16分式历届中考题3

合集下载

八年级数学下册第16章《分式》综合水平测试题[1]

八年级数学下册第16章《分式》综合水平测试题[1]

八年级数学下册第16章《分式》综合水平测试一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy+5,()1432+x ,ba b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列判断中,正确的是( ) A .分式的分子中一定含有字母 B .当B =0时,分式B A无意义 C .当A =0时,分式BA的值为0(A 、B为整式)D .分数一定是分式 3.下列各式正确的是( ) A .11++=++b a x b x a B .22x y x y = C .()0,≠=a mana m n D .am an m n --=4.下列各分式中,最简分式是( ) A .()()y x y x +-8534 B .yx x y +-22 C .2222xy y x y x ++D .()222y x y x +-5.化简2293mmm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.mm-36.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9448448=-++x x B .9448448=-++x x C .9448=+x D .9496496=-++x x8.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则a ba b+-的值为( ) A .2 B .2± C .2 D .2±二、填空题:(每小题3分,共24分)11.分式392--x x 当x 时分式的值为零,当x 时,分式xx2121-+有意义.12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =. 15.计算:=+-+3932a a a . 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为.17.若分式231-+x x 的值为负数,则x 的取值范围是.18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为. 三、解答题:(共56分) 19.计算:(1)11123x x x++ (2)32÷x y2620. 计算: ()3322232n m n m --⋅21. 计算(1)168422+--x x xx (2)mn nn m m m n n m -+-+--222. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 解下列分式方程. (1)xx 3121=- (2)1412112-=-++x x x24. 计算: (1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++-25.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?28.A、B两地相距20 ,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B地出发,以每小时比甲快2倍的速度向A地驶去,两车在距B地12 的C地相遇,求甲、乙两人的车速.答案 一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16. 17.-1<x <2318.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分) 19.(1)原式=632666x x x ++=116x (2)原式=2236x xy y =212x20.原式=243343m n m n -=1712m n -21.(1)原式=2(4)(4)x x x --=4xx - (2)原式=2m n m n m n m n m n -++----=2m n m n m n -++--=mm n-- 22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭=1111x x x x -+--=11x x x x--=1(2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=224224111x x x++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+=2222422224(1)(1)1x x x x x ++-+-++=444411x x +-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++-=4484(1)4(1)1x x x ++--=881x -25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++- 2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数,∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件. 28.设甲速为,乙速为3,则有xx x31260301220=--,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8,乙速为24.。

2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

知识回顾微专题知识回顾微专题2023年中考数学《分式》专题知识回顾与练习题(含答案解析)考点一:分式之分式的概念1. 分式的概念:形如BA,B A 、都是整式的式子叫做分式。

简单来说,分母中含有字母的式子叫做分式。

1.(2022•怀化)代数式52x ,π1,422+x ,x 2﹣32,x 1,21++x x 中,属于分式的有( )A .2个B .3个C .4个D .5个【分析】根据分式的定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x ,,x 2﹣,分式有3个, 故选:B .考点二:分式之有意义的条件,分式值为0的条件1. 分式有意义的条件:分式的分母为能为0。

即BA中,0≠B 。

2. 分式值为0的条件:分式的分子为0,分母不为0。

即BA中,0=A ,0≠B 。

2.(2022•凉山州)分式x+31有意义的条件是( ) A .x =﹣3B .x ≠﹣3C .x ≠3D .x ≠0【分析】根据分式有意义的条件:分母不为0,可得3+x ≠0,然后进行计算即可解答. 【解答】解:由题意得: 3+x ≠0, ∴x ≠﹣3, 故选:B . 3.(2022•南通)分式22−x 有意义,则x 应满足的条件是 . 【分析】利用分母不等于0,分式有意义,列出不等式求解即可. 【解答】解:∵分母不等于0,分式有意义, ∴x ﹣2≠0, 解得:x ≠2, 故答案为:x ≠2. 4.(2022•湖北)若分式12−x 有意义,则x 的取值范围是 . 【分析】根据分式有意义的条件可知x ﹣1≠0,再解不等式即可. 【解答】解:由题意得:x ﹣1≠0, 解得:x ≠1, 故答案为:x ≠1.5.(2022•广西)当x = 时,分式22+x x的值为零. 【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x =0且x +2≠0,然后进行计算即可解答.【解答】解:由题意得: 2x =0且x +2≠0, ∴x =0且x ≠﹣2, ∴当x =0时,分式的值为零,故答案为:0.知识回顾6.(2022•湖州)当a =1时,分式aa 1+的值是 . 【分析】把a =1代入分式计算即可求出值. 【解答】解:当a =1时, 原式==2.故答案为:2.考点三:分式之分式的运算:1. 分式的性质:分式的分子与分母同时乘上(或除以)同一个不为0的式子,分式的值不变。

第1章《分式》中考题集(32):14_分式方程

第1章《分式》中考题集(32):14_分式方程

第1章《分式》中考题集(32):1.4 分式方程解答题1. 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68 000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%)2. 通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.3. 面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的13%给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40 000元、电视机总额为15 000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(1)设购买电视机x台,依题意填充下列表格:(2)列出方程(组)并解答.4. 在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?5. 奥运会期间,为了增进与各国的友谊,华联商厦决定将具有民族风情的中国结打8折销售,汤姆先生用160元钱买到的中国结比打折前花同样多的钱买到的中国结多2个,求每个中国结的原价是多少元?6. 某市为了治理污水,需要铺设一条全长550米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?7. 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?8. 在我市某一城市美化工程招标时,甲乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下工程由甲乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天,需付工程款2万元,若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?9. 2008年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少人?均捐款多少元?10. 甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x个零件,请按要求解决下列问题:(1)根据题意,填写下表:(2)甲、乙两车间平均每小时各生产多少个零件?11. 某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.(1)求改进设备后平均每天耗煤多少吨?(2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解).12. 海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.13. 某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?14. “五•一”期间,九年一班同学从学校出发,去距学校6千米的本溪水洞游玩,同学们分为步行和骑自行车两组,在去水洞的全过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍.(1)求步行同学每分钟走多少千米?(2)如图是两组同学前往水洞时的路程y(千米)与时间x(分钟)的函数图象.完成下列填空:①表示骑车同学的函数图象是线段________;②已知A点坐标(30, 0),则B点的坐标为(________).15. 在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.16. 5.12汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?17. 在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走西线所用的时间.18. 某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.19. 从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10:7,A车的行驶时间比B车的少1ℎ,那么两车的平均速度分别为多少?20. A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?21. 在“5⋅12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30m2或乙种板材20m2.问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:问:这400间板房最多能安置多少灾民?22. 2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?23. 注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场--“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(1)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程(组),并求出问题的解.24. 为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.25. 在四川汶川地震灾后重建中,某公司拟为灾区援建一所希望学校.公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建校工程的时间是乙工程队的1.5倍,甲、乙两队合作完成建校工程需要72天.(1)甲、乙两队单独完成建校工程各需多少天?(2)在施工过程中,该公司派一名技术人员在现场对施工质量进行全程监督,每天需要补助100元.若由甲工程队单独施工时平均每天的费用为0.8万元.现公司选择了乙工程队,要求其施工总费用不能超过甲工程队,则乙工程队单独施工时平均每天的费用最多为多少?26. 某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?27. 为了支援四川汶川大地震灾区人民重建家园,我市某校号召师生自愿捐款,已知第一次共捐款90000元,第二次共捐款120000元,第二次人均捐款额是第一次人均捐款额的1.2倍,捐款人数比第一次多100人.问第一次和第二次人均捐款各多少元?28. 5月12日14时28分,四川汶川发生了8.0级大地震,震后两小时,武警某师参谋长王毅奉命率部队乘车火速向汶川县城开进.13日凌晨1时15分,车行至古尔沟,巨大的山体塌方将道路完全堵塞,部队无法继续前进,王毅毅然决定带领先遣分队徒步向汶川挺进,到达理县时为救援当地受灾群众而耽误了1小时,随后,先遣分队将步行速度,于13日23时15分赶到汶川县城.提高19(1)设先遣分队从古尔沟到理县的步行平均速度为每小时x千米,请根据题意填写下表:(2)根据题意及表中所得的信息列方程,并求出先遣分队徒步从理县到汶川的平均速度是每小时多少千米?29. 在“5⋅12”汶川大地震的“抗震救灾”中,某部队接受了抢修映秀到汶川的“213”国道的任务.需要整修的路段长为4800m,为了加快抢修进度,获得抢救伤员的时间,该部队实际工作效率比原计划提高了20%,结果提前2小时完成任务,求原计划每小时抢修的路线长度.30. 甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?参考答案与试题解析第1章《分式》中考题集(32):1.4 分式方程解答题1.【答案】设商场第一次购进x套运动服,由题意得:68000 2x −32000x=10,解这个方程,得x=200,经检验,x=200是所列方程的根,2x+x=2×200+200=600,所以商场两次共购进这种运动服600套;设每套运动服的售价为y元,由题意得:600y−32000−6800032000+68000≥20%,解这个不等式,得y≥200,所以每套运动服的售价至少是200元.【考点】分式方程的应用一元一次不等式的实际应用【解析】(1)求的是数量,总价明显,一定是根据单价来列等量关系,本题的关键描述语是:每套进价多了10元.等量关系为:第二批的每件进价-第一批的每件进价=10;(2)等量关系为:(总售价-总进价)÷总进价≥20%.【解答】设商场第一次购进x套运动服,由题意得:68000 2x −32000x=10,解这个方程,得x=200,经检验,x=200是所列方程的根,2x+x=2×200+200=600,所以商场两次共购进这种运动服600套;设每套运动服的售价为y元,由题意得:600y−32000−6800032000+68000≥20%,解这个不等式,得y≥200,所以每套运动服的售价至少是200元.2.【答案】甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(130+160)=1,解得y=20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【考点】分式方程的应用【解析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【解答】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,根据题意,得6x +16(1x+12x)=1解得x=30经检验,x=30是原方程的根,则2x=2×30=60答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(130+160)=1,解得y=20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.3.【答案】冰箱、电视机分别购买20台、10台.【考点】分式方程的应用【解析】(1)每台的补贴返还总额=原价每台的购买金额×13%,补贴返还总额=每台的返还额×购买数量;(2)由(1)分析的等量关系已经关键语“每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元”就可得出方程.【解答】(2)解:依题意得40000×13%2x −15000×13%x=65,解得x=10,经检验x=10是原分式方程的解,∴购买冰箱量为2x=20台.答:冰箱、电视机分别购买20台、10台.4.【答案】甲、乙工程队单独完成任务分别需要4天、6天.【考点】分式方程的应用【解析】求的是工作时间,工效已知,一定是根据工作总量为1,来列等量关系,本题的关键描述语是:甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.等量关系为:甲做2天的工作量+乙做3天的工作量=1.【解答】解:设甲工程队单独完成任务需x天,则乙工程队单独完成任务需(x+2)天,依题意得2x +3x+2=1化为整式方程得x2−3x−4=0(x+1)(x−4)=0解得x=−1或x=4检验:当x=4和x=−1时,x(x+2)≠0,∴x=4和x=−1都是原分式方程的解.但x=−1不符合实际意义,故x=−1舍去;∴乙单独完成任务需要x+2=6(天).5.【答案】每个中国结的原价为20元.【考点】分式方程的应用【解析】求的是原单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“用160元钱买到的中国结比打折前花同样多的钱买到的中国结多2个”;等量关系为:现在160元买的数量-原来160元买的数量=2.【解答】解:设每个中国结的原价为x元.根据题意得:1600.8x −160x=2.解得:x=20.经检验:x=20是原方程的根.6.【答案】原计划每天铺设10米管道.【考点】分式方程的应用【解析】本题是有关工作效率问题,主要围绕工作时间=工作总量工作效率来进行分析寻找等量关系.等量关系为:原计划天数-实际生产天数=5.由此可设原计划每天铺设管道x米,则实际每天铺设管道x(1+10%)米,得出方程:550x −550x(1+10%)=5,求解检验即可.【解答】解:设原计划每天铺设x米管道.则由题意可得:550x =550(1+10%)x+5.解得:x=10.经检验:x=10是原方程的根.7.【答案】试销时该品种苹果的进货价是每千克5元.试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.【考点】分式方程的应用【解析】(1)求单价,总价已知,应根据数量来列等量关系.关键描述语是:“苹果数量是试销时的2倍”;等量关系为:2×试销时的数量=本次数量.(2)根据盈利=总售价-总进价进行计算.【解答】设试销时这种苹果的进货价是每千克x元.依题意,得:11000x+0.5=5000x×2解之得:x=5经检验:x=5是原方程的解.∴x=5.答:试销时该品种苹果的进货价是每千克5元.试销时进苹果的数量为:50005=1000(千克).第二次进苹果的数量为:2×1000=2000(千克).盈利为:(3000−400)×7+400×7×0.7−5000−11000=4160(元).答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.8.【答案】解:(1)设乙队单独完成需x天,根据题意,得:160×20+(1x+160)×24=1,解这个方程得:x=90,经检验,x=90是原方程的解,答:乙队单独完成需90天. (2)设甲、乙合作完成需y天,则有(160+190)×y=1,解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元);②乙单独完成超过计划天数不符题意;③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【考点】由实际问题抽象为分式方程一元一次不等式的实际应用分式方程的应用一元一次方程的应用——工程进度问题【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.【解答】解:(1)设乙队单独完成需x天,根据题意,得:160×20+(1x+160)×24=1,解这个方程得:x=90,经检验,x=90是原方程的解,答:乙队单独完成需90天. (2)设甲、乙合作完成需y天,则有(160+190)×y=1,解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元);②乙单独完成超过计划天数不符题意;③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.9.【答案】两天共参加捐款的有450人,人均捐款24元.【考点】分式方程的应用【解析】可设第一天的人数为未知数.关键描述语是:两天人均捐款数相等.等量关系为:4800÷第一天的人数=6000÷第二天的人数.【解答】解法1:设第一天捐款x人,则第二天捐款(x+50)人,由题意列方程4800x =6000x+50解得x=200检验:当x=200时,x(x+50)≠0,∴x=200是原方程的解.两天捐款人数x+(x+50)=450,人均捐款4800x=24(元).10.【答案】甲车间每小时生产60个零件,乙车间每小时生产90个零件.【考点】分式方程的应用【解析】(1)乙车间比甲车间平均每小时多生产30个,甲每小时生产x个.∴乙车间平均每小时生产(x+30).所用时间=工作总量÷工作效率=900x+30;(2)关键描述语是:甲车间生产600个零件与乙车间生产900个零件所用时间相等,等量关系为:甲车间生产600个零件=乙车间生产900个零件所用时间.【解答】解:(1)x+30,900x+30;(2)根据题意,得600x =900x+30,解得x=60x+30=90经检验x=60是原方程的解,且都符合题意.答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.11.【答案】改进设备后平均每天耗煤1.5吨.(2)某工厂计划生产45套学生服装,生产了5天后,由于又接了一批新活,平均每天生产的服装件数变为原来的一半,结果多生产了10天.求又接了一批新活后平均每天生产多少套服装?(只要所编应用题的方程与原题的方程相同或相似均可得分).【考点】分式方程的应用【解析】关键描述语是:“多烧了10天”;等量关系为:原计划用的天数+10=改进设备后使用天数.【解答】解:(1)设改进设备后平均每天耗煤x吨,根据题意,得:45 2x +10=45−5×2xx+5.解得x=1.5.经检验,x=1.5符合题意且使分式方程有意义.答:改进设备后平均每天耗煤1.5吨.(2)某工厂计划生产45套学生服装,生产了5天后,由于又接了一批新活,平均每天生产的服装件数变为原来的一半,结果多生产了10天.求又接了一批新活后平均每天生产多少套服装?(只要所编应用题的方程与原题的方程相同或相似均可得分).12.【答案】实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤.【考点】分式方程的应用【解析】本题用到的关系式为:总金额=单价×数量,等量关系为:三通前购买的苹果数量+20000=今年购买的苹果的数量.【解答】解:设该公司今年到台湾采购苹果的成本价格为x元/公斤,则该公司在实现“三通”前到台湾采购苹果的成本价格为2x元/公斤,根据题意列方程得:100000x =1000002x+20000.解得:x=2.5.经检验:x=2.5是原方程的根.当x=2.5时,2x=5.13.【答案】引进新设备前平均每天修路60米.【考点】分式方程的应用【解析】求的是新工效,工作总量为3000,一定是根据工作时间来列等量关系.本题的关键描述语是:“一共用30天完成了任务”;等量关系为:600米所用时间+剩余米数所用时间=30.【解答】解:设引进新设备前平均每天修路x米.根据题意,得:600x +3000−6002x=30.解得:x=60.经检验:x=60是原方程的解,且符合题意.14.【答案】步行同学每分钟走0.1千米.AM,50,0【考点】分式方程的应用一次函数的应用(1)关键描述语:“骑自行车的同学比步行的同学少用40分钟”;等量关系为:步行的同学所用的时间=骑自行车的同学所用的时间+40.(2)函数图象的斜率为骑自行车和步行时的速率,骑自行车的速率快,故斜率大,故AM线段为骑车同学的函数图象;根据题中所的条件,可将线段AM的函数关系式表示出来,从而可将可将B点的坐标求出.【解答】解:(1)设步行同学每分钟走x千米,则骑自行车同学每分钟走3x千米.根据题意得:6x =63x+40.解得:x=0.1.经检验:x=0.1是原方程的解.答:步行同学每分钟走0.1千米.(2)①骑车同学的速度快,即斜率大,故为线段AM.②由(1)知,线段AM的斜率为:3x=310.设一次函数关系式为:y=310x+b将点A的坐标(30, 0)代入可得:b=−9.∴y=310x−9.当y=6时,x=50.故点B的坐标为(50, 0).15.【答案】抢修车的速度为20千米/时,吉普车的速度为30千米/时【考点】分式方程的应用【解析】速度分别是:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时;路程:都是15千米,时间表示为:15x ,151.5x.关键描述语为:“抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地”.等量关系为:抢修车的时间-吉普车的时间=1560.【解答】设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意得:15x −151.5x=1560.解得:x=20.经检验:x=20是原方程的解.∴当x=20时,1.5x=30.16.【答案】该厂原来每天生产1000顶帐篷.【考点】分式方程的应用求的是原计划的工效,工作总量为12000,一定是根据工作时间来列等量关系,本题的关键描述语是:提前4天完成任务.等量关系为:原计划时间-准备用的时间=4.【解答】解:设该厂原来每天生产x顶帐篷,根据题意得:12000x −120003x2=4解方程得:x=1000经检验:x=1000是原方程的根,且符合题意17.【答案】车队走西线所用的时间为20小时.【考点】分式方程的应用【解析】设车队走西线所用的时间为x小时,行驶速度为800x,南线的路程为80千米,时间为(x−18)小时,行驶速度为80x−18,利用两车队行驶速度相同,建立等式.【解答】解:设车队走西线所用的时间为x小时,依题意得:800 x =80x−18.解这个方程,得x=20.经检验,x=20是原方程的解.18.【答案】解:设规定日期为x天.由题意得3 x +3x+6+x−3x+6=1,3 x +xx+6=1.3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【考点】分式方程的应用【解析】。

中考常见分式题型专题

中考常见分式题型专题

《分式中考常见题型》专题班级 姓名只要站起来的次数比倒下去的次数多,那就是成功。

【类型一】(2013•鸡西第2题3分)在函数x x y 1+=中,自变量x 的取值范围是 . (2012•鸡西第12题3分)函数x x y 112+-=中,自变量x 的取值范围是 . (2011•鸡西第12题3分)函数y=32-+x x 中,自变量x 的取值范围是 . (2010•鸡西第2题3分)函数21-=x y 中,自变量x 的取值范围是 . (2009•鸡西第2题3分)函数21-=x y 中,自变量x 的取值范围是 . 【类型二】(2013•鸡西第16题3分)已知关于x 的分式方程112=++x a 的解是非正数,则a 的取值范围是( )A . a ≤﹣1B . a ≤﹣1且a≠﹣2C . a ≤1且a≠﹣2D . a ≤1(2012•鸡西第9题3分)若关于x 的分式方程xx x m 2132=--+无解,则m 的值为( ) A. —1.5 B. 1 C.—1.5或2 D.—0.5或.—1.5(2011•鸡西第7题3分)分式方程=--11x x )2)(1(+-x x m 有增根,则m 的值为( ) A 0和3 B 1 C 1和-2 D 3(2010•鸡西第8题3分)已知关于x 的分式方程2122a x x -=++的解为负数,那么字母a 的取值范围是 .(2009•鸡西第11题3分)若关于x 的分式方程131=---xx a x 有增根,a = .【由增根求参数的值】1、当k 为何值时,方程331-=--x k x x 会出现增根?2、已知分式方程2133=+++x ax x 有增根,求a 的值。

3、分式方程111+=-+-x x x m x x 有增根1=x ,则m 的值为多少?由增根求参数的值,其解题思路为:①将原方程化为整式方程(两边同乘以最简公分母); ②确定增根(题目已知或使分母为零的未知数的值);③将增根代入变形后的整式方程,求出参数的值。

中考数学复习专项训练第十六章分式(含答案)

中考数学复习专项训练第十六章分式(含答案)

第十六章分式考点课标要求知识与技能目标] 了解理解 掌握 灵活 应用整式 概念分式的运算/分式方程的解法及应用V、选择题1 •某人上山和下山走同一条路,且总路程为s 千米,若他上山的速度为a 千米/时,下山的速度为b 千米/时,则他上山和下山的平均速度为(a-b)2 2(a b)3.若已知分式1A.或一19|x-2|-1 x 2 - 6x 9的值为0,则x —2的值为B.1或 1C. — 19D.14.已知a _ b 亠0,则ab 的值为()2 3 4 cA. 1B.5C.2D.5425.甲、乙两人加工某种机器零件,已知甲每天比乙多做 a 个,甲做 m 个所用的天数与乙做a b2ab A. , B.2a b2.下列分式中,计算正确的是C.ab a bD.2s a b2(b+c)二 2 a 3(b c) a 3B.a b 2 a 2 b 2 一 a bD.乙两人每天所做零件A.卫」 m 「n 二、填空题an B.an 1.当 x= m 「nm 「namam C. m 「n m nan m nan时,分式竿亍的值为零.n个所用的天数相等的个数分别是((其中)n),设甲每天做x个零件,则甲、1 2 13. 若 x+ — =3,贝U x + —^ = ________ .x xx _ ——4. --------------- _________________________=—成立的条件是X (X 「1) xX 2 _15. 已知分式 ------ 的值为零,则 X=。

X 十1 三、解答题21•已知:3m -5n = 0,求- 2m 2 的值;m+n m —n m —nx —2x+1 x —1先化简,再求 X 2- x 的值,其中x=2004,但是,甲抄错 X -1 X +x抄成x =2040,但他的计算结果仍然是正确的,你说是怎么回事?3.甲、乙两班学生植树,原计划 6天完成任务,他们共同劳动了 4天后,乙班另有任务调走,甲班又用 6天才种完,求若甲、乙两班单独完成任务后各需多少天?2.如果a =2,则 b2 2a - ab bb 2 2. x = 2004答案:、选择题1. C 2 . D 3 . D 4 . B 5 . A答:甲单独用18天完成任务•乙单独用9天完成任务.5 3、填空题 1. 2 . 3 . 7 4 . X M 0 且 x 丰 1 5 . 1 2 5 2 三、解答题 1. 2m 2 m 一 n X 天完成任务.乙单独用25 25;2.原式计算得16 0,因此无论 X 为何值,结果均正确 3 •设甲单独用 y 天完成任务. ^11 1 - I -- = --- X y 6 1 1 —+ — i X y 丿化简得:X ' 6 10 1 XX y解得: 所以: 上=18y =9。

16分式历届中考题4

16分式历届中考题4

一、选择题(共15小题)1、如果关于x的方程无解,则m的值等于()A、﹣3B、﹣2C、﹣1D、32、(2009•山西)解分式方程,可知方程()A、解为x=2B、解为x=4C、解为x=3D、无解3、(2009•嘉兴)解方程的结果是()A、x=﹣2B、x=2C、x=4D、无解4、(2009•佛山)方程的解是()A、0B、1C、2D、35、(2005•佛山)方程的解是()A、1B、﹣1C、±1D、06、方程的解是()A、x=1B、x=0C、x1=1,x2=0D、x1=﹣1,x2=07、(2004•青岛)用换元法解方程x2+x+1=时,若设x2+x=y,则原方程可化为()A、y2+y+2=0B、y2﹣y﹣2=0C、y2﹣y+2=0D、y2+y﹣2=08、(2003•武汉)用换元法解方程时,设,则原方程化为关于y的方程是()A、y2+5y+6=0B、y2﹣5y+6=0C、y2+5y﹣6=0D、y2﹣5y﹣6=09、(2011•鸡西)分式方程=有增根,则m的值为()A、0和3B、1C、1和﹣2D、310、(2005•扬州)若方程=1有增根,则它的增根是()A、0B、1C、﹣1D、1和﹣111、(2005•宿迁)若关于x的方程有增根,则m的值是()A、3B、2C、1D、﹣112、(2011•沈阳)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得()A、B、C、D、13、(2011•衡阳)某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x米,则下面所列方程正确的是()A、B、C、D、14、(2010•益阳)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A、B、C、D、15、(2009•泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套在这个问题中,设计划每天加工x套,则根据题意可得方程为()A、B、C、D、二、填空题(共15小题)16、(2008•襄阳)当m=_________时,关于x的分式方程=﹣1无解.17、(2007•荆州)若方程无解,则m=_________.18、(2006•漳州)若方程无解,则m=_________.19、(2006•滨州)分式方程的解为x=_________.20、(2010•定西)分式方程的解x=_________.21、(2009•重庆)分式方程的解为x=_________.22、(2009•吉林)方程的解是x=_________.23、(2009•江津区)分式方程的解是x=_________.24、(2006•上海)用换元法解方程时,如果设,那么原方程化为整式方程是_________.25、(2004•上海)用换元法解方程:x2++x+=0时,如果设y=x+,那么原方程可化为_________.26、(2007•天水)关于x的方程=0有增根,则m=_________.27、(2005•烟台)已知方程有增根,则k=_________.28、(2001•重庆)若关于x的方程﹣1=0有增根,则a的值为_________.29、(2002•浙江)为迎接2008年北京奥运会,规划建造一条长800km的新路,由某工程队承包完成.在实际施工中,该工程队每月比原计划多筑路20km,结果提前2个月完成.问该工程队在实际施工中每月筑路多少km?若设在实际施工中每月筑路xkm,则可列出方程_________.30、(2004•新疆)2004年4月18日零时起,全国铁路第五次五提速,其中进出新疆列车提速幅度最大的是乌鲁木齐至重庆的1084次列车,全程缩短了9小时.已知乌鲁木齐至重庆的行程为3405千米,提速前的平均速度约为52千米/时,求提速后的平均速度,设提速后的平均速度为x千米/时,则可列出方程_________.答案与评分标准一、选择题(共15小题)1、如果关于x的方程无解,则m的值等于()A、﹣3B、﹣2C、﹣1D、3考点:分式方程的解。

中考总复习数学教材过关训练教材过关十六分式附答案收集资料

中考总复习数学教材过关训练教材过关十六分式附答案收集资料

八年级下册教材过关十六 分式 一、填空题1.分式26+-x x ,当x=_____________时,值为零;当x=_____________时,无意义. 答案:6 -2提示:分式的值为0,则分子为0,分母不是0,所以x-6=0,x=6;分母为0,则分式无意义,则x+2=0,得x=-2.2.填空: (1)a b a +=)(2b ab +; (2))(2xy x y x ---=-)(1.答案:ab x提示:根据分式的基本性质,分式的分母和分子都乘以同一个不为0的整式,分式的值不变,(1)从a+b 到ab+b 2,乘以b ,所以分母也乘以b ,为ab ;(2)从x-y 到1,除以x-y ,所以分母也除以x-y ,为x.3.把分式yx x +2中的x 、y 都扩大两倍,则分式的值_________________. 答案:不变提示:分式的基本性质,y x x +2中的x 、y 都扩大两倍,得到y x x 224+=)(222y x x +⨯=yx x +2. 4.若方程3-x x -2=3-x k 会产生增根,则k=_______________. 答案:3提示:增根就是使分母为0的解,所以增根为3,增根是去分母后整式方程的解,不是原分式方程的解,应代入去分母后的方程,x-2(x-3)=k ,得k=3.5.已知x=-2时,分式a xb x +-无意义,x=4时此分式值为0,则a+b=_______________. 答案:6提示:依据分式的意义,当x=-2时,分式ax b x +-无意义,即-2+a=0,得a=2;x=4时此分式值为0,即4-b=0,则b=4,所以a+b=6. 6.化简4422+--a a a =__________________. 答案:a -21 提示:先将分母分解因式,然后约分.4422+--a a a =2)2(2a a --=a-21.二、选择题7.下列等式正确的有 A.y x =22y x B.y x =yx xy + C.y x =a y a x ++(a ≠0) D.y x =ayy ax x ++(a ≠-1) 答案:D提示:依据分式的基本性质进行判断.y x =y a x a )1()1(++=ayy ax x ++(a ≠-1),所以选D. 8.下列分式中,不论x 取何值,都有意义的是 A.152--x x B.112+-x x C.x x 312+ D.12+x x 答案:B提示:不论x 取何值,都有意义,就是说不论x 取何值,分式的分母都不等于0,而x 2+1永远不等于0,选B.9.沿河的上游和下游各有一个港口A 、B,货船在静水中的速度为a 千米/时,水流的速度为b 千米/时,那么一艘货船从A 港口出发,在两港之间不停顿地往返一次所需的时间是 A.b a s +2小时 B.ba s -2小时 C.(a s +b s )小时 D.(b a s ++b a s -)小时 答案:D提示:依据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度,则顺水速度为a+b ,时间为b a s +,逆水速度为a-b ,时间为b a s -,所以往返时间为b a s ++ba s -. 10.全民健身活动中,组委会组织了长跑队和自行车队进行宣传,全程共10千米,自行车队的速度是长跑队速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车队晚到了2小时,如果设长跑队跑步的速度为x 千米/时,那么根据题意可列方程为 A.x 10+2=x 5.210+21 B.x 5.210-x10=2-0.5 C.x 10-x 5.210=2-0.5 D.x 10-x 5.210=2+0.5 答案:C提示:自行车队的速度是长跑队的速度的2.5倍,可得自行车队的速度为2.5x ,整个过程长跑队一共比自行车队多用了2-0.5小时,据此可列方程x 10-x5.210=2-0.5. 11.小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时沿原路返回,通常平均速度为n 千米/时,则小明上学和放学路上的平均速度为______________千米/时.A.2n m +B.n m mn +C.n m mn +2D.mnn m + 答案:C 提示:由平均速度=总路程/总时间,可设路程为s ,上坡时间为m s ,返回时间为n s ,总时间为m s +n s =mn n m s )(+,平均速度为2s ÷mn n m s )(+=nm mn +2. 三、解答题12.计算与化简:(1)(xy-x 2)÷xyy x -; (2)12-a a -a-1. (3)先化简,后求值:(b a a -2+a b b -2)÷ab b a +,其中a=25,b=1251. (1)答案:-x 2y.提示:根据分式的除法法则,把分式的分子和分母颠倒位置后与被除式相乘,-x(x-y)y x xy - =-x 2y.(2)答案:11-a . 提示:把-a-1看成一个整体,分母是1,然后再通分化成同分母分式相加减.12-a a -11+a = 1122-+-a a a =11-a . (3)答案:51. 提示:变成乘法后可利用乘法分配律,运用运算律可以使计算简便,也可以先算括号内的,再进行分式的除法.b a b a --22×ba ab +=ab. 13.解下列分式方程: (1)11+a +a-23=0; (2)22+-x x -4162-x =22-+x x . (1)答案:a=-2.5.提示:解分式方程的一般步骤是:去分母,化成整式方程,解整式方程;检验是否是增根;得到原方程的解.去分母乘以(a+1)(2-a),得到2-a+3(a+1)=0,解得a=-2.5,检验,将a=-2.5代入(a+1)(2-a)≠0,所以原方程的解是a=-2.5.(2)答案:x=-2.提示:先求各分母的最小公倍数,去分母乘以x 2-4,得(x-2)2-16=(x+2)2,所以x 2-4x+4-16=x 2+4x+4,解得x=-2,检验,将x=-2代入x 2-4=0,所以x=-2是增根,原方程无解.14.当A 、B 、C 取何值时,1-x A +1+x B +2-x C =)2)(1(932---x x x . 答案:A=3,B=-2,C=-1.提示:由恒等式的性质知,通分加减后,左右两边分母相同,则分子也相同,所以分子的各项系数也相同.1-x A +1+x B +2-x C =)2)(1()1)(1()2)(1()2)(1(2--+-+--+-+x x x x C x x B x x A =)2)(1()22()3)((2---+-+--++x x C B A B A C B A =)2)(1(932---x x x , 则A+B+C=0,-A-3B=3,-2A+2B-C=-9,解得A=3,B=-2,C=-1.15.设轮船在静水中的速度为v,该船在流水(水流速度为u)中从A 顺流到B,再从B 逆流返回到A 所用的时间为T;假设当河流为静水时,该船从A 到B 再返回A,所用时间为t,A 、B 两地之间的距离为s.(1)用代数式表示时间T.(2)用代数式表示时间t.(3)你能确定T 与t 之间的大小关系吗?说明理由.(1)答案:T=μ-v s +μ+v s . 提示:由航行时间=速度航行路程,顺水速度是v+μ,顺水时间为μ+v s ,逆水速度是v-μ,逆水时间为μ-v s ,总时间为T=μ-v s +μ+v s . (2)答案:t=vs 2. 提示:由航行时间=速度航行路程,路程为2s ,速度为v ,时间为t=v s 2. (3)答案:T >t.提示:T=μ-v s +μ+v s =22μμμ--++v s sv s sv =222μ-v sv ,t=v s 2=22vsv ,分子相同,只要比较分母即可,分母越小,分式的值越大,v 2-μ2<v 2,所以T >t.16.(1)甲、乙两人同时从A 地出发去B 地,甲的速度是乙的1.5倍.已知A 、B 两地相距27千米,甲到达乙地3小时后,乙才到达,求甲、乙两人的速度.(2)甲、乙两人同时从相距9千米的A 、B 两地同时出发,若相向而行,则1小时相遇,若同向而行,乙在甲前面,则甲走了18千米后追上乙,求甲、乙两人的速度.(1)答案:甲为4.5千米/时,乙为3千米/时.提示:根据甲比乙少用3小时为等量关系列出方程.设乙的速度为x 千米/时,列方程得x 27-x5.127=3,甲为4.5千米/时,乙为3千米/时. (2)答案:甲为6千米/时,乙为3千米/时. 提示:设甲的速度为x 千米/时,相向而行,1小时相遇,则(甲速+乙速)×1=9,所以乙速=9-x.又若同向而行,乙在甲前面,则甲走了18千米后追上乙,即甲走18千米所用时间=乙走9千米所用的时间相等,由此可列出方程,得x 18=x --9918,甲为6千米/时,乙为3千米/时.。

中考专题复习《分式方程》巩固练习(真题)含答案

中考专题复习《分式方程》巩固练习(真题)含答案

中考专题复习《分式方程》巩固练习(真题)含答案一、单选题1、下面是分式方程的是()A、B、C、D、2、(2016•海南)解分式方程,正确的结果是()A、x=0B、x=1C、x=2D、无解3、若(x+y)(1﹣x﹣y)+6=0,则x+y的值是()A、2B、3C、﹣2或3D、2或﹣34、(2016•十堰)用换元法解方程﹣=3时,设=y,则原方程可化为()A、y= ﹣3=0B、y﹣﹣3=0C、y﹣+3=0D、y﹣+3=05、关于x的分式方程的解为正数,则字母a的取值范围为()A、a≥1且a≠2B、a>1且a≠2C、a≥1D、a>16、(2016•贺州)若关于x的分式方程的解为非负数,则a的取值范围是()A、a≥1B、a>1C、a≥1且a≠4D、a>1且a≠47、已知a,b为实数,(a2+b2)2﹣(a2+b2)﹣6=0,则代数式a2+b2的值为()A、2B、3C、﹣2D、3或﹣28、(2016•重庆)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A、﹣3B、﹣2C、﹣D、9、(2016•青海)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A、﹣=4B、=4C、=4D、=410、(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A、1-B、2-C、1+或1-D、1+或﹣111、(2016•梅州)对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3= .则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=712、(2016•重庆)如果关于x的分式方程﹣3= 有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A、﹣3B、0C、3D、913、下列说法:①解分式方程一定会产生增根;②方程=0的根为2;③方程的最简公分母为2x(2x﹣4);④x+=1+是分式方程.其中正确的个数是()A、1个B、2个C、3个D、4个14、小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是.( -+x)=1-,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。

16分式历届中考题3

16分式历届中考题3

一、填空题(共17小题)1、计算:(π﹣3.14)0=_________.2、计算:20的结果是_________.3、(2005•三明)计算:=_________.4、计算:(﹣1)0+()﹣1=_________.5、计算:(﹣)0×3﹣2=_________.6、(2009•新疆)某商品的进价为x元,售价为120元,则该商品的利润率可表示为_________.7、(2008•宁夏)某市对一段全长1500米的道路进行改造.原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了_________天.8、(2006•南宁)为了迎接第三届中国东盟博览会,市政府计划用鲜花美化绿城南宁.如果1万平方米的空地可以摆放a盆花,那么200万盆鲜花可以美化_________万平方米的空地.9、(2006•大兴安岭)某班a名同学参加植树活动,其中男生b名(b<a),若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树_________棵.10、(2003•山西)有一大捆粗细均匀的电线,现要确定其长度的值.从中先取出1米长的电线,称出它的质量为a,再称其余电线的总质量为b,则这捆电线的总长度是_________米.11、一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要_________小时.12、梯形的面积为S,上底长为m,下底长为n,则梯形的高写成分式为_________.13、小聪的妈妈每个月给她m元零花钱,她计划每天用a元(用于吃早点,乘车)刚好用完,而实际她每天节约b 元钱,则她实际可以比原计划多用_________天才全部消费完.14、一项工程,甲独做m天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要_________天完成.15、某超市从我国西部某城市运进两种糖果,甲种a千克,每千克x元,乙种b千克,每千克y元,如果把这两种糖果混合后销售,保本价是_________元/千克.16、某工厂的锅炉房储存了c天用的煤m吨,要使储存的煤比预定多d用天,每天应节约煤_________吨.17、(2010•黑河)已知关于x的分式方程=1的解是非正数,则a的取值范围是_________.二、解答题(共2小题)18、(2009•抚顺)计算:﹣(π﹣2)0﹣|1﹣|.19、(2008•莆田)计算﹣22+|4﹣7|+(﹣π)0三、选择题(共11小题)20、(2009•云南)下列计算正确的是()A、(a﹣b)2=a2﹣b2B、(﹣2)3=8C、D、a6÷a3=a221、(2009•潍坊)下列运算正确的是()A、a2•a3=a6B、()﹣1=﹣2C、=±4D、|﹣6|=622、(2008•烟台)2﹣1的相反数是()A、B、﹣C、2D、﹣223、(2008•巴中)下列各式正确的是()A、﹣|﹣3|=3B、2﹣3=﹣6C、﹣(﹣3)=3D、(π﹣2)0=024、(2007•眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A、分钟B、分钟C、分钟D、分钟25、(2004•黑龙江)有一大捆粗细均匀的钢筋,现要确定其长度.先称出这捆钢筋的总质量为m千克,再从其中截取5米长的钢筋,称出它的质量为n千克,那么这捆钢筋的总长度为()A、米B、米C、米D、()米26、一件工作,甲独做a小时完成,乙独做b小时完成,则甲,乙两人合作完成需要()小时.A、B、C、D、27、某厂去年的产值是m万元,今年的产值是n万元(m<n),则今年的产值比去年的产值增加的百分比是()A、×100%B、×100%C、(+1)×100%D、×100%28、(2007•山西)关于x的方程:的解是负数,则a的取值范围是()A、a<1B、a<1且a≠0C、a≤1D、a≤1且a≠029、(2007•牡丹江)若关于x的分式方程的解为正数,则m的取值范围是()A、m>﹣1B、m≠1C、m>1D、m>﹣1且m≠130、如果关于x的方程无解,则m的值等于()A、﹣3B、﹣2C、﹣1D、3答案与评分标准一、填空题(共17小题)1、计算:(π﹣3.14)0=1.考点:零指数幂。

初中中考数学专题03 分式与二次根式(原卷版)

初中中考数学专题03 分式与二次根式(原卷版)

2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题03 分式与二次根式一、选择题1.(2024甘肃威武)计算:4222a b a b a b -=--( ) A. 2B. 2a b -C. 22a b -D. 2a b a b -- 2. (2024天津市)计算3311x x x ---的结果等于( ) A. 3 B. x C. 1x x - D. 231x - 3. (2024河北省)已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( ) A. x B. y C. x y + D. x y -4. (2024黑龙江绥化)m 的取值范围是( ) A. 23m ≤ B. 32m ≥- C. 32m ≥ D. 23m ≤-5. (2024四川乐山)已知12x <<2x -的结果为( ) A. 1- B. 1 C. 23x - D. 32x -6. (2024湖南省) )A. B. C. 14 D.7. (2024江苏盐城),设其面积为2cm S ,则S 在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和58. (2024重庆市B )的值应在( ) A. 8和9之间 B. 9和10之间C. 10和11之间D. 11和12之间9. (2024重庆市A )已知m =m 的范围是( ) A. 23m <<B. 34m <<C. 45m <<D. 56m << 二、填空题1. (2024吉林省)当分式11x +的值为正数时,写出一个满足条件的x 的值为______.2. (2024北京市)x 的取值范围是_________.3. (2024黑龙江齐齐哈尔)在函数12y x =++中,自变量x 的取值范围是______. 4. (2024湖北省)计算:111m m m +=++______.5. (2024四川德阳)__________.6. (2024贵州省)________.7. (2024山东威海)=________.8. (2024天津市)计算)11的结果为___.9. (2024上海市)1=,则x =___________.10. (2024山东威海)计算:2422x x x+=--________. 11. (2024黑龙江绥化)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭_________. 三、解答题1. (2024江苏连云港)下面是某同学计算21211m m ---的解题过程: 解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-① (1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.2. (2024甘肃威武).3. (2024北京市)已知10a b --=,求代数式()223232a b ba ab b -+-+值. 4. (2024甘肃临夏)化简:21111a a a a a +⎛⎫++÷ ⎪--⎝⎭. 5. (2024江苏苏州) 先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-. 6. (2024四川达州)先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.7. (2024湖南省)先化简,再求值:22432x x x x x -⋅++,其中3x =. 8. (2024深圳)先化简,再求值: 2221111a a a a -+⎛⎫-÷ ⎪++⎝⎭,其中 21a =+ 9. (2024山东烟台)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.。

初中八年级下册数学第十六章《分式》附答案

初中八年级下册数学第十六章《分式》附答案

新课标人教版初中八年级下册数学第十六章《分式》精品试题(附答案)班级:___ 姓名:______一、选择题:1、在式子:23123510,,,,,94678xy a b c x y x a x y π+++中,分式的个数是( ) A 、2 B 、3 C 、4 D 、52、如果把分式10x x y+中的X 、Y 都扩大10倍,则分式的值是( ) A 、扩大100倍 B 、扩大10倍 C 、不变 D 、缩小到原来的1103、下列等式成立的是( )A 、2(3)9--=-B 、21(3)9--=C 、12224()a a =D 、-70.0000000618=6.1810⨯ 4、某厂去年产值是m 万元,今年产值是n 万元(m <n ),则今年的产值比去年的产值增加的百分比是( )A 、100%m n n -⨯B 、 100%n m m -⨯C 、(1)100%n m +⨯D 、100%10n m m -⨯5、如图所示的电路总电阻是6Ω,若R 1=3R 2,则R 1、R 2的值分别是( )A 、R1=45Ω,R2=15ΩB 、R1=24Ω,R2=8ΩC 、R1=92Ω,R2=32ΩD 、R1=23Ω,R2=29Ω 二、填空题:6、x ,y 满足关系_____时,分式x y x y-+无意义。

7、222222m n mn m n mn += 8、化简2211366a a a÷--的结果是_____ 9、已知115a b -=,则2322a ab b a ab b+---的值是______ 10、我国是一个水资源贫乏的国家,第每一个公民都应自觉养成节约用水的意识和习惯。

为提高水资源的利用效率,某住宅小区安装了循环用水装置,经测算,原来a 天需用水m 吨,现在这些水可多用5天,现在每天比原来少用水__吨。

三、算一算(每小题8分,共24分):11、22142a a a +-- 12、2112x y xy x y x y x y x y ⎛⎫⎛⎫-÷+ ⎪ ⎪---⎝⎭⎝⎭13、先化简,再求值:22243411211x x x x x x x ---÷+-++-,其中231x =+四、做一做(每小题8分,共16分):14、解方程:313221x x+=--15、解方程:11222xx x-=---五、学以致用(每小题10分,共20分):16、比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。

全国各地2016年中考数学试题分类汇编 分式与分式方程 含答案

全国各地2016年中考数学试题分类汇编 分式与分式方程 含答案

分式与分式方程一、选择题1.(2016·湖北十堰)用换元法解方程﹣=3时,设=y,则原方程可化为()A.y=﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=0【考点】换元法解分式方程.【分析】直接利用已知将原式用y替换得出答案.【解答】解:∵设=y,∴﹣=3,可转化为:y﹣=3,即y﹣﹣3=0.故选:B.【点评】此题主要考查了换元法解分式方程,正确得出y与x值间的关系是解题关键.2. (2016·四川成都·3分)分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选B.3. (2016·四川凉山州·4分)关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A4. (2016,湖北宜昌,8,3分)分式方程=1的解为( )A .x=﹣1B .x=C .x=1D .x=2【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x ﹣1=x ﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解,则分式方程的解为x=﹣1.故选:A .【点评】此题考查了分式方程的解,解分式方程利用了转化的思想,还有注意不要忘了检验.5.(2016·广东广州)下列计算正确的是( )A 、x 2y 2=x y (y ¹0)B 、xy 2¸12y =2xy (y ¹0)C 、x ³0,y ³o )D 、(xy 3)2=x 2y 6[难易] 较易[考点] 代数式的运算[解析] A 、显然错误; B 、xy 2¸12y=xy 2·2y =2xy 3;C 、D 、根据幂的乘方运算法则就可以得出答案. [参考答案] D6.(2016·广东梅州)对于实数a 、b ,定义一种新运算“⊗”为:21b a b a -=⊗,这里等式右边是实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是 A . 4=x B .5=x C .6=x D .7=x答案:B考点:考查学习新知识,应用新知识解决问题的能力。

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套专训1 分式求值的方法名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:直接代入法求值、活用公式求值、整体代入法求值、巧变形法求值、设参数求值等.直接代入法求值1.(中考·鄂州改编)先化简,再求值:⎝ ⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.活用公式求值2.已知x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x的值.设参数求值6.已知x 2=y 3=z 4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.专训2 全章热门考点整合应用名师点金:本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现.分式方程是中考的必考内容之一,一般着重考查解分式方程,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.其主要考点可概括为:三个概念、一个性质、一种运算、一个解法、一个应用、四种思想.三个概念概念1 分式1.下列说法中,正确的是( )A .分式的分子中一定含有字母B .分母中含有字母的式子是分式C .分数一定是分式D .当A =0,分式AB的值为0(A ,B 为整式)2.若式子1x 2-2x +m不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<1 概念2 分式方程3.关于x 的方程:①x 2-x -13=6;②x 900=500x -30;③x 3+1=32x ;④a 2x =1x ;⑤320x -400x =4; ⑥x a =35-x.分式方程有____________(填序号). 4.(中考·遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划每亩平均产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A .36x -36+91.5x =20 B .36x -361.5x=20C .36+91.5x -36x =20D .36x +36+91.5x =20 概念3 增根5.若关于x 的方程x -4x -5-3=a x -5有增根,则增根为( )A .x =6B .x =5C .x =4D .x =36.已知方程21+x -k 1-x =6x 2-1有增根x =1,求k 的值.7.若关于x 的分式方程2m +x x -3-1=2x无解,求m 的值.一个性质——分式的基本性质8.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y .一种运算——分式的运算9.先化简,再求值:⎝ ⎛⎭⎪⎫2ab 2a +b 3÷⎝ ⎛⎭⎪⎫ab 3a 2-b 22·⎣⎢⎡⎦⎥⎤12(a -b )2,其中a =-12,b =23.一个解法——分式方程的解法10.(中考·嘉兴)小明解方程1x -x -2x =1的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x ,得1-(x -2)=1.……① 去括号,得1-x -2=1.……② 合并同类项,得-x -1=1.……③ 移项,得-x =2.……④ 解得x =-2.……⑤∴原方程的解为x =-2.……⑥一个应用——分式方程的应用11.某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9元/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.(1)该种干果第一次的进价是多少?(2)超市销售这种干果共盈利多少元?四种思想思想1数形结合思想12.如图,点A,B在数轴上,它们所表示的数分别是-4,2x+23x-5,且点A,B到原点的距离相等,求x的值.(第12题) 思想2整体思想13.已知实数a满足a2+4a-8=0,求1a+1-a+3a2-1·a2-2a+1a2+6a+9的值.思想3 消元思想14.已知2x -3y +z =0,3x -2y -6z =0,且z≠0,求x 2+y 2+z 22x 2+y 2-z 2的值.思想4 类比思想15.化简:⎝ ⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b .答案专训11.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,原式=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x+1x=5.∴⎝ ⎛⎭⎪⎫x +1x 2=25.∴x 2+1x 2=23.∴x 4+1x 4=⎝⎛⎭⎪⎫x 2+1x 22-2=232-2=527.点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以原式=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.5.解:∵4x 2-4x +1=0, ∴(2x-1)2=0.∴2x=1. ∴原式=1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k)2-(3k)2+2(4k)2 2k·3k+3k·4k+2k·4k=27k226k2=2726.专训21.B2.B点拨:∵x2-2x+m=x2-2x+1+m-1=(x-1)2+m-1,∴当m-1>0,即m>1时,式子1x2-2x+m总有意义.3.②④⑤4.A 5.B6.解:方程两边同乘x2-1,得2(x-1)+k(x+1)=6.整理得(2+k)x+k-8=0.∵原分式方程有增根x=1,∴2+k+k-8=0.解得k=3.7.解:方程两边都乘x(x-3),得(2m+x)x-x(x-3)=2(x-3),即(2m+1)x=-6.①(1)当2m+1=0时,此方程无解,∴原分式方程也无解.此时m=-0.5;(2)当2m+1≠0时,要使关于x的分式方程2m+xx-3-1=2x无解,则x=0或x-3=0,即x=0或x=3.把x=0代入①,m的值不存在;把x=3代入①,得3(2m+1)=-6,解得m=-1.5.∴m的值是-0.5或-1.5.8.解:(1)原式=12x-30y15x+40y.(2)原式=5x +15y25x -y.9.解:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2 =8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2 =2aa +b. 当a =-12,b =23时,原式=2×⎝ ⎛⎭⎪⎫-12-12+23=-6.10.解:步骤①去分母时,没有在等号右边乘x ; 步骤②括号前面是“-”号,去括号时,没有变号; 步骤⑥前没有检验. 正确的解答过程如下:解:方程两边都乘x ,得1-(x -2)=x , 去括号,得1-x +2=x ,移项、合并同类项,得-2x =-3, 解得x =32.经检验x =32是原分式方程的解.11.解:(1)设该种干果第一次的进价是x 元/kg ,则第二次的进价是(1+20%)x 元/kg. 由题意,得9 000(1+20%)x =2×3 000x +300.解得x =5.经检验,x =5是原分式方程的解,且符合题意. 答:该种干果第一次的进价是5元/kg.(2)[3 0005+9 0005×(1+20%)-600]×9+600×9×80%-(3 000+9 000)=5 820(元).答:超市销售这种干果共盈利5 820元.12.解:由题意得2x +23x -5=4.去分母,得2x +2=4(3x -5).解得x =2.2.经检验,x =2.2是原方程的根.所以x 的值是2.2.点拨:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.13.解:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a 2+4a +3.由a 2+4a -8=0得a 2+4a =8,故原式=411.点拨:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子.14.解:由2x -3y +z =0,3x -2y -6z =0,z≠0,得到⎩⎨⎧2x -3y =-z ,3x -2y =6z.解得⎩⎨⎧x =4z ,y =3z.所以原式=(4z )2+(3z )2+z22(4z )2+(3z )2-z 2=16z 2+9z 2+z 232z 2+9z 2-z 2=1320.点拨:本题先用含z 的式子分别表示出x 与y ,然后代入所求式子消去x ,y 这两个未知数,从而简化求值过程,体现了消元思想.15.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2aa +b.点拨:本题是类比思想的典范,分式的性质、运算顺序、运算律都可以类比分数的相关知识.专训2 分式的意义及性质的四种题型名师点金:1.从以下几个方面透彻理解分式的意义:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零;(4)分式值为正数⇔分子、分母同号;(5)分式值为负数⇔分子、分母异号.2.分式的基本性质是约分、通分的依据,而约分、通分为分式的化简求值奠定了基础.)分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( ) A .1个 B .2个 C .3个 D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个.分式有无意义的条件3.无论a 取何值,下列分式总有意义的是( )A .a +1a 2B .a -1a 2+1C .1a 2-1D .1a +1 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m总有意义,试求m 的取值范围.分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( ) A .x <-2 B .x <1C .x >-2且x≠1D .x >17.若分式3x -42-x的值为负数,则x 的取值范围是________. 8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.分式的基本性质及其应用9.下列各式正确的是( )A.ab=a2b2B.ab=aba+bC.ab=a+cb+cD.ab=abb210.要使式子1x-3=x+2x2-x-6从左到右变形成立,x应满足的条件是( )A.x>-2 B.x=-2 C.x<-2 D.x≠-211.已知x4=y6=z7≠0,求x+2y+3z6x-5y+4z的值.12.已知x+y+z=0,xyz≠0,求x|y+z|+y|z+x|+z|x+y|的值.专训2 分式运算的八种技巧名师点金分式的加减运算中起关键作用的就是通分.但对某些较复杂或具有特定结构的题目,使用一般方法有时计算量太大,容易出错,有时甚至算不出来,若能结合题目结构特征,灵活运用相关性质、方法、解题技巧,选择恰当的运算方法与技能,常常能达到化繁为简、事半功倍的效果.约分计算法1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.整体通分法2.计算:a -2+4a +2.顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m 3m -2n -1.裂项相消法⎝ ⎛⎭⎪⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abc ab +bc +ac的值.倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.答案专训11.C 点拨:4x -25,2m ,x 2π+1不是分式. 2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式.3.B 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1.7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1. 9.D 10.D11.解:设x 4=y 6=z 7=k(k≠0),则x =4k ,y =6k ,z =7k. 所以x +2y +3z 6x -5y +4z =4k +2×6k+3×7k 6×4k-5×6k+4×7k =37k 22k =3722. 12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z |-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z |-z|=1-1-1=-1. 综上所述,所求式子的值为1或-1.专训21.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程.2.解:原式=a -21+4a +2=a 2-4a +2+4a +2=a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减.3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1= x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x (x +1)(x -1)=4n -6m (3m -2n +1)(3m -2n -1). 5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n(n+1)=1 n -1n+1进行裂项,然后相加减,这样可以抵消一些项.6.解:1a+1b=16,1b+1c=19,1a+1c=115,上面各式两边分别相加,得⎝⎛⎭⎪⎫1a+1b+1c×2=16+19+115,所以1a+1b+1c=31180.易知abc≠0,所以abcab+bc+ac=11c+1a+1b=18031.7.解:由xx2-3x+1=-1,知x≠0,所以x2-3x+1x=-1.所以x-3+1x=-1.即x+1x=2.所以x4-9x2+1x2=x2-9+1x2=⎝⎛⎭⎪⎫x+1x2-11=22-11=-7.所以x2x4-9x2+1=-17.8.解:以x,y为主元,将已知的两个等式化为⎩⎨⎧4x-3y=6z,x+2y=7z.解得x=3z,y=2z.因为xyz≠0,所以z≠0.所以原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.点拨:此题无法直接求出x,y,z的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.专训3 巧用分式方程的解求字母的值名师点金:巧用分式方程的解求字母的值主要体现在以下几方面:(1)利用方程解的定义求字母的值,解决这类问题的方法是将其解代入分式方程,即可求出待定字母的值;(2)利用分式方程有解、有增根、无解求字母的取值范围或值时,一般都是列出关于待定字母的不等式或方程,通过解不等式或方程得到字母的取值范围或值.利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=m x -3+2有解,求m 的取值范围.利用分式方程有增根求字母的值3.若分式方程x x -1-m 1-x=2有增根,则m =________. 4.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.利用分式方程无解求字母的值5.(中考·东营)若分式方程x -a x +1=a 无解,则a =________. 6.已知关于x 的方程x -4x -3-m -4=m 3-x无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1. (1)若方程的增根为x =2,求a 的值;(2)若方程有增根,求a 的值;(3)若方程无解,求a 的值.答案专训1.解:解分式方程32x =1x -1,得x =3. 经检验,x =3是该方程的解.将x =3代入2x +4=m x, 得27=m 3.解得m =67. ∴m 2-2m =⎝ ⎛⎭⎪⎫672-2×67=-4849. 2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解,∴x=4-m 不能为增根.∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解.3.-14.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3.当x =3时,m +2×(3-3)=3+3,解得m =6;当x=-3时,m+2×(-3-3)=-3+3,解得m=12.综上所述,原方程的增根是x=3或x=-3.当x=3时,m=6;当x=-3时,m=12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m的值.5.1或-16.解:原方程可化为(m+3)x=4m+8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m+3=0且4m+8≠0,此时m=-3;(2)若整式方程的根是原方程的增根,则4m+8m+3=3,解得m=1.经检验,m=1是方程4m+8m+3=3的解.综上所述,m的值为-3或1.7.解:(1)原方程去分母并整理,得(3-a)x=10.因为原方程的增根为x=2,所以(3-a)×2=10.解得a=-2.(2)因为原分式方程有增根,所以x(x-2)=0.解得x=0或x=2.因为x=0不可能是整式方程(3-a)x=10的解,所以原分式方程的增根为x=2.所以(3-a)×2=10.解得a=-2.(3)①当3-a=0,即a=3时,整式方程(3-a)x=10无解,则原分式方程也无解;②当3-a≠0时,要使原方程无解,则由(2)知,此时a=-2.综上所述,a的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.。

2016-2023北京中考真题数学汇编:分式的运算

2016-2023北京中考真题数学汇编:分式的运算

详解:原式 a2 b2 2ab a a b2 a a b ,
2a
a b 2a a b 2
∵ab2 3,
∴原式 3 .
故选 A.
点睛:考查分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.
3.C
【详解】原式= a2 4 a2 a(a 2) a2 2a a a2
2016-2023 北京中考真题数学汇编
分式的运算
一、单选题
1.(2019
北京中考真题)如果
m
n
1,那么代数式
2m n m2 mn
1 m
m2 n2
的值为(

A.-3
B.-1
C.1
D.3
2.(2018 北京中考真题)如果 a b 2
3
,那么代数式
(a2 b2 2a
b)
a
a
b
的值为
A. 3
B. 2 3
C. 3 3
D. 4 3
3.(2017
北京中考真题)(2017
北京市,第
7
题,3
分)如果
a2
2a
1
0
,那么代数式
a
4 a
·aa2 2
的值
是( )
A.﹣3
B.﹣1
C.1
D.3
4.(2016 北京中考真题)如果 a+b=2,那么代数 (a b2 ) a 的值是( ) a a b
第 3页/共 3页
A.2
B.﹣2
C.
1 2
D. 1 2
二、问答题
5.(2023
北京中考真题)已知
x
2
y
1
0
,求代数式

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。

初中数学第16章《分式》综合水平测试(2)及答案

初中数学第16章《分式》综合水平测试(2)及答案

第16章《分式》综合水平测试二一、选择题:(每小题2分,共20分) 1.下列判断中,正确的是( ) A .分式的分子中一定含有字母 B .当B =0时,分式无意义C .当A =0时,分式的值为0(A 、B 为整式) D .分数一定是分式 2.下列各式正确的是( )A .B .C .D . 3.下列各分式中,最简分式是( )A .B .C .D . 4.化简的结果是( ) A.B. C. D. 5.若把分式中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍6.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .B .C .D . 7.已知,则的值是( )A .B.7C.1D. 8.汛期将至,我军机械化工兵连的官兵为驻地群众办实事,计划加固驻地附近20千米的河堤。

根据气象部门预测,今年的汛期有可能提前,因此官兵们发扬我军不怕苦,不怕累的优良传统,找出晚归,使实际施工速度提高到计划的1.5倍,结果比计划提前10天完成,问该连实际每天加固河堤多少千米?列方程解此应用题时,若计划每天加固河堤x 千米,BABA11++=++b a x b x a 22xy x y =()0,≠=a ma na m n a m a n m n --=()()y x y x +-8534y x x y +-222222xy y x y x ++()222y x y x +-2293mmm --3+m m 3+-m m 3-m m mm-3xyyx 2+9448448=-++x x 9448448=-++x x 9448=+x 9496496=-++x x 230.5x y z==32x y z x y z +--+1713则实际每天加固1.5x 千米,根据题意可列方程为 __ . 二、填空题:(每小题3分,共24分)11.分式当x _________时分式的值为零,当x ________时,分式有意义.12.利用分式的基本性质填空:(1) (2) 13.分式方程去分母时,两边都乘以 . 14.要使的值相等,则=__________. 15.计算:__________. 16. 若关于x 的分式方程无解,则m 的值为__________. 17.若分式的值为负数,则x 的取值范围是__________.18. 已知,则的值为______. 三、解答题:(共56分) 19.计算:(1) (2)3xy 220. 计算:392--x x x x 2121-+() 3(0)510a a xy axy =≠,() 1422=-+a a 1111112-=+--x x x 2415--x x 与x =+-+3932a a a 3232-=--x m x x 231-+x x 2242141x y y x y y +-=-+-24y y x ++11123x x x ++÷xy26()3322232n mn m --⋅22. 先化简,后求值:,其中23. 解下列分式方程. (1) (2)25.已知为整数,且为整数,求所有符合条件的x 的值.222222()()12a a a a a b a ab b a b a b -÷-+--++-2,33a b ==-xx 3121=-1412112-=-++x x x x 918232322-++-++x x x x26.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用元,(为正整数,且>100)如果多买60支,则可按批发价付款,同样需用元.设初三年级共有名学生,则①的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含、的代数式表示).27.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?四、拓广探索(本大题共12分)请阅读某同学解下面分式方程的具体过程.解方程解:, ① , ②, ③∴ ④∴ 把代入原方程检验知是原方程的解.请你回答:(1)得到①式的做法是 ; 得到②式的具体做法是 ;得到③式的具体做法是 ; 得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: . 错误的原因是 .(3)给出正确答案(不要求重新解答,只需把你认为应改正的加上即可).()12-m m 12-m ()12-m x x x m 1423.4132x x x x +=+----13244231x x x x -=-----222102106843x x x x x x -+-+=-+-+22116843x x x x =-+-+22684 3.x x x x -+=-+5.2x =52x =52x =参考答案一、1.=-3、≠ 2.、 3. 4.6 5.6. 7.-1<< 8.2(提示:设,原方程变形为,方程两边同时乘以,得,化简得=2,即=2)二、1.B 2.C 3.C 4.B 5.C 6.A 7.B 8.A三、1.解:(1)原式== (2)原式==; (3)原式==2.解:原式= ==== 当时,原式=== 3.解:(1)方程两边同时乘以,得,解得=-1,把=-1代入,≠0,知原方程的解,所以原方程的解是=-1.(2)方程两边同乘以最简公分母,得,解这个整式方程得,,检验:把代入最简公分母,得=0,所以不是原方程的解,应舍去,所以原方程无解1226a 2a -(1)(1)x x +-3a -x 2324y y m +=211x m x m -=--(1)(1)x m --(1)(1)(2)x m x m -=--m x +24y y x ++421444x x x ++74x2236xxyy212x 243343m n m n --1112m n --222()()[]1()()()()()a a a a b a a b a b a b a b a b a b --÷-+--+-+-222()()[]1()()()a a b a a a b a a b a b a b ----÷+-+-1a b a b++-a b a b a b a b +-+--2a a b-2,33a b ==-2232(3)3⨯--431134113(2)x x -32x x =-x x 3(2)x x -3(2)x x -x (1)(1)x x +-4)1(2)1(=++-x x 1=x 1=x (1)(1)x x +-(1)(1)x x +-1=x4.解:原式====,因为是整数,所以是整数,所以的值可能是±1或±2,分别解得=4,=2,=5,=1,所以符合条件的可以是1、2、4、5.5.①241≤≤300;②;③6.解:设原计划每小时加工个零件,根据题意得:,解得=150,经检验,=150是原方程的根.答:设原计划每小时加工150个零件.四、解:略,答案不惟一222218339x x x x +-++--22(3)2(3)(218)9x x x x --+++-2269x x +-2(3)(3)(3)x x x ++-23x -918232322-++-++x x x x 23x -3x -x x x x x x x m 12-6012+-x m x 1500150052x x-=x x。

2016初中中考数学真题难题 汇编 分式

2016初中中考数学真题难题 汇编 分式

第三章 分式第一节 分式运算1.(2016黄冈)计算(a —a ab b 22-)÷a b a -的结果是______________________. 【考点】分式的混合运算。

【分析】将原式中的括号内的两项通分,分子可化为完全平方式,再将后式的分子分母掉换位置相乘,再约分即可.【解答】解:(a —a ab b 22-)÷a b a -=aab b a +--222÷a b a - =a b a )(2-·b a a -=a-b.故答案为:a —b 。

2。

(2016咸宁)a ,b 互为倒数,代数式b a ab b a +++222÷(a 1+b 1)的值为_____________。

【考点】倒数的性质,代数式求值,分式的化简.【分析】a 、b 互为倒数,则ab=1,或。

先将前式的分子化为完全平方式,然后将括号内的式子通分,再将分子分母颠倒位置转化为乘法运算,约分后根据倒数的性质即可得出答案。

【解答】解:b a ab b a +++222÷(a 1+b 1)=b a b a ++)(2÷ab b a+=(a+b )·b a qb+=ab 。

又∵a ,b 互为倒数,∴ab=1.故答案为:1。

【点评】本题考查了倒数的性质,代数式求值,分式的化简.要熟知倒数的性质:若a、b 互为倒数,则ab=1,或,反之也成立.3.(2016泰州)化简(﹣)÷.【考点】分式的混合运算.【分析】先将括号内的分式通分,进行减法运算,再将除法转化为乘法,然后化简即可.【解答】解:(﹣)÷=(﹣)•=•=.4.(2016德州)化简﹣等于()A.B.C.﹣D.﹣【考点】分式的加减法.【专题】计算题;分式.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.第二节分式的化简求值及证明1.(2016十堰)化简:.【考点】分式的加减法.【分析】首先把第一个分式的分子、分母分解因式后约分,再通分,然后根据分式的加减法法则分母不变,分子相加即可.【解答】解:=++2=++2=++==【点评】本题考查了分式的加减法法则、分式的通分、约分以及因式分解;熟练掌握分式的通分是解决问题的关键.2.(2016随州)先化简,再求值:(﹣x+1)÷,其中x=﹣2.【考点】分式的化简求值.【分析】首先将括号里面的通分相减,然后将除法转化为乘法,化简后代入x的值即可求解.【解答】解:原式=[﹣]•=•=,当x=﹣2时,原式===2.3。

八年级数学下册第十六章《分式》单元 应用题大全 新课标人教版 (13)

八年级数学下册第十六章《分式》单元  应用题大全 新课标人教版 (13)

八年级数学下册第十六章《分式》单元应用题大全新课标人教版1. 汶川大地震,震后两小时,武警某师参谋长王毅奉命率部队乘车火速向汶川县城开进.13日凌晨1时15分,车行至古尔沟,巨大的山体塌方将道路完全堵塞,部队无法继续前进,王毅毅然决定带领先遣分队徒步向汶川挺进,到达理县时为救援当地受灾群1,于13日众而耽搁了1小时,随后,先遣分队将步行速度提高9 23时15分赶到汶川县城.(1)设先遣分队从古尔沟到理县的步行平均速度为每小时x千米,请根据题意填写下表:(2)根据题意及表中所得的信息列出方程,并求出先遣分队徒步从理县到汶川.....的平均速度是每小时多少千米?2. 已知A、B两地相距50公里,甲骑自行车由A往B出发,1小时30分钟后,乙骑摩托车也由A往B. 已知乙速度是甲速度的2.5倍,且乙比甲先到1小时,求每人的速度?3. 小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本的价格各是多少?4. 两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成. 乙队单独完成这项工程要多少天?5. 整理一批图书,如果由一个人单独做要花60小时。

现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作。

假设每个人的工作效率相同,那么先安排整理的人员有多少人?甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地.求甲、乙的速度.6. 小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.7. 某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?【总费用=施工费+工程师食宿费】8. 首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(共17小题)1、计算:(π﹣3.14)0=_________.2、计算:20的结果是_________.3、(2005•三明)计算:=_________.4、计算:(﹣1)0+()﹣1=_________.5、计算:(﹣)0×3﹣2=_________.6、(2009•新疆)某商品的进价为x元,售价为120元,则该商品的利润率可表示为_________.7、(2008•宁夏)某市对一段全长1500米的道路进行改造.原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了_________天.8、(2006•南宁)为了迎接第三届中国东盟博览会,市政府计划用鲜花美化绿城南宁.如果1万平方米的空地可以摆放a盆花,那么200万盆鲜花可以美化_________万平方米的空地.9、(2006•大兴安岭)某班a名同学参加植树活动,其中男生b名(b<a),若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树_________棵.10、(2003•山西)有一大捆粗细均匀的电线,现要确定其长度的值.从中先取出1米长的电线,称出它的质量为a,再称其余电线的总质量为b,则这捆电线的总长度是_________米.11、一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要_________小时.12、梯形的面积为S,上底长为m,下底长为n,则梯形的高写成分式为_________.13、小聪的妈妈每个月给她m元零花钱,她计划每天用a元(用于吃早点,乘车)刚好用完,而实际她每天节约b 元钱,则她实际可以比原计划多用_________天才全部消费完.14、一项工程,甲独做m天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要_________天完成.15、某超市从我国西部某城市运进两种糖果,甲种a千克,每千克x元,乙种b千克,每千克y元,如果把这两种糖果混合后销售,保本价是_________元/千克.16、某工厂的锅炉房储存了c天用的煤m吨,要使储存的煤比预定多d用天,每天应节约煤_________吨.17、(2010•黑河)已知关于x的分式方程=1的解是非正数,则a的取值范围是_________.二、解答题(共2小题)18、(2009•抚顺)计算:﹣(π﹣2)0﹣|1﹣|.19、(2008•莆田)计算﹣22+|4﹣7|+(﹣π)0三、选择题(共11小题)20、(2009•云南)下列计算正确的是()A、(a﹣b)2=a2﹣b2B、(﹣2)3=8C、D、a6÷a3=a221、(2009•潍坊)下列运算正确的是()A、a2•a3=a6B、()﹣1=﹣2C、=±4D、|﹣6|=622、(2008•烟台)2﹣1的相反数是()A、B、﹣C、2D、﹣223、(2008•巴中)下列各式正确的是()A、﹣|﹣3|=3B、2﹣3=﹣6C、﹣(﹣3)=3D、(π﹣2)0=024、(2007•眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A、分钟B、分钟C、分钟D、分钟25、(2004•黑龙江)有一大捆粗细均匀的钢筋,现要确定其长度.先称出这捆钢筋的总质量为m千克,再从其中截取5米长的钢筋,称出它的质量为n千克,那么这捆钢筋的总长度为()A、米B、米C、米D、()米26、一件工作,甲独做a小时完成,乙独做b小时完成,则甲,乙两人合作完成需要()小时.A、B、C、D、27、某厂去年的产值是m万元,今年的产值是n万元(m<n),则今年的产值比去年的产值增加的百分比是()A、×100%B、×100%C、(+1)×100%D、×100%28、(2007•山西)关于x的方程:的解是负数,则a的取值范围是()A、a<1B、a<1且a≠0C、a≤1D、a≤1且a≠029、(2007•牡丹江)若关于x的分式方程的解为正数,则m的取值范围是()A、m>﹣1B、m≠1C、m>1D、m>﹣1且m≠130、如果关于x的方程无解,则m的值等于()A、﹣3B、﹣2C、﹣1D、3答案与评分标准一、填空题(共17小题)1、计算:(π﹣3.14)0=1.考点:零指数幂。

专题:计算题。

分析:根据任何非0数的0次幂等于1解答.解答:解:(π﹣3.14)0=1,故答案为1.点评:本题是考查含有零指数幂的运算,比较简单.2、计算:20的结果是1.考点:零指数幂。

专题:计算题。

分析:根据零指数幂的意义可知,20=1.解答:解:20=1.故本题答案为:1.点评:主要考查了零指数幂的意义.任何非0数的0次幂等于1.3、(2005•三明)计算:=2.考点:负整数指数幂。

专题:计算题。

分析:根据幂的负整数指数运算法则进行计算即可.解答:解:原式==2.故答案为2.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.4、计算:(﹣1)0+()﹣1=4.考点:负整数指数幂;零指数幂。

专题:计算题。

分析:根据零指数幂、负指数幂的运算法则解答即可.解答:解:(﹣1)0+()﹣1=1+3=4.故答案为4.点评:主要考查了零指数幂,负指数幂的运算,负指数为正指数的倒数;任何非0数的0次幂等于1.5、计算:(﹣)0×3﹣2=.考点:负整数指数幂;零指数幂。

专题:计算题。

分析:根据零指数幂和负整数指数幂的知识点进行解答.解答:解:原式=1×.故答案为.点评:任何非0数的0次幂等于1,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.6、(2009•新疆)某商品的进价为x元,售价为120元,则该商品的利润率可表示为.考点:列代数式(分式)。

分析:由利润率=利润÷进价可以列出式子.解答:解:利润为120﹣x,∴该商品的利润率可表示为.点评:掌握利润率、利润、进价、售价之间的关系.利润=售价﹣进价;利润率=利润÷进价.7、(2008•宁夏)某市对一段全长1500米的道路进行改造.原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了天.考点:列代数式(分式)。

专题:应用题。

分析:等量关系为:实际用时=实际工作总量÷实际工效.解答:解:实际工作量为1500,实际工效为:2x+35.故实际用时=.点评:找到合适的等量关系是解决问题的关键.本题考查工作时间=工作总量÷工作效率这个等量关系.8、(2006•南宁)为了迎接第三届中国东盟博览会,市政府计划用鲜花美化绿城南宁.如果1万平方米的空地可以摆放a盆花,那么200万盆鲜花可以美化万平方米的空地.考点:列代数式(分式)。

专题:应用题。

分析:可以美化的空地为=200万盆鲜花×一盆鲜花可美化的空地.解答:解:根据1万平方米的空地可以摆放a盆花,知:每盆花可以美化万平方米的空地.再进一步计算200万盆花即可美化万平方米的空地.点评:正确理解题意,注意代数式的正确书写:出现除号的时候,用分数线代替.解决问题的关键是读懂题意,找到所求的量的等量关系.9、(2006•大兴安岭)某班a名同学参加植树活动,其中男生b名(b<a),若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树棵.考点:列代数式(分式)。

专题:应用题。

分析:首先根据男生植树情况计算树的总数是15b,再计算女生人数是a﹣b,所以女生每人植树.解答:解:植树总量为15b,女生人数为a﹣b,故女生每人需植树棵.点评:列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.注意:树的总棵树=每人植树的棵树×人数.10、(2003•山西)有一大捆粗细均匀的电线,现要确定其长度的值.从中先取出1米长的电线,称出它的质量为a,再称其余电线的总质量为b,则这捆电线的总长度是(+1)米.考点:列代数式(分式)。

分析:这捆电线的总长度=1米+其余电线的长度.解答:解:∵1米长的电线质量为a,其余电线的总质量为b,∴其余电线的长度米,∴电线的总长度为:(+1)米.点评:此题容易漏掉先前取出来的1米,做时要注意严谨.解决问题的关键是读懂题意,找到所求的量的等量关系.11、一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要小时.考点:列代数式(分式)。

专题:应用题。

分析:甲单独做一天可完成工程总量的,乙单独做一天可完成工程总量的,二人合作一天可完成工程总量的+.工程总量除以二人合作一天可完成工程量即可得出二人合作完成该工程所需天数.解答:解:设该工程总量为1.二人合作完成该工程所需天数=1÷(+)=1÷=.点评:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.12、梯形的面积为S,上底长为m,下底长为n,则梯形的高写成分式为.考点:列代数式(分式)。

专题:应用题。

分析:题意是用梯形的面积和上下底表示出梯形的高.解答:解:由面积公式:s=,∴h=.点评:解答时主要理解题意,找到等量关系,本题根据梯形的面积=(上底+下底)×高列式即可.13、小聪的妈妈每个月给她m元零花钱,她计划每天用a元(用于吃早点,乘车)刚好用完,而实际她每天节约b元钱,则她实际可以比原计划多用天才全部消费完.考点:列代数式(分式)。

分析:多用天数=实际天数﹣计划天数,而天数=总钱数÷每天花钱数.解答:解:依题意得:.点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.14、一项工程,甲独做m天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要天完成.考点:列代数式(分式)。

专题:应用题。

分析:在工程问题中,可把工作总量看做单位“1”.甲独做m天完成,即甲每天完成工作的.解答:解:甲独做m天完成,即甲每天完成工作的.乙独x+3天完成,则每天完成,甲、乙二人合作需要天完成.点评:此题应注意工作总量=工作时间×工作效率这一公式的灵活变形.15、某超市从我国西部某城市运进两种糖果,甲种a千克,每千克x元,乙种b千克,每千克y元,如果把这两种糖果混合后销售,保本价是元/千克.考点:列代数式(分式)。

专题:应用题。

分析:保本价即要计算其平均价=总价格÷总质量=.解答:解:甲种a千克,每千克x元,乙种b千克,每千克y元,保本价=(ax+by)÷(a+b)=.点评:注意代数式的正确书写:出现除法写成分数线的形式.列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.16、某工厂的锅炉房储存了c天用的煤m吨,要使储存的煤比预定多d用天,每天应节约煤吨.考点:列代数式(分式)。

相关文档
最新文档