高一数学必修一期末试题2
人教版高一数学必修1必修4期末测试卷附答案
人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。
)。
A。
4.B。
8.C。
16.D。
322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。
)。
A。
(-∞,-1)。
B。
(1,+∞)。
C。
(-1,1)U(1,+∞)。
D。
(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。
)。
A。
a<b<c。
B。
b<c<a。
C。
c<a<b。
D。
c<b<a4.函数y=-x^2+4x+5的单调增区间是(。
)。
A。
(-∞,2]。
B。
[-1,2]。
C。
[2,+∞)。
D。
[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。
)。
A。
a≤2.B。
-2≤a≤2.C。
a≤-2.D。
a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。
)。
A。
y=x-2.B。
y=x-1.C。
y=x^2.D。
y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。
)。
A。
1/2.B。
2/3.C。
3/4.D。
1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。
)。
A。
1/5.B。
-1/5.C。
5.D。
-59.若tanα=3,则sinαcosα=(。
)。
A。
3.B。
3/2.C。
3/4.D。
9/410.sin600°的值为(。
)。
A。
3/2.B。
-3/2.C。
-1/2.D。
1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。
)。
A。
1.B。
-1.C。
5/8.D。
-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。
高一上数学期末必修一二考试卷(含答案)
人教高一上数学必修一二期末综合测试一、选择题(每小题5分,共60分)1、点P 在直线a 上,直线a 在平面α内可记为( )A 、P ∈a ,a ⊂αB 、P ⊂a ,a ⊂αC 、P ⊂a ,a ∈αD 、P ∈a ,a ∈α 2、直线l 是平面α外的一条直线,下列条件中可推出l ∥α的是( ) A 、l 与α内的一条直线不相交 B 、l 与α内的两条直线不相交C 、l 与α内的多数条直线不相交D 、l 与α内的随意一条直线不相交 3x+y+1=0的倾斜角为 ( )A .50ºB .120ºC .60ºD . -60º4、在空间中,l ,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是( ) A 、若l ∥α,m ⊥l ,则m ⊥α B 、若l ⊥m ,m ⊥n ,则m ∥nC 、若a ⊥α,a ⊥b ,则b ∥αD 、若l ⊥α,l ∥a ,则a ⊥α 5、函数y=log 2(x 2-2x-3)的递增区间是( )(A )(-∞,-1) (B )(-∞,1) (C )(1,+∞) (D )(3,+∞)6.设函数11232221,,log ,333a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则,,a b c 的大小关系是( ) A. a b c << B. a c b << C. c a b << D. c b a << 7、假如0<ac 且0<bc ,则直线0=++c by ax 不通过( )A 第一象限B 其次象限C 第三象限D 第四象限 8,A. 体重随年龄的增长而增加B. 25岁之后体重不变C. 体重增加最快的是15岁至25岁D.体重增加最快的是15岁之前9,计算2)2lg 20(lg 2021lg 356lg 700lg -+--A. 20B. 22C. 2D. 1810、经过点A (1,2),且在两坐标轴上的截距相等的直线共有( ) A 1条 B 2条 C 3条 D 4条 11、已知A (2,)3-,B (2,3--),直线l 过定点P (1, 1),且与线段AB 交,年龄/岁5015044565则直线l 的斜率k 的取值范围是( )A 434≤≤-k B 443≤≤k C 21≠k D 4-≤k 或43≥k 12、A,B,C,D 四点不共面,且A,B,C,D 到平面α的距离相等,则这样的平面( ) A 、1个 B 、4个 C 、7个 D 、多数个 二、填空题(每小题5分,共20分)13、在空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 为CB ,CD 上的点,且CF ∶CB=CG ∶CD=2∶3,若BD=6cm ,梯形EFGH 的面积 28cm 2,则EH 与FG 间的距离为 。
高一数学必修一期末复习试题(学生版-2)
高一数学必修一期末复习试题一.选择题(共 16 小题)1.设集合 A={y|y=2x,x∈R},B={x|x2﹣1<0=,则A∪ B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞) D.(0,+∞)2.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3] B.(﹣2,3)C.[1,2] D.(﹣∞,﹣2)∪[1,+∞]3.设 A 是整数集的一个非空子集,对于 k∈A,如果 k﹣1∉A 且 k+1∉A,那么 k 是 A 的一个“孤立元”,给定 A={1,2,3,4,5},则 A 的所有子集中,只有一个“孤立元”的集合共有()A.10 个B.11 个C.12 个D.13 个4.若函数 y=f(x)的定义域为 M={x|﹣2≤x≤2},值域为N={y|0≤y≤2},则函数 y=f(x)的图象可能是()A.B.C.D.5.设 x 取实数,则 f(x)与 g(x)表示同一个函数的是()A.B.C.f(x)=1,g(x)=(x﹣1)0 D.6.函数 f(x)= 的定义域为()A.(2,3) B.(2,4) C.(2,3)∪(3,4)D.(﹣1,3)∪(3,6)7.已知函数 f(x)的定义域为(-1,0),则函数 f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.8.设 f(x)是周期为 2 的奇函数,当 0≤x≤1 时,f(x)=2x(1-x),则=()A.-B.-C.D.9.已知函数 f(x)的定义域为 R.当 x<0 时,f(x)=x3-1;当-1≤x≤1 时,f(﹣x)=﹣f(x);当 x>时,f (x+)=f(x﹣).则 f(6)=()A.﹣2 B.1 C.0 D.210.若函数是奇函数,则使 f(x)>3 成立的 x 的取值范围为()A.(﹣∞,﹣1) B.(﹣1,0)C.(0,1) D.(1,+∞)11.f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的 x1∈[﹣1,2],存在x0∈[﹣1,2],使 g(x1)=f(x0),则 a 的取值范围是()A.B.C.[3,+∞]D.(0,3)12.函数 f(x)=log (x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)13.已知,则 f(log23)=()A.B.C.D.14.已知 f(x)是定义在 R 上的偶函数,且在区间(﹣∞,0)上单调递增,若实数 a 满足),则a 的取值范围是()A.(﹣∞,))∪(,+∞),),+∞)15.已知 f(x),g(x)分别是定义在 R 上的偶函数和奇函数,且 f(x)-g(x)=x3+x2+1,则 f(1)+g(1)=()A.-3 B.-1 C.1 D.316.已知 f(x)是偶函数,且 f(x)在[0,+∞)上是增函数,如果 f(ax+1)≤f(x﹣2)上恒成立,则实数 a 的取值范围是()A.[﹣2,1] B.[﹣5,0] C.[﹣5,1] D.[﹣2,0]二.填空题(共 2 小题)17.设函数 f(x)= 若 f[f(a)] ,则 a 的取值范围是.18.直线 y=1 与曲线 y=x2﹣|x|+a 有四个交点,则 a 的取值范围是.三.解答题(共 4 小题)19.设 A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0},其中x∈R,如果A∩B=B,求实数 a 的取值范围.20.已知函数.(1)判断函数 f(x)在区间(0,+∞)上的单调性,并加以证明;(2)如果关于 x 的方程 f(x)=kx2 有四个不同的实数解,求实数 k 的取值范围.21.设全集是实数集 R,A={x|2x2﹣7x+3≤0},B={x|x2+a<0}.(1)当 a=﹣4 时,求A∩B 和A∪B;(2)若(∁R A)∩B=B,求实数 a 的取值范围.22.已知函数 f(x)= .(1)求函数 f(x)的定义域;(2)判断函数 f(x)的奇偶性;(3)求证:f(x)>0.。
第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册
第二章 函数 期末综合复习测评卷一、单选题 1.函数()g x =) A .(2,0)(0,1)- B .[2,0)(0,1]- C .(1,0)(0,1]-⋃ D .[1,0)(0,2]-⋃2.已知(),()f x g x 都是定义在R 上的函数,下列两个命题: ①若()f x 、()g x 都不是单调函数,则(())f g x 不是增函数. ①若()f x 、()g x 都是非奇非偶函数,则(())f g x 不是偶函数. 则( ) A .①①都正确B .①正确①错误C .①错误①正确D .①①都错误3.设()f x 为定义在R 上的奇函数,且满足()(4)f x f x =+,(1)1f =,则(1)(8)f f -+=( ) A .2-B .1-C .0D .14.设函数17,0()20xx f x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨≥,若()1f a <,则实数a 的取值范围是( )A .(,3)-∞-B .(1,)+∞C .(3,1)-D .(,3)(1,)-∞-⋃+∞5.函数()f x 在(),-∞+∞单调递减,且为奇函数,若()21f =-,则满足()111f x -≤-≤的x 的取值范围为( )A .[]22-,B .[]1,3-C .[]1,3D .[]1,1-6.函数y =331x x -的图象大致是( )A .B .C .D .7.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大整数,如[]1,81=,[]1,82-=-.下面说法错误的是( )A .当[)0,1x ∈时,()f x x =;B .函数()y f x =的值域是[)0,1;C .函数()y f x =与函数14y x =的图象有4个交点;D .方程()40f x x -=根的个数为7个.8.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当qx p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则( )注:p ,q 为互质的正整数()p q >,即qp为已约分的最简真分数. A .()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B .()()()R a b R a R b ⋅≥⋅C .()()()R a b R a R b +≥+D .以上选项都不对二、多选题9.函数()y f x =的图象如图所示,则( )A .函数()f x 的定义域为[-4,4)B .函数()f x 的值域为[)0,+∞C .此函数在定义域内是增函数D .对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应10.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图8-3-1所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)不改变车票价格,减少支出费用;建议(2)不改变支出费用,提高车票价格.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A .①反映建议(1)B .①反映建议(1)C .①反映建议(2)D .①反映建议(2)11.有下列几个命题,其中正确的是( ) A .函数y =2x 2+x +1在(0,+∞)上是增函数 B .函数y =11x +在(-∞,-1)①(-1,+∞)上是减函数C .函数y [-2,+∞)D .已知函数g (x )=23,0(),0x x f x x ->⎧⎨<⎩是奇函数,则f (x )=2x +312.对于定义在 R 上的函数()f x ,下列判断错误的有( ). A .若()()22f f ->,则函数()f x 是 R 的单调增函数 B .若()()22f f -≠,则函数()f x 不是偶函数 C .若()00f =,则函数()f x 是奇函数D .函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数三、填空题 13.若函数()2743kx f x kx kx +=++的定义域为R ,则实数k 的取值范围是__________ .14.已知函数()()3,01,0x x f x f x x ≤⎧=⎨->⎩,则56f ⎛⎫= ⎪⎝⎭_______ 15.已知函数()f x x=()2g x x ,则()()f x g x +=_________. 16.已知偶函数()y f x =定义在(1,1)-上,且在(1,0]-上是单调增加的.若不等式(1)(31)f a f a -<-成立,则实数a 的取值范围是___________.四、解答题17.已知幂函数22()(22)m f x m m x +=+-,且在(0,)+∞上是减函数. (1)求()f x 的解析式;(2)若(3)(1)m m a a ->-,求a 的取值范围.18.已知函数11()1(0)2f x x x =-+>.(1)若0m n >>时,()()f m f n =,求11m n+的值; (2)若0m n >>时,函数()f x 的定义域与值域均为[],n m ,求所有,m n 值.19.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =+.(1)求出函数()f x 在R 上的解析式,并补出函数()f x 在y 轴右侧的图像; (2)①根据图像写出函数()f x 的单调递减区间;①若[]1,x m ∈-时函数()f x 的值域是[]1,1-,求m 的取值范围.20.已知函数f (x )=221x x +.(1)求f (2)+f 12⎛⎫ ⎪⎝⎭,f (3)+f 13⎛⎫⎪⎝⎭的值;(2)由(1)中求得的结果,你发现f (x )与f 1x ⎛⎫⎪⎝⎭有什么关系?并证明你的发现.(3)求2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭的值.21.已知函数2(1)(f x ax bx a b =++,均为实数),x ∈R , (),0()(),0f x x F x f x x >⎧=⎨-<⎩.(1)若(1)0f -=,且函数()f x 的值域为[0)+∞,,求()F x 的解析式; (2)在(1)的条件下,当2][2x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围; (3)设000mn m n a <+>>,,,且()f x 为偶函数,判断()()F m F n +是否大于零,并说明理由.22.已知函数()y x ϕ=的图象关于点(),P a b 成中心对称图形的充要条件是()()2a x a x b ϕϕ++-=.给定函数()61f x x x =-+. (1)求函数()f x 图象的对称中心;(2)判断()f x 在区间()0,∞+上的单调性(只写出结论即可);(3)已知函数()g x 的图象关于点()1,1对称,且当[]0,1x ∈时,()2g x x mx m =-+.若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围.参考答案1.B 【分析】首先根据题中所给的函数解析式,结合偶次根式和分式的要求列出不等式组求得结果.【解析】由题意得2200x x x ⎧--+≥⎨≠⎩,即2200x x x ⎧+-≤⎨≠⎩,解得21x -≤≤且0x ≠,所以函数()g x =[2,0)(0,1]-, 故选:B. 2.D【解析】解::当1,0()()0,0x f x g x x x ⎧≠⎪==⎨⎪=⎩,则(())f g x x =,故①不正确;当2()(1)f x x =+,()1g x x =-,则2(())f g x x =,故①不正确. ①①①都错误. 故选:D . 3.B 【解析】解:()f x 是定义在R 上的奇函数,(0)0f =,满足()(4)f x f x =+,(8)(4)(0)0f f f ∴===,又(1)(1)1f f -=-=-,(1)(8)1f f ∴-+=-.故选:B. 【点睛】本题考查了利用奇偶性和周期性求函数值,属于基础题. 4.C 【分析】0a <时,()1f a <即1()712a-<,0a1<,分别求解即可.【解析】0a <时,()1f a <即1()712a-<,解得3a >-,所以30a -<<;0a1,解得01a <综上可得:31a -<< 故选:C . 【点睛】本题考查分段函数解不等式问题,考查了分类讨论思想的应用,属基本题,难度不大. 5.B【分析】根据函数的奇偶性以及函数的单调性求出x 的范围即可. 【解析】解:因为()f x 为奇函数, 所以()()221f f -=-=,于是()111f x -≤-≤等价于()()()212f f x f ≤-≤-, 又()f x 在(,)-∞+∞单调递减,212x ∴-≤-≤,13x ∴-≤≤.故选:B . 【点睛】本题考查了函数的单调性和奇偶性问题,考查转化思想,属于中档题. 6.C【解析】由函数解析式可得,该函数定义域为(-∞,0)①(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x→+∞时,3x-1远远大于x 3的值且都为正,故331xx -→0且大于0,故排除D ,选C. 7.C 【分析】作出函数()[]f x x x =-的图像,结合图像可判断A ,B 均正确,再作出14y x =,14y x =的图像,结合方程的根与函数零点的关系,可判断C ,D 是否正确.【解析】解:作出函数()[]f x x x =-的图像如图所示,显然A ,B 均正确; 在同一坐标系内作函数14y x =的图像(坐标系内第一象限的射线部分), 作出14y x =的图像(图像中的折线部分),可以得到C 错误,D 正确. 故选:C.【点睛】本题考查了函数图像的应用,考查了函数值域的求解,考查了函数的零点与方程的根.本题的关键是由题目条件,作出()[]f x x x =-的图像.本题的难点是作图时,临界点空心圆、实心圆的标定. 8.B 【分析】设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数) ,B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C选项:分①a A ∈,b A ∈;①a B ∈,b B ∈;①a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【解析】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数, 故选项A 错误; 对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅; ①当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;①当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误, 故选:B. 【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析. 9.BD 【分析】结合函数图象一一分析即可;【解析】解:由题图可知,函数()f x 的定义域为[][)4,01,4-⋃,故A 错误; 函数()f x 的值域为[)0,+∞,故B 正确; 函数()f x 在定义域内不单调,故C 错误;对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应,故D 正确. 故选:BD .【分析】由于图象表示收支差额y 与乘客量x 的函数关系,因此需要正确理解图中直线的倾斜角及纵截距的含义.同时对于建议(1)(2)前后图象的变化,也可以理解为对原图象做平移或旋转得到新的图象【解析】对于建议(1)因为不改变车票价格,故建议后的图象(虚线)与目前的图象(实线)倾斜方向相同(即平行),由于减少支出费用,收支差变大,则纵截距变大,相当于将原图象向上平移即可得到,故①反映建议(1);对于建议(2)因为不改变支出费用,则乘客量为0时前后的收支差是相等的,即前后图象纵截距相等,由于提高车票价格,故建议后的图象(虚线)比目前的图象(实线)的倾斜角大.相当于将原图象绕与y 轴的交点按逆时针旋转一定的角度得到的图象,故①反映建议(2). 故选:AC. 11.AD 【分析】根据简单函数的单调性,复合函数的单调性,以及由函数奇偶性求函数解析式,即可容易判断和选择.【解析】由y =2x 2+x +1=2217()48x ++在1[,)4-+∞上递增知,函数y =2x 2+x +1在(0,+∞)上是增函数,故A 正确; y =11x +在(-∞,-1),(-1,+∞)上均是减函数, 但在(-∞,-1)①(-1,+∞)上不是减函数, 如-2<0,但112101<-++故B 错误;y [),(5,)2,1--+∞上无意义, 从而在[-2,+∞)上不是单调函数,故C 错误; 设x <0,则-x >0,g (-x )=-2x -3,因为g (x )为奇函数,所以f (x )=g (x )=-g (-x )=2x +3,故D 正确. 故选:AD . 【点睛】本题考查函数单调区间的求解,复合函数的单调性判断以及利用函数奇偶性求函数解析式,属中档题. 12.ACD利用单调性的定义及性质,奇偶函数定义进行判断即可.【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在x =0 处,有可能会出现右侧比左侧低的情况,故错误. 故选:ACD 【点睛】本题考查了函数的单调性的定义和性质,考查了函数奇偶性的性质,属于基础题. 13.30,4⎡⎫⎪⎢⎣⎭【分析】分析可知,对任意的x ∈R ,2430kx kx ++≠恒成立,分0k =、0k ≠两种情况讨论,结合已知条件可求得实数k 的取值范围. 【解析】因为函数()2743kx f x kx kx +=++的定义域为R ,所以,对任意的x ∈R ,2430kx kx ++≠恒成立. ①当0k =时,则有30≠,合乎题意;①当0k ≠时,由题意可得216120k k ∆=-<,解得304k <<. 综上所述,实数k 的取值范围是30,4⎡⎫⎪⎢⎣⎭.故答案为:30,4⎡⎫⎪⎢⎣⎭.14.12-【分析】利用函数()f x 的解析式可求得56f ⎛⎫⎪⎝⎭的值.【解析】因为()()3,01,0x x f x f x x ≤⎧=⎨->⎩,所以,511136662f f ⎛⎫⎛⎫⎛⎫=-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:12-.15.()0x x -> 【分析】求出函数()f x 、()g x 的定义域,将函数()f x 、()g x 解析式相加即可得解.【解析】函数()f x x =()2g x x =的定义域均为()0,∞+, 因此,()()()0f x g x x x +=->.故答案为:()0x x ->.16.1(0,)2【分析】由()y f x =在(1,0]-上为单调增,结合函数的奇偶性,可得()y f x =在[)0,1上为单调减,将(1)(31)f a f a -<-转化为131a a ->-,结合定义域,解不等式可得a 的取值范围. 【解析】偶函数()y f x =在(1,0]-上为单调增,∴()y f x =在[)0,1上为单调减,∴(1)(31)f a f a -<-等价于1311111311a a a a ⎧->-⎪-<-<⎨⎪-<-<⎩,解得:10202203a a a ⎧<<⎪⎪<<⎨⎪⎪<<⎩∴实数a 的取值范围是1(0,)2. 故答案为:1(0,)2. 【点睛】本题主要考查利用函数的奇偶性和单调性求解不等式问题,考查计算能力,属于中档题. 17.(1)()1f x x=;(2){|23a a <<或1}a <. 【分析】(1)根据幂函数的定义和单调性建立条件关系即可得到结论,(2)令3()g x x -=,根据其单调性即可求解结论.【解析】解:(1)函数是幂函数,2221m m ∴+-=, 即2230m m +-=,解得1m =或3m =-,幂函数()f x 在(0,)+∞上是减函数,20m ∴+<,即2m <-,3m ∴=-,(2)令3()g x x -=,因为()g x 的定义域为(-∞,0)(0⋃,)+∞,且在(,0)-∞和(0,)+∞上均为减函数,33(3)(1)a a --->-,310a a ∴-<-<或031a a <-<-或301a a ->>-,解得23a <<或1a <,故a 的取值范围为:{|23a a <<或1}a <.18.(1)2;(2)32m =,12n =. 【分析】(1)根据绝对值定义去掉绝对值,由()()f m f n =化简即可得出结果;(2)根据01n m <<≤,1m n >≥,01n m <<<三种情况去掉绝对值,根据函数的单调性,列出方程,计算求解即可得出结果.【解析】(1)因为()()f m f n =,所以11111122m n -+=-+ 所以1111m n -=-, 所以1111m n -=-或1111m n -=-,因为0m n >>,所以112m n+=. (2)1 当01n m <<≤时,11()2f x x =-在[],n m 上单调递减,因为函数()f x 的定义域与值域均为[],n m ,所以()()f n m f m n=⎧⎨=⎩,两式相减得1mn =不合,舍去. 2 当1m n >≥时,31()2f x x =-在[],n m 上单调递增,因为函数()f x 的定义域与值域均为[],n m ,所以()()f m m f n n =⎧⎨=⎩,无实数解. 3 当01n m <<<时,11,[,1],2()31,(1,],2x n x f x x m x⎧-∈⎪⎪=⎨⎪-∈⎪⎩ 所以函数()f x 在[,1]n 上单调递减,在(]1,m 上单调递增.因为函数()f x 的定义域与值域均为[],n m ,所以1(1)2n f ==,13()22m f ==.综合所述,32m =,12n =. 【点睛】本题考查分段函数的单调性及值域问题,考查分类讨论的思想,属于中档题.19.(1)()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩,图象答案见解析;(2)①减区间为:(),1-∞-和()1,+∞;①1m ⎡⎤∈⎣⎦.【分析】(1)由奇函数的定义求得解析式,根据对称性作出图象.(2)由图象的上升与下降得增减区间,解出方程221x x -+=-的正数解,可得结论.【解析】(1)当0x >,0x -<,则()()2222f x x x x x -=--=-因为()f x 为奇函数,则()()f x f x -=-,即0x >时,()22f x x x =-+ 所以()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩, 图象如下:(2)如图可知,减区间为:(),1-∞-和()1,+∞()11f -=-,()11f =令22212101x x x x x -+=-⇒--=⇒==①1x >①1x =故由图可知1m ⎡⎤∈⎣⎦. 【点睛】本题考查函数的奇偶性,考查图象的应用,由图象得单调区间,得函数值域.是我们学好数学的基本技能.20.(1)f (2)+f 12⎛⎫ ⎪⎝⎭=1,f (3)+f 13⎛⎫ ⎪⎝⎭=1;(2)f (x )+f 1x ⎛⎫ ⎪⎝⎭=1;证明见解析;(3)2018. 【分析】(1)根据函数解析式,代值计算即可;(2)观察(1)中所求()11f x f x ⎛⎫+= ⎪⎝⎭,结合函数解析式,即可证明; (3)根据(2)中所求,两两配对,即可容易求得结果.【解析】(1)因为f (x )=221x x +, 所以f (2)+f 12⎛⎫ ⎪⎝⎭=22212++2212112⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1 f (3)+f 13⎛⎫ ⎪⎝⎭=22313++2213113⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1. (2)由(1)可发现f (x )+f 1x ⎛⎫ ⎪⎝⎭=1.证明如下: f (x )+f 1x ⎛⎫ ⎪⎝⎭=221x x ++22111x x ⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭ =221x x ++211x +=2211x x ++=1,是定值. (3)由(2)知,f (x )+f 1x ⎛⎫ ⎪⎝⎭=1, 因为f (1)+f (1)=1,f (2)+f 12⎛⎫ ⎪⎝⎭=1, f (3)+f 13⎛⎫ ⎪⎝⎭=1, f (4)+f 14⎛⎫ ⎪⎝⎭=1, …f (2018)+f 12018⎛⎫ ⎪⎝⎭=1,所以2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫ ⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭=2018.【点睛】本题考查函数值的求解,注意观察,属基础题.21.(1)22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩;(2)(][)26∞∞-,-,+;(3)大于零,理由见解析. 【分析】(1)由(1)0f -=,得10a b -+=及函数()f x 的值域为[0)+∞,,得240a b -=, 联立求解可得;(2)由222(2)()124()k k g x x --=++-,当2][2x ∈-,时,()()g x f x kx =-是单调函数,则222k -≤-或222k -≥得解; (3)()f x 为偶函数,则2()1f x ax =+,不妨设m n >,则0n <,由0m n +>,得0m n >->,则22m n >所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=得解【解析】(1)因为(1)0f -=,所以10a b -+= ①.又函数()f x 的值域为[0)+∞,,所以0a ≠. 由224()24b a b y a x a a-=++知2404a b a -=, 即240a b -=①.解①①,得12a b ==,. 所以22()21(1)f x x x x =++=+.所以22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩; (2)由(1)得2222(2()())()21()124k k g x f x kx x k x x --=-=-=++-++ 因为当2][2x ∈-,时,()()g x f x kx =-是单调函数, 所以222k -≤-或222k -≥, 即2k ≤-或6k ≥,故实数k 的取值范围为(][)26∞∞-,-,+(3)大于零.理由如下:因为()f x 为偶函数,所以2()1f x ax =+,所以221,0()1,0ax x F x ax x ⎧+>=⎨--<⎩不妨设m n >,则0n <由0m n +>,得0m n >->所以22m n >又0a >,所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=,所以()()F m F n +大于零.【点睛】本题考查函数性质的应用,涉及分段函数解析式、函数的值域,单调性,奇偶性,属于基础题.22.(1)()1,1--;(2)()f x 在区间()0,∞+上为增函数;(3)[]2,4-.【分析】(1)根据题意可知,若函数()f x 关于点(),a b 中心对称,则()()2f a x f a x b ++-=, 然后利用()61f x x x =-+得出()f a x +与()f a x -,代入上式求解; (2)因为函数y x =及函数61y x =-+在()0,∞+上递增,所以函数()61f x x x =-+在()0,∞+上递增; (3)根据题意可知,若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,则只需使函数()g x 在[]10,2x ∈上的值域为()f x 在[]21,5x ∈上的值域的子集,然后分类讨论求解函数()g x 的值域与函数()f x 的值域,根据集合间的包含关求解参数m 的取值范围.【解析】解:(1)设函数()f x 图象的对称中心为(),a b ,则()()20f a x f a x b ++--=. 即()()662011x a x a b x a x a +-+-+--=++-++, 整理得()()()()22161a b x a b a a -=-+-+,于是()()()()21610a b a b a a -=-+-+=,解得1a b ==-.所以()f x 的对称中心为()1,1--;(2)函数()f x 在()0,∞+上为增函数;(3)由已知,()g x 值域为()f x 值域的子集.由(2)知()f x 在[]1,5上单增,所以()f x 的值域为[]2,4-.于是原问题转化为()g x 在[]0,2上的值域[]2.4A ⊆-.①当02m ≤,即0m ≤时,()g x 在[]0,1单增,注意到()2g x x mx m =-+的图象恒过对称中心()1,1,可知()g x 在(]1,2上亦单增,所以()g x 在[]0,2上单增,又()0g m =,()()2202g g m =-=-,所以[],2A m m =-.因为[][],22,4m m -⊆-,所以224m m ≥-⎧⎨-≤⎩,解得20m -≤≤. ①当012m <<,即02m <<时,()g x 在0,2m ⎛⎫ ⎪⎝⎭单减,,12m ⎛⎫ ⎪⎝⎭单增, 又()g x 过对称中心()1,1,所以()g x 在1,22m ⎛⎫- ⎪⎝⎭单增,2,22m ⎛⎤- ⎥⎝⎦单减; 此时()()min 2,,max 0,222m m A g g g g ⎛⎫⎧⎫⎧⎫⎛⎫⎛⎫=-⎨⎬⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭⎝⎭. 欲使[]2,4A ⊆-,只需()()222022224g g m m m g m ⎧=-=-≥-⎪⎨⎛⎫=-+≥- ⎪⎪⎝⎭⎩且()2042224224g m m m m g g m ⎧=≤⎪⎨⎛⎫⎛⎫-=-=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎩解不等式得24m -≤,又02m <<,此时02m <<.①当12m ≥,即2m ≥时,()g x 在[]0,1单减,在(]1,2上亦单减, 由对称性,知()g x 在[]0,2上单减,于是[]2,A m m =-.因为[][]2,2,4m m -⊆-,所以224m m -≥-⎧⎨≤⎩,解得24m ≤≤. 综上,实数m 的取值范围为[]2,4-。
高一数学期末复习资料(1-5)总复习题(共5套)
期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.xy 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)3、若{|2},{|xM y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( )A.a>5,或a<2B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知xax f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、yD9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________ 17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。
高一数学必修一,必修四练习题
高一数学(必修一,必修四)期末练习题一.A 卷1.0390sin 的值为( ) A.23 B.23- C.21- D.21 2.若sin 0α<,tan 0α>,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数x x x f cos sin 2)(=是 ( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数D .最小正周期为π的偶函数4.设M 和m 分别是函数1)62cos(31--=πx y 的最大值和最小值,则M+m 等于( )A.32B.32-C. 34- D.2-5.已知角α的终边经过点)3,1(P ,则α2cos 的值为 ( ) A. 21-B. 23-C . 21 D. 236. tan(40)-,tan38,tan56的大小关系是( )A .tan(40)tan 38tan 56->>B .tan 56tan 38tan(40)>>-C .tan 38tan(40)tan 56>->D .tan 56tan(40)tan 38>->7.将函数sin 2y x =的图象向左平移6π个单位,所得图象的函数解析式为( ) A .sin 26y x π⎛⎫=+⎪⎝⎭C .sin 26y x π⎛⎫=-⎪⎝⎭B .sin 23y x π⎛⎫=+⎪⎝⎭D .sin 23y x π⎛⎫=-⎪⎝⎭8.在ABC ∆中,若135cos ,53cos ==B A ,则C sin 的值为( )A. 6556-B. 6556C. 6563D.6516-9.为了得到函数)32sin(π-=x y 的图象,只需把函数x y 2sin =的图象 ( )A. 向左平移3π个长度单位 B. 向右平移3π个长度单位C. 向左平移6π个长度单位 D. 向右平移6π个长度单位 10.对于函数)62sin(2π+=x y ,则下列结论正确的是 ( )A .)(x f 的图象关于点)0,3(π对称 B.)(x f 在区间]6,3[ππ-递增C .)(x f 的图象关于直线12π-=x 对称 D. 最小正周期是2π11.105sin 15cos 75cos 15sin +=12. 已知扇形的半径为2,圆心角是3π弧度,则该扇形的面积是 . 13. 函数x x y 2cos 2sin =的最小正周期是 ,最大值是 。
期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)
2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
新高考高一数学期末复习必修一复习试题1-2套
A.最大值-1/4B.最大值1/4C.最小值-1/4D.最小值1/4
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.
13.函数 的定义域是____________。(用集合表示)
14.已知f(x) 偶函数,当x<0时,f(x)= ,则当x>0时,f(x)=__________.
(1)当 时,求函数 的单调递增区间;
(2)求函数 的零点个数.
新高考高一数学必修一复习试题2
一、选择题(每小题5分,共60分)
23.设集合 , ,则 = ( )
A. B. C. D.
24.化简: ()
A. 4B. C. 或4D.
25.下列四组函数,表示同一函数的是()
A. B. ,
C. D.
26.已知函数 ,那么 的值是()
38.函数 的单调增区间是_____.
三、解答题:(共70分)
39.设集合 ,集合
(1)若 ,求实数 的取值范围;
(2)若 ,求实数 的取值范围.
40.已知函数 是奇函数,且 ,
(1)求函数解析式;
(2)判断并证明 在 上的单调性
41.设函数 是定义在 上的减函数,并且满足 , .
(1)求 的值,
(2)如果 ,求 的取值范围。
新高考高一数学必修一复习试题1
一、选择题(每小题5分,共60分)D.
2.若全集 ,则集合 的真子集共有()
A. 个B. 个C. 个D. 个
3.已知集合 ,集合 ,则集合 ( )
A. B. C. D.
4.等式 的解集为()
A. B.
(完整版)高一数学必修一期末试题及答案解析
一、选择题。
(共10小题,每题4分) 1、设集合A={x ∈Q|x>-1},则( )A 、A ∅∉B 、2A ∉C 、2A ∈D 、{}2 ⊆A2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 3、函数21)(--=x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )5、三个数70。
3,0。
37,,㏑0.3,的大小顺序是( )A 、 70。
3,0.37,,㏑0.3,B 、70。
3,,㏑0.3, 0.37C 、 0.37, , 70。
3,,㏑0.3,D 、㏑0.3, 70。
3,0.37,6、若函数f(x)=x 3+x 2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165f(1.4065)=-0.052那么方程x 3+x 2-2x-2=0的一个近似根(精确到0.1)为( ) A 、1.2 B 、1.3 C 、1.4 D 、1.57、函数2,02,0x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )8、设()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( )A 、f(xy)=f(x)f(y)B 、f(xy)=f(x)+f(y)C 、f(x+y)=f(x)f(y)D 、f(x+y)=f(x)+f(y)9、函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定 10、某企业近几年的年产值如图,则年增长率最高的是 ( )(年增长率=年增长值/年产值)A 、97年B 、98年C 、99年D 、00年二、填空题(共4题,每题4分)11、f(x)的图像如下图,则f(x)的值域为 ;12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为 ;13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;14、老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数;②定义域为{|0}x R x ∈≠; ③在(0,)+∞上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
高一必修一、二数学期末试卷及答案
高一数学期末考试一、选择题(每小题只有一个答案正确,每小题5分,共50分)1.已知集合M={R x x x y y ∈-+=,322},集合N={32≤-y y },则M =⋂N ( )。
A.{4-≥y y } B.{51≤≤-y y } C.{14-≤≤-y y } D.φ2.如图,U 是全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A.(M S P ⋂⋂)B.(M S P ⋃⋂)C.(M ⋂P )⋂(C U S )D.(M ⋂P )⋃(C U S )3.若函数()x f y =的定义域是[2,4],⎪⎪⎭⎫ ⎝⎛=x f y 21log 的定义域是( ) A.[21,1] B.[4,16] C.[41,161] D.[2,4] 4.下列函数中,值域是R +的是( ) A.132+-=x x y B.32+=x y ,+∞∈,0(x )C.12++=x x yD.x y 31= 5.设P 是△ABC 所在平面α外一点,H 是P 在α内的射影,且PA ,PB ,PC 与α所成的角相等,则H 是△ABC 的( )A.内心B.外心C.垂心D.重心6.已知二面角α-l -β的大小为60°,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )A.30°B.60°C.90°D.120°7.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A.(1,2) B.(,3)e C.(2,)e D.(,)e +∞8.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a9.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,A A 1=1,则B C 1与平面BB 1D 1D 所成的角的正弦值为( ) A.63 B.255 C.155 D.10510.如图,平行四边形ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起,使平面ABD ⊥平面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为( )A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,满分20分11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩…,则()0f f =⎡⎤⎣⎦ . 12.函数b a y x+=(a >0且a 1≠)的图象经过点(1,7),其反函数的图象经过点(4,0),则b a = 13.函数⎪⎪⎭⎫ ⎝⎛=x y 3121log log 的定义域为 14.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个结论:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个作为结论,写出你认为正确的一个命题是__________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15、(12分)已知1()(1)1x x a f x a a -=>+ (1)判断函数()y f x =的奇偶性;(2)探讨()y f x =在区间(,)-∞+∞上的单调性16.(12分)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面P AD .17、(14分)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .、18、(14分)已知函数2()22,(0)f x ax x a a =+--≤(1)若1,a =-求函数()y f x =的零点;(2)若函数在区间(0,1]上恰有一个零点,求a 的取值范围;19、(14分)北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社。
郑州市08-09高一上期期末数学试题(必修1+必修2)
B. {2,3}
C. {1,2}
D. {2}
= 8 ,那么 x 等于
B. − 2 C. ± 2 D.
A. 2
1 2
3.已知 a = log 3 2 ,那么 log 3 8 − 2 log 3 6 用 a 表示是 A. a − 2 B. 5a − 2 C. 3a − (1 + a ) 2 D. 3a − a − 1
20. (本小题满分 12 分) A. 如图,AB 是圆 O 的直径,PA 垂直于圆 O 所在的平面,
C 是圆周上不同于 A, B 的任一点,求证 BC ⊥ 平面 PAC .
B . 如图,在三 棱锥 P − ABC 中, PC ⊥ 底 面 ABC ,
AB ⊥ BC , PC = BC = AB , D, E 分别是 AB, PB 的中点.
三、解答题(本大题共 6 小题,共 74 分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分 10 分) 已知直线 l1 : x + 2 y + 1 = 0, l 2 : 2 x − y − 2 = 0 ,它们相交于点 A . (I)判断直线 l1 和 l 2 是否垂直?请给出理由; . (II)求过点 A 且与 l 3 : 3 x + y + 4 = 0 平行的直线方程(请给出一般式)
郑州市 08-09 高一上期期末数学试题 高一上期期末数学试题
第Ⅰ卷
(选择题 共 60 分)
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有 一项是符合题目要求的) 1.已知集合 P = {x | 1 ≤ x ≤ 10} , Q = {x | x 2 + x − 6 = 0} ,则 P I Q 等于 A. {1,2,3} 2.已知 x
人教版高一数学必修一期末综合练习题(含答案)
人教版高一数学必修一期末综合练习题(含答案)人教版高一数学必修一期末综合练题(含答案)一、单选题1.已知实数a,b,c满足lga=10=b,则下列关系式中不可能成立的是()A。
a>b>cB。
a>c>bC。
c>a>bD。
c>b>a2.已知函数f(x)=x(e^x+a),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为()A。
0B。
1C。
2D。
-13.命题:“对于任意实数x,x^2+x>0” 的否定是( )A。
存在实数x,使得x^2+x≤0B。
对于任意实数x,x^2+x≤0C。
存在实数x,使得x^2+x<0D。
对于任意实数x,x^2+x≥04.已知sin2α=-1/2,则cos(α+π/3)=()A。
-1/3B。
-2/3C。
1/3D。
2/35.已知ω>0,函数f(x)=cos(ωx+π/2),则ω的取值范围是()A。
(0,π/12]B。
(0,π/6]C。
(0,π/4]D。
(0,π/2]6.为了得到函数y=cos2x的图象,只需将函数y=sin(2x-π/2)的图象上所有点A。
向右平移π个单位B。
向左平移π个单位C。
向右平移π/2个单位D。
向左平移π/2个单位7.下列函数中,与函数y=x相同的是()A。
y=1/xB。
y=x^2C。
y=√xD。
y=|x|8.若2sinx-cos(π/2+x)=1,则cos2x=()A。
-8/9B。
-7/9C。
7/9D。
8/99.设A={x|x^2-4x+3≥0},B={x|x^2-6x+5≤0},则“A包含于B”是“B包含于A”的()A。
充分必要条件B。
必要不充分条件C。
充分不必要条件D。
既不充分也不必要条件10.已知集合A={x|y=ln(x+1)},集合B={x|x≤2},则A∩B等于()A。
(-1,2]B。
[0,2]C。
(0,∞)D。
(5,6]11.已知集合P={x|x-3≤2,x∈R},Q={3,5,6},则P∩Q=()A。
高一必修1必修2数学试题
高一上学期期末考试数学试题第一部分 选择题(共70分)一选择题(本大题共14小题,每小题5分,共70分)1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0}C .{x |0≤x ≤1} D .{x |x ≥1或x ≤0}2. 满足条件{0,1}∪A={0,1}的所有集合A 的个数是的个数是 ( ) A .1个 B . 2个C . 3个D .4个3.一个棱锥的三视图如右图所示,则它的体积为.一个棱锥的三视图如右图所示,则它的体积为 ( ) A .12 B .32C .1 D .13 4. 设a =0.7log 0.8,b = 1.1log 0.9,c =0.91.1,那么( ) A .a<b<c B .b<a<c C .a<c<b D .c<a<b 5. 关于直线m 、n 与平面a 、b ,有下列四个命题:,有下列四个命题:①b a //,//n m 且b a //,则n m //; ②b a ^^n m ,且b a ^,则n m ^; ③b a //,n m ^且b a //,则n m ^; ④b a ^n m ,//且b a ^,则n m //. 其中真命题的序号是:( )A. ①、②①、②B. ③、④③、④C. ①、④①、④D. ②、③②、③6. 幂函数的图象过点(2,14),则它的单调递增区间是( ) A .(-∞,0) B .(0,+∞)C .(-∞,1 ) D .(-∞,+∞)7. 直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为( ) A 030 B 045C 060 D 0908. 若圆222(3)(5)x y r -++=上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的范围是(范围是( )A (4,6)B [4,6)C (4,6]D [4,6]9. 圆1)3()1(22=++-y x 的切线方程中有一个是( )A. x-y=0 B. x+y=0 C. x=0 D. y=010.设f(x)=23x x -,则在下列区间中,使函数f(x)有零点的区间是( ) A .[0,1] B .[-1,0] C .[-2,-1] D .[1,2] 11长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为(个球的面积为( )A p 27 B p 56 C p 14 D p 64 12. 若U=R ,A=,1)21()3)(2(þýüîíì>-+x x x B={}2)(log 3<-a x x ,要使式子A ÇB=f 成立,则a 的取值范围是(取值范围是( )A -62-££a B a 311a ³£-或C -11<3<a D -113££a13.. 如图,正方体ABCD —A 1B 1C 1D 1中,EF 是异面直线AC 、A 1D 的公垂线,则EF 与BD 1的关系为(为( )A .相交不垂直.相交不垂直B .相交垂直.相交垂直C .异面直线.异面直线D .平行直线.平行直线14. 下列所给4个图像中,与所给3件事吻合最好的顺序为(件事吻合最好的顺序为( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高一数学必修1期末试卷及答案
高一数学必修1期末试卷及答案高中数学必修一期末试卷一、选择题。
(共12小题,每题5分)1、设集合A={x| x>-1},则()A、XXXB、2 ∉AC、2∈AD、2 ∈ { }改写:集合A由所有大于-1的实数x组成。
2.下列四组函数中,表示同一函数的是( ).A.f(x)=|x|,g(x)=x-1/x-1B.f(x)=log2(x+1),g(x)=2log2(x-1)C.f(x)=x2-1/x2-1,g(x)=x-1D.f(x)=g(x)改写:哪一组函数表示同一个函数?3、设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A、{1,2}B、{1,5}C、{2,5}D、{1,2,5}改写:如果A和B的交集是{2},那么A和B的并集是什么?4、函数f(x)=(x-1)/(x-2)的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)改写:函数f(x)=(x-1)/(x-2)的x的取值范围是什么?5、设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()删除:题目中的图形6、三个数7.3,0.3,㏑0.3,的大小顺序是()A、7>0.3>㏑0.3B、7>0.3>㏑0.3C、0.3>7>㏑0.3D、㏑0.3>7>0.3>3改写:将三个数按照从大到小的顺序排列。
7、若函数f(x)=x+x-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2f(1.25)=-0.984f(1.438)=0.165f(1.5)=0.625f(1.375)=-0.260f(1.4065)=-0.052那么方程x+x-2x-2=0的一个近似根(精确到0.1)为()A、1.2B、1.3C、1.4D、1.5改写:使用二分法逐次计算函数f(x)=x+x-2x-2的一个正数零点附近的函数值,给出下表:x。
高一数学必修一期末试卷及答案
高一数学必修一期末试卷及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。
(必修一必修二)高一数学期末试卷及答案新人教A版
新泰一中北区2012数学必修一,二自测试卷第Ⅰ卷选择题(5 分×12=60分)1.已知U 为全集,集合M 、N 是U 的子集,若M ∩N=N ,则( ) A 、u u C M C N ⊇ B 、u M C N ⊆ C 、u u C M C N ⊆ D 、u M C N ⊇ 2、.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上递减,则a 的取值范围是A.[-3,+∞]B.(-∞,-3)C.(-∞,5]D.[3,+∞)3、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是( ).4、下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确的个数有( ).A 、1B 、2C 、3D 、4 5、已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤46、若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 7、木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )倍.A、60 B、120 C、3060 D、301208、若函数()012233a x a x a x a x f +++=是奇函数,则=+2220a a ( )A. 0B. 1C. 2D. 4 9、在正方体1111ABCD A B C D -中,下列几种说法正确的是( )A 、11AC AD⊥ B 、11D C AB⊥ C 、1AC 与DC 成45o角D 、11AC 与1B C成60o角10下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、22log 1y x =-C 、21log y x = D 、22log (45)y x x =-+ 11、如果定义在),0()0,(+∞-∞Y 上的奇函数f(x),在(0,+∞)内是减函数,又有f(3)=0,则0)(<⋅x f x 的解集为 ( )A.{x|-3<x<0或x>3}B. {x|x<-3或0<x<3}C. {x|-3<x<0或0<x<3}D. {x|x<-3或x>3}12、如图,三棱柱A 1B 1C 1—ABC 中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E是BC 中点,则下列叙述正确的是( ).A .CC 1与B 1E 是异面直线 B .AC ⊥平面A 1B 1BAC .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E第Ⅱ卷二、填空题(每小题4分,共16分;请将答案填在答卷纸的横线上)13、函数)1(log 2120++-+=x x x y 的定义域14、一个正方体的六个面上分别标有字母A、B、C、D、E、 F,如右图所示 是此正方体的两种不同放置,则与D面相 对的面上的字母是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1检测题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共120分,考试时间90分钟.
第Ⅰ卷(选择题,共48分)
一、选择题:本大题共12小题,每小题4分,共48分. 在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )
A .{2,4,6}
B .{1,3,5}
C .{2,4,5}
D .{2,5}
2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{
A .1个
B .2个
C .3个
D .4个
3.若:f A B →能构成映射,下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .
A 、1个
B 、2个
C 、3个
D 、4个
4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是 ( )
A 、3a -≤
B 、3a -≥
C 、a ≤5
D 、a ≥5 5、下列各组函数是同一函数的是 ( )
①()f x =()g x =()f x x =与()g x = ③0()f x x =与0
1()g x x
=
;④2()21f x x x =--与2
()21g t t t =--。
A 、①② B 、①③ C 、③④ D 、①④
6.根据表格中的数据,可以断定方程02=--x e x 的一个根所在的区间是 ( )
A .(-1,0)
B .(0,1)
C .(1,2)
D .(2,3)
7.若=-=-33)2lg()2lg(,lg lg y
x a y x 则 ( )
A .a 3
B .a 2
3
C .a
D .
2
a 8、 若定义运算
b a b a b a
a b
<⎧⊕=⎨
≥⎩,则函数()212
log log f x x x =⊕的值域是( )
A [)0,+∞
B (]0,1
C [)1,+∞
D R
9.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a ( )
A .
2
1 B .
2 C .4 D .
4
1 10. 下列函数中,在()0,2上为增函数的是( )
A 、12
log (1)y x =+ B 、2log y =C 、2
1log y x = D 、2
log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )
A .一次函数模型
B .二次函数模型
C .指数函数模型
D .对数函数模型
12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
A 、(1)(2)(4)
B 、(4)(2)(3)
C 、(4)(1)(3)
D 、(4)(1)(2)
第Ⅱ卷(非选择题 共72分)
二、填空题:本大题4小题,每小题4分,共16分. 把正确答案填在题中横线上. 13.函数2
4
++=
x x y 的定义域为 . 14. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = _________________. 15.已知幂函数)(x f y =的图象过点=)9(),2,2(f 则 .
16.若一次函数b ax x f +=)(有一个零点2,那么函数ax bx x g -=2)(的零点是 . 三、解答题:本大题共5小题,共56分,解答应写出文字说明,证明过程或演算步骤.
19.(8分) 已知函数f (x )=lg (3+x )+lg (3-x ). (1)求函数f (x )的定义域;
(2)判断函数f (x )的奇偶性,并说明理由.
20.(10分)已知函数f (x )=2|x +1|+ax (x ∈R ). (1)证明:当 a >2时,f (x )在 R 上是增函数. (2)若函数f (x )存在两个零点,求a 的取值范围.
21.(10分)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3 600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
参考答案
一、选择题:每小题4分,12个小题共48分.
1.A
2.C
3.B
4.A.
5.C
6.C
7.A
8.C
9.B 10. A 11.D. 12.D 二、填空题:每小题4分,共16分.
13.),2()2,4[+∞--- 14.2x-13或-2x+1 15.3 16.2
1
,0-
三、解答题
19.参考答案:(1)由⎩
⎨⎧030
3>->+x x ,得-3<x <3,
∴ 函数f (x )的定义域为(-3,3). (2)函数f (x )是偶函数,理由如下:
由(1)知,函数f (x )的定义域关于原点对称, 且f (-x )=lg (3-x )+lg (3+x )=f (x ), ∴ 函数f (x )为偶函数.
20.参考答案:(1)证明:化简f (x )=⎩
⎨⎧
1221 ≥22<-,-)-(-,+)+(x x a x x a
因为a >2,
所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-a ; 另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a . 所以,当a >2时,函数f (x )在R 上是增函数.
(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩
⎨⎧
0022<-)<-)(+(a a a 解得a 的取值范围是(0,2).
21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为50
000
3600 3-=12,所以这时租
出了100-12=88辆车.
(2)设每辆车的月租金定为x 元,则租赁公司的月收益为
f (x )=⎪⎭⎫ ⎝
⎛
50000 3100--x (x -150)-
50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.
命题意图:
1.考察集合的交、并、补等基本运算,集合与元素、集合与集合之间的关系,理解映射的概念的内涵。
正确判断是否同一函数,掌握函数三要素。
考察对数函数的性质。
属简单题但易错题。
2.熟练掌握简单复合函数的单调性。
考察函数定义域。
考察函数奇偶性考察幂函数基本知识。
考察幂函数基本知识考察二分法中等题。
考察学生读图,识图能力,体现数学来源于生活,又运用于生活。
中等题。
考察指数函数给定区间上的最值。
考察含参的给定区间上的二次函数的最值,属热点题。
3.考察学生对函数模型的理解,分析问题、解决问题的能力。
考察学生如何将生活中
的问题转化为数学问题,并得到很好的解释。
这道题与学生生活非常接近,易激发学生的解题兴趣,具有生活气息。
4.解答题考察学生对集合的运算的掌握,二次函数的应用题,函数的基本性质,分段
函数以及对号函数的图像性质。
考试说明:
本试卷考察基础知识,基本能力,难度中等,较适合学生期末测试。
时间为90分钟,分值为120分。
出题人:胡伟红。