”,适时提炼为一个抽象,简洁,统一的对应关系符号”f”,学生经历了从具体到抽象的概括过程,难点顺利突破,课堂也到了这节课的落脚点----函数概念,老师板书函数定义,学生逐词体会.上述一系列活动,始终在学生知识的“最近发展区”,倡导学生主动参与,在师生互动,生生互动中,突破本节课的重点。
函数的概念说课稿(精选)
函数的概念说课稿(精选)篇一:《函数概念》说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。
下面介绍我对本节课的设计和构思,请您多提宝贵意见。
我的说课有以下六个部分:一、背景分析1、学习任务分析2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。
另外,通过对集合的学习,学生基本适应了有效的课堂模式,初步具备了小组合作、自主探究的学习能力。
基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。
二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。
1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;⑤会求一些简单函数的定义域。
2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。
3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。
三、课堂结构设计为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:复习旧知,引出课题(约2分钟)创设情境,形成概念(约5分钟)剖析概念(约12分钟)例题分析,巩固知识,小组讨论,展写例题(约8分钟)小组展讲,教师点评(约10分钟)总结反思,知识升华(约2分钟)(最后)布置作业,拓展练习。
《函数的概念》说课稿(通用9篇)
《函数的概念》说课稿(通用9篇)作为一位兢兢业业的人民教师,通常需要准备好一份说课稿,说课稿有助于提高教师的语言表达能力。
那么你有了解过说课稿吗?以下是小编整理的《函数的概念》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
《函数的概念》说课稿篇1一、说教材首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。
函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。
又是沟通代数、方程、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。
函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。
二、说学情接下来谈谈学生的实际情况。
新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。
本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。
所以,学生对本节课的学习是相对比较容易的。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。
(三)情感态度价值观在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。
本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。
高中数学_函数概念说课稿_新人教A版必修1
《函数的概念》说课稿----张程旭一、背景分析 1.学习任务分析函数是中学数学一个重要的基本概念,其核心内涵为非空数集到非空数集的一个对应,函数思想是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.为此本节课设定的教学重点是“函数概念的形成”. 2.学情分析从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过高一第一节“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点.鉴于上述分析我制定了本节课的教学目标. 二、教学目标设计 目标知识与技能:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素;函数概念的本质;抽象的函数符号)(x f 的意义;()f a (a 为常数)与()f x 的区别与联系;会求一些简单函数的定义域;知识与技能:让学生经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理、发展学生的抽象思维能力;情感态度与价值观:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美. [设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现了素质教育的要求. 三、课堂结构设计为达到本节课的教学目标,突出重点,突破难点,我把教学结构设计为七个阶段:回忆旧知,引出困惑 创设情境,形成概念 质疑解惑,剖析概念四、教学过程设计 教学过程 课题引入2010年9月5日0时14分,我国在西昌卫星发射中心用“长征三号乙”运载火箭,成功将“鑫诺六号”通信广播卫星送入太空。
高中数学-函数概念说课稿-
《函数的概念》说课稿各位专家、评委:大家好!我说课的内容是数学人教版普通高中新课程标准实验教科书必修1函数第一课时。
我将从背景分析、教学目标设计、教法与学法选择、教学过程设计、教学评价设计这七个方面来汇报我对这节课的教学设想. 一、背景分析 1.教材分析函数是中学数学一个重要的基本概念,其核心内涵为非空数集到非空数集的一个对应,函数思想是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了稳固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.为此本节课设定的教学重点是“函数概念的形成”. 2.学情分析有利因素:在初中初步学生已经探讨了函数的相关知识,有一定的基础;通过高一第一节“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.不利因素:本节课的函数概念是用集合与对应的语言进行刻画的,教学中由实例抽象归纳出函数概念时,对学生的抽象、分析、概括能力要求比较高,学生学起来有一定的难度.鉴于上述分析我制定了本节课的教学目标. 二、教学目标设计了解:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素; 理解:函数概念的本质;抽象的函数符号)(x f 的意义;、经历:让学生经历函数概念的形成过程和概念的辨析过程,在过程中渗透归纳推理、发展学生的抽象思维能力.体验:通过经历以上过程,让学生体会函数是描述变量之间依赖关系的重要数学模型, 在此基础上学会用集合与对应的语言来刻画函数,体验函数思想.[设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也表达了素质教育的要求 三、教法与学法选择任何一堂课都是各种不同教学方法综合作用的结果,我认为本节课主要采用探究发现式教学方法,由浅 入深,由特殊到一般地提出问题.鼓励学生采用观察分析,自主探究,合作交流的学习方法,同时借助于多媒体,让学生经历函数概念的形成与应用过程. 四,教学过程 .(一).结构分析为到达本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:1.创设新境,引入课题2012年6月16日,万众瞩目的“神舟九号”飞船发射成功了。
高中数学教师备课必备系列(函数的概念及性质)专题一 《函数的概念》说课稿
各位领导和老师:大家好!我说课的内容是人教版高中数学新教材必修第一章第二节第一课时函数的概念。
我将从教材分析、学情分析、教学过程、板书设计等四个方面汇报我的教学设想。
(分钟)教材分析包括教材的编写意图、教学重点与难点、教学目标设计和教法与学法选择。
、教材的编写意图“函数”是高中数学的核心概念,函数的思想方法贯通整个高中数学课程,它不仅对所学过的集合作了巩固和发展,而且也是学好指数函数、对数函数、三角函数以及数列等后继知识的基础和工具。
下面从纵横两个方面作简要分析:横向分析:旧教材在导入新课时基本上采用复习回顾初中函数知识导入新课或直接单刀直入给出新知识点,强调数学知识的逻辑性、系统性和连续性,而幼师学生往往初中数学基础薄弱,齐加尼克现象突出,面对枯燥乏味理论的数学知识早已失去兴趣,缺乏学习动力,这种导入将是无效的。
新教材注重问题情境的设置,选取了丰富的背景实例和应用实例,从学生熟悉的生活情境或趣味问题导入,最能激发人们的思维活动,唤起学习兴趣和主动的参与意识。
纵向分析:初中时学生都接触了函数,比如一次函数、反比例函数和二次函数,只强调函数是两个变量间的依赖关系,不涉及抽象符号(),不强调定义域和值域,采用的定义是“变量说”,是一个描述性概念,而对“变量”,“变化”,“对应关系”等涉及函数本质的内容,要求是初步的。
高中阶段要建立函数的“对应说”,突出函数概念的核心与本质是“对应关系”,虽然它比“变量说”更具一般性,但两者的本质一致。
不同的是:表达方式不同,高中用集合与对应语言表达;明确了定义域和值域;引入了抽象符号()。
、教学重点与难点根据上述分析,教学重点为通过丰富实例,使学生感受和体会在两个集合之间所存在的对应关系,进而用集合和对应的语言刻画这一关系,获得函数概念。
自然地,本节课的难点主要是抽象符号的理解,尤其对的意义的理解。
、教学目标设计布鲁姆认为,科学的确立学习目标是教学的首要环节。
根据以上分析及学生的认知特点,本节课目标如下:()知识与技能:通过实例分析,让学生理解函数概念的本质、构成函数的三要素,抽象的函数符号的意义,会求一些简单函数的定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1函数的概念说课稿
各位评委各位同学大家下午好,今天我说课的题目是”函数的概念”,选自新课标人教B版必修1第一章第二小节《集合与函数概念》“函数及其表示”,以下我将从教材分析、教法与学法分析、教学过程这三个环节进行说明.
教材分析
1.地位和作用
在初中学生已经会把函数看成是变量之间的依赖关系, 本节课将从集合与对应的的角度来刻画函数;不仅深化了初中所学的函数知识,而且是今后学习指数函数、对数函数、幂函数的前提, 起着承上启下的作用,函数的思想贯穿高中数学的始终,不仅如此,函数在数学建模中也占有着不可替代的地位。
2.教学重点和难点
我的授课对象为刚入学的高一学生。
在学情上:高一学生在初中对函数概念有了初步的认识.但是从变量间的依赖关系去理解函数还存在很多不足之处,这节课的任务是在学生原认知水平的基础上,用集合与对应的观点认识函数,了解构成函数定义的三要素,认识映射与函数是一般与特殊的关系.故此,基于教学大纲要求、本节课内容特点和学生的学情出发,确定如下教学重难点:
教学重点:体会函数是描述变量之间的依赖关系的重要模型。
正确理解函数的概念;
教学难点:函数的概念,符号“y=f(x)”的含义,函数定义域和值域的区间表示。
3.根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:
知识与技能目标
1理解函数的概念;
2掌握函数定义域和值域,并会求一些简单函数的定义域和值域。
过程与方法目标
由实际问题出发,进一步体会函数是描述变量之间的依赖关系的重要数学模型, 在此基础上学习用集合与对应的语言来刻画函数,培养学生探索发现,归纳总结的能力。
情感与态度目标
通过对函数概念形成的探究过程培养学生发现问题,探索问题,不断超越的创新品质
二.教法与学法分析
1.教法分析:
在本课中,教师在教学过程中采用引导发现法和探索讨论法,充分调动学生的积极性、循序渐进地知道他们去观察,发现,归纳总结,依照这样的原则去完成教学目标。
2.教学手段
本节课中,除使用常规的教学手段外,我还使用了多媒体来辅助教学.计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破.
?3.学法分析
首先,学生通过研究教师在课堂上提供的实例和提出的问题,展开分析和讨论,其次,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。
最后,学生在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
?三.说教学程序
新课的引入:函数该概念的引入,一般有两种方法,一种方法是先学习映射在学习函数,另一种方法是通过具体的实例体会数集之间的一种特殊对应关系,即函数,基于学生的学情出发,我们采取第二种方法: 提出三个实际问题,炮弹发射, 臭氧层空洞的面积, 恩格尔系数,设计问题情境,引入课题;
2.新课的探究:
首先,引导学生从数学的角度来研究这三个问题;根据初中所学函数的概念判断以上三个实例是否是函数关系,讨论发现它们的的共同特点,体会两个变量之间的依赖关系, 其次,引导学生从集合与对应的角度来刻画函数的概念;然后,通过具体的例子从三个层次理解函数的概念:函数的定义,函数符号,函数的三要素;最后,与初中函数的定义进行比较,理解函数的本质.
3.课堂练习与反馈:
首先,对于例题,为了使学生理解并掌握概念,设置了例题1,从具体的例子中强调构成函数的条件;为了使学生理解三要素的相互关系,设置了例题2,让学生明白有定义域和对应关系可以唯一的确定值域,
其次,对于反馈练习,我设置了两个练习,一是面向全体学生的巩固函数的概念. 让学生判别两个函数是否为同一个函数,并由学生归纳出判别两个函数是否为同一个函数的策略;
另一个,稍加深了难度,旨在培养学生的严密思维能力学生通过一些求解定义域的问题,总结得出求函数定义域的方法.
4.小结与作业: 在归纳小结阶段,首先引导学生回顾本节课的内容,然后强调重点。
最后布置作业,分两部分:第一部分是课后练习题第一题,用于巩固新知;第二部分是预习,以培养学生良好的学习习惯。
作业是课堂的延续,除了检验学生对本节课知识的理解程度,还在于引导学生对本课知识的进一步探究,让学生在更大的深度与广度之间进行思考。