高中数学人教A版选修2-1 第一章常用逻辑用语 章末评估验收 (11)
高中数学人教A版选修2-1 第一章 常用逻辑用语 1.1.2、1.1.3 Word版含答案
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是增函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是增函数【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.“f(x)在其定义域内是减函数”的否定是“f(x)在其定义域内不是减函数”,不能误认为是“f(x)在其定义域内是增函数”.【答案】 A2.(2016·济宁高二检测)命题“已知a,b都是实数,若a+b>0,则a,b不全为0”的逆命题、否命题与逆否命题中,假命题的个数是()A.0B.1C.2D.3【解析】逆命题“已知a,b都是实数,若a,b不全为0,则a +b>0”为假命题,其否命题与逆命题等价,所以否命题为假命题.逆否命题“已知a,b都是实数,若a,b全为0,则a+b≤0”为真命题,故选C.【答案】 C3.(2016·南宁高二检测)已知命题“若ab≤0,则a≤0或b≤0”,则下列结论正确的是()A.原命题为真命题,否命题:“若ab>0,则a>0或b>0”B.原命题为真命题,否命题:“若ab>0,则a>0且b>0”C.原命题为假命题,否命题:“若ab>0,则a>0或b>0”D.原命题为假命题,否命题:“若ab>0,则a>0且b>0”【解析】逆否命题“若a>0且b>0,则ab>0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab >0,则a>0且b>0”,故选B.【答案】 B4.(2016·潍坊高二期末)命题“若x=3,则x2-2x-3=0”的逆否命题是()A.若x≠3,则x2-2x-3≠0B.若x=3,则x2-2x-3≠0C.若x2-2x-3≠0,则x≠3D.若x2-2x-3≠0,则x=3【解析】其逆否命题为“若x2-2x-3≠0,则x≠3”.故选C.【答案】 C5.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3【答案】 A二、填空题6.(2016·三门峡高二期中)命题“若x>2,则x2>4”的逆命题是____________. 【导学号:18490009】【解析】原命题的逆命题为“若x2>4,则x>2”.【答案】若x2>4,则x>27.命题“若a>b,则2a>2b-1”的否命题是________.【解析】否定条件与结论,得否命题“若a≤b,则2a≤2b-1”.【答案】若a≤b,则2a≤2b-18.在空间中,给出下列两个命题:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.其中逆命题为真命题的是________.【解析】①的逆命题:若空间四点中任何三点都不共线,则这四点不共面,是假命题;②的逆命题:若两条直线是异面直线,则这两条直线没有公共点,是真命题.【答案】②三、解答题9.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.【解】逆命题:已知a,b∈R,若a>b,则a2>b2;否命题:已知a,b∈R,若a2≤b2,则a≤b;逆否命题:已知a,b∈R,若a≤b,则a2≤b2.原命题是假命题.逆否命题也是假命题.逆命题是假命题.否命题也是假命题.10.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假,并证明你的结论.【解】(1)命题p的否命题为“若ac<0,则二次方程ax2+bx+c =0有实根”.(2)命题p的否命题是真命题.证明如下:∵ac<0,∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.∴该命题是真命题.[能力提升]1.与命题“若a·b=0,则a⊥b”等价的命题是()A.若a·b≠0,则a不垂直于bB.若a⊥b,则a·b=0C.若a不垂直于b,则a·b≠0D.若a·b≠0,则a⊥b【解析】原命题与其逆否命题为等价命题.【答案】 C2.(2016·福州期末)命题“若x+y是偶数,则x,y都是偶数”的逆否命题是()A.若x,y都不是偶数,则x+y不是偶数B.若x,y不都是偶数,则x+y是偶数C.若x,y不都是偶数,则x+y不是偶数D.若x,y都不是偶数,则x+y是偶数【解析】“x,y都是偶数”的否定为“x,y不都是偶数”,“x +y是偶数”的否定是“x+y不是偶数”.故选C.【答案】 C3.下列命题中________为真命题(填上所有正确命题的序号).①若A∩B=A,则A B;②“若x=y=0,则x2+y2=0”的逆命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【解析】①错误,若A∩B=A,则A⊆B;②正确,它的逆命题为“若x2+y2=0,则x=y=0”为真命题;③错误,它的逆命题为“相似三角形是全等三角形”为假命题;④正确,因为原命题为真命题,故逆否命题也为真命题.【答案】②④4.写出下列命题的逆命题、否命题、逆否命题,然后判断真假. 【导学号:18490010】(1)等高的两个三角形是全等三角形;(2)弦的垂直平分线平分弦所对的弧.【解】(1)逆命题:若两个三角形全等,则这两个三角形等高,是真命题;否命题:若两个三角形不等高,则这两个三角形不全等,是真命题;逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.(2)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题;否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧,是假命题;逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.。
高中数学人教A版选修2-1 第一章 常用逻辑用语 1.1.1 Word版含答案.doc
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.在空间中,下列命题正确的是( )A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行【解析】 A 中平行投影可能平行,A 为假命题.B 、C 中的两个平面可以平行或相交,为假命题.由线面垂直的性质知,D 为真命题.【答案】 D2.下列命题中是假命题的是( )A .a·b =0(a ≠0,b ≠0),则a ⊥bB .若|a |=|b |,则a =bC .若ac 2>bc 2,则a >bD .若α=60°,则cos α=12【解析】 因为|a |=|b |只能说明a 与b 的模相等,所以a =b 不一定成立,故选B.【答案】 B3.下列四个命题中,真命题是( )A .a >b ,c >d ⇒ac >bdB .a <b ⇒a 2<b 2C .1a <1b ⇒a >bD .a >b ,c <d ⇒a -c >b -d【解析】 可以通过举反例的方法说明A 、B 、C 为假命题.【答案】 D4.已知实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则下列四个命题为真命题的是( )A .在a ,b ,c ,d 中有且仅有一个是负数B .在a ,b ,c ,d 中有且仅有两个是负数C .在a ,b ,c ,d 中至少有一个是负数D .在a ,b ,c ,d 中都是负数【解析】 举例取特殊值,验证可知C 是真命题.【答案】 C5.下面的命题中是真命题的是( )A .y =sin 2 x 的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则c a >0 C .若a =(1,k ),b =(-2,6),a ∥b ,则k =3D .在△ABC 中,若AB→·BC →>0,则B 为钝角 【解析】 A 中,y =sin 2x =1-cos 2x 2,T =2π2=π,故A 为假命题;C 中,∵a ∥b ,∴1-2=k 6,得k =-3,故C 为假命题;D 中,当AB →·BC →>0时,向量AB→与BC →的夹角为锐角,而B 为钝角,故D 为假命题. 【答案】 B二、填空题6.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.【解析】 ②中四条边相等的四边形是菱形,不一定是正方形,③中平行四边形不是梯形,①、④正确.【答案】 ①④7.给出下列语句:①空集是任何集合的真子集;②函数y =a x +1是指数函数吗?③一个数不是正数就是负数;④老师写的粉笔字真漂亮!⑤若x ∈R ,则x 2+4x +5>0;⑥作△ABC ≌△A 1B 1C 1.其中为命题的序号是________,为真命题的序号是________.【解析】 ①是命题,且是假命题,因为空集是任何非空集合的真子集;②该语句是疑问句,不是命题;③是命题,且是假命题,因为数0既不是正数,也不是负数;④该语句是感叹句,不是命题;⑤是命题,因为x 2+4x +5=(x +2)2+1>0恒成立,所以是真命题;⑥该语句是祈使句,不是命题.【答案】 ①③⑤ ⑤8.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的等价条件是l与α内的两条直线垂直.上面命题中,真命题的序号为________(写出所有真命题的序号). 【导学号:18490003】【解析】由线面平行及面面平行的判定定理可知,①②正确;当两平面斜交时,在α内的直线可以与交线垂直,故③不对;只有直线l与α内的两条相交直线垂直时,直线l与α垂直,故④不对.【答案】①②三、解答题9.判断下列语句中哪些是命题?哪些不是命题?(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)968能被11整除;(5)非典型性肺炎是怎样传播的?【解】(1)(2)(4)均是命题;(3)(5)不是命题.因为(1)(2)(4)都可以判断真假,且为陈述句;(3)中的“大数”是一个模糊的概念,无法判断其真假,所以不是命题;(5)中的语句是疑问句,所以不是命题.10.将下列命题改写成“若p,则q”的形式,并判断真假.(1)等腰梯形的两条对角线相等;(2)平行四边形的两条对角线互相垂直.【解】 (1)若一个梯形是等腰梯形,则它的两条对角线相等.真命题.(2)若一个四边形是平行四边形,则它的两条对角线互相垂直.假命题.[能力提升]1.若a ,b ∈R ,且a 2+b 2≠0,则下列命题:①a ,b 全为0;②a ,b 不全为0;③a ,b 全不为0;④a ,b 至少有一个不为0.其中真命题的个数为( )A .0B .1C .2D .3【解析】 ②④为真命题.【答案】 C2.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数又是增函数;③函数y =f (x )的图象与直线x =a 至多有一个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 其中真命题的序号是( )A .①②B .①②③C .①③④D .①②③④【解析】 ①②③是真命题.【答案】 B 3.设a ,b 为正实数.现有下列命题:①若a 2-b 2=1,则a -b <1;②若1b -1a =1,则a -b <1;③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有________.(写出所有真命题的序号)【解析】 将条件方程变形分析.①中,a 2-b 2=(a +b )(a -b )=1,a ,b 为正实数,若a -b ≥1, 则必有a +b >1,不合题意,故①正确.②中,1b -1a =a -b ab =1,只需a -b =ab 即可.如取a =2,b =23满足上式,但a -b =43>1,故②错.③中,a ,b 为正实数,所以a +b >|a -b |=1,且|a -b |=|(a +b )(a -b )|=|a +b |>1, 故③错.④中,|a 3-b 3|=|(a -b )(a 2+ab +b 2)|=|a -b |(a 2+ab +b 2)=1.若|a -b |≥1,不妨取a >b >1,则必有a 2+ab +b 2>1,不合题意,故④正确.【答案】 ①④4.把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)当m >14时,方程mx 2-x +1=0无实根;(2)平行于同一平面的两条直线平行. 【导学号:18490004】【解】 (1)命题可改写为:若m >14,则mx 2-x +1=0无实根.因为当m >14时,Δ=1-4m <0,所以是真命题.(2)命题可改写为:若两条直线平行于同一平面,则它们互相平行. 因为平行于同一平面的两条直线可能平行、相交或异面,所以是假命题.。
人教A版普通高中数学选修21知识点总结
高二数学选修2-1知识点第一章 常用逻辑用语1、命题:用语言、符号或式子表达地,可以判断真假地陈述句. 真命题:判断为真地语句. 假命题:判断为假地语句.2、“若p ,则q ”形式地命题中地p 称为命题地条件,q 称为命题地结论.3、对于两个命题,如果一个命题地条件和结论分别是另一个命题地结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题地逆命题.b5E2R 。
若原命题为“若p ,则q ”,它地逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题地条件和结论恰好是另一个命题地条件地否定和结论地否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题地否命题.p1Ean 。
若原命题为“若p ,则q ”,则它地否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题地条件和结论恰好是另一个命题地结论地否定和条件地否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题地逆否命题.DXDiT 。
若原命题为“若p ,则q ”,则它地否命题为“若q ⌝,则p ⌝”.6、四种命题地真假性:四种命题地真假性之间地关系: ()1两个命题互为逆否命题,它们有相同地真假性;()2两个命题为互逆命题或互否命题,它们地真假性没有关系.7、若p q ⇒,则p 是q 地充分条件,q 是p 地必要条件. 若p q ⇔,则p 是q 地充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有地”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表原命题 逆命题 否命题 逆否命题真 真 真 真真 假 假 真假 真 真 真假 假 假 假示.含有全称量词地命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词地命题称为特称命题.特称命题“存在M 中地一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它地否定p ⌝:x ∃∈M ,()p x ⌝.全称命题地否定是特称命题.第二章 圆锥曲线与方程11、平面内与两个定点1F ,2F 地距离之和等于常数(大于12F F )地点地轨迹称为椭圆.这两个定点称为椭圆地焦点,两焦点地距离称为椭圆地焦距.RTCrp 。
高中数学人教A版选修2-1第一章 常用逻辑用语.docx
第一章常用逻辑用语1.1 命题及其关系1.1.1 命题双基达标(限时20分钟)1.语句“若a>b,则a+c>b+c”是 ( ).A.不是命题 B.真命题C.假命题 D.不能判断真假解析考查不等式的性质,两边同加上同一个数不等式仍然成立.答案 B2.下列命题中是假命题的是 ( ).A.若a·b=0(a≠0,b≠0),则a⊥bB.若|a|=|b|,则a=bC.若ac2>bc2,则a>bD.5>3解析|a|=|b|只能说明a与b长度一样.a=b不一定成立.答案 B3.在下列4个命题中,是真命题的序号为( ).①3≥3;②100或50是10的倍数;③有两个角是锐角的三角形是锐角三角形;④等腰三角形至少有两个内角相等.A.① B.①② C.①②③ D.①②④解析对于③,举一反例,若A=15°,B=15°,则C为150°,三角形为钝角三角形.答案 D4.给出以下语句:①空集是任何集合的真子集;②三角函数是周期函数吗?③一个数不是正数就是负数;④老师写的粉笔字真漂亮!⑤若x∈R,则x2+4x+5>0;⑥作△ABC≌△A1B1C1.其中为命题的是________,真命题的序号为________.解析①是命题,且是假命题,因为空集是任何非空集合的真子集.②这是个疑问句,故不是命题.③是命题,且是假命题,因为数0既不是正数,也不是负数.④该语句是感叹句,不符合命题定义,所以不是命题.⑤是命题,因为Δ=16-20=-4<0,所以是真命题.⑥该语句是祈使句,不是命题.答案①③⑤⑤5.给出下列命题①若ac=bc,则a=b;②方程x2-x+1=0有两个实根;③对于实数x,若x-2=0,则x-2≤0;④若p>0,则p2>p;⑤正方形不是菱形.其中真命题是________,假命题是________.解析①c=0时,a不一定等于b,假命题.②此方程无实根,假命题.③结论成立,真命题.④0<p≤1时结论不成立,假命题.⑤不成立,假命题.答案③①②④⑤6.把下列命题写成“若p,则q”的形式,并指出条件与结论.(1)相似三角形的对应角相等;(2)当a>1时,函数y=a x是增函数.解(1)若两个三角形相似,则它们的对应角相等.条件p:三角形相似,结论q:对应角相等.(2)若a>1,则函数y=a x是增函数.条件p:a>1,结论q:函数y=a x是增函数.综合提高(限时25分钟)7.设α、β、γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若α∥β,l⊂α,则l∥β;④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数是 ( ).A.1 B.2 C.3 D.4解析①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由面面平行性质定理知,正确;④由线面相交、及线面、线线平行分析知,正确.答案 B8.给定下列命题:①“若k>0,则方程x2+2x-k=0”有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中真命题的序号是 ( ).A.①②③ B.①②④ C.①③④ D.②③④解析①中Δ=4-4(-k)=4+4k>0,故为真命题;②由不等式的性质知,显然是真命题;③如等腰梯形对角线相等,不是矩形,故为假命题;④为真命题.答案 B9.下列语句是命题的是______.①求证3是无理数;②x2+4x+4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x∈R,则x2+4x+7>0.解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.答案 ②④⑤10.下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π;②终边在y 轴上的角的集合是{α|α=k π2,k ∈Z };③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点;④把函数y =3sin(2x +π3)的图象向右平移π6,得到y =3sin 2x 的图象; ⑤函数y =sin(x -π2)在[0,π]上是减函数. 其中真命题的序号是________(写出所有真命题的序号).解析 ①y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos 2x ,∴T =π;②终边在y 轴上的角的集合为{α|α=k π+π2,k ∈Z }; ③两图象应有一个公共点;④平移后y =3sin[2(x -π6)+π3]=3sin 2x . ⑤函数y =sin(x -π2)=-cos x ,在[0,π]上应是增函数. 答案 ①④11.判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)一个等比数列的公比大于1时,该数列为递增数列;(2)求证:若x ∈R ,方程x 2-x +2=0无实根;(3)平行于同一条直线的两条直线必平行吗?(4)当x =4时,2x +1<0.解:(1)是命题,因为当等比数列的首项a 1<0,公比q >1时,该数列为递减数列,因此是一个假命题.(2)不是命题,它是祈使句.(3)不是命题,它是一个疑问句,没有作出判断.(4)是命题,能判断真假,它是一个假命题.12.(创新拓展)把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)ac >bc ⇒a >b ;(2)已知x 、y ∈N *,当y =x +1时,y =3,x =2;(3)当m >14时,mx 2-x +1=0无实根; (4)当x 2-2x -3=0时,x =3或x =-1.解 (1)若ac >bc ,则a >b ,是假命题.(2)已知x 、y ∈N *,若y =x +1,则y =3,x =2,是假命题.(3)若m >14,则mx 2-x +1=0无实根,是真命题. (4)若x 2-2x -3=0,则x =3或x =-1,是真命题.。
人教版A版高中数学选修2-1课后习题解答
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
高中数学人教A版选修2-1章末综合测评(一) 常用逻辑用语.docx
高中数学学习材料鼎尚图文*整理制作章末综合测评(一) 常用逻辑用语(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1,或x≤-1B.若-1<x<1,则x2<1C.若x>1,或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【解析】命题“若p,则q”的逆否命题为“若﹁q,则﹁p”.【答案】 D2.已知命题p:“∀x∈[0,1],a≥e x”,命题q:“∃x0∈R,x20+4x0+a=0”.若命题“p∧q”是真命题,则实数a的取值范围是()【导学号:37792034】A.(4,+∞)B.[1,4]C.[e,4]D.(-∞,-1)【解析】由题意知p与q均为真命题,由p为真,可知a≥e,由q为真,知x2+4x+a=0有解,则Δ=16-4a≥0,∴a≤4,综上知e≤a≤4.【答案】 C3.命题p:x+y≠3,命题q:x≠1或y≠2,则命题p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】命题“若p,则q”的逆否命题为:“若x=1且y=2,则x+y =3”,是真命题,故原命题为真,反之不成立.【答案】 A4.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】当x=2且y=-1时,满足方程x+y-1=0, 即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足x=2且y=-1,∴“x=2且y=-1”是“点P(x,y)在直线l上”的充分不必要条件.【答案】 A5.“关于x的不等式f(x)>0有解”等价于()A.∃x0∈R,使得f(x0)>0成立B.∃x0∈R,使得f(x0)≤0成立C.∀x∈R,使得f(x)>0成立D.∀x∈R,f(x)≤0成立【解析】“关于x的不等式f(x)>0有解”等价于“存在实数x0,使得f(x0)>0成立”.故选A.【答案】 A6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()【导学号:37792035】A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.【答案】 A7.命题p :函数y =lg(x 2+2x -c )的定义域为R ;命题q :函数y =lg(x 2+2x -c )的值域为R .记命题p 为真命题时c 的取值集合为A ,命题q 为真命题时c 的取值集合为B ,则A ∩B =( )A.∅B.{c |c <-1}C.{c |c ≥-1}D.R【解析】 命题p 为真命题,即x 2+2x -c >0恒成立,则有Δ=4+4c <0,解得c <-1,即A ={c |c <-1};令f (x )=x 2+2x -c ,命题q 为真命题,则f (x )的值域包含(0,+∞).即Δ=4+4c ≥0,求得c ≥-1,即B ={c |c ≥-1}.于是A ∩B =∅,故选A.【答案】 A8.对∀x ∈R ,kx 2-kx -1<0是真命题,则k 的取值范围是( ) A.-4≤k ≤0 B.-4≤k <0 C.-4<k ≤0D.-4<k <0【解析】 由题意知kx 2-kx -1<0对任意x ∈R 恒成立,当k =0时,-1<0恒成立;当k ≠0时,有⎩⎨⎧k <0,Δ=k 2+4k <0,即-4<k <0,所以-4<k ≤0. 【答案】 C9.已知命题p :若(x -1)(x -2)≠0,则x ≠1且x ≠2;命题q :存在实数x 0,使2x0<0.下列选项中为真命题的是( )A.﹁pB.﹁p ∨qC.﹁q ∧pD.q【解析】 很明显命题p 为真命题,所以﹁p 为假命题;由于函数y =2x ,x ∈R 的值域是(0,+∞),所以q 是假命题,所以﹁q 是真命题.所以﹁p ∨q 为假命题,﹁q ∧p 为真命题,故选C.【答案】 C10.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】 等比数列{a n }为递增数列的充要条件为⎩⎨⎧ a 1>0,q >1或⎩⎨⎧a 1<0,0<q <1.故“q >1”是“{a n }为递增数列”的既不充分也不必要条件.【答案】 D11.已知命题p :∀x >0,总有(x +1)e x >1,则﹁p 为( ) A.∃x 0≤0,使得(x 0+1)e x0≤1 B.∃x 0>0,使得(x 0+1)e x0≤1 C.∀x >0,总有(x +1)e x ≤1 D.∀x ≤0,使得(x +1)e x ≤1【解析】 因为全称命题∀x ∈M ,p (x )的否定为∃x 0∈M ,﹁p (x ),故﹁p :∃x 0>0,使得(x 0+1)e x0≤1.【答案】 B12.已知p :点P 在直线y =2x -3上;q :点P 在直线y =-3x +2上,则使p ∧q 为真命题的点P 的坐标是( )A.(0,-3)B.(1,2)C.(1,-1)D.(-1,1)【解析】 因为p ∧q 为真命题,所以p ,q 均为真命题.所以点P 为直线y =2x -3与直线y =-3x +2的交点.解方程组⎩⎨⎧ y =2x -3,y =-3x +2,得⎩⎨⎧x =1,y =-1,即点P 的坐标为(1,-1).【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“﹁p ”中是真命题的为________.【解析】 p 为假命题,q 为真命题,故p ∨q 为真命题,﹁p 为真命题. 【答案】 p ∨q 与﹁p14.“末位数字是1或3的整数不能被8整除”的否定形式是____________________,否命题是____________________.【解析】 命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.【答案】 末位数字是1或3的整数能被8整除 末位数字不是1且不是3的整数能被8整除15.已知f (x )=x 2+2x -m ,如果f (1)>0是假命题,f (2)>0是真命题,则实数m 的取值范围是______.【解析】 依题意,⎩⎨⎧f (1)=3-m ≤0,f (2)=8-m >0,∴3≤m <8.【答案】 [3,8) 16.给出以下判断:①命题“负数的平方是正数”不是全称命题;②命题“∀x ∈N ,x 3>x 2”的否定是“∃x 0∈N ,使x 30>x 20”;③“b =0”是“函数f (x )=ax 2+bx +c (a ≠0)为偶函数”的充要条件; ④“正四棱锥的底面是正方形”的逆命题为真命题. 其中正确命题的序号是________.【导学号:37792036】【解析】 ①②④是假命题,③是真命题. 【答案】 ③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定,并判断其真假,同时说明理由. (1)q :所有的矩形都是正方形; (2)r :∃x 0∈R ,x 20+2x 0+2≤0; (3)s :至少有一个实数x 0,使x 30+3=0.【解】 (1)﹁q :至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题.(2)﹁r :∀x ∈R ,x 2+2x +2>0,真命题.这是由于∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0恒成立.(3)﹁s :∀x ∈R ,x 3+3≠0,假命题.这是由于当x =-33时,x 3+3=0. 18.(本小题满分12分)指出下列命题中,p 是q 的什么条件? (1)p :{x |x >-2或x <3};q :{x |x 2-x -6<0}; (2)p :a 与b 都是奇数;q :a +b 是偶数;(3)p :0<m <13;q :方程mx 2-2x +3=0有两个同号且不相等的实根. 【解】 (1)因为{x |x 2-x -6<0}={x |-2<x <3}, 所以{x |x >-2或x <3}⇒/{x |-2<x <3}, 而{x |-2<x <3}⇒{x |x >-2或x <3}. 所以p 是q 的必要不充分条件.(2)因为a ,b 都是奇数⇒a +b 为偶数,而a +b 为偶数⇒/a ,b 都是奇数,所以p 是q 的充分不必要条件.(3)mx 2-2x +3=0有两个同号不等实根⇔⎩⎪⎨⎪⎧Δ>0,3m >0⇔⎩⎨⎧4-12m >0,m >0⇔⎩⎪⎨⎪⎧ m <13,m >0⇔0<m <13. 所以p 是q 的充要条件.19.(本小题满分12分)已知命题p :不等式2x -x 2<m 对一切实数x 恒成立,命题q :m 2-2m -3≥0,如果“﹁p ”与“p ∧q ”同时为假命题,求实数m 的取值范围.【导学号:37792037】【解】 2x -x 2=-(x -1)2+1≤1,所以p 为真时, m >1.由m 2-2m -3≥0得m ≤-1或m ≥3, 所以q 为真时,m ≤-1或m ≥3. 因为“﹁p ”与“p ∧q ”同时为假命题, 所以p 为真命题,q 为假命题,所以得 ⎩⎨⎧m >1,-1<m <3,即1<m <3,即m 的取值范围为(1,3).20.(本小题满分12分)已知两个命题p :sin x +cos x >m ,q :x 2+mx +1>0,如果对任意x ∈R ,有p ∨q 为真,p ∧q 为假,求实数m 的取值范围.【解】 当命题p 是真命题时,由于x ∈R ,则sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≥-2,所以有m <- 2. 当命题q 是真命题时, 由于x ∈R ,x 2+mx +1>0, 则Δ=m 2-4<0,解得-2<m <2.由于p ∨q 为真,p ∧q 为假,所以p 与q 一真一假.考虑到函数f (x )=x 2+mx +1的图象为开口向上的抛物线,对任意的x ∈R ,x 2+mx +1≤0不可能恒成立.所以只能是p 为假,q 为真,此时有⎩⎨⎧m ≥-2,-2<m <2,解得-2≤m <2,所以实数m 的取值范围是[-2,2).21.(本小题满分12分)已知命题p :对数log a (-2t 2+7t -5)(a >0,且a ≠1)有意义;命题q :实数t 满足不等式t 2-(a +3)t +a +2<0.(1)若命题p 为真,求实数t 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.【解】 (1)因为命题p 为真,则对数的真数-2t 2+7t -5>0,解得1<t <52. 所以实数t 的取值范围是⎝ ⎛⎭⎪⎫1,52.(2)因为p 是q的充分不必要条件,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫t ⎪⎪⎪1<t <52是不等式t 2-(a +3)t +a +2<0的解集的真子集.法一:因为方程t 2-(a +3)t +a +2=0的两根为1和a +2, 所以只需a +2>52,解得a >12.即实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.法二:令f (t )=t 2-(a +3)t +a +2,因为f (1)=0, 所以只需f ⎝ ⎛⎭⎪⎫52<0,解得a >12.即实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.22.(本小题满分12分)设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.【证明】 充分性:∵∠A =90°, ∴a 2=b 2+c 2.于是方程x 2+2ax +b 2=0可化为x 2+2ax +a 2-c 2=0, ∴x 2+2ax +(a +c )(a -c )=0. ∴[x +(a +c )][x +(a -c )]=0.∴该方程有两根x 1=-(a +c ),x 2=-(a -c ),同样另一方程x 2+2cx -b 2=0也可化为x 2+2cx -(a 2-c 2)=0, 即[x +(c +a )][x +(c -a )]=0,∴该方程有两根x 3=-(a +c ),x 4=-(c -a ). 可以发现,x 1=x 3, ∴方程有公共根.必要性:设x 是方程的公共根,则⎩⎨⎧x 2+2ax +b 2=0, ①x 2+2cx -b 2=0, ② 由①+②,得x =-(a +c ),x =0(舍去). 代入①并整理,可得a 2=b 2+c 2. ∴∠A =90°. ∴结论成立.。
高二数学(人教A版)选修2-1课件第一章 常用逻辑用语
着手时, 可转为判断它的等价命题——逆否命题, 这是一种重 要的处理技巧.
二、四种命题的关系 1.注意:若 p,则 q,不能写作“p⇒q”,因为前者真假 未知,而“p⇒q”是说“若 p,则 q”是一个真命题. 2.原命题与其逆否命题等价,原命题的逆命题与原命题 的否命题也等价.从而四种命题中有两对同真同假. 3.互逆或互否的两个命题不等价,其真假没有联系.
误区警示
1.命题是数学中最基本的判断语句,命题的基本要素就 是“条件”与“结论”, 一个命题为“真”或“假”是唯一确 定的,不存在亦真亦假的命题. 2.有关充要条件的证明问题,要分清哪个是条件,哪个 是结论, 谁是谁的什么条件, 由“条件⇒结论”是证明命题的 充分性, 由“结论⇒条件”是证明命题的必要性. 证明要分两 个环节: 一是证充分性; 二是证必要性. 要搞清它的叙述格式, 避免在论证时将充分性错当必要性证, 或将必要性错当充分性 证.
命题,(10)中由于 x 的值未给,故无法判断此句的真假,因而 不是命题.
[例 2] 真假.
[解析]
判断命题:“若 a+b≠7,则 a≠3,且 b≠4”的
其逆否命题为:“若 a=3 或 b=4,则 a+b=
7”.显然这是一个假命题, ∴原命题为假.
[点评]
复合命题的真假判断是个难点,当直接判断不易
5.全称命题、特称命题真假的判断 (1)全称命题真假的判断 要判定一个全称命题为真,必须对限定集合 M 中每个 x 验证 p(x)成立.一般用代数推理的方法加以证明;要判断一个 全称命题为假,只需举一个反例即可.
(2)特称命题真假的判断 要判定一个特称命题为真,只要在限定集合 M 中,能找 到一个 x0,使 p(x0)成立即可,否则,这一特称命题为假.
高中数学人教A版选修2-1第一章 常用逻辑用语
第一章常用逻辑用语第2节充分条件与必要条件1.设R a ∈,则“1>a ”是“12>a ”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件2.“a >b 且c >d ”是“a +c >b +d ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.集合A={1,a},B={1,2,3},则“a=3”是“A B⊆”的() A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.在△ABC中,“A>30°”是“1sin2A>”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5.设x∈R,则“12x>”是“2x2+x-1>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.设,是向量,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:1.A2.A3.B4.Aa rb r ||||a b =r r ||||a b a b +=-r r rr5.A6.A7.D。
人教A版高中数学选修2-1第一章常用逻辑用语章末总结
2a2a 1
2a2a 1
2
所以 a 的取值范围是(2,8).
误区警示 (1)解题时,易忽略三角形的三边应满足两边之和大于第三边,而 使某些字母的范围变大. (2)本题实质上是求2a+1,a,2a-1能构成钝角三角形三边的充要条件,除了 要保证三边长均为正数外,还应满足两边之和大于第三边、最大边所对角 的余弦值为负数.
因为 sin B+sin A(sin C-cos C)=0,所以 sin(A+C)+sin A(sin C-cos C)=0, sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,cos Asin C+sin Asin C=0, 因为 sin C>0,所以 sin A+cos A=0.所以 tan A=-1,
(2)在涉及三角形面积时,常常借助正弦定理或余弦定理进行边和角的转化.
四、三角形中的取值范围 【典例4】 设△ABC的内角A,B,C的对边分别为a,b,c,a=btan A,且B为钝角. (1)证明:B-A= π ;
2
(1)证明:由 a=btan A 及正弦定理,得 sin A = a = sin A , cos A b sin B
中 sin θ= 26 ,0°<θ<90°)且与点 A 相距 10 13 海里的位置 C. 26
(1)求该船的行驶速度(单位:海里/小时);
解:(1)如图,AB=40 2 , AC=10 13 ,∠BAC=θ,sin θ= 26 .
26
所以 cos θ= 5 26 . 26
由余弦定理得 BC= AB2 AC2 2AB AC cos =10 5 . 所以船的行驶速度为 10 5 ÷ 2 =15 5 (海里/小时).
高中数学选修2-1(人教A版)第一章常用逻辑用语1.1知识点总结含同步练习及答案
2.若则命题的四种形式 描述: 若则命题 命题的常见形式为“若 p 则 q ”,其中 p 叫做命题的条件, q 叫做命题的结论. 逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称 为互逆命题.其中一个命题称为原命题(original proposition),另一个称为原命题的逆命 题(inverse proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的逆命题 为“若 q ,则 p ”. 否命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么 这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negative proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的否命题为“若 ¬p ,则 ¬q ”. 逆否命题 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么 这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命 题(inverse and negative proposition).也就是说,如果原命题为“若 p ,则 q ”,那么 它的逆否命题为“若 ¬q ,则 ¬p ”. 四种命题的相互关系 四种命题的真假关系 ① 互为逆否的两个命题,它们有相同的真假性; ② 互逆或互否的两个命题,它们的真假性没有关系. 例题: 把下列命题改写成“若 p ,则 q ” 的形式,并判断命题的真假. (1)当 ac > bc 时, a > b ; (2)已知 x ,y 为正整数,且 y = x + 1 ,当 y = 3 时,x = 2; (3)当 m > (4)菱形的对角线互相垂直. 解:(1)若 ac > bc,则 a > b,假命题; (2)已知 x ,y 为正整数,且 y = x + 1 ,若 y = 3,则 x = 2 ,真命题; (3)若 m > (4)若一个四边形是菱形,则它的对角线互相垂直,真命题.
【新人教A版】高中数学选修2--1教案(全套)
【新人教A版】高中数学选修2-1教案第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。
教学设想:通过学生的参与,激发学生学习数学的兴趣。
(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
新人教A版数学选修2-1 第一章 常用逻辑用语 章末总结
12 12 12
6
显然 0<θ< π 时,sin θ< 1 成立.
6
2
但 sin θ< 1 时,由周期函数的性质知 0<θ< π 不一定成立.
2
6
故 0<θ< π 是 sin θ< 1 的充分而不必要条件.
6
2
故选 A.
3.(2017·天津卷)设x∈R,则“2-x≥0”是“|x-1|≤1”的(B ) (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 解析:因为2-x≥0, 所以x≤2. 因为|x-1|≤1, 所以0≤x≤2. 因为当x≤2时不一定有x≥0,当0≤x≤2时一定有x≤2, 所以“2-x≥0”是“|x-1|≤1”的必要而不充分条件. 故选B.
章末总结
网络建构
主题串讲
一、命题的关系及其真假的判定
【典例1】 有下列四个命题: ①若“xy=1,则x,y互为倒数”的逆命题; ②“面积相等的三角形是全等三角形”的否命题; ③“若m≤1,则x2-2x+m=0有实数解”的逆否命题; ④“若A∩B=B,则A⊆B”的逆否命题. 其中真命题为( ) (A)①② (B)②③ (C)①④ (D)①②③
即时训练2-1:(1)“x>1”是“log2(x-1)<0”的( ) (A)充分不必要条件 (B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
解析:(1)由log2(x-1)<0得0<x-1<1,即1<x<2, 故“x>1”是“log2(x-1)<0”的必要不充分条件. 故选B.
(2)“已知命题 p:cos α ≠ 1 ,命题 q:α ≠ π ”,则命题 p 是命题 q 的( )
高中数学(人教版选修2-1)配套课件:第1章 常用逻辑用语
故原命题为真. (2)若x∉A∩B,则x∉A且x∉B; 解 该命题的逆否命题:“若x∈A或x∈B,则x∈A∩B”,它为假命题,故原命题为假.
(3)若x≠y或x≠-y,则|x|≠|y|. 解 该命题的逆否命题:“若|x|=|y|,则x=y且x=-y”,它为假命题,故原命题为假.
解析答
跟踪训练1 下列各题中,p是q的什么条件? (1)p:圆x2+y2=r2与直线ax+by+c=0相切,q:c2=(a2+b2)r2(其中r>0);
例4
设函数f(x)=|log2x|,则f(x)在区间(m,2m+1)(m>0)上不是单调函数的充要条件是 0<m<1
________.
解析
作出函数f(x)=|log2x|的图象
0<m<1, 如图所示,可得 2m+1>1,
故 0<m<1 即为 f(x)在区间 (m,2m +1)(m>0)上不是单调函 数的充要条件.故填0<m<1.
q”,其命题的否定为“若p,则綈q”,即否命题是将条件、结论同时否定,而命题的否
定是只否定结论.有时一个命题的叙述方式是简略式,此时应先分清条件p,结论q,改写 成“若p,则q”的形式再判断.
方法总结 思想构建
1.转化与化归思想
将所研究的对象在一定条件下转化并归结为另一种研究对象的思想方法称之为转化与化归
a<1, 当 p 为真,q 为假时有: 所以-2≤a<1, -2≤a≤2,
a≥1, 当 q 为真,p 为假时有: 所以 a>2, a>2或a<-2,
综上所述,-2≤a<1或a>2. 解析答
2.分类讨论思想
分类讨论又称逻辑划分,是中学数学常用思想方法之一,分类讨论的关键是逻辑划分标准
高中数学人教A版选修2-1 第一章 常用逻辑用语 1.4.1、1.4.2、1.4.3 Word版含答案
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列命题为特称命题的是( ) A .奇函数的图象关于原点对称 B .正四棱柱都是平行六面体 C .棱锥仅有一个底面D .存在大于等于3的实数x ,使x 2-2x -3≥0【解析】 A ,B ,C 中命题都省略了全称量词“所有”,所以A ,B ,C 都是全称命题;D 中命题含有存在量词“存在”,所以D 是特称命题,故选D.【答案】 D2.下列命题为真命题的是( ) A .∀x ∈R ,cos x <2 B .∃x ∈Z ,log 2(3x -1)<0 C .∀x >0,3x >3D .∃x ∈Q ,方程2x -2=0有解【解析】 A 中,由于函数y =cos x 的最大值是1,又1<2,所以A 是真命题;B 中,log 2(3x -1)<0⇔0<3x -1<1⇔13<x <23,所以B 是假命题;C 中,当x =1时,31=3,所以C 是假命题;D 中,2x -2=0⇔x =2∉Q ,所以D 是假命题.故选A.【答案】 A3.下列命题的否定是真命题的是( )A .存在向量m ,使得在△ABC 中,m ∥AB →且m ∥AC → B .所有正实数x ,都有x +1x ≥2 C .所有第四象限的角α,都有sin α<0 D .有的幂函数的图象不经过点(1,1)【解析】 A 中,当m =0时,满足m ∥AB→且m ∥AC →,所以A 是真命题,其否定是假命题;B 中,由于x >0,所以x +1x ≥2x ·1x =2,当且仅当x =1x 即x =1时等号成立,所以B 是真命题,其否定是假命题;C 中,由于第四象限角的正弦值是负数,所以C 是真命题,其否定是假命题;D 中,对于幂函数f (x )=x α,均有f (1)=1,所以幂函数的图象均经过点(1,1),所以D 是假命题,其否定是真命题,故选D.【答案】 D4.已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)【解析】 f (x )=ax 2+bx +c =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a >0),∵2ax 0+b =0,∴x 0=-b2a , 当x =x 0时,函数f (x )取得最小值,∴∀x ∈R ,f (x )≥f (x 0),从而A ,B ,D 为真命题,C 为假命题. 【答案】 C5.对下列命题的否定说法错误的是( )A .p :能被2整除的数是偶数;綈p :存在一个能被2整除的数不是偶数B .p :有些矩形是正方形;綈p :所有的矩形都不是正方形C .p :有的三角形为正三角形;綈p :所有的三角形不都是正三角形D .p :∃n ∈N ,2n ≤100;綈p :∀n ∈N ,2n >100 【答案】 C 二、填空题6.命题“偶函数的图象关于y 轴对称”的否定是_____________. 【解析】 题中的命题是全称命题,省略了全称量词,加上全称量词后该命题可以叙述为:所有偶函数的图象关于y 轴对称.将命题中的全称量词“所有”改为存在量词“有些”,结论“关于y 轴对称”改为“关于y 轴不对称”,所以该命题的否定是“有些偶函数的图象关于y 轴不对称”.【答案】 有些偶函数的图象关于y 轴不对称7.已知命题:“∃x0∈[1,2],使x20+2x0+a≥0”为真命题,则实数a的取值范围是__________.【解析】当x∈[1,2]时,x2+2x=(x+1)2-1是增函数,所以3≤x2+2x≤8,由题意有a+8≥0,∴a≥-8.【答案】[-8,+∞)8.下列命题:①存在x<0,使|x|>x;②对于一切x<0,都有|x|>x;③已知a n=2n,b n=3n,对于任意n∈N*,都有a n≠b n;④已知A={a|a=2n},B={b|b=3n},对于任意n∈N*,都有A∩B =∅.其中,所有正确命题的序号为________. 【导学号:18490027】【解析】命题①②显然为真命题;③由于a n-b n=2n-3n=-n<0,对于∀n∈N*,都有a n<b n,即a n≠b n,故为真命题;④已知A={a|a=2n},B={b|b=3n},如n=1,2,3时,A∩B={6},故为假命题.【答案】①②③三、解答题9.写出下列命题的否定:(1)p:一切分数都是有理数;(2)q:有些三角形是锐角三角形;(3)r:∃x0∈R,x20+x0=x0+2;(4)s:∀x∈R,2x+4≥0.【解】 (1)綈p :有些分数不是有理数. (2)綈q :所有的三角形都不是锐角三角形. (3)綈r :∀x ∈R ,x 2+x ≠x +2. (4)綈s :∃x 0∈R ,2x 0+4<0.10.若x ∈[-2,2],关于x 的不等式x 2+ax +3≥a 恒成立,求a 的取值范围.【解】 设f (x )=x 2+ax +3-a ,则此问题转化为当x ∈[-2,2]时,f (x )min ≥0即可.①当-a2<-2,即a >4时,f (x )在[-2,2]上单调递增, f (x )min =f (-2)=7-3a ≥0,解得a ≤73. 又因为a >4,所以a 不存在. ②当-2≤-a2≤2,即-4≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=12-4a -a24≥0,解得-6≤a ≤2. 又因为-4≤a ≤4,所以-4≤a ≤2. ③当-a2>2,即a <-4时, f (x )在[-2,2]上单调递减, f (x )min =f (2)=7+a ≥0, 解得a ≥-7.又因为a <-4,所以-7≤a <-4.综上所述,a 的取值范围是{a |-7≤a ≤2}.[能力提升]1.已知命题p :∃x 0∈(-∞,0),2x 0<3x 0,命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,cos x <1,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )【解析】 当x 0<0时,2x 0>3x 0,∴不存在x 0∈(-∞,0)使得2x 0<3x 0成立,即p 为假命题,显然∀x ∈⎝⎛⎭⎪⎪⎫0,π2,恒有0<cos x <1,∴命题q 为真,∴(綈p )∧q 是真命题. 【答案】 C2.(2013·四川高考)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .綈p :∃x ∈A ,2x ∈B B .綈p :∃x ∉A ,2x ∈BC .綈p :∃x ∈A ,2x ∉BD .綈p :∀x ∉A ,2x ∉B【解析】 命题p 是全称命题: ∀x ∈M ,p (x ),则綈p 是特称命题:∃x ∈M ,綈p (x ).故选C.【答案】 C3.已知函数f (x )=x 2+m ,g (x )=⎝ ⎛⎭⎪⎫12x,若对任意x 1∈[-1,3],存在x 2∈[0,2],使f (x 1)≥g (x 2),则实数m 的取值范围是________.【解析】 因为对任意x 1∈[-1,3],f (x 1)∈[m ,9+m ],即f (x )min=m .存在x 2∈[0,2],使f (x 1)≥g (x 2)成立,只要满足g (x )min ≤m 即可,而g (x )是单调递减函数,故g (x )min =g (2)=⎝ ⎛⎭⎪⎫122=14,得m ≥14. 【答案】 ⎣⎢⎡⎭⎪⎫14,+∞ 4.已知a >12且a ≠1,条件p :函数f (x )=log (2a -1)x 在其定义域上是减函数;条件q :函数g (x )=x +|x -a |-2的定义域为R ,如果p ∨q 为真,试求a 的取值范围. 【导学号:18490028】【解】 若p 为真,则0<2a -1<1,得12<a <1. 若q 为真,则x +|x -a |-2≥0对∀x ∈R 恒成立. 记f (x )=x +|x -a |-2,则f (x )=⎩⎨⎧2x -a -2,x ≥a ,a -2,x <a ,所以f (x )的最小值为a -2,即q 为真时,a -2≥0,即a ≥2.于是p ∨q 为真时,得12<a <1或a ≥2,故a 的取值范围为⎝⎛⎭⎪⎫12,1∪[2,+∞).。
高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案.docx
第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是________________________________________________________________________. 9.下列语句是命题的是________. ①求证3是无理数; ②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数; ⑤若x ∈R ,则x 2+4x +7>0. 三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ; (2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根; (4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假. (1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( ) A .0 B .1 C .2 D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数是( ) A .1 B .2 C .3 D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题. 2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析 第一章 常用逻辑用语 §1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假 2.条件 结论 作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.] 4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.] 6.D 7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形. 8.若一个函数是奇函数 这个函数的图象关于原点对称 9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x+7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2. (2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根. (4)假命题.因为不共线的三点确定一个圆.11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题.12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1; 若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真, 即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2.故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.]14.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m 、n 相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]。
最新整理高中数学人教A版选修2-1测评 第一章 常用逻辑用语 1.2.1、1.2.2 Word版含答案.doc
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( ) 【导学号:18490013】A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 ∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.【答案】 A2.已知命题甲:“a ,b ,c 成等差数列”,命题乙:“a b +c b =2”,则命题甲是命题乙的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件【解析】 若a b +c b =2,则a +c =2b ,由此可得a ,b ,c 成等差数列;当a ,b ,c 成等差数列时,可得a +c =2b ,但不一定得出a b +c b =2,如a =-1,b =0,c =1.所以命题甲是命题乙的必要而不充分条件.【答案】 A3.设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若φ=0,则f(x)=cos(x+φ)=cos x为偶函数,充分性成立;反之,若f(x)=cos(x+φ)为偶函数,则φ=kπ(k∈Z),必要性不成立,故选A.【答案】 A4.“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】当a=-1时,函数f(x)=ax2+2x-1=-x2+2x-1只有一个零点1;但若函数f(x)=ax2+2x-1只有一个零点,则a=-1或a=0.所以“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的充分不必要条件,故选B.【答案】 B5.(2016·甘肃临夏期中)已知函数f(x)=x+b cos x,其中b为常数,那么“b=0”是“f(x)为奇函数”的()【导学号:18490014】A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】当b=0时,f(x)=x为奇函数;当f(x)为奇函数时,f(-x)=-f(x),∴-x+b cos x=-x-b cos x,从而2b cos x=0,b=0.【答案】 C二、填空题6.“b2=ac”是“a,b,c成等比数列”的________条件.【解析】“b2=ac”⇒/“a,b,c成等比数列”,如b2=ac =0;而“a,b,c成等比数列”⇒“b2=ac”.【答案】必要不充分7.“a=-1”是“l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行”的________条件.【解析】若直线l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行,则需满足1×2(a-1)-a×(3-a)=0,化简整理得a2-a-2=0,解得a=-1或a=2,经验证得当a=-1时,两直线平行,当a=2时,两直线重合,故“a=-1”是“l1:x+ay+6=0与l2:(3-a)x +2(a-1)y+6=0平行”的充要条件.【答案】充要8.在下列各项中选择一项填空:①充分不必要条件;②必要不充分条件;③充要条件;④既不充分也不必要条件.(1)集合A={-1,p,2},B={2,3},则“p=3”是“A∩B=B”的________;(2)“a =1”是“函数f (x )=|2x -a |在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数”的________.【解析】 (1)当p =3时,A ={-1,2,3},此时A ∩B =B ;若A ∩B =B ,则必有p =3.因此“p =3”是“A ∩B =B ”的充要条件.(2)当a =1时,f (x )=|2x -a |=|2x -1|在⎣⎢⎡⎭⎪⎫12,+∞上是增函数;但由f (x )=|2x -a |在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数不能得到a =1,如当a =0时,函数f (x )=|2x -a |=|2x |在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数.因此“a =1”是“函数f (x )=|2x -a |在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数”的充分不必要条件.【答案】 (1)③ (2)①三、解答题9.下列各题中,p 是q 的什么条件,q 是p 的什么条件,并说明理由.(1)p :|x |=|y |,q :x =y; 【导学号:18490015】(2)在△ABC ,p :sin A >12,q :A >π6.【解】 (1)因为|x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |,所以p 是q 的必要不充分条件,q 是p 的充分不必要条件.(2)因为A ∈(0,π)时,sin A ∈(0,1],且A ∈⎝⎛⎦⎥⎤0,π2时,y =sin A 单调递增,A ∈⎣⎢⎡⎭⎪⎫π2,π时,y =sin A 单调递减,所以sin A >12⇒A >π6,但A >π6⇒/ sin A >12.所以p 是q 的充分不必要条件,q 是p 的必要不充分条件.10.设a ,b ,c 分别是△ABC 的三个内角A 、B 、C 所对的边,证明:“a 2=b (b +c )”是“A =2B ”的充要条件.【证明】 充分性:由a 2=b (b +c )=b 2+c 2-2bc cos A 可得1+2cos A =c b =sin C sin B .即sin B +2sin B cos A =sin(A +B ).化简,得sin B =sin(A -B ).由于sin B >0且在三角形中,故B =A -B ,即A =2B .必要性:若A =2B ,则A -B =B ,sin(A -B )=sin B ,sin(A +B )=sin A cos B +cos A sin B ,sin(A -B )=sin A cos B -cos A sin B .∴sin(A +B )=sin B (1+2cos A ).∵A ,B ,C 为△ABC 的内角,∴sin(A +B )=sin C ,即sin C =sin B (1+2cos A ).∴sin C sin B =1+2cos A =1+b 2+c 2-a 2bc =b 2+c 2-a 2+bc bc, 即c b =b 2+c 2+bc -a 2bc. 化简得a 2=b (b +c ).∴“a 2=b (b +c )”是“A =2B ”的充要条件.[能力提升]1.如果A 是B 的必要不充分条件,B 是C 的充要条件,D 是C的充分不必要条件,那么A是D的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解析】由条件,知D⇒C⇔B⇒A,即D⇒A,但A⇒/D,故选A.【答案】 A2.设有如下命题:甲:相交两直线l,m在平面α内,且都不在平面β内;乙:l,m中至少有一条与β相交;丙:α与β相交.那么当甲成立时()A.乙是丙的充分不必要条件B.乙是丙的必要不充分条件C.乙是丙的充分必要条件D.乙既不是丙的充分条件,又不是丙的必要条件【解析】当l,m中至少有一条与β相交时,α与β有公共点,则α与β相交,即乙⇒丙,反之,当α与β相交时,l,m中也至少有一条与β相交,否则若l,m都不与β相交,又都不在β内,则l∥β,m∥β,从而α∥β,与已知α与β相交矛盾,即丙⇒乙,故选C.【答案】 C3.已知f(x)是R上的增函数,且f(-1)=-4,f(2)=2,设P={x|f(x +t)<2},Q={x|f(x)<-4},若“x∈P”是“x∈Q”的充分不必要条件,则实数t的取值范围是________.【解析】因为f(x)是R上的增函数,f(-1)=-4,f (x )<-4,f (2)=2,f (x +t )<2,所以x <-1,x +t <2,x <2-t .又因为“x ∈P ”是“x ∈Q ”的充分不必要条件, 所以2-t <-1,即t >3.【答案】 (3,+∞)4.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.【导学号:18490016】【证明】 充分性:因为q =-1,所以a 1=S 1=p -1. 当n ≥2时,a n =S n -S n -1=p n -1(p -1), 显然,当n =1时,也成立.因为p ≠0,且p ≠1,所以a n +1a n=p n (p -1)p n -1(p -1)=p , 即数列{a n }为等比数列,必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1). 因为p ≠0,且p ≠1,所以a n +1a n=p n (p -1)p n -1(p -1)=p . 因为{a n }为等比数列,所以a 2a 1=a n +1a n=p ,即p 2-p p +q =p . 所以-p =pq ,即q =-1.所以数列{a n }为等比数列的充要条件为q =-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末评估验收(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ,b ,c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A .2a ,a -b ,a +2b B .2b ,b -a ,b +2a C .a ,2b ,b -c D .c ,a +c ,a -c答案:C2.空间直角坐标中A (1,2,3),B (-1,0,5),C (3,0,4),D (4,1,3),则直线AB 与CD 的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 解析:因为AB →=(-2,-2,2),CD →=(1,1,-1), 又因为AB →=-2CD →,所以AB →∥CD →,即AB ∥CD . 答案:A3.已知a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32答案:C4.已知a =3i +2j -k ,b =i -j +2k ,则5a 与3b 的数量积等于( ) A .-15 B .-5 C .-3 D .-1解析:a =(3,2,-1),b =(1,-1,2),所以5a ²3b =15a ²b =-15. 答案:A5.已知a ²b =0,|a |=2,|b |=3,且(3a +2b )²(λa -b )=0,则λ等于( )A.32 B .-32 C .±32 D .1 答案:A6.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)解析:利用向量数量积公式的变形公式cos 〈a ,b 〉=a ²b|a ||b |求向量的夹角,各项逐一验证.选项B 中cos 〈a ,b 〉=a ²b |a ||b |=1³12³2=12,所以〈a ,b 〉=60°.答案:B7.在平行六面体ABCD -EFGH 中,若AG →=xAB →-2yBC →+3zDH →,则x +y +z 等于( )A.76B.23C.56D .1 解析:AG →=AB →+BC →+DH →,又AG →=xAB →-2yBC →+3zDH →,则x =1,y =-12,z =13,则x +y +z =1-12+13=56,故选C.答案:C8.如图,在正方体ABCD A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中,能作为平面AEF 的法向量的是A .(1,-2,4)B .(-4, 1,-2)C .(2,-2,1)D .(1,2,-2) 答案:B9.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120° 解析:由条件知,|BA 1→|=2a ,|AC →|=2a ,BA 1→²AC →=(AA 1→-AB →)²(AB →+AD →)=AA 1→²AB →-|AB →|2+AA 1→²AD →-AB →²AD →=-|AB →|2-AB →²AD →=-a 2,所以cos 〈BA 1→,AC →〉=BA 1→²AC→|BA 1→||AC →|=-a 22a ²2a =-12.所以向量BA 1→与AC →所成的角为120°,故选D.答案:D10.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角〈a ,b 〉为( )A .30°B .45°C .60°D .以上都不对解析:由已知a +b +c =0,得a +b =-c ,则(a +b )2=|a |2+|b |2+2a ²b =|c |2,由此可得a ²b =32.从而cos 〈a ,b 〉=a ²b |a ||b |=14.结合选项易知选D.答案:D11.如图,在正方体ABCD A 1B 1C 1D 1中,下面结论错误的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .向量AD →与CB 1→的夹角为60°答案:D12.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°解析:由条件,知CA →²AB →=0,AB →²BD →=0,CD →=CA →+AB →+BD →.所以|CD →|2=|CA →|2+|AB →|2+|BD →|3+2CA →²AB →+2AB →²BD →+2CA →²BD →=62+42+82+2³6³8cos 〈CA →,BD →〉=(217)2,所以cos 〈CA →, BD →〉=-12,〈CA →,BD →〉=120°,所以二面角的大小为60°.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知a =(2,-1,0),b =(k ,0, 1),若〈a ,b 〉=120°,则k =________.解析:因为cos 〈a ,b 〉=a ²b |a ||b |=2k 5³k 2+1=-12<0,所以k <0,且k 2=511.所以k =-5511. 答案:-551114.已知a =(x ,2,-4),b =(-1,y ,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.答案:(-64,-26,-17)15.非零向量e 1,e 2不共线,使ke 1+e 2与e 1+ke 2共线的k 的值是________. 解析:若ke 1+e 2与e 1+ke 2共线,则ke 1+e 2=λ(e 1+ke 2),所以⎩⎨⎧k =λ,λk =1,所以k =±1.答案:±116.在正三棱柱ABC -A 1B 1C 1中,所有棱长均为1,则点B 1到平面ABC 1的距离为________.解析:建立如图所示的空间直角坐标系,则C (0,0,0),A ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C 1A →=⎝ ⎛⎭⎪⎫32,12,-1, C 1B 1→=(0,1,0),C 1B →=(0,1,-1), 设平面ABC 1的法向量为n =(x ,y ,1), 则有⎩⎪⎨⎪⎧C 1A →²n =0,C 1B →²n =0.解得n =⎝ ⎛⎭⎪⎫33,1,1,则d =|C 1B 1→²n ||n |=113+1+1=217.答案:217三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知四边形ABCD 的顶点分别是A (3,-1,2),B (1,2,-1),C (-1,1,-3),D (3,-5,3).求证:四边形ABCD 是一个梯形.证明:因为AB →=(1,2,-1)-(3,-1,2)=(-2,3,-3),CD →=(3,-5,3)-(-1,1,-3)=(4,-6,6),因为-24=3-6=-36,所以AB →和CD →共线,即AB ∥CD .又因为AD →=(3,-5,3)-(3,-1,2)=(0,-4,1),BC →=(-1,1,-3)-(1,2,-1)=(-2,-1,-2),因为0-2≠-4-1≠1-2,所以AD →与BC →不平行,所以四边形ABCD 为梯形.18.(本小题满分12分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 和b 的夹角θ的余弦值;(2)若向量ka +b 与ka -2b 互相垂直,求k 的值. 解:a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0),b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2). (1)cos θ=a ²b |a ||b |=-1+0+02³5=-1010,所以a 与b 的夹角θ的余弦值为-1010. (2)ka +b =(k ,k ,0)+(-1,0,2)=(k -1,k ,2),ka -2b =(k ,k ,0)-(-2,0,4)=(k +2,k ,-4),所以(k -1,k ,2)²(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0,所以k =-52或k =2.19.(本小题满分12分)如图,在直三棱柱ABC A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(2)求二面角C 1AB C 的余弦值大小.解:直三棱柱ABC A 1B 1C 1中,AC =3,BC =4,AB =5,故AC ,BC ,CC 1两两垂直,建立空间直角坐标系(如图),则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4). (1)证明:AC →=(-3,0,0),BC 1→=(0,-4,4), 所以AC →²BC 1→=0.故AC ⊥BC 1.(2)解:平面ABC 的一个法向量为m =(0,0,1),设平面C 1AB 的一个法向量为n =(x ,y ,z ),AC 1→=(-3,0,4),AB →=(-3,4,0), 由⎩⎨⎧n ²AC 1→=0,n ²AB →=0.得⎩⎨⎧-3x +4z =0,-3x +4y =0,令x =4,则y =3,z =3,n =(4,3,3), 故cos 〈m ,n 〉=334=33434.即二面角C 1AB C 的余弦值为33434. 20.(本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,AB =5,BC =4,AA 1=4,点D 是AB 的中点.(2)求证:AC 1∥平面CDB 1.证明:因为直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,所以AC ,BC ,C 1C 两两垂直.如图,以C 为坐标原点,直线CA ,CB ,CC 1分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D ⎝ ⎛⎭⎪⎫32,2,0.(1)因为AC →=(-3,0,0),BC 1→=(0,-4,4), 所以AC →²BC 1→=0,所以AC ⊥BC 1.(2)因为CB 1与C 1B 的交点为E ,所以E (0,2,2). 因为DE →=⎝ ⎛⎭⎪⎫-32,0,2,AC 1→=(-3,0,4),所以DE →=12AC 1→,所以DE →∥AC 1→.因为DE ⊂平面CDB 1,AC 1⊄平面CDB 1, 所以AC 1∥平面CDB 1.21.(本小题满分12分)如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =60°.(1)求证:EF ⊥PB .(2)试问:当点E 在线段AB 上移动时,二面角P FC B 的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.(1)证明:在Rt △ABC 中,因为EF ∥BC ,所以EF ⊥AB ,所以EF ⊥EB ,EF ⊥EP , 又因为EB ∩EP =E ,EB ,EP ⊂平面PEB ,所以EF ⊥平面PEB . 又因为PB ⊂平面PEB ,所以EF ⊥PB .(2)解:在平面PEB 内,过点P 作PD ⊥BE 于点D , 由(1)知EF ⊥平面PEB ,所以EF ⊥PD ,又因为BE ∩EF =E ,BE ,EF ⊂平面BCFE ,所以PD ⊥平面BCFE . 在平面PEB 内过点B 作直线BH ∥PD ,则BH ⊥平面BCFE .如图所示,以B 为坐标原点,BC →,BE →,BH →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.设PE =x (0<x <4), 又因为AB =BC =4, 所以BE =4-x ,EF =x . 在Rt △PED 中,∠PED =60°, 所以PD =32x ,DE =12x ,所以BD =4-x -12x =4-32x , 所以C (4,0,0),F (x ,4-x ,0),P ⎝ ⎛⎭⎪⎫0,4-32x ,32x .从而CF →=(x -4,4-x ,0),CP →=⎝ ⎛⎭⎪⎫-4,4-32x ,32x .设n 1=(x 0,y 0,z 0)是平面PCF 的一个法向量, 所以⎩⎨⎧n 1²CF →=0,n 1²CP →=0,即⎩⎨⎧x 0(x -4)+y 0(4-x )=0,-4x 0+⎝ ⎛⎭⎪⎫4-32x y 0+32xz 0=0,所以⎩⎨⎧x 0-y 0=0,3y 0-z 0=0,取y 0=1,得n 1=(1,1,3)是平面PFC 的一个法向量. 又平面BFC 的一个法向量为n 2=(0,0,1), 设二面角P FC B 的平面角为α,则cos α=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1²n 2|n 1||n 2|=155.因此当点E 在线段AB 上移动时,二面角P FC B 的平面角的余弦值为定值,且定值为155. 22.(本小题满分12分)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.(1)证明:因为DE ⊥平面ABCD ,所以DE ⊥AC , 因为四边形ABCD 是正方形,所以AC ⊥BD , 又DE ∩BD =D ,所以AC ⊥平面BDE . (2)解:因为DE ⊥平面ABCD ,所以∠EBD 就是BE 与平面ABCD 所成的角, 即∠EBD =60°, 所以EDBD= 3. 由AD =3,得DE =36,AF = 6.如图,分别以DA ,DC ,DE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (3,0,0),F (3,0,6),E (0,0,36),B (3,3,0),C (0,3,0),所以BF →=(0,-3,6),EF →=(3,0,-26).设平面BEF 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧n ²BF →=0,n ²EF →=0,即⎩⎪⎨⎪⎧-3y +6z =0,3x -26z =0.令z =6,则n =(4,2,6).因为AC ⊥平面BDE ,所以CA →=(3,-3,0)为平面BDE 的一个法向量,所以cos 〈n ,CA →〉=n ²CA →|n ||CA →|=626³32=1313.故二面角F BE D 的余弦值为1313.(3)解:依题意,设M (t ,t ,0)(t >0),则AM →=(t -3,t ,0), 因为AM ∥平面BEF ,所以AM →²n =0,即4(t -3)+2t =0,解得t =2.所以点M 的坐标为(2,2,0),此时DM →=23DB →,所以点M 是线段BD 上靠近点B 的三等分点.。