中考数学—分式的真题汇编及答案解析

合集下载

初三数学分式试题答案及解析

初三数学分式试题答案及解析

初三数学分式试题答案及解析1.化简的结果是A.B.C.D.【答案】D.【解析】先将分子分解因式,再根据分式的基本性质,将分子与分母的公因式约去..故选D.【考点】分式的化简.2.写出一个只含字母x的分式,满足x的取值范围是,所写的分式是: .【答案】(答案不唯一).【解析】根据分式有意义的条件:分母不等于零可直接得到:(答案不唯一).【考点】1.开放型;2.分式有意义的条件.3.先化简,再求值:,其中x的值为方程的解.【答案】.【解析】先将括号里面的通分后,将除法转换成乘法,约分后再通分;然后求出一元一次方程的解,代x的值化简求值.试题解析:原式=.解方程得.∴当时,原式=.【考点】1.分式的化简求值;2.解一元一次方程.4.先化简,再求值:÷(x+1)其中x=.【答案】【解析】解:原式=×=·=∴当x=时,原式==.5.已知+=(a≠b),求-的值.【答案】【解析】解:∵+=,∴=,∴-=-====.6.先化简,再求值:÷-,其中x=1+.【答案】【解析】先把分式进行化简,然后把x=1+代入化简的式子即可求值.试题解析:把x=1+代入上式得:原式=.考点: 分式的化简求值.7.先化简再求值:,其中.【答案】,2.【解析】先将括号里面的通分后,将除法转换成乘法,约分化简。

然后代x,y的值,进行二次根式化简.试题解析:原式=.当时,原式=.【考点】分式的化简求值.8.若x=-1,y=2,则的值等于A.B.C.D.【答案】D【解析】通分后,约分化简。

然后代x、y的值求值:,当x=-1,y=2时,。

故选D。

9.先化简,再求值:,其中x=-2.【答案】解:原式=。

当x=-2时,原式。

【解析】先将括号里面的通分后,将除法转换成乘法,约分化简。

然后代x的值,进行二次根式化简。

10.(1)计算:(2)先化简,再求值:,其中m=﹣3.【答案】解:原式=。

(2)解:原式=。

中考数学—分式的易错题汇编附答案

中考数学—分式的易错题汇编附答案

一、选择题1.分式b ax ,3c bx -,35acx 的最简公分母是( )A .5cx 3B .15abcxC .15abcx 3D .15abcx 52.下列分式:24a 5b c ,23c 4a b ,25b2ac 中,最简公分母是 A .5abc B .2225a b cC .22220a b cD .22240a b c3.在式子:2x、5x y + 、12a - 、1x π-、21xx +中,分式的个数是( )A .2B .3C .4D .5 4.下列各式从左到右的变形正确的是( ) A .221188a a a a ---=-++B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x++=-++5.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个6.分式a x ,22x y x y +-,2121a a a --+,+-x y x y中,最简分式有( ). A .1个B .2个C .3个D .4个7.使分式293x x -+的值为0,那么x ( ).A .3x ≠-B .3x =C .3x =±D .3x ≠8.下列分式中,最简分式是( )A .x y y x--B .211x x +-C .2211x x -+D .2424x x -+9.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( )A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7 10.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+- 11.生物学家发现一种病毒的长度约为0.00 004mm ,0.00 004用科学记数法表示是( ) A .40.410-⨯B .5410-⨯C .54010-⨯D .5410⨯12.下列各式中,正确的是( )A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+13.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米14.下列各式变形正确的是() A .x y x yx y x y -++=---B .22a b a bc d c d--=++ C .0.20.03230.40.0545a b a bc d c d--=++D .a b b ab c c b--=-- 15.已知12x y-=3,分式4322x xy y x xy y +-+-的值为( )A .32B .0C .23D .9416.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( )A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m 17.下列运算正确的是( )A .a ﹣3÷a ﹣5=a 2B .(3a 2)3=9a 5C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 218.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1919.若(x -2016)x =1,则x 的值是( ) A .2017B .2015C .0D .2017或020.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个B .3个C .4个D .5个21.分式212xy 和214x y的最简公分母是( )A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 322.下列分式从左到右的变形正确的是( )A .2=2x xy yB .22=x x y yC .22=x x xx D .515(2)2xx23.如果把代数式x yxy+中的x 与y 都扩大到原来的8倍,那么这个代数式的值( )A .不变B .扩大为原来的8倍C .缩小为原来的18D .扩大为原来的16倍24.下列关于分式的判断正确的是 ( ) A .无论x 为何值,231x +的值总为正数 B .无论x 为何值,31x +不可能是整数值 C .当x =2时,12x x +-的值为零 D .当x ≠3时3x x-,有意义 25.下列等式或不等式成立的是 ( ) A .2332<B .23(3)(2)---<-C .3491031030⨯÷⨯=D .2(0.1)1-->【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积. 【详解】最简公分母为3⨯5⨯a ⨯b ⨯c ⨯x 3=15abcx 3 故答案选:C. 【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.2.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b2ac 的最简公分母是:22220a b c . 故选C.3.B解析:B 【解析】解:分式有2x 、12a -、21x x +共3个.故选B . 点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.4.B解析:B 【解析】 解:A .原式=22(1)1(8)8a a a a -++=--- ,错误;B .原式=1,正确;C .原式为最简结果,错误;D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.5.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.6.B解析:B 【解析】 试题解析:a x,+-x yx y 是最简分式, 221()()x y x y x y x y x y x y ++==-+--,2211121(1)1a a a a a a --==-+--.故选B.7.B解析:B 【解析】∵由题意可得:2903x x -=+,∴29030x x ⎧-=⎨+≠⎩, ∴3x =±且3x ≠-, ∴3x =. 故选B .点睛:分式中字母的取值使分式的值为0,需同时满足两个条件:(1)字母的取值使分子的值为0;(2)字母的取值使分母的值不为0.8.C解析:C 【解析】 试题分析:A 、x yy x--=-1,不是最简分式; B 、21111(1)(1)1x x x x x x ++==-+--,不是最简分式; C 、2211x x -+分子、分母不含公因式,是最简分式;D 、24(2)(2)2242(2)2x x x x x x -+--==++,不是最简分式. 故选C .点睛:本题考查最简分式,解题的关键是明确最简分式的定义,即分子、分母不含公因式的分式.9.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.000 007 7=7.7×10-6, 故选C.10.D解析:D 【解析】根据分式的基本性质,可知A 不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y-=-+-,故正确. 故选:D.11.B解析:B 【解析】解:0.00 004=5410-⨯.故选B .12.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误;D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确. 故选D.13.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】35000纳米=35000×10-9米=3.5×10-5米. 故选C . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.D解析:D 【解析】 【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变,可得答案. 【详解】 A 、原式x yx y-=+,所以A 选项错误;B、原式=2a bc d-+(),所以B选项错误;C、原式=203405a bc d-+,所以C选项错误;D、a b b ab c c b--=--,所以D选项正确.故选D.【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变.15.A解析:A【解析】【分析】先根据题意得出2x-y=-3xy,再代入原式进行计算即可.【详解】解:∵12x y-=3,∴2x-y=-3xy,∴原式=()()2232x y xyx y xy-+-+,=633xy xyxy xy-+-+,=32xyxy --,=32,故选A.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000005=5×10﹣11.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.A解析:A【解析】【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【详解】A.a﹣3÷a﹣5=a2,故此选项正确;B.(3a2)3=27a6,故此选项错误;C.(x﹣1)(1﹣x)=﹣x2+2x﹣1,故此选项错误;D.(a+b)2=a2+2ab+b2,故此选项错误.故选A.【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.18.D解析:D【解析】【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可.【详解】(16)0×3﹣2=11199⨯=,故选D.【点睛】本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.19.D解析:D【解析】【分析】根据零指数幂:a0=1(a≠0)和1的任何次幂都是1可得x=0或x-2016=1,再解即可.【详解】由题意得:x=0或x-2016=1,解得:x=0或2017.【点睛】此题主要考查了零次幂和乘方,关键是掌握零指数幂:a 0=1(a≠0).20.A解析:A 【解析】 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可. 【详解】 解:式子2x yx- ,-2x y -中都含有字母是分式.故选:A . 【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.21.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】 分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.22.D解析:D 【分析】根据分式的基本性质逐项判断. 【详解】解:A 、当y=-2时,该等式不成立,故本选项错误; B 、当x=-1,y=1时,该等式不成立,故本选项错误; C.22=x x x x--+-,故本选项错误;故选D. 【点睛】本题考查分式的基本性质,属于基础题型,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.23.C解析:C 【解析】 【分析】根据x 与y 都扩大到原来的8倍,分别判断出x+y 、xy 的变化情况,即可判断出这个代数式值的变化情况. 【详解】因为x 与y 都扩大到原来的8倍,所以x+y 扩大到原来的8倍,xy 扩大到原来的64倍,所以这个代数式的值缩小为原来的18.所以A 、B 、D 错误,C 正确. 【点睛】本题主要考察了分式的基本性质应用,要熟练掌握分式的基本性质;解答此题的关键在于分别判断出x+y 、xy 的变化情况.24.A解析:A 【解析】 【分析】根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得. 【详解】A 、分母中x 2+1≥1,因而23x 1+的值总为正数,故A 选项正确; B 、当x+1=1或-1时,3x 1+的值是整数,故B 选项错误; C 、当x=2时,分母x-2=0,分式无意义,故C 选项错误; D 、当x=0时,分母x=0,分式无意义,故D 选项错误, 故选A . 【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.25.D解析:D 【分析】先进行指数计算,再通过比较即可求出答案. 【详解】解:A 2339;28==,9>8 ,故A 错.B ()()2311;9832----==-,1198>-,故B 错. C 347910310=310⨯÷⨯⨯,故C 错. D ()20.1100--=,100>1, 故D 对. 故选D.【点睛】本题主要考查指数计算和大小比较,题目难度不大,细心做题是关键.。

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程一.选择题1.(2022·天津)计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2a a + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则. 2.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( ) A .fvf v -B .f vfv-C .fvv f- D .v ffv-【答案】C【分析】利用分式的基本性质,把等式()111v f f u v =+≠恒等变形,用含f 、v 的代数式表示u .【详解】解:∵()111v f f u v =+≠,∵111f u ν=+,即111u f ν=-,∵1f uf νν-=,∵f u fνν=-,故选:C . 【点睛】本题考查分式的加、减法运算,关键是异分母通分,掌握通分法则. 3.(2022·四川眉山)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2a a + 【答案】B【分析】根据分式的混合运算法则计算即可.【详解】解:422a a +-+244=22-+++a a a 2=2+a a .故选:B【点睛】本题考查分式的混合运算法则,解题的关键是掌握分式的混合运算法则. 4.(2022·湖南怀化)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++,∵分式有3个,故选:B . 【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 5.(2022·四川凉山)分式13x+有意义的条件是( ) A .x =-3 B .x ≠-3 C .x ≠3 D .x ≠0【答案】B【分析】根据分式的分母不能为0即可得.【详解】解:由分式的分母不能为0得:30x +≠,解得3x ≠-, 即分式13x+有意义的条件是3x ≠-,故选:B . 【点睛】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.6.(2022·四川南充)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )AB .CD .【答案】B【分析】先将分式进件化简为a bb a+-,然后利用完全平方公式得出a b -=a b +,代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+-a b b a +=-,∵223a b ab +=,∵222a ab b ab -+=,∵()2a b ab -=, ∵a>b>0,∵a b -=∵223a b ab +=,∵2225a ab b ab ++=,∵()25a b ab +=,∵a>b>0,∵a b +=,∵原式=,故选:B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 7.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵.则下列方程正确的是( ) A .40030050x x=- B .30040050x x=- C .40030050x x=+ D .30040050x x=+ 【答案】B【分析】设实际平均每天植树x 棵,则原计划每天植树(x -50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可. 【详解】解:设现在平均每天植树x 棵,则原计划每天植树(x -50)棵, 根据题意,可列方程:30040050x x=-,故选:B . 【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.8.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( ) A .2x1xx 3+=+ B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭ D .1x1x x 3+=+ 【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x 3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x 天,由题意可得,11x 221xx 3x 3-⎛⎫+⨯+= ⎪++⎝⎭, 整理得2x 1x x 3+=+,或2x 1x x 3=-+或23x x 3=+. 则ABC 选项均正确,故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 9.(2022·四川德阳)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 【答案】D【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案. 【详解】方程左右两端同乘以最小公分母x -1,得2x+a=x -1.解得:x=-a -1且x 为正数.所以-a -1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.) 【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息. 10.(2022·四川遂宁)若关于x 的方程221mxx =+无解,则m 的值为( ) A .0 B .4或6 C .6 D .0或4【答案】D【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =; 当40m -≠时,0x =或210x +=,此时,24x m =-,解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.11.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义. 【详解】解:由50004000302x x=-可得: 由50002x 表示的是足球的单价,而4000x表示的是篮球的单价, x 表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键. 二.填空题12.(2022·湖北黄冈)若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义,∵10x -≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.13.(2022·浙江湖州)当a =1时,分式1a a+的值是______. 【答案】2【分析】直接把a 的值代入计算即可. 【详解】解:当a =1时,11121a a ++==.故答案为:2. 【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可. 14.(2022·湖南怀化)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.15.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2a a + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++ 22222a a a a a -=+=+++故答案为2a a + 【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键. 16.(2022·四川泸州)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________. 【答案】1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=--去分母得:323x x -+-=-解得:1x = 经检验,1x =是分式方程的解 把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.17.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a ,b ,11ba b a⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12-【分析】根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x++=+解方程即可. 【详解】解:∵11ba b a ⊗=+,∵()211121(1)11x x x x x x x x x x x ++++⊗=+==+++, 又∵21(1)++⊗=x x x x ,∵22121x x x x x++=+,∵()()()221210x x x x x ++-+=,∵()()2210x x x x +-+=,∵()2210x x +=,∵21(1)++⊗=x x x x即0x ≠,∵210x +=,解得12x =-, 经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-. 【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.18.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________. 【答案】16014010xx =- 【分析】先表示乙每小时采样(x -10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x -10)人,根据题意,得16014010xx =-. 故答案为:16014010xx =-. 【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键. 19.(2022·浙江金华)若分式23x -的值为2,则x 的值是_______. 【答案】4【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =- 去括号:226x =- 移项,合并同类项:28x = 系数化为1:4x =经检验,x =4是原方程的解, 故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键. 20.(2022·四川成都)分式方程31144x x x-+=--的解是_________. 【答案】3x =【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解. 【详解】解:31144x x x-+=-- 解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解, 故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.21.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【分析】适当引进未知数,合理转化条件,构造等式求解即可.【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a . ∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=,设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+,∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n ⋅-⋅-=++⋅+,故答案为:35.【点睛】本题考查未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键.22.(2022·湖南衡阳)计算:2422a a a +=++_________. 【答案】2【分析】分式分母相同,直接加减,最后约分. 【详解】解:2422a a a +++242a a +=+()222a a +=+2= 【点睛】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键. 23.(2022·浙江台州)如图的解题过程中,第∵步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-【答案】5【分析】根据题意得到方程3114xx -+=--,解方程即可求解. 【详解】解:依题意得:3114x x -+=--,即3204xx -+=-, 去分母得:3-x +2(x -4)=0, 去括号得:3-x +2x -8=0, 解得:x =5,经检验,x =5是方程的解, 故答案为:5.【点睛】本题考查了解分式方程,一定要注意解分式方程必须检验. 24.(2022·四川成都)已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________. 【答案】72【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a --⎛⎫-÷ ⎪⎝⎭=22211a a a a a a ⎛⎫---÷ ⎪⎝⎭=22211a a a a a -+-÷ =22(1)1a a a a -⨯-=(1)a a -=2-a a . 2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=, 两边同除以2得272a a -=, ∵原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 25.(2022·湖南常德)方程()21522x x x x +=-的解为________. 【答案】4x =【分析】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解 故答案为:4x =【点睛】本题考查了解分式方程,解分式方程一定要注意检验. 三.解答题26.(2022·江苏宿迁)解方程:21122x x x =+--. 【答案】x =﹣1【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【详解】解:21122x x x =+--, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点睛】本题考查解分式方程,得出方程的解之后一定要验根.27.(2022·四川泸州)化简:22311(1).m m m m m-+-+÷ 【答案】11m m -+ 【分析】直接根据分式的混合计算法则求解即可.【详解】解:22311(1)m m m m m-+-+÷ ()()231`11m m m m m m m÷++=--+()()2211`1m m m mm m -+=⋅+-()()()21`11mm mm m +⋅--=11m m -=+. 【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.28.(2022·新疆)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 【答案】1【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键.29.(2022·四川乐山)先化简,再求值:211121xx x x ⎛⎫-÷ ⎪+++⎝⎭,其中x = 【答案】1x +1【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121xx x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+-+=⨯+ 1x =+,∵x∵原式=11x +=.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键. 30.(2022·湖南邵阳)先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭.【答案】11x + 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷⎪+--⎝⎭11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦1(1)(1)x x x x x-=⋅+-=11x +, ∵x +1≠0,x -1≠0,x ≠0,∵x ≠±1,x ≠0当x=【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.31.(2022·陕西)化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭. 【答案】1a +【分析】分式计算先通分,再计算乘除即可.【详解】解:原式211112a a a a a++--=⋅-2(1)(1)12a a a a a +-=⋅-1a =+. 【点睛】本题考查了分式的混合运算,正确地计算能力是解决问题的关键. 32.(2022·湖南株洲)先化简,再求值:2111144x x x x +⎛⎫+⋅ ⎪+++⎝⎭,其中4x =. 【答案】12x +,16 【分析】先将括号内式子通分,再约分化简,最后将4x =代入求值即可. 【详解】解:2221111111441114241(2)2x x x x x x x x x x x x x x +++⎛⎫+⋅=⋅=⋅= ⎪+++++++++⎝⎭+++, 将4x =代入得,原式1112426x ===++. 【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则和完全平方公式是解题的关键.33.(2022·江苏扬州)计算:(1)(02cos 45π︒+ (2)22221121m m m m +⎛⎫+÷⎪--+⎝⎭【答案】(1)1 (2)12m - 【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可; (2)先合并括号里的分式,再对分子和分母分别因式分解即可化简; (1)解:原式=21-1 (2)解:原式=()()21211121m m m m m --⎛⎫+⋅ ⎪--+⎝⎭=()()211121m m m m -+⋅-+=12m -. 【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.34.(2022·江西)以下是某同学化筒分式2113422x x x x +⎛⎫-÷⎪-+-⎭的部分运算过程: (1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程. 【答案】(1)∵(2)见解析【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可. (1)第∵步出现错误,原因是分子相减时未变号,故答案为:∵; (2)解:原式=112(2)(2)23x x x x x ⎡⎤+--⨯⎢⎥+-+⎣⎦122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦122(2)(2)3x x x x x +-+-=⨯+-32(2)(2)3x x x -=⨯+-12x =+ 【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键. 35.(2022·重庆)计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+. 【答案】(1)22x y -(2)22m - 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可; (2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可. (1)解:()()(2)x y x y y y +-+-=2222x y y y -+-=22x y -(2)解: 2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+ =()()()222222m m m m m m -+-÷++- =()()()222222m m m m +-⨯+- =22m - 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.36.(2022·江苏连云港)化简:221311x x x x -+--. 【答案】11x x -+ 【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式2221311x x xx x +-=+-- 22131x x x x ++-=-22211x x x -+=-22(1)1x x -=- 2(1)=(1)(1)x x x -+- 11x x -=+. 【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.37.(2022·四川达州)化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中31a.【答案】11a +【分析】先将分子因式分解,再进行通分,然后根据分式减法法则进行计算,最后再根据分式除法法则计算即可化简,再把a 的值代入计算即可求值.【详解】解:原式=()()()2211111a a a a a a a -+++÷+-- ()()()()2211111a a a a a +--=⋅-+1=1a +;当31a=. 【点睛】本题考查分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.38.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的. 【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. (1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++,……∵第(n +1)个式子1111(1)n n n n =+++; (2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n++=+==+++++=左边, ∵1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.39.(2022·四川凉山)先化简,再求值:524(2)23m m m m-++⋅--,其中m 为满足-1<m <4的整数.【答案】26--m ,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【分析】先计算括号内的分式加法,再计算分式的乘法,然后根据分式有意义的条件确定m 的值,代入计算即可得.【详解】解:原式(2)(2)52(2)223m m m m m m+--⎡⎤=+⋅⎢⎥---⎣⎦ 2452(2)()223m m m m m --=+⋅---292(2)23m m m m--=⋅--(3)(3)2(2)23m m m m m +--=⋅--2(3)m =-+26m =--, 20,30m m -≠-≠,2,3m m ∴≠≠,又m 为满足14-<<m 的整数,0m ∴=或1m =,当0m =时,原式262066m =--=-⨯-=-, 当1m =时,原式262168m =--=-⨯-=-,综上,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.40.(2022·山东滨州)先化简,再求值:2344111a a a a a ++⎛⎫+-÷ ⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-【答案】22a a -+,0 【分析】先算括号内的减法,再将除法变成乘法进行计算,然后根据锐角三角函数,负指数幂和零次幂的性质求出a ,最后代入计算.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭()22213111a a a a a +⎛⎫-=-÷ ⎪---⎝⎭()222411a a a a +-=÷--()()()222112a a a a a +--=⋅-+22a a -=+; ∵101tan 45π122)2(1a -=︒+-=+-=,∵原式2220222a a --===++. 【点睛】本题考查了分式的化简求值,锐角三角函数,负指数幂和零次幂的性质,熟练掌握运算法则是解题的关键.41.(2022·重庆)计算:(1)()()224x x x ++-;(2)2212a a bb b -⎛⎫-÷ ⎪⎝⎭.【答案】(1)224x +(2)2a b+ 【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解. (1)解:原式22444x x x x =+++-224x =+ (2)解:原式2()()a b b b a b a b -=⨯+-2a b=+ 【点睛】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键.42.(2022·山东泰安)(1)若单项式14m n x y -与单项式33812m n x y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111xx x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =. 【答案】(1)m =2,n =-1;(2)21x +,4-【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值; (2)先通分算小括号里面的,然后算括号外面的,最后代入求值. 【详解】解:(1)由题意可得33814m n m n -=⎧⎨-=⎩①②,∵-∵3⨯,可得:55n -=,解得:1n =-, 把1n =-代入∵,可得:(1)3m --=,解得:2m =,m ∴的值为2,n 的值为1-;(2)原式(1)(1)[](1)(1)(1)(1)x x x x x x x -++=⋅+-+-21(1)(1)(1)(1)x x x x x x x -++=⋅+-+-21x =+,当1x 时,原式21)12114=+=-+=-【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式222()2a b a ab b +=++的结构是解题关键.43.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】解:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时, 依题意,得:2020101.560x x -=,解得:x =40, 经检验,x =40是所列方程的根,且符合题意, 答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 44.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套 【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可; (2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论; (3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =, 经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩; (3)解:320270>,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈, 答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点睛】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.45.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲、乙恰好同时到达B地列方程求解即可.(1)解:设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:0.5 1.20.52x x⨯=+,解得:20x,则1.224x=(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:301303 1.2x x-=,解得15x=,经检验15x=是分式方程的解,则1.218x=(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.46.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)100米(2)90米【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,根据工效问题公式:工作总量=工作时间×工作效率,列出关于x 的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y 的分式方程,解方程即可得出答案.(1)解:设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,则有()5202600x x -+=解得100x =∵甲施工队增加人员后每天修建灌溉水渠100米.(2)∵水渠总长1800米,完工时,两施工队修建长度相同∵两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,即1.2y 米 则有5403609001.2100y y +=解得90y =经检验,90y=是原方程的解,符合题意∵乙施工队原来每天修建灌溉水渠90米.【点睛】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键.47.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x千米/小时,则汽车速度是3x千米/小时,根据题意得:454523x x=+,解之得15x=,经检验15x=是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.48.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,。

中考数学—分式的易错题汇编及解析

中考数学—分式的易错题汇编及解析

一、选择题1.下列各式的约分,正确的是A .1a b a b --=-B .1a b a b--=-- C .22a b a b a b -=-+ D .22a b a b a b-=++ 2.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 3.在分式ab a b+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值( ) A .扩大为原来的2倍 B .缩小为原来的12 C .不变 D .不确定 4.已知,则的值是( )A .B .﹣C .2D .﹣25.计算4-(-4)0的结果是( )A .3B .0C .8D .4 6.已知+=3,则分式的值为( ) A . B .9 C .1 D .不能确定7.若分式的值为0,则x 的值为( ) A .0B .2C .﹣2D .2或﹣2 8.使代数式7x -有意义的x 的取值范围是( ) A .x≠3B .x <7且x≠3C .x≤7且x≠2D .x≤7且x≠3 9.函数中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2 10.如果把分式22a b ab +中的a 和b 都扩大了2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍11.在物理并联电路里,支路电阻1R 、2R 与总电阻R 之间的关系式为12111R R R =+,若1R R ≠,用R 、1R 表示2R 正确的是A .121RRR R R =- B .121RR R R R =- C .121R R R RR -= D .121R R R RR -= 12.如图,设k=甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有 ( )甲 乙甲(A )k >2 (B )1<k <2 (C )121<<k (D )210<<k 13.若分式的值为0,则x 的值为 A . B . C . D .不存在 14.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+= D .0.250.25a b a b a b a b ++=++ 15.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥ B .2x > C .2x ≠ D .2x ≤16.(2015秋•郴州校级期中)下列计算正确的是( )A .B .•C .x÷y•D .乙甲17.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9 B .227 C .π D .(3)0 18.下列运算错误的是A .B .C .D .19.在标准大气压下氢气的密度为0.00009g/cm 3 ,用科学记数法表示0.00009正确的是( )A .5910⨯B .5910-⨯C .4910-⨯D .40.910⨯20.下列4个分式:①;②;③;④中最简分式有( ) A .1个 B .2个 C .3个 D .4个21.如果把中的x 和y 都扩大到5倍,那么分式的值( )A .扩大5倍B .不变C .缩小5倍D .扩大4倍22.若02(1)2(2)x x ----无意义,则x 的取值范围是( ) A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x = 23.在函数中,自变量的取值范围是( ) A .>3 B .≥3且≠4 C .>4 D .≥324.用科学记数方法表示0.00000601,得( )A .0.601×10-6B .6.01×10-6C .60.1×10-7D .60.1×10-625.分式中,最简分式个数为( )个. A .1 B .2 C .3 D .4【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C.【解析】试题分析:根据分式的基本性质作答.试题解析:A.()1a b a ba b a b---+=≠--,故该选项错误;B.()1a b a ba b a b---+=≠---,故该选项错误;C.22()()a b a b a ba ba b a b-+-==-++,故该选项正确;D.22()()a b a b a ba b a ba b a b-+-==-≠+++,故该选项错误.故选C.考点:约分.2.C解析:C【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A、B无法进行约分,C正确;D需要保证m不能为零.考点:分式的约分3.A解析:A【解析】试题分析:在分式aba b+(a,b为正数)中,字母a,b值分别扩大为原来的2倍,则分式的值是原来的2倍,故选A.考点:分式的基本性质.4.D解析:D【解析】试题分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.解:∵,∴﹣=,∴,∴=﹣2.故选D.5.A解析:A【解析】试题分析:根据零指数幂的性质和有理数的加减法,可求解为:4-(-4)0=4-1=3.故选A.6.A解析:A【解析】试题解析:∵113 x y+=,∴x+y=3xy,∴23223333=== 23255x xy y xy xy xyx xy y xy xy xy-+⨯-+++.故选A.7.B解析:B【解析】根据分式的值为0,分子为0,分母不为0可得且x+2≠0,解得x=2,故选B. 8.D解析:D【解析】试题解析:∵代数式7x-有意义,∴7-x≥0,且2x-6≠0,解得:x≤7且x≠3,故选D.9.A解析:A【解析】试题解析:根据题意得:2﹣x≠0,解得:x≠2.故函数中自变量x的取值范围是x≠2.故选A.考点:函数自变量的取值范围.10.C解析:C【解析】分式22a b ab +中的a 和b 都扩大了2倍,得: 4212822a b a b ab ab++=⨯, 所以是缩小了2倍.故选C.11.B解析:B【解析】试题解析:12111R R R =+, 21111R R R =- 1211R R R RR -= 得R 2═11RR R R-. 故选B .12.C解析:C【解析】试题分析:甲图中阴影部分的面积=22a b -,乙图中阴影部分的面积= ()a a b -,22()1a a b a b k a b a b a b -===--++,∵a >b >0∴0<b a b +<12,∴ 121<<k . 考点:分式的约分. 13.B解析:B【解析】∵分式的值为0, ∴,解得:,故选B.点睛:求使分式值为0的字母的取值时,要注意需同时满足两点:(1)分子的值为0;(2)分母的值不为0. 14.D解析:D【解析】A选项错误,x yx y-+=-y xy x-+;B选项错误,x yy x+-=x y y xy x y x+---()()()()=()222y xx y--;C选项错误,2a aab+=1a aab+()=1ab+;D选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变. 15.B解析:B【详解】解:根据题意得:x﹣2≥0且x﹣2≠0,解得:x>2.故选B.【点睛】本题考查函数自变量的取值范围.16.B解析:B【解析】试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=•=,错误;B、原式=,正确;C、原式=,错误;D、原式==,错误,故选B.考点:分式的乘除法.17.C解析:C【解析】9,227是无限循环小数,π是无限不循环小数,31=,所以π是无理数,故选C.18.D 解析:D【解析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.解:A 、==1,故本选项正确; B 、==﹣1,故本选项正确; C 、,故本选项正确; D 、,故本选项错误;故选D . 19.B解析:B【解析】根据科学记数法的书写规则,易得B.20.B解析:B 【解析】①是最简分式; ②,不是最简分式; ③=,不是最简分式; ④是最简分式;最简分式有①④,共2个;故选:B.21.B解析:B 【解析】试题解析:,即分式的值不变.故选B . 22.C解析:C【解析】∵()()02x 12x 2----无意义,∴x −1=0或x −2=0,∴x=1或x=2.故选C.23.B解析:B【解析】试题分析:根据分式的意义,可知x-4≠0,解得x≠4,根据二次根式有意义的条件可知x-3≥0,解得x≥3,因此x的取值范围为x≥3,且x≠4.故选:B.点睛:此题主要考查了复合算式有意义的条件,解题关键是根据复合算式的特点,逐步确定条件即可.主要有:分式有意义的条件是分母不等于0,二次根式有意义的条件是被开方数为非负数.24.B解析:B【解析】试题分析:根据科学记数法表示较小的数,可知a=6.01,n=-6,所以用科学记数法表示为6.01×10-6.故选:B点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.25.C解析:C【解析】根据最简分式的定义——分子和分母没有公因式的分式.易得共3个是最简分式:,,故选C.。

中考数学真题分类解析(六)分式方程考题汇编及解析

中考数学真题分类解析(六)分式方程考题汇编及解析

(2022•北部湾中考)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()
(2022•山西中考)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.
【解析】设这款电动汽车平均每公里的充电费用为x元,
根据题意,得200
x =200
x+0.6
×4,解得x=0.2,
经检验,x=0.2是原方程的根.
答:这款电动汽车平均每公里的充电费用为0.2元.。

最新最新初中数学—分式的真题汇编及答案解析

最新最新初中数学—分式的真题汇编及答案解析

一、选择题1.下列变形正确的是( ) A .()23524a a -=- B .22220x y xy -=C .23322b ab a a-÷=- D .()()222222x y x y x y +-=-2.化简a b a b b a+--22的结果是( ) A .1 B .+a b C .-a b D .22a b -3.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的1104.若2220110.2,2,(),.()25a b c d --=-=-=-=-,则( ) A .a b c d <<< B .b a d c <<<C .a b d c <<<D .c a d b <<<5.若把分式x yxy+中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小2倍D .缩小4倍6.下列计算正确的有(). ①0(1)1-= ②21333-⨯=③()()33m m x x -=- ④2211224x x x ⎛⎫-=-+ ⎪⎝⎭ ⑤22(3)(3)9a b b a a b ---=-A .4个B .3个C .2个D .1个7.把分式a2a b+中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12C .扩大2倍D .不变8.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。

2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( ) A .0.25×10–5米B .2.5×10–7米C .2.5×10–6米D .25×10–7米9.当x =_____ 时,分式11xx-+无意义.( ) A .0B .1C .-1D .210.下列等式从左到右的变形正确的是( )A .22b by x xy= B .2ab b a a =C .22b b a a=D .11b b a a +=+ 11.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁12.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯ B .80.4 10⨯C .8410⨯D .8410-⨯13.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍D .不变14.若式子01(1)k k -+-有意义,则一次函数()11y k x k =-+-的图象可能是( )A .B .C .D .15.若23a b =≠0,则代数式(2244b aba -+1)2b a a -÷的值为( ) A .2B .1C .﹣1D .﹣216.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只B .81.5510⨯只C .90.15510⨯只D .6510⨯只17.下列运算正确的是( ) A .2x -2 =212xB .a 6÷a 3 =a 2C .(a 2)3 =a 5D .a 3·a =a 4 18.2019年底,我国爆发了新一轮的冠状病毒疫情,冠状病毒直径约80-120纳米,1纳米=1.0×10-9米,用科学记数法表示120纳米,其结果是( )A .1.2×10-9米 B .1.2×10-8米 C .1.2×10-7米 D .1.2×10-6米 19.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<20.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x ≠﹣1D .x 的值不确定21.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a a a ⋅÷=;⑤()-21-510=;⑥22m a mn a n+=+,其中正确的个数为( ) A .4个B .3个C .2个D .1个22.下列等式成立的是( ) A .123a b a b +=+ B .212a b a b =++ C .2ab aab b a b=--D .a aa b a b=--++ 23.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠B .a 2>-C .2a 2-<<D .a 2≠±24.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个C .6个D .8个25.若把分式3xyx y-(,x y 均不为0)中的x 和y 都扩大3倍,则原分式的值是( ) A .扩大3倍B .缩小至原来的13C .不变D .缩小至原来的16【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】原式各项计算得到结果,即可作出判断. 【详解】A 、原式=4a 6,错误;B 、原式不能合并,错误;C 、原式=−232a ,正确; D 、原式=2x 2−4xy +xy−2y 2=2x 2−3xy−2y 2,错误. 故选:C . 【点睛】此题考查了分式的乘除法,合并同类项,幂的乘方与积的乘方,以及整式的乘法,熟练掌握公式及运算法则是解本题的关键.2.B解析:B 【解析】 【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果. 【详解】解:原式=22a b a b --=()()a b a b a b+--=a+b , 故选B . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.C解析:C 【解析】 【分析】首先分别判断出x 与y 都扩大为原来的10倍后,分式的分子、分母的变化情况,然后判断出这个代数式的值和原来代数式的值的关系即可. 【详解】解:∵x 与y 都扩大为原来的10倍,∴5xy 扩大为原来的100倍,x+y 扩大为原来的10倍, ∴5xyx y+的值扩大为原来的10倍, 即这个代数式的值扩大为原来的10倍. 故选:C . 【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,解答此题的关键是分别判断出分式的分子、分母的变化情况.4.B解析:B 【解析】分别计算出a 、b 、c 、d 的值,再进行比较即可. 【详解】因为20.2a =-=-0.04,b=22--=-14,c=212-⎛⎫- ⎪⎝⎭=4,d=015⎛⎫- ⎪⎝⎭=1, 所以b a d c <<<. 故选B. 【点睛】本题考查比较有理数的大小,涉及知识有负整数指数幂、0次幂,解题关键是熟记法则.5.C解析:C 【解析】 【分析】根据题意,分式中的x 和y 都扩大2倍,则222()2242x y x y x yx y xy xy+++==⋅;【详解】解:由题意,分式x yyx +中的x 和y 都扩大2倍,∴222()2242x y x y x yx y xy xy+++==⋅;分式的值是原式的12,即缩小2倍; 故选C . 【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.6.C解析:C 【解析】 【分析】直接利用整数指数幂的法则和乘法公式分别计算得出答案. 【详解】解:①0(1)1-=,故①正确;②211333=93-⨯=⨯,故②正确; ③当m 是偶数时,()()333=mm m x x x -=,故③错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,故④错误;⑤22(3)(3)9a b b a b a ----=,故⑤错误. 正确的有①②,共2个.【点睛】本题考查了整数指数幂的运算法则和乘法公式,熟练掌握幂的各种性质和法则,乘法公式是解题的基础.7.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.8.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.0000025=2.5×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C解析:C【分析】根据分式无意义的条件,分母等于0,列不等式求解即可.【详解】因为分式11xx-+无意义,所以1+x=0,故选C. 【点睛】本题主要考查分式无意义的条件,解决本题的关键是要熟练掌握分式无意义的条件.10.B解析:B 【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项. 【详解】A 、22b by x xy=,其中y≠0,故选项错误; B 、2ab ba a=,其中左边隐含a≠0,故选项正确; C 、2b aba a=,故选项错误. D 、根据分式基本性质知道11b b a a ++≠,故选项错误;故选B . 【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.11.B解析:B 【分析】找出题中出错的地方即可. 【详解】乙同学的过程有误,应为()()22a ab ab b a b a b +-++-,故选B . 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.12.D解析:D 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:0.000 000 04=4×10-8, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.A解析:A 【分析】用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案. 【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a ba b a b ab ab,所以分式缩小到原来的12倍, 故选A. 【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.14.C解析:C 【分析】先求出k 的取值范围,再判断出1k -及1k -的符号,进而可得出结论. 【详解】0(1)k -有意义,则1k >. ∴10k -<,10k ->,∴一次函数()11y k x k =-+-的图象经过第一、二、四象限. 故选:C . 【点睛】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.15.A解析:A 【分析】由23a b=≠0,得2b =3a ,把根据分式运算法则进行化简,再代入已知值计算即可. 【详解】解:(2244b ab a -+1)2b a a -÷222442b ab a a a b a-+=•-22(2)2a b aa b a -=•- 2b a a-=, ∵23a b=≠0, ∴2b =3a ,∴原式32a a aa a-===2, 故选:A . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.B解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】500万×31=5000000×31=155000000=1.55×108(只), 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.D解析:D 【分析】根据负指数幂、同底数幂的乘法和除法以及幂的乘方的运算法则逐项排除即可. 【详解】 解:A. 2x -2 =22x,故选项A 错误; B. a 6÷a 3 =a 3,故选项B 错误; C. (a 2)3 =a 6,故选项C 错误; D. a 3·a =a 4 ,D 正确; 故答案为D . 【点睛】本题考查了负指数幂、同底数幂的乘法和除法以及幂的乘方的运算法则,掌握相关运算法则是解答本题的关键.18.C解析:C【分析】绝对值小于1的正数利用科学记数法表示,一般形式为a×10-n,n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:120纳米=120×10-9米=1.2×10-7米,故选:C.【点睛】本题考查用科学记数法表示较小的数(绝对值小于1的正数利用科学记数法表示,一般形式为a×10-n,n由原数左边起第一个不为零的数字前面的0的个数所决定),明确科学记数法的表示方法是解题的关键.19.B解析:B【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1,∴-0.25<-0.04<1<4,∴b<a<d<c,故选:B.【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.20.B解析:B【分析】使分式211xx-+的值为0,则x2-1=0,且x+1≠0.【详解】使分式211xx-+的值为0,则x2-1=0,且x+1≠0解得x=1故选:B【点睛】考核知识点:考查分式的意义. 要使分式值为0,分子等于0,分母不等于0. 21.D解析:D利用同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂以及整式的除法逐个判断即可.【详解】解:①336a a a ⋅=,故①错误;②2m 和3m 不是同类项,不能合并,故②错误;③()()()222224-2-24a a a ==,故③错误;④()2104268a a a a a a ⋅÷==⋅,故④正确;⑤()-21-525=,故⑤错误;⑥22m a m n a n+≠+,故⑥错误;只有1正确. 故答案为D .【点睛】本题考查了同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂、整式的除法等知识点,掌握相关运算法则是解答本题的关键.22.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.23.D解析:D【分析】分式有意义时,分母a 2-4≠0.【详解】依题意得:a 2-4≠0,解得a≠±2.故选D .【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零解析:B【分析】 首先把分式转化为6321x +-,则原式的值是整数,即可转化为讨论621x -的整数值有几个的问题.【详解】 6363663212121x x x x x +-+==+---, 当216x -=±或3±或2±或1±时,621x -是整数,即原式是整数. 当216x -=±或2±时,x 的值不是整数,当等于3±或1±是满足条件. 故使分式6321x x +-的值为整数的x 值有4个,是2,0和1±. 故选B .【点睛】 本题主要考查了分式的值是整数的条件,把原式化简为6321x +-的形式是解决本题的关键. 25.A解析:A【分析】将原式中x 变成3x ,将y 变成3y ,再进行化简,与原式相比较即可.【详解】 由题意得3332733333()x y xy xy x y x y x y⋅⋅==⋅---,所以原分式的值扩大了3倍 故选择A.【点睛】此题考察分式的化简,注意结果应化为最简分式后与原分式相比较.。

中考数学—分式的真题汇编及答案解析

中考数学—分式的真题汇编及答案解析

一、选择题1.()()2323x y z x y z +++-的结果为( ) A .1B .33-+m m C .33m m +- D .33mm + 2.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 3.若分式||11x x -+的值为0,则x 的值为( ) A .1B .﹣1C .±1 D .无解4.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍5.若a = (-0.4)2,b = -4-2,c =214-⎛⎫- ⎪⎝⎭,d =014⎛⎫- ⎪⎝⎭, 则 a 、b 、c 、d 的大小关系为( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b6.下列计算,正确的是( )A .2(2)4--=B 2=-C .664(2)64÷-=D =7.下列变形正确的是( ). A .1a b bab b++= B .22x y x y-++=- C .222()x y x y x y x y --=++ D .23193x x x -=-- 8.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的139.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a 10.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+-11.下列各式:2116,,4,,235x y xx y x π++-中,分式有( ) A .1个 B .2个C .3个D .4个12.若代数式3x +在实数范围内有意义,则x 的取值范围为( ) A .x<-3 B .x ≥-3 C .x>2 D .x ≥-3,且x ≠2 13.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A .0.65×10﹣5B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 14.使分式224x x +-有意义的取值范围是( ) A .2x =-B .2x ≠-C .2x =D .2x ≠15.下列分式中:xy x ,2y x-,+-x yx y ,22x y x y +-不能再约分化简的分式有( ) A .1个B .2个C .3个D .4个16.已知12x y-=3,分式4322x xy yx xy y +-+-的值为( )A .32B .0C .23D .9417.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .18.若(1-x )1-3x =1,则x 的取值有( )个. A .1个B .2个C .3个D .4个19.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d20.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1521.下列分式从左到右的变形正确的是( ) A .2=2x x y yB .22=x x y yC .22=x x xx D .515(2)2xx22.函数32x y x +=-的取值范围是( )A .x >2B .x ≥3C .x ≥3,且x ≠2D .x ≥-3,且x ≠223.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个24.计算21424m m ++-的结果是( ) A .2m + B .2m -C .12m + D .12m -25.函数y =x 的取值范围是( ) A .x ≥﹣2B .x ≥﹣2且x ≠1C .x ≠1D .x ≥﹣2或x ≠1【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先计算除法运算,然后进行减法运算即可得出答案. 【详解】原式=3m m +-6(3)(33)m -+× 32m -= 3m m ++ 33m += 33m m ++=1 故答案选A. 【点睛】本题考查的知识点是分式的混合运算,解题的关键是熟练的掌握分式的混合运算.2.D解析:D 【解析】A 选项:当x =2时,该分式的分母x -2=0,该分式无意义,故A 选项错误.B 选项:当x =0时,该分式的分母为零,该分式无意义. 显然,x =0满足x ≠3. 由此可见,当x ≠3时,该分式不一定有意义. 故B 选项错误.C 选项:当x =0时,该分式的值为3,即当x =0时该分式的值为整数,故C 选项错误.D 选项:无论x 为何值,该分式的分母x 2+1>0;该分式的分子3>0. 由此可知,无论x 为何值,该分式的值总为正数. 故D 选项正确. 故本题应选D. 点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x 的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.3.A解析:A 【解析】试题解析:∵分式||11x x -+的值为0, ∴|x|﹣1=0,且x+1≠0, 解得:x=1. 故选A .4.A解析:A 【详解】∵要把分式2210x y xy+中的x y 、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x y x y xy x yxyxy+++==⨯⨯⨯,∴把分式2210x y xy+中的x y 、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n 倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n 倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.5.B解析:B 【解析】∵a=0.16;b=-214=-116;c =(211()4-)=16;d =1;故:b<a<d<c6.C解析:C 【解析】【详解】 解:A .()2124--=,所以A 错误;B 2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D ==D 错误,故选C .7.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.8.B解析:B 【解析】 解:把分式xy x y +中的x 、y 扩大为原来的3倍后为3333x y x y ⋅+=3xyx y+,即将分式00xyx y x y≠≠-(,)中的x 、y 扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B .9.D解析:D【解析】解:A .原式=1,故A 错误;B .x 3与x 4不是同类项,不能进行合并,故B 错误;C .原式=a 4b 6,故C 错误;D .正确. 故选D .10.D解析:D 【解析】根据分式的基本性质,可知A 不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y-=-+-,故正确. 故选:D.11.A解析:A 【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.12.D解析:D 【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可. 【详解】根据题意得x+3≥0且x−2≠0, 所以x 的取值范围为x ≥−3且x≠2. 故答案选D. 【点睛】本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.0000065的小数点向右移动6位得到6.5,所以数字0.0000065用科学记数法表示为6.5×10﹣6, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.D解析:D 【解析】 【分析】根据分式有意义分母不为零可得2x-4≠0,再解即可. 【详解】解:由题意得:2x-4≠0, 解得:x≠2, 故选:D . 【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.B解析:B 【分析】找出各项中分式分子分母中有没有公因式,即可做出判断. 【详解】xyx=y, 22x y x y +-= ()()x y x y x y ++-= 1x y -所以,不能约分化简的有:- 22y x +-x yx y共两个,故答案选B. 【点睛】本题考查的知识点是分式的约分,解题的关键是熟练的掌握分式的基本性质.16.A解析:A 【解析】 【分析】先根据题意得出2x-y=-3xy ,再代入原式进行计算即可. 【详解】解:∵12x y-=3,∴2x-y=-3xy ,∴原式=()()2232x y xyx y xy-+-+,=633xy xyxy xy-+-+,=32xyxy --,=32,故选A.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.B解析:B【解析】【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f即可.【详解】,变形得:f=.故选B.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.B解析:B【分析】利用零指数幂,乘方的意义判断即可.【详解】解:∵(1-x)1-3x=1,∴1-x≠0,1-3x=0或1-x=1,解得:x=13或x=0,则x的取值有2个,故选B【点睛】本题考查了零指数幂,以及有理数的乘方,熟练掌握运算法则是解题的关键.19.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20 221110.30.09,3,9,1933a b c d--⎛⎫⎛⎫=-=-=-=-=-==-=⎪ ⎪⎝⎭⎝⎭,∴10.0919 9-<-<<,∴b<a<d<c.故选:B.【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=1pa(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.20.A解析:A【解析】【分析】x,y都扩大为原来的5倍就是分别变成原来的5倍,变成5x和5y.用5x和5y代替式子中的x和y,看得到的式子与原来的式子的关系.【详解】用5x和5y代替式子中的x和y得:()2255, 151032x xx y x y=++则扩大为原来的5倍.故选:A.【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键. 21.D解析:D【分析】根据分式的基本性质逐项判断.【详解】解:A、当y=-2时,该等式不成立,故本选项错误;B、当x=-1,y=1时,该等式不成立,故本选项错误;C.22=x x x x --+-,故本选项错误; D 、正确. 故选D. 【点睛】本题考查分式的基本性质,属于基础题型,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.22.D解析:D 【解析】 【分析】根据二次根式的性质和分式有意义的条件,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【详解】 根据题意得:3020x x +≥⎧⎨-≠⎩,解得:x ≥﹣3且x ≠2.故选D . 【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.23.C解析:C 【解析】 【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可. 【详解】①()011-=,正确; ②2113333--⨯==,正确;③当m 为偶数时,()()33mm x x -≠-,错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误. 故选C .【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键.24.D解析:D【解析】【分析】先通分,再加减.注意化简.【详解】21424124(2)(2)2m m m m m m -++==+-+-- 故选:D【点睛】考核知识点:异分母分式加减法.通分是关键.25.B解析:B【分析】根据二次根式、分式有意义的条件可得关于x 的不等式组,解不等式组即可得.【详解】解:由题意得:2010x x +≥⎧⎨-≠⎩, 解得:x≥﹣2且x≠1,故选B.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.。

中考数学分式方程专题训练有答案解析

中考数学分式方程专题训练有答案解析

分式方程一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣33.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣24.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或26.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+27.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣48.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣110.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =二.填空题11.方程:的解是.12.若关于x的方程的解是x=1,则m= .13.若方程有增根x=5,则m= .14.如果分式方程无解,则m= .15.当m= 时,关于x的方程=2+有增根.16.用换元法解方程,若设,则可得关于的整式方程.17.已知x=3是方程一个根,求k的值= .18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程.三.解答题19.解分式方程1;2.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.分式方程参考答案与试题解析一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.考点分式方程的定义.分析根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.故选C.点评本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣3考点分式方程的解.专题计算题.分析根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.解答解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.点评解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.3.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣2考点解分式方程.专题计算题.分析本题的最简公分母是2x﹣3,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答解:方程两边都乘2x﹣3,得1=2x﹣3,解得x=2.检验:当x=2时,2x﹣3≠0.∴x=2是原方程的解.故选A.点评1解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.2解分式方程一定注意要代入最简公分母验根.4.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根考点分式方程的增根.分析分式方程的增根是最简公分母为零时,未知数的值.解答解:分式方程的增根是使最简公分母的值为零的解.故选D.点评本题考查了分式方程的增根,使最简公分母的值为零的解是增根.5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或2考点分式方程的增根.专题计算题.分析本题由增根的定义可知分式分母为0,即x﹣1=0或x﹣2=0,解出即可.解答解:∵方程+=0有增根,∴x﹣1=0或x﹣2=0,解得x=1或2,点评本题主要考查增根的定义,解题的关键是使最简公分母x﹣1x﹣2=0.6.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+2考点解分式方程.专题计算题.分析找出各分母的最小公分母,同乘以最小公分母即可.解答解:左右同乘以最简公分母x﹣2,得x=2x﹣2+3,故选B.点评本题考查了解分式方程的内容.注意在乘以最小公分母时,不要漏乘.7.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣4考点解分式方程.专题计算题.分析把分式方程化为整式方程,乘以最简公分母2xx﹣2即可.解答解:∵方程的最简公分母2xx﹣2,∴方程的两边同乘2xx﹣2即可.故选A.点评本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.找出最简公分母是解此题的关键.8.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时考点列代数式分式.分析往返一次所需要的时间是,顺水航行的时间+逆水航行的时间,根据此可列出代数式.解答解:根据题意可知需要的时间为: +点评本题考查列代数式,关键知道时间=路程÷速度,从而列出代数式.9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣1考点分式方程的增根.专题计算题.分析有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入化成整式方程的方程中,求得m的值.解答解:方程两边都乘x﹣1,得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.点评增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =考点由实际问题抽象出分式方程.专题应用题.分析关键描述语是:“有两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.解答解:第一块试验田的面积是,第二块试验田的面积为.那么方程可表示为.点评列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.二.填空题11.方程:的解是.考点解分式方程.专题计算题.分析本题考查解分式方程的能力,观察可得方程最简公分母为:xx+1,方程两边去分母后化为整式方程求解.解答解:方程两边同乘以xx+1,得x2+x+1x﹣1=2xx+1,解得:x=﹣.经检验:x=﹣是原方程的解.点评1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.2解分式方程一定注意要验根.3方程中有常数项的注意不要漏乘常数项,本题应避免出现x2+x+1x﹣1=2的情况出现.12.若关于x的方程的解是x=1,则m= 2 .考点分式方程的解.分析根据分式方程的解的定义,把x=1代入原方程求解可得m的值.解答解:把x=1代入方程,得,解得m=2.故应填:2.点评本题主要考查了分式方程的解的定义,属于基础题型.13.若方程有增根x=5,则m= 5 .考点分式方程的增根.专题计算题.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣5化为整式方程,再把增根x=5代入求解即可.解答解:方程两边都乘x﹣5,得x=2x﹣5+m,∵原方程有增根x=5,把x=5代入,得5=0+m,解得m=5.故答案为:5.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.如果分式方程无解,则m= ﹣1 .考点分式方程的解.专题计算题.分析分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评本题考查了分式方程无解的条件,是需要识记的内容.15.当m= 3 时,关于x的方程=2+有增根.考点分式方程的增根.专题方程思想.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣3化为整式方程,再把增根x=3代入求解即可.解答解:方程两边都乘x﹣3,得x=2x﹣3+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,3=0+m,解得m=3.故答案为:3.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.2006 南通用换元法解方程,若设,则可得关于的整式方程2y2﹣4y+1=0 .考点换元法解分式方程.专题压轴题;换元法.分析本题考查用换元法整理分式方程的能力,根据题意得设=y,代入方程可把原方程化为整式.解答解:设=y,则可得=,∴可得方程为2y+=4,整理得2y2﹣4y+1=0.点评用换元法解分式方程是常用的方法之一,换元时要注意所设分式的形式及式中不同的变形.17.已知x=3是方程一个根,求k的值= ﹣3 .考点分式方程的解.分析根据方程的解的定义,把x=3代入原方程,得关于k的一元一次方程,再求解可得k 的值.解答解:把x=3代入方程,得,解得k=﹣3.故应填:﹣3.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程﹣=8 .考点由实际问题抽象出分式方程.分析求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.解答解:原计划用的时间为:,实际用的时间为:.所列方程为:﹣=8.点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.三.解答题19.解分式方程1;2.考点解分式方程.分析1首先乘以最简公分母x﹣3x去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.2首先乘以最简公分母x﹣1x+1去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.解答解:1去分母得:2x=3x﹣3,去括号得:2x=3x﹣9,移项得:2x﹣3x=﹣9,合并同类项得:﹣x=﹣9,把x的系数化为1得:x=9检验:当x=9时,xx﹣3=54≠0.∴原方程的解为:x=9.2去分母得:x+1=2,移项得:x=2﹣1,合并同类项得:x=1.检验:当x=1时,x﹣1x+1=0,所以x=1是增根,故原方程无解.点评此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具考点分式方程的应用.专题应用题.分析求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.解答解:设甲每天加工x个玩具,那么乙每天加工35﹣x个玩具.由题意得:.5分解得:x=15.7分经检验:x=15是原方程的根.8分∴35﹣x=209分答:甲每天加工15个玩具,乙每天加工20个玩具.10分点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服考点分式方程的应用.专题应用题.分析关键描述语为:“共用9天完成任务”;等量关系为:用老技术加工60套用的时间+用新技术加工240套用的时间=9.解答解:设服装厂原来每天加工x套演出服.根据题意,得:.3分解得:x=20.经检验,x=20是原方程的根.答:服装厂原来每天加工20套演出服.6分点评分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学考点分式方程的应用.分析设一班有x人,则二班有人.根据五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,可列方程求解.解答解:设一班有x人,则二班有人.根据题意得:,解得:x=50.经检验:x=50是原方程的解.=×50=60.答:一班有50人,二班有60人.点评本题考查分式方程的应用,关键是设出人数,以平均每人捐的本数做为等量关系列方程求解.23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.考点分式方程的应用.分析本题答案开放,根据题意要求,先写出符合要求的方程,如:,然后根据此方程编拟应用题.解答解:甲乙两个车间分别制造相同的机器零件,已知甲车间每小时比乙多制造10个机器零件,这样甲车间制造170个机器零件与乙制造160个所用时间相同,求甲乙两车间每小时各制造机器零件多少个点评此题考查分式方程的应用,为开放性试题,答案不唯一.。

初三数学分式试题答案及解析

初三数学分式试题答案及解析

初三数学分式试题答案及解析1.分式可变形为()A.B.C.D.【答案】D.【解析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案:分式的分子分母都乘以﹣1,得.故选D.【考点】分式的基本性质.2.化简:的结果是A.B.C.D.【答案】A.【解析】原式=.故选A.【考点】分式的化简.3.计算:(1)(2)【答案】(1);(2).【解析】(1)根据绝对值,零指数幂,负指数幂,特殊角的三角函数进行化简即可;(2)先通分,再化成最简即可.试题解析:(1);(2 ) .【考点】1.绝对值2.零指数幂3.负指数幂4.特殊角的三角函数5.分式化简.4.先化简,再求代数式的值,其中【答案】.【解析】先因式分解,然后将除法转化为乘法,约分后再相加,然后代入求值.原式=∵a=6tan30°-2=∴原式【考点】1.分式的化简求值;2.特殊角的三角函数值.5.先化简,再求值:,其中=.【答案】.【解析】把所给代数式第一项分子、分母进行因式分解,乘以第二项的倒数,约分后与最后一项通分化简,然后把a的值代入求值即可.原式=;当时,原式=.【考点】分式的化简求值.6.(1)化简:.(2)解方程:.【答案】(1)x;(2)x=3.【解析】(1)原式利用除法法则变形,约分即可得到结果;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.(1)原式=;(2)原方程可化为3x+2=8+x,合并同类项得:2x=6,解得:x=3.【考点】1.分式的乘除法;2.解一元一次方程.7.(1)计算:(2)【答案】(1)1;(2).【解析】先计算零次幂、负整数指数幂、二次根式、绝对值、特殊角三角函数值,最后再加减即可;(2)先计算括号里的,然后再乘以除式的倒数,进行约分化简即可求出结果.(1)原式=;(2)原式=考点: 1.实数的运算;2.分式的化简.8.先化简,再求值:,其中为不等式组的整数解.【答案】.【解析】先进行分式的化简,再解一元一次不等式组,确定不等式组的整数解,最后把整数解代入化简的整式求值.原式====.由解得.∵x是不等式组的整数解,∴x=1.x=0(舍)当x=1时,原式=.【考点】1.分式的化简求值;解一元一次不等式组.9.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?【答案】(1)第一次水果的进价为每千克6元(2)该老板两次卖水果总体上是赚钱了,共赚了388元.【解析】(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,第一次购买用了1200元,第二次购买用了1452元,第一次购水果,第二次购水果,根据第二次购水果数多20千克,可得出方程,解出即可得出答案;(2)先计算两次购水果数量,赚钱情况:卖水果量×(实际售价﹣当次进价),两次合计,就可以回答问题了.解:(1)设第一次购买的单价为x元,则第二次的单价为(1+10%)x=1.1x元,根据题意得:=20,解得:x=6,经检验,x=6是原方程的解,(2)第一次购水果1200÷6=200(千克).第二次购水果200+20=220(千克).第一次赚钱为200×(8﹣6)=400(元).第二次赚钱为100×(9﹣6.6)+120×(9×0.5﹣6×1.1)=﹣12(元).所以两次共赚钱400﹣12=388(元),答:第一次水果的进价为每千克6元,该老板两次卖水果总体上是赚钱了,共赚了388元.10.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,的取值范围是x≠±2;(3)当x=0时,分式的值为-1.你所写的分式为 .【答案】(答案不唯一)【解析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠±2,即当x=±2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;11.已知-=,求的值.【答案】-2【解析】解:∵-=,∴=,∴=-,∴=-2.12.先化简,再求值:,其中.【答案】.【解析】先化简,再化简,最后把a的代入即可求值.试题解析:又∴代入上式得:原式=考点: 分式的化简求值.13.当x=时,的值为零.【答案】x=-1.【解析】根据分式的值为零,分子等于0,分母不等于0列式进行计算即可得解.试题解析:根据题意得,|x|-1=0且x2+2x-3≠0,由|x|-1=0得:x=1或x=-1由x2+2x-3≠0知x≠-3或x≠1故x=-1.考点: 分式的值为零的条件.14.若,则()A.B.C.D.【答案】A.【解析】∵,∴.故选A.【考点】1.代数式求值;2.整体思想的应用.15.先化简,再求值:,其中m是方程的根.【答案】.【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可.试题解析:原式= .∵m是方程的根.∴,即,∴原式=.考点:分式的化简求值;一元二次方程的解.16.函数中自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须。

中考数学—分式的真题汇编附答案

中考数学—分式的真题汇编附答案

一、选择题1.如果把分式2xx y-中的x 与y 都扩大2倍,那么分式的值( )A .不变B .扩大2倍C .缩小2倍D .扩大4倍2.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍3.下列运算,正确的是 A .0a 0=B .11a a-=C .22a a b b=D .()222a b a b -=-4.下列运算正确的是( ) A .2-3=-6B .(-2)3=-6C .(23)-2=49D .2-3=185.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 6.计算32-的结果是( ) A .-6B .-8C .18-D .187.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +-B .2121t t t t -+C .1221t t t t -+D .1212t t t t +-8.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个9.分式a x ,22x y x y +-,2121a a a --+,+-x y x y 中,最简分式有( ). A .1个B .2个C .3个D .4个10.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x= 11.已知a <b ,化简222a a ab b a b a-+-的结果是( )A .aB .a -C .a --D .a -12.若代数式32x x +-在实数范围内有意义,则x 的取值范围为( ) A .x<-3 B .x ≥-3C .x>2D .x ≥-3,且x ≠213.若 ()1311xx --=,则 x 的取值有 ()A .0 个B .1 个C .2 个D .3 个14.下列关于分式的判断正确的是 ( ) A .无论x 为何值,231x +的值总为正数 B .无论x 为何值,31x +不可能是整数值 C .当x =2时,12x x +-的值为零 D .当x ≠3时3x x-,有意义 15.下列各式:2116,,4,,235x y xx y x π++-中,分式有( ) A .1个B .2个C .3个D .4个16.将分式2x x y+中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A .扩大3倍B .缩小3倍C .保持不变D .无法确定17.若0x y y z z xabc a b c---===<,则点P(ab ,bc)不可能在第( )象限 A .一B .二C .三D .四18.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯ B .51.0510-⨯C .50.10510-⨯D .410.510-⨯19.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .20.下列计算正确的是( )A .3x x=xB .11a b ++=abC .2÷2﹣1=﹣1D .a ﹣3=(a 3)﹣121.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( ) A .3.5×10﹣6米 B .3.5×10﹣5米 C .35×1013米 D .3.5×1013米 22.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y23.分式212xy 和214x y的最简公分母是( ) A .2xy B .2x 2y 2C .4x 2y 2D .4x 3y 324.下列分式从左到右的变形正确的是( )A .2=2x x y yB .22=x x y yC .22=x x xx D .515(2)2xx25.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+-【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:解答此题时,可将分式中的x ,y 用2x ,2y 代替,然后计算即可得出结论. 详解:依题意得:2222x x y ⨯-=222xx y ⋅⋅-()=原式.故选A .点睛:本题考查的是对分式的性质的理解和运用,扩大或缩小n 倍,就将原来的数乘以n 或除以n .2.A解析:A 【详解】∵要把分式2210x y xy+中的x y 、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x y x y xy x yxyxy+++==⨯⨯⨯,∴把分式2210x y xy+中的x y 、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n 倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n 倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.3.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确; C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.4.D解析:D 【解析】选项A. 2-3=18,A 错. 选项B. (-2)3=-8,B 错.选项C. (23)-2=94 ,C 错误. 选项D. 2-3=18,正确 .所以选D. 5.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.6.D解析:D 【解析】3311228-==. 故选D. 7.B解析:B 【解析】∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -,∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.8.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.9.B解析:B 【解析】 试题解析:a x,+-x yx y 是最简分式, 221()()x y x y x y x y x y x y ++==-+--,2211121(1)1a a a a a a --==-+--.故选B.10.A解析:A 【解析】试题解析:()1x y x y x y x y-+--==---. 故选A.11.D解析:D 【解析】因为a-ba a b-=-故选D.,0,0a a a a a ≥⎧==⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.12.D解析:D 【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可. 【详解】根据题意得x+3≥0且x−2≠0, 所以x 的取值范围为x ≥−3且x≠2. 故答案选D. 【点睛】本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.C解析:C 【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案. 【详解】解:∵(1-x )1-3x =1, ∴当1-3x=0时,原式=1, 当x=0时,原式=1, 故x 的取值有2个. 故选C . 【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.14.A解析:A【解析】 【分析】根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得. 【详解】A 、分母中x 2+1≥1,因而23x 1+的值总为正数,故A 选项正确; B 、当x+1=1或-1时,3x 1+的值是整数,故B 选项错误; C 、当x=2时,分母x-2=0,分式无意义,故C 选项错误; D 、当x=0时,分母x=0,分式无意义,故D 选项错误, 故选A . 【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.15.A解析:A 【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.16.A解析:A 【解析】 试题分析:==;故选A.考点:分式的基本性质.17.A解析:A 【解析】 【分析】根据有理数的乘法判断出a ,b ,c 中至少有一个是负数,另两个同号,然后求出三个数都是负数时x 、y 、z 的大小关系,得出矛盾,从而判断出a 、b 、c 不能同时是负数,确定出点P 不可能在第一象限. 【详解】 解:∵abc <0,∴a ,b ,c 中至少有一个是负数,另两个同号, 可知三个都是负数或两正数,一个是负数, 当三个都是负数时:若x yabc a-=, 则20x y a bc -=>,即x >y ,同理可得:y >z ,z >x 这三个式子不能同时成立, 即a ,b ,c 不能同时是负数, 所以,P (ab ,bc )不可能在第一象限. 故选:A. 【点睛】本题主要考查分式的基本性质和点的坐标的知识,熟悉点的坐标的基本知识是本题的解题关键,确定一个点所在象限,就是确定点的坐标的符号.18.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.0000105=1.05×10-5, 故选B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.B解析:B 【解析】 【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f 即可. 【详解】,变形得:f=.故选B.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.20.D解析:D【解析】【分析】分子和分母同乘以(或除以)一个不为0的数,分数值不变.【详解】A、3xx=x2,错误;B、11ab++=+1+1ab,错误;C、2÷2﹣1=4,错误;D、a﹣3=(a3)﹣1,正确;故选D.【点睛】此题考查分式的基本性质,关键是根据把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变解答.21.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m=3.5×10﹣5m.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.22.B解析:B【分析】利用最简分式的定义判断即可.【详解】A 、原式=()()11111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.23.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】 分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.24.D解析:D 【分析】根据分式的基本性质逐项判断. 【详解】解:A 、当y=-2时,该等式不成立,故本选项错误; B 、当x=-1,y=1时,该等式不成立,故本选项错误;C.22=x x x x --+-,故本选项错误; D 、正确. 故选D. 【点睛】本题考查分式的基本性质,属于基础题型,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.25.D解析:D【解析】根据分式的基本性质,可知A 不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y -=-+-,故正确. 故选:D.。

2024年全国各省市数学中考真题汇编 专题4分式与分式方程(34题)含详解

2024年全国各省市数学中考真题汇编 专题4分式与分式方程(34题)含详解

专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .43.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=+D .60601202x x -=-4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程512x =+的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程11x 2=-的解为.12.(2024·内蒙古通辽·中考真题)分式方程322x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y -=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式11x -有意义的x 的取值范围是.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:31211a aa a +-=++.18.(2024·江苏常州·中考真题)计算:111x x x +=++.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +++的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+⎝⎭,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:221412x x x x x+-⎛⎫-÷ ⎪+⎝⎭,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:22391369x x x x -⎛⎫+÷ --+⎝⎭,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.24.(2024·四川遂宁·中考真题)先化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:32222x x x x ---,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x +⎛⎫-÷ ⎪⎝⎭.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a aa a -+⎛⎫-÷⎪-⎝⎭,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.32.(2024·四川达州·中考真题)先化简:22224xx x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22422324x xx x x -⎛⎫+-÷+⎪+-⎝⎭,其中72x =-.专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=【答案】A【分析】本题考查通过去分母将分式方程转化为整式方程,方程两边同乘各分母的最简公分母,即可去分母.【详解】解:方程两边同乘26x -,得()()152626263126x x x x x---⨯=-⨯---,整理可得:2625x -+=-故选:A .2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .4【答案】C【分析】本题考查零指数幂,掌握“任何不为零的零次幂等于1”是正确解答的关键.根据零指数幂的运算性质进行计算即可.【详解】解:原式0(2)1=-=.故选:C .3.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=D .60601202x x -=【答案】A【分析】本题主要考查了分式方程的应用.设慢车的速度为km /h x ,则快车的速度是()20km /h x +,再根据题意列出方程即可.【详解】解:设慢车的速度为km /h x ,则快车的速度为()20km /h x +,根据题意可得:60601202x x -=+.故选:A .4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程12x =的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.【答案】3【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程1x 2=-的解为.【答案】x 3=【分析】首先去掉分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.12.(2024·内蒙古通辽·中考真题)分式方程2x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()1321x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式1x -有意义的x 的取值范围是.【答案】x ≠1【详解】根据题意得:x -1≠0,即x ≠1.故答案为:x ≠1.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:11a a +-=++.【答案】118.(2024·江苏常州·中考真题)计算:11x x +=.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:212x x x+-⎛⎫-÷ ⎪+,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:21369x x x -⎛⎫+÷ ,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.【答案】该市谷时电价0.3元/度【分析】本题考查了分式方程的应用,设该市谷时电价为x 元/度,则峰时电价()0.2x +元/度,根据题意列出分式方24.(2024·四川遂宁·中考真题)先化简:21121x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:22x x -,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x ⎛⎫-÷ ⎪.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a a a a -+⎛⎫-÷ ⎪-,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、【分析】本题考查分式方程的应用,分别表示出,AB AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得: 1.2 1.22 1.24AB c d c a =++=+=+,0.80.82AD a b a =++=+,∵AB 与AD 的比是16:10,∴1.24160.8210a a +=+,解得:0.1a =,经检验0.1a =是原方程的解.∴上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、.32.(2024·四川达州·中考真题)先化简:2224x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.【答案】41x +,当1x =时,原式2=.【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x 的值,最后代值计算即可.【详解】解:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()()()()()()2212222x x x x x x x x x x +--+=÷-+-+()()()()()222222221x x x x x x x x x x -++-+=⋅-++()()()()()224221x x x x x x x -+=⋅-++41x =+,∵分式要有意义,∴()()()22010x x x x ⎧+-≠⎪⎨+≠⎪⎩,33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22324x x x -⎛⎫+-÷+ ⎪,其中2x =-.。

最新最新初中数学—分式的真题汇编含答案解析

最新最新初中数学—分式的真题汇编含答案解析

一、选择题1.下列各分式中,最简分式是( )A .21x x +B .22m n m n-+C .22a ba b+- D .22x yx y xy ++2.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b3.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6C .20.19×10﹣7 D .2019×10﹣9 4.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是( ) A .0.7 ⨯10-6 mB .0.7 ⨯10-7mC .7 ⨯10-7mD .7 ⨯10-6m5.若代数式()11x --有意义,则x 应满足( ) A .x = 0B .x ≠ 0C .x ≠ 1D .x = 16.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣167.下列运算中,正确的是( ) A .; B .; C .;D .;8.与分式11a a -+--相等的式子是( ) A .11a a +- B .11a a -+ C .11a a +-- D .11a a --+ 9.与分式()()a b a b ---+相等的是( ) A .a ba b +- B .a ba b-+ C .a ba b+-- D .a ba b--+ 10.下列运算正确的是( ) A 393=B .0(2)1-=C .2234a a a +=D .2325a a a ⋅=11.下列运算正确的是( )A .623x x x=B .221x a ax b b++=++C .1122x xx x ---=-- D .0.71070.20.323a b a ba b a b--=++12.化简a b a b b a+--22的结果是( ) A .1B .+a bC .-a bD .22a b -13.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义14.当x 为任意实数时,下列分式中,一定有意义的是( ) A .1xB .11x + C .11x - D .211x + 15.下列命题中:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332x x -+无意义,那么x =﹣23;这些命题及其逆命题都是真命题的是( ) A .①②B .③④C .①③D .②④16.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只 B .81.5510⨯只C .90.15510⨯只D .6510⨯只17.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变18.2019年底,我国爆发了新一轮的冠状病毒疫情,冠状病毒直径约80-120纳米,1纳米=1.0×10-9米,用科学记数法表示120纳米,其结果是( ) A .1.2×10-9米 B .1.2×10-8米 C .1.2×10-7米 D .1.2×10-6米 19.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<20.下列计算中错误的是( )A .020181=B .224-=C 2=D .1133-=21.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x≠﹣1D .x 的值不确定22.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a a a ⋅÷=;⑤()-21-510=;⑥22m a m n a n+=+,其中正确的个数为( ) A .4个 B .3个C .2个D .1个23.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠B .a 2>-C .2a 2-<<D .a 2≠±24.化简21211a aa a----的结果为( ) A .11a a +- B .a ﹣1 C .a D .125.已知11(1,2)a x x x =-≠≠,23121111,,,111n n a a a a a a -==⋯⋯=---,则2017a =( )A .21xx-- B .12x- C .1x - D .无法确定【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1. 【详解】 解:A.21xx +,分子分母的最大公因式为1; B. 22m n m n-+,分子分母中含有公因式m+n;C.22a ba b +-,分子分母中含有公因式a+b ; D. 22x y x y xy ++,分子分母中含有公因式x+y故选:A.最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.2.B解析:B【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=﹣0.22=﹣0.04;b=﹣2﹣2=﹣14=﹣0.25,c=(﹣12)﹣2=4,d=(﹣12)0=1,∴﹣0.25<﹣0.04<1<4,∴b<a<d<c,故选B.【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.3.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000002019=2.019×10﹣6,故选B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 000 7=7×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.C解析:C 【解析】 【分析】代数式中有0指数幂和负整数指数的底数不能为0,再求x 的取值范围; 【详解】解:根据题意可知,x-1≠0且解得x≠1. 故选:C. 【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.6.A解析:A 【解析】 【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可.【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项,∴2020a a b -=⎧⎨+=⎩,2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.7.D解析:D 【解析】 【分析】根据二次根式的加减运算法则、二次根式的性质、幂的运算性质和立方根的性质对各项进行分析判断即可得出答案.【详解】解:A项,,故本选项错误;B项,,由于不知x的正负,故本选项错误;C项,,故本选项错误;D项,,正确;故答案为D.【点睛】本题考查了幂的运算性质、二次根式的性质和运算、立方根的性质,熟知幂的运算性质、二次根式的性质和运算法则是解题的关键.8.B解析:B【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答.【详解】解:原式=1)(1)aa--+-(=11aa-+故选:B.【点睛】本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.9.B解析:B【分析】根据分式的基本性质,分式的分子和分母同时乘以和除以一个不为0的整式,分式的值不变.【详解】解:原分式()()()()()()1=1a b a b a ba b a b a b----⨯--=-+-+⨯-+,故选B.【点睛】本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本的性质. 10.B解析:B【分析】直接利用立方根,零指数幂,合并同类项法则同底数幂的乘法法则化简得出答案.【详解】393≠,无法计算,故此选项错误;B. 0(2)1-=,故此选项正确;C. 22234a a a +=,故此选项错误;D. 2326a a a ⋅=,故此选项错误; 故选:B. 【点睛】此题考查合并同类项,零指数幂,立方根,解题关键在于掌握运算法则.11.D解析:D 【分析】根据分式的基本性质,将每一个分式的分子与分母的公因式约去,再比较即可. 【详解】A. 633x x x=,故该选项不符合题意; B.221x a ax b b++≠++,故该选项不符合题意; C. 1x 122x x x ---=--,故该选项不符合题意; D.0.71070.20.323a b a ba b a b --=++,故该选项符合题意;故选:D 【点睛】此题考查约分,解题关键在于掌握运算法则.12.B解析:B 【解析】 【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果. 【详解】解:原式=22a b a b --=()()a b a b a b+--=a+b , 故选B . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.D解析:D 【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断. 【详解】解:∵a+b=0∴a=-b或a=0,b=0∴ba的值为-1或无意义,故选:D.【点睛】掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.14.D解析:D【分析】根据分式有意义分母不为零分别进行分析即可.【详解】A、当0x=时,分式无意义,故此选项错误;B、当1x=-时,分式无意义,故此选项错误;C、当1x=时,分式无意义,故此选项错误;D、当x为任意实数时,分式都有意义,故此选项正确;故选:D.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.D解析:D【分析】分别写出四个命题的逆命题,利用反例对①和它的逆命题进行判断;利用平行线的性质和判定对②和它的逆命题进行判断;利用直角的定义对③和它的逆命题进行判断;利用分式有意义的条件对④和它的逆命题进行判断.【详解】解:①已知两实数a、b,如果a>b,那么a2>b2;若a=1,b=﹣2,结论不成立,则命题为假命题,其逆命题为:已知两实数a、b,如果a2>b2,那么a>b;若a=﹣2,b=1时,结论不成立,所以逆命题为假命题;②同位角相等,两直线平行;则命题为真命题,其逆命题为:两直线平行,同位角相等,所以逆命题为真命题;③如果两个角是直角,那么这两个角相等;此命题为真命题,其逆命题为:如果两个角相等,那么这两个角是直角,所以逆命题为假命题;④如果分式332xx-+无意义,那么x=﹣23;此命题为真命题,其逆命题为:如果x=﹣2 3,那么分式332xx-+无意义,所以逆命题为真命题;故选:D.【点睛】此题主要考查命题的判断,解题的关键是熟知实数的性质、平行线的性质、直角的性质及分式的性质.16.B解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】500万×31=5000000×31=155000000=1.55×108(只), 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.D解析:D 【分析】 根据题意把分式x xy2中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断. 【详解】 解:∵分式x xy2中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变. 故选:D 【点睛】本题考查了分式的基本性质,属于基础题型,能够熟练掌握分式的基本性质是解决问题的关键.18.C解析:C 【分析】绝对值小于1的正数利用科学记数法表示,一般形式为a ×10-n ,n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:120纳米=120×10-9米=1.2×10-7米, 故选:C .【点睛】本题考查用科学记数法表示较小的数(绝对值小于1的正数利用科学记数法表示,一般形式为a ×10-n ,n 由原数左边起第一个不为零的数字前面的0的个数所决定),明确科学记数法的表示方法是解题的关键.19.B解析:B 【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案. 【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1,∴-0.25<-0.04<1<4, ∴b <a <d <c , 故选:B . 【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.20.B解析:B 【分析】根据零指数幂、指数幂、平方根、负整数指数幂的定义分别验证四个选项即可得到答案. 【详解】解:A 、020181=,任何非零数的零次方都等于1,故A 不是答案; B 、224-=-,故B 是答案;C 2=,故C 不是答案;D 、1133-=,故D 不是答案; 故选:B . 【点睛】本题主要考查了零指数幂、指数幂、平方根、负整数指数幂的定义,熟练掌握各知识点是解题的关键.21.B解析:B 【分析】使分式211x x -+的值为0,则x 2-1=0,且x+1≠0.【详解】使分式211x x -+的值为0, 则x 2-1=0,且x+1≠0解得x =1故选:B【点睛】考核知识点:考查分式的意义. 要使分式值为0,分子等于0,分母不等于0.22.D解析:D【分析】利用同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂以及整式的除法逐个判断即可.【详解】解:①336a a a ⋅=,故①错误;②2m 和3m 不是同类项,不能合并,故②错误;③()()()222224-2-24a a a ==,故③错误;④()2104268a a a a a a ⋅÷==⋅,故④正确;⑤()-21-525=,故⑤错误;⑥22m a m n a n+≠+,故⑥错误;只有1正确. 故答案为D .【点睛】本题考查了同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂、整式的除法等知识点,掌握相关运算法则是解答本题的关键.23.D解析:D【分析】分式有意义时,分母a 2-4≠0.【详解】依题意得:a 2-4≠0,解得a≠±2.故选D .【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零24.B解析:B【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=21211a a a a -+--,=2(1)1a a --, =a ﹣1故选B .点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.25.C解析:C【分析】按照规定的运算方法,计算出前几个数的值,进一步找出数字循环的规律,利用规律得出答案即可.【详解】解:∵11(1,2)a x x x =-≠≠, ∴2111111(1)2a a x x ===----,321121111()2x a a xx-===----,34111211()1a x x a x===-----… ∴以x−1,12x -,21x x --为一组,依次循环, ∵2017÷3=672…1,∴2017a 的值与a 1的值相同,∴20171a x =-,故选:C .【点睛】此题考查数字的变化规律以及分式的运算,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.。

中考数学—分式的全集汇编含答案解析

中考数学—分式的全集汇编含答案解析

一、选择题1.下列各式:2116,,4,,235x y xx y x π++-中,分式有( ) A .1个B .2个C .3个D .4个2.下列各式中,正确的是( ) A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+3.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x - D .2339x x +- 4.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 5.分式:22x 4- ,x42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+-D .()()2x 2?x 2+-6.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠7.下列各式从左到右的变形正确的是( )A .221188a a a a ---=-++ B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x ++=-++8.下列各式中,正确的是( ). A .1122b a b a +=++B .22142a a a -=-- C .22111(1)a a a a +-=-- D .11b ba a ---=- 9.计算32-的结果是( ) A .-6B .-8C .18-D .1810.使分式293x x -+的值为0,那么x ( ).A .3x ≠-B .3x =C .3x =±D .3x ≠11.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1-B .1a -C .()21a - D .11a- 12.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍13.把分式2x-y2xy中的x 、y 都扩大到原来的4倍,则分式的值( ) A .扩大到原来的16倍 B .扩大到原来的4倍 C .缩小到原来的14D .不变14.使分式224x x +-有意义的取值范围是( ) A .2x =- B .2x ≠-C .2x =D .2x ≠15.4a +在实数范围内有意义,则a 的取值范围是( ) A .4a ≠-B .4a ≥-C .4a >-D .4a >-且0a ≠16.当x =1时,下列分式中值为0的是( ) A .11x - B .222x x -- C .31x x -+ D .11x x -- 17.若分式55x x -+的值为0,则x 的值为( ) A .0B .5C .-5D .±5 18.已知12x y-=3,分式4322x xy yx xy y +-+-的值为( )A .32B .0C .23D .9419.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y20.分式212xy 和214x y的最简公分母是( ) A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 321.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1522.函数y =的取值范围是( ) A .x >2B .x ≥3C .x ≥3,且x ≠2D .x ≥-3,且x ≠223.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个24.下列分式是最简分式的是( ) A .2426a a -+B .1b ab a++C .22a ba b+- D .22a ba b ++25.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.2.D解析:D【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误;D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.3.B解析:B 【解析】原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.4.B解析:B 【解析】 A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.5.D解析:D 【解析】∵2224(2)(2)x x x =-+-,422(2)x x x x =---, ∴分式22 442xx x --、的最简公分母是:2(2)(2)x x +-. 故选D.6.C解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C. 7.B解析:B 【解析】解:A .原式=22(1)1(8)8a a a a -++=--- ,错误; B .原式=1,正确; C .原式为最简结果,错误; D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.8.C解析:C 【解析】解;A .分式的分子分母都乘或除以同一个不为零的整式,故A 错误; B .分子除以(a ﹣2),分母除以(a +2),故B 错误;C .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C 正确;D .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D 错误; 故选C .9.D解析:D 【解析】3311228-==. 故选D. 10.B解析:B 【解析】∵由题意可得:2903x x -=+,∴29030x x ⎧-=⎨+≠⎩, ∴3x =±且3x ≠-, ∴3x =.点睛:分式中字母的取值使分式的值为0,需同时满足两个条件:(1)字母的取值使分子的值为0;(2)字母的取值使分母的值不为0.11.D解析:D【解析】解:A.当a≥1时,根式有意义.B.当a≤1时,根式有意义.C.a取任何值根式都有意义.D.要使根式有意义,则a≤1,且分母不为零,故a<1.故选D.点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.12.A解析:A【详解】∵要把分式2210x yxy+中的x y、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x yx y x yx y xy xy+++==⨯⨯⨯,∴把分式2210x yxy+中的x y、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.13.C解析:C【解析】分析:把原分式中的x.y都扩大到原来的4倍后,再约分化简.详解:因为()422441224416242x yx y x yx y xy xy---⨯⨯==,所以分式的值缩小到原来的14.故选C.点睛:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式或公因数约去,这种变形称为分式的约分.14.D解析:D【分析】根据分式有意义分母不为零可得2x-4≠0,再解即可.【详解】解:由题意得:2x-4≠0,解得:x≠2,故选:D.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.15.C解析:C【解析】分析:根据二次根式与分式有意义的条件和分式有意义的条件即可求出a的范围.详解:由题意可知:a+4>0∴a>-4故选C.点睛:解题的关键是正确理解二次根式有意义的条件和分式有意义的条件,本题属于基础题型.16.B解析:B【分析】考虑将x=1代入,使分式分子为0,分母不为0,即可得到结果.【详解】解:当x=1时,下列分式中值为0的是222xx--.故选B.【点睛】此题考查了分式的值,熟练掌握运算法则是解本题的关键.17.B解析:B【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】由式子x-5=0,解得x5=±.而x=5时分母5x+≠0,x=-5时分母5x+=0,分式没有意,即x=5,故选B.要注意分母的值一定不能为0,分母的值是0时分式没有意义.18.A解析:A 【解析】 【分析】先根据题意得出2x-y=-3xy ,再代入原式进行计算即可. 【详解】解:∵12x y-=3,∴2x-y=-3xy , ∴原式=()()2232x y xyx y xy-+-+,=633xy xy xy xy-+-+, =32xyxy --, =32, 故选A . 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11 111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.21.A解析:A 【解析】 【分析】x ,y 都扩大为原来的5倍就是分别变成原来的5倍,变成5x 和5y .用5x 和5y 代替式子中的x 和y ,看得到的式子与原来的式子的关系. 【详解】用5x 和5y 代替式子中的x 和y 得:()2255,151032x x x y x y=++则扩大为原来的5倍. 故选:A. 【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键.22.D解析:D 【解析】 【分析】根据二次根式的性质和分式有意义的条件,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【详解】根据题意得:3020x x +≥⎧⎨-≠⎩,解得:x ≥﹣3且x ≠2.故选D .函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.23.C解析:C 【解析】 【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可. 【详解】①()011-=,正确; ②2113333--⨯==,正确;③当m 为偶数时,()()33mm x x -≠-,错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误. 故选C . 【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键.24.D解析:D 【解析】 【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 【详解】A 、该分式的分子、分母中含有公因数2,则它不是最简分式.故本选项错误;B 、分母为a (b+1),所以该分式的分子、分母中含有公因式(b+1),则它不是最简分式.故本选项错误;C 、分母为(a+b )(a-b ),所以该分式的分子、分母中含有公因式(a+b ),则它不是最简分式.故本选项错误;D 、该分式符合最简分式的定义.故本选项正确.故选D.【点睛】本题考查了对最简分式,约分的应用,关键是理解最简分式的定义.25.D解析:D【解析】解:A.原式=1,故A错误;B.x3与x4不是同类项,不能进行合并,故B错误;C.原式=a4b6,故C错误;D.正确.故选D.。

中考数学—分式的真题汇编附答案解析

中考数学—分式的真题汇编附答案解析

一、选择题1.分式b ax ,3c bx -,35acx 的最简公分母是( )A .5cx 3B .15abcxC .15abcx 3D .15abcx 52.分式x 22x 6-- 的值等于0,则x 的取值是 A .x 2= B .x ?2=-C .x 3=D .x ?3=-3.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=-B .x 6=C .x 5≠D .x 5=4.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 5.下列变形正确的是( ). A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 6.下列计算,正确的是( )A .2(2)4--=B 2=-C .664(2)64÷-=D =7.使分式293x x -+的值为0,那么x ( ).A .3x ≠-B .3x =C .3x =±D .3x ≠8.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7 9.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a 10.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+- 11.若 ()1311xx --=,则 x 的取值有 ()A .0 个B .1 个C .2 个D .3 个12.下列各式中,正确的是( )A .a m ab m b +=+ B .a b0a b +=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+13.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米14.下列各式变形正确的是() A .x y x yx y x y -++=---B .22a b a bc d c d--=++ C .0.20.03230.40.0545a b a bc d c d--=++D .a b b ab c c b--=-- 15.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯B .51.0510-⨯C .50.10510-⨯D .410.510-⨯16.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( ) A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m 17.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况18.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事12a =--,则12a ≥-; 22a ba b-+是最简分式;其中正确的有()个. A .1个 B .2个C .3个D .4个19.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( ) A .90.710-⨯ B .90.710⨯C .8710-⨯D .710⨯820.分式212xy 和214x y的最简公分母是( ) A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 321.如果把代数式x yxy+中的x 与y 都扩大到原来的8倍,那么这个代数式的值( ) A .不变 B .扩大为原来的8倍 C .缩小为原来的18D .扩大为原来的16倍22.3--2的倒数是( )A .-9B .9C .19D .-1923.下列运算错误的是( )A 4=B .12100-=C 3=- D 2=24.计算21424m m ++-的结果是( ) A .2m + B .2m -C .12m + D .12m - 25.已知分式32x x +-有意义,则x 的取值范围是( ) A .x ≠-3B .x≠0C .x≠2D .x=2【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积. 【详解】最简公分母为3⨯5⨯a ⨯b ⨯c ⨯x 3=15abcx 3 故答案选:C. 【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.2.A解析:A 【解析】由题意得:20260x x -=⎧⎨-≠⎩,解得:2x =. 故选A.点睛:分式值为0需同时满足两个条件:(1)分子的值为0;(2)分母的值不为0.3.A解析:A 【解析】∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.4.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.5.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.6.C解析:C 【解析】 【详解】 解:A .()2124--=,所以A 错误;B 2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D ==D 错误,故选C .7.B解析:B 【解析】∵由题意可得:2903x x -=+,∴29030x x ⎧-=⎨+≠⎩,∴3x =±且3x ≠-, ∴3x =. 故选B .点睛:分式中字母的取值使分式的值为0,需同时满足两个条件:(1)字母的取值使分子的值为0;(2)字母的取值使分母的值不为0.8.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.000 007 7=7.7×10-6, 故选C.9.D解析:D【解析】解:A .原式=1,故A 错误;B .x 3与x 4不是同类项,不能进行合并,故B 错误;C .原式=a 4b 6,故C 错误;D .正确. 故选D .10.D解析:D 【解析】根据分式的基本性质,可知A 不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y-=-+-,故正确.11.C解析:C 【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案. 【详解】解:∵(1-x )1-3x =1, ∴当1-3x=0时,原式=1, 当x=0时,原式=1, 故x 的取值有2个. 故选C . 【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.12.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误;D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确. 故选D.13.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】35000纳米=35000×10-9米=3.5×10-5米. 故选C . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.D【解析】【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变,可得答案.【详解】A、原式x yx y-=+,所以A选项错误;B、原式=2a bc d-+(),所以B选项错误;C、原式=203405a bc d-+,所以C选项错误;D、a b b ab c c b--=--,所以D选项正确.故选D.【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变.15.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000105=1.05×10-5,故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000005=5×10﹣11.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.B解析:B【解析】【分析】分别算出两次购粮的平均单价,用做差法比较即可.【详解】解:设第一次购粮时的单价是x元/千克,第二次购粮时的单价是y元/千克,甲两次购粮共花费:100x+100y,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x yx y xy++=(千克),乙购粮的平均单价是:2xyx y+;甲乙购粮的平均单价的差是:()()()()22420 222x y xy x yx y xyx y x y x y>+--+-==+++,即22x y xyx y ++>,所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B.【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.18.C解析:C【解析】【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断.【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a=--,则12a≤-,错误;==④分式22a ba b -+是最简分式,正确;故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.19.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为8710-⨯.故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】 分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.21.C解析:C 【解析】【分析】根据x 与y 都扩大到原来的8倍,分别判断出x+y 、xy 的变化情况,即可判断出这个代数式值的变化情况. 【详解】因为x 与y 都扩大到原来的8倍,所以x+y 扩大到原来的8倍,xy 扩大到原来的64倍,所以这个代数式的值缩小为原来的18.所以A 、B 、D 错误,C 正确. 【点睛】本题主要考察了分式的基本性质应用,要熟练掌握分式的基本性质;解答此题的关键在于分别判断出x+y 、xy 的变化情况.22.A解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】 ∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9, 故选A. 【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.23.B解析:B 【解析】 【分析】分别根据立方根及算术平方根的定义对各选项进行逐一解答即可. 【详解】A 、∵42=16=4,故本选项正确;B 、12100-110,故本选项错误;C 、∵(-3)3=-273=-,故本选项正确;D =2,故本选项正确.故选B . 【点睛】本题考查的是立方根及算术平方根,熟知立方根及算术平方根的定义是解答此题的关键.24.D解析:D【解析】【分析】先通分,再加减.注意化简.【详解】21424124(2)(2)2m m m m m m -++==+-+-- 故选:D【点睛】考核知识点:异分母分式加减法.通分是关键.25.C解析:C【解析】分析:根据分式有意义的条件:分母不等于0即可求解.详解:根据题意得:x-2≠0,解得:x≠2.故选C..点睛:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.。

专题04 分式与分式方程-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版)

专题04 分式与分式方程-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版)

专题04 分式与分式方程一.选择题1.(2022·广西玉林)若x 是非负整数,则表示22242(2)x x x x --++的值的对应点落在下图数轴上的范围是( )A .①B .②C .③D .①或②【答案】B【分析】先对分式进行化简,然后问题可求解. 【详解】解:22242(2)x x x x --++ =()()222224(2)2x x x x x +--++ =()2222442x x x x +-++ =()222(2)x x ++=1;故选B .【点睛】本题主要考查分式的运算,熟练掌握分式的减法运算是解题的关键.2.(2022·黑龙江绥化)有一个容积为243m 的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x 3m ,由题意列方程,正确的是( ) A .1212304x x += B .1515244x x += C .3030242x x += D .1212302x x+= 【答案】A【分析】由粗油管口径是细油管的2倍,可知粗油管注水速度是细油管的4倍.可设细油管的注油速度为每分钟x 3m ,粗油管的注油速度为每分钟4x 3m ,继而可得方程,解方程即可求得答案.【详解】解:∵细油管的注油速度为每分钟x 3m ,∵粗油管的注油速度为每分钟4x 3m , ∵1212304x x+=.故选:A . 【点睛】此题考查了分式方程的应用,准确找出数量关系是解题的关键.3.(2022·山东威海)试卷上一个正确的式子(11a b a b ++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A .a a b -B .a b a -C .a a b +D .224a a b - 【答案】A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可. 【详解】解:11a b a b ⎛⎫+÷ ⎪+-⎝⎭∵=2a b + ()()a b a b a b a b -++÷+-∵=2a b+ ∵=()()22a a b a b a b ÷+-+ =a a b-,故选A . 【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.4.(2022·黑龙江)已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠ 【答案】C【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到40m ->且410m --≠,即可求解.【详解】方程两边同时乘以(1)x -,得231x m x -+=-,解得4x m =-,关于x 的分式方程23111x m x x--=--的解是正数, 0x ∴>,且10x -≠,即40m ->且410m --≠,4m ∴>且5m ≠,故选:C .【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键. 5.(2022·广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+ 【答案】D【分析】设边衬的宽度为x 米,则整幅图画宽为(1.4+2x )米, 整幅图画长为(2.4+2x )米,根据整幅图画宽与长的比是8:13,列出方程即可.【详解】解:设边衬的宽度为x 米,根据题意,得1.4282.4213x x +=+,故选:D . 【点睛】本题考查分式方程的应用,根据题意找出等量关系是解题的关键.6.(2022·海南)分式方程2101x -=-的解是( ) A .1x =B .2x =-C .3x =D .3x =- 【答案】C【分析】按照解分式方程的步骤解答即可. 【详解】解:2101x -=- 2-(x -1)=02-x +1=0-x =-3x =3检验,当x =3时,x -1≠0,故x =3是原分式方程的解.故答案为C .【点睛】本题主要考查了解分式方程,解分式方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1,以及检验,特别是检验是解分式方程的关键.7.(2022·内蒙古通辽)若关于x 的分式方程:121222k x x --=--的解为正数,则k 的取值范围为( ) A .2k < B .2k <且0k ≠ C .1k >-D .1k >-且0k ≠【答案】B【分析】先解方程,含有k 的代数式表示x ,在根据x 的取值范围确定k 的取值范围.【详解】解:∵121222k x x--=--, ∵()22121x k --+=-,解得:2x k =-,∵解为正数,∵20k ->,∵2k <,∵分母不能为0,∵2x ≠,∵22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.8.(2022·贵州铜仁)下列计算错误的是( )A .|2|2-=B .231-⋅=a a aC .2111a a a -=+-D .()323a a = 【答案】D【分析】根据绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则求解即可.【详解】解:A 、|2|2-=,计算正确,不符合题意;B 、2311aa a a --=⋅=,计算正确,不符合题意; C 、()()2111111a a a a a a +--==+--,计算正确,不符合题意; D 、()326a a =,计算错误,符合题意;故选D . 【点睛】本题主要考查了绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则,熟知相关知识是解题的关键.9.(2022·广西贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm .已知91nm 10m -=,则28nm 用科学记数法表示是( )A .92810m -⨯B .92.810m -⨯C .82.810m -⨯D .102.810m -⨯【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:∵91nm 10m -=,∵28nm=2.8×10-8m .故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(2022·山东潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是( )A .4271100%14.0%4271x -⨯=- B .4271100%14.0%4271x -⨯=- C .4271100%14.0%x x -⨯=- D .4271100%14.0%x x-⨯=- 【答案】D【分析】根据题意列式即可.【详解】解:设2021年3月原油进口量为x 万吨,则2022年3月原油进口量比2021年3月增加(4271-x )万吨, 依题意得:4271100%14.0%x x-⨯=-,故选:D . 【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.11.(2022·辽宁营口)分式方程322x x =-的解是( ) A .2x =B .6x =-C .6x =D .2x =- 【答案】C 【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可. 【详解】解:322x x =-, 去分母,得3(2)2x x -=, 去括号,得362x x -=,移项,得326x x -=,所以6x =.经检验,6x =是原方程的解.故选:C .【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.12.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是( )A .144963030v v =+-B .1449630v v =-C .144963030v v =-+D .1449630v v=+ 【答案】A【分析】先分别根据“顺流速度=静水速度+江水速度”、“逆流速度=静水速度-江水速度”求出顺流速度和逆流速度,再根据“沿江顺流航行144km 与逆流航行96km 所用时间相等”建立方程即可得.【详解】解:由题意得:轮船的顺流速度为(30)km/h v +,逆流速度为(30)km/h v -, 则可列方程为144963030v v=+-, 故选:A .【点睛】本题考查了列分式方程,正确求出顺流速度和逆流速度是解题关键.13.(2022·山东临沂)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为( )A .0.9850.75x ⨯=B .0.9850.755x ⨯=+ C .0.7550.98x ⨯= D .0.7550.985x ⨯=- 【答案】B【分析】利用酒精的总质量不变列方程即可.【详解】设需要加水kg x , 由题意得0.9850.755x⨯=+, 故选:B .【点睛】本题考查了分式方程的实际应用,准确理解题意,找到等量关系是解题的关键.14.(2022·黑龙江哈尔滨)方程233x x =-的解为( ) A .3x =B .9x =-C .9x =D .3x =-【答案】C【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】解:233x x =- 去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.15.(2022·江苏无锡)方程213x x =-的解是( ). A .3x =-B .1x =-C .3x =D .1x = 【答案】A【分析】根据解分式方程的基本步骤进行求解即可.先两边同时乘最简公分母(3)x x -,化为一元一次方程;然后按常规方法,解一元一次方程;最后检验所得一元一次方程的解是否为分式方程的解.【详解】解:方程两边都乘(3)x x -,得23x x =-解这个方程,得3x =-检验:将3x =-代入原方程,得 左边13=-,右边13=-,左边=右边. 所以,3x =-是原方程的根.故选:A .【点睛】本题考查解分式方程,熟练掌握解分式方程的基本步骤和验根是解题的关键.16.(2022·山东青岛)我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )A .7310-⨯B .60.310-⨯C .6310-⨯D .7310⨯【答案】A 【分析】绝对值较小的数的科学记数法的一般形式为:a ×10-n ,在本题中a 应为3,10的指数为-7.【详解】解:0.00000037310故选A【点睛】本题考查的是用科学记数法表示绝对值较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.17.(2022·黑龙江牡丹江)函数y x 的取值范围是【 】 A .x≥1且x≠3B .x≥1C .x≠3D .x >1且x≠3 【答案】A【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0x 10x 1{{x 1x 30x 3-≥≥⇒⇒≥-≠≠且x 3≠.故选A .考点:函数自变量的取值范围,二次根式和分式有意义的条件.二.填空题18.(2022·湖南)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S =__. 【答案】201182【分析】通过探索数字变化的规律进行分析计算. 【详解】解:13111311123222212a ===⨯+-⨯⨯⨯+; 2551113123424222222a ===⨯+-⨯⨯⨯+; 3771113134560232232a ===⨯+-⨯⨯⨯+; ⋯,()()2111131122122n n a n n n n n n +==⨯+-⨯++++,当12n =时, 原式11111113111122312231323414⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++++⋅⋅⋅-⨯++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭201182=, 故答案为:201182. 【点睛】本题考查分式的运算,探索数字变化的规律是解题关键.19.(2022·黑龙江牡丹江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务 .设乙车间每天生产x 个,可列方程为___________ . 【答案】40050010x x =+ 【分析】设乙车间每天生产x 个,根据甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务可列出方程.【详解】解:设乙车间每天生产x 个,则40050010x x =+. 故答案为:40050010x x =+. 【点睛】本题考查理解题意的能力,关键设出生产个数,以时间作为等量关系列分式方程.20.(2022·湖南长沙)分式方程253x x =+的解是_____________ . 【答案】x =2【详解】解:两边同乘x (x +3),得2(x +3)=5x ,解得x =2,经检验x =2是原方程的根;故答案为:x =2.【点睛】考点:解分式方程.21.(2022·黑龙江哈尔滨)在函数53x y x =+中,自变量x 的取值范围是___________. 【答案】35x ≠- 【分析】根据分式中分母不能等于零,列出不等式530x +≠,计算出自变量x 的范围即可.【详解】根据题意得:530x +≠∵53x ≠- ∵35x ≠- 故答案为:35x ≠-【点睛】本题考查了函数自变量的取值范围,分式有意义的条件,分母不为零,解答本题的关键是列出不等式并正确求解.22.(2022·四川广元)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为_____.【答案】3.4×10-10【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂.【详解】100.00000000034 3.410-=⨯故答案为:103.410-⨯.【点睛】本题考查用科学记数法表示绝对值小于1的数,一般形式为a ×10-n ,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的 0的个数决定.23.(2022·湖南郴州)若23a b b -=,则a b=________. 【答案】53 【分析】由分式的运算法则进行计算,即可得到答案. 【详解】解:23a b b -= ()32a b b ∴-=,332,a b b ∴-= 35,a b ∴=53a b ∴=; 故答案为:53. 【点睛】本题考查了分式的运算法则,解题的关键是掌握运算法则进行计算.24.(2022·山东青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x 米/分,那么x 满足的分式方程为__________.【答案】300030003(125%)x x-=+ 【分析】根据比赛时小亮的平均速度比训练前提高了25%,可得比赛时小亮平均速度为(1+25%)x 米/分,根据比赛时所用时间比训练前少用3分钟列出方程.【详解】解:∵比赛时小亮的平均速度比训练前提高了25%,小亮训练前的平均速度为x 米/分, ∵比赛时小亮平均速度为(1+25%)x 米/分, 根据题意可得300030003(125%)x x -=+, 故答案为:300030003(125%)x x-=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 25.(2022·北京)方程215x x=+的解为___________. 【答案】x =5【分析】观察可得最简公分母是x (x +5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,再进行检验即可得解. 【详解】解:215x x =+ 方程的两边同乘x (x +5),得:2x =x +5, 解得:x =5, 经检验:把x =5代入x (x +5)=50≠0. 故原方程的解为:x =5【点睛】此题考查了分式方程的求解方法,注意掌握转化思想的应用,注意解分式方程一定要验根,26.(2022·内蒙古包头)计算:222a b ab a b a b-+=--___________. 【答案】-a b ##b a -+【分析】分母相同,分子直接相加,根据完全平方公式的逆用即可得.【详解】解:原式=2222()a b ab a b a b a b a b+--==---, 故答案为:-a b .【点睛】本题考查了分式的加法,解题的关键是掌握完全平方公式.27.(2022·山东威海)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.【答案】1【分析】根据程序分析即可求解.【详解】解:∵输出y 的值是2,∵上一步计算为121x=+或221x =- 解得1x =(经检验,1x =是原方程的解),或32x =当10x =>符合程序判断条件,302x =>不符合程序判断条件 故答案为:1 【点睛】本题考查了解分式方程,理解题意是解题的关键.28.(2022·黑龙江齐齐哈尔)若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是______________.【答案】m >0且m ≠1【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可.【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ,整理得到:1x m =+,∵分式方程的解大于1,∵11m +>,解得:0m >,又分式方程的分母不为0,∵12m 且12m ,解得:1m ≠且3m ≠-, ∵m 的取值范围是m >0且m ≠1.【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件. 29.(2022·广西)当x =______时,分式22x x +的值为零. 【答案】0【分析】根据分式值为零,分子等于零,分母不为零得2x =0,x +2≠0求解即可.【详解】解:由题意,得2x =0,且x +2≠0,解得:x =0,故答案为:0.【点睛】本题考查分式值为零的条件,熟练掌握分式值为零的条件“分子为零,分母不为零”是解题的关键.30.(2022·湖南永州)解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 【答案】()1x x +【分析】根据解分式方程的方法中确定公分母的方法求解即可. 【详解】解:分式方程2101x x -=+的两个分母分别为x ,(x +1), ∴最简公分母为:x (x +1),故答案为:x (x +1).【点睛】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键. 31.(2022·湖南岳阳)分式方程321x x =+的解为x =______. 【答案】2【分析】去分母,移项、合并同类项,再对所求的根进行检验即可求解. 【详解】解:321x x =+, 322=+x x ,2x =,经检验2x =是方程的解.故答案为:2.【点睛】本题主要考查解分式方程,熟练掌握分式方程的解法,注意对所求的根进行检验是解题的关键.32.(2022·四川内江)对于非零实数a ,b ,规定a ∵b =11a b-,若(2x ﹣1)∵2=1,则x 的值为 _____. 【答案】56【分析】根据题意列出方程,解方程即可求解.【详解】解:由题意得:11212x --=1, 等式两边同时乘以2(21)x -得,2212(21)x x -+=-, 解得:56x =, 经检验,x =56是原方程的根, ∵x =56, 故答案为:56. 【点睛】本题考查了解分式方程,掌握分式方程的一般解法是解题的关键.三.解答题33.(2022·黑龙江牡丹江)先化简,再求值:23224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.【答案】28x +,10.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】解:原式=()()()()2322422x x x x x x x x +---⋅-+ =()()()()()242222x x x x x x x +-+⋅-+=2(x +4)=2x +8当x =-2,0,2时,分式无意义当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.34.(2022·湖南)先化简2121(1)1221a a a a a ---÷+--+,再从1,2,3中选一个适当的数代入求值. 【答案】31a -,32【分析】先根据分式的混合运算的法则进行化简后,再根据分式有意义的条件确定a 的值,代入计算即可.【详解】解:原式()2221121a a a a a --=⋅+---2111a a =+-- 31a =-; 因为1a =,2时分式无意义,所以3a =,当3a =时,原式32=. 【点睛】本题考查分式的化简与求值,掌握分式有意义的条件以及分式混合运算的方法是正确解答的关键.35.(2022·辽宁营口)先化简,再求值:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭,其中11|2|2a -⎛⎫=-- ⎪⎝⎭.【答案】22a a -+,15. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再利用算术平方根、绝对值、负整数指数幂计算出a 的值,代入计算即可求出值. 【详解】解:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭ 22(1)52(2)11a a a a a +--+=÷++ 22411(2)a a a a -+=⋅++ 2(2)(2)11(2)a a a a a +-+=⋅++ =22a a -+,当11|2|23223a -⎛⎫-- =+⎪-⎭=⎝时, 原式=3232-+=15. 【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.还考查了算术平方根、绝对值、负整数指数幂.36.(2022·黑龙江哈尔滨)先化简,再求代数式21321211x x x x x -⎛⎫-÷ ⎪--+-⎝⎭的值,其中2cos451x =︒+.【答案】11x -,2【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得. 【详解】解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅- 11x =-∵211x ==∵原式===.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则以及特殊角三角函数值.37.(2022·内蒙古赤峰)先化简,再求值:221111a a a a -⎛⎫+÷ ⎪+-⎝⎭,其中114cos 452a -⎛⎫= ⎪⎝⎭︒. 【答案】33a -;3【分析】由分式的加减乘除运算法则进行化简,然后求出a 的值,再代入计算,即可得到答案. 【详解】解:221111a a a a -⎛⎫+÷ ⎪+-⎝⎭ =1211(1)(1)a a a a a a ++-÷+-+ =3(1)(1)1a a a aa -+⨯+ =33a -;∵114cos 452422a -︒=-⎛⎫= ⎪⎭=⎝, 把2a =代入,得原式=3233⨯-=.【点睛】本题考查了分式的加减乘除混合运算,二次根式的性质,负整数指数幂,特殊角的三角函数值等知识,解题的关键是熟练掌握运算法则,正确的进行解题.38.(2022·黑龙江大庆)先化简,再求值:222a ab a b b ⎛⎫--÷ ⎪⎝⎭.其中2,0a b b =≠. 【答案】a a b +,23【分析】根据分式的减法和除法可以化简题目中的式子,然后将2a b =代入化简后的式子即可解答本题. 【详解】222a ab a b b ⎛⎫--÷ ⎪⎝⎭=222a ab a b bb b ⎛⎫--÷ ⎪⎝⎭ =222a ab a b b b--÷ =()()()a a b b b a b a b -+- =a a b+ 当2,0a b b =≠时,原式=222233b b b b b ==+. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式减法和除法的运算法则和计算方法.39.(2022·四川雅安)(1)计算:2+|﹣4|﹣(12)﹣1;(2)化简:(1+2a a -)÷22444a a a --+,并在﹣2,0,2中选择一个合适的a 值代入求值. 【答案】(1)5;(2)2,2a 当0a =时,分式的值为1.【分析】(1)先计算二次根式的乘方运算,求解绝对值,负整数指数幂的运算,再合并即可;(2)先计算括号内的分式的加法运算,同步把除法转化为乘法运算,再约分可得化简后的结果,再结合分式有意义的条件可得0,a = 从而可得分式的值.【详解】解(1)2+|﹣4|﹣(12)﹣1 3425=(2)(1+2a a -)÷22444a a a --+ 222222a a aaa a2222a a a 22a =+ 2a ≠且2,a ≠-当0a =时,原式2 1.2 【点睛】本题考查的是实数的混合运算,二次根式的乘法运算,分式的化简求值,负整数指数幂的含义,掌握以上基础运算是解本题的关键.40.(2022·湖北鄂州)先化简,再求值:21a a +﹣11a +,其中a =3. 【答案】1a -,2 【分析】先根据同分母分式的减法计算法则化简,然后代值计算即可.【详解】解:2111a a a -++ 2=11a a -+ ()()11=1a a a +-+ 1a =-,当3a =时,原式312=-=.【点睛】本题主要考查了分式的化简求值,熟知同分母分式的减法计算法则是解题的关键.41.(2022·福建)先化简,再求值:2111a a a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -,2. 【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案. 【详解】解:原式()()111a a a aa+-+=÷ ()()111a a a a a +=⋅+- 11a =-.当1a 时,原式2=. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.42.(2022·贵州黔东南)(1)计算:()03π12 1.572-⎛⎫-- ⎪⎝⎭; (2)先化简,再求值:2221111202220221x x x x x x ++-⎛⎫÷-+ ⎪---⎝⎭,其中cos60x =︒.【答案】(1)(2)2-【分析】(1)先每项化简,再加减算出最终结果即可;(2)先因式分解,化除为乘,通分,化简;再带入数值计算即可.【详解】(1)30(1)|2( 1.57)2π--+-31221(1)=++--1221=-++-=;(2)222111(1)202220221x x x x x x ++-÷-+--- 2(1)2022112022(1)(1)1x x x x x x x +-+-=⋅--+-- 111x x x x +=--- 11x =-∵1cos 602x ︒==, ∵原式=12112==--.【点睛】本题考查了实数的混合运算,分式的化简求值,二次根式的性质,特殊角的三角函数值,零指数幂和负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.43.(2022·湖南永州)先化简,再求值:2121x x x xx -+⎛⎫÷- ⎪⎝⎭,其中1x =. 【答案】1x -【分析】先将括号内的分式进行合并,将分式的分子分母进行因式分解,并约分即可,再代入求值即可. 【详解】解:原式2121x x x x-+-=÷ ()()111x x x x x +-=⋅+ 1x =-当1x =时,原式11=-【点睛】本题考查分式的混合运算,因式分解,能够熟练掌握运算顺序是解决本题的关键.44.(2022·广西梧州)解方程:24133x x -=-- 【答案】5x =【分析】先方程两边同时乘以(3)x -,化成整式方程求解,然后再检验分母是否为0即可.【详解】解:方程两边同时乘以(3)x -得到:324x -+=,解出:5x =,当5x =时分式方程的分母不为0,∵分式方程的解为:5x =.【点睛】本题考查了分式方程的解法,属于基础题,计算过程中细心即可.45.(2022·广西玉林)解方程:1122x x x x -=--. 【答案】1x =-【分析】两边同时乘以公分母()1x -,先去分母化为整式方程,计算出x ,然后检验分母不为0,即可求解. 【详解】1122x x x x -=--,()112x x =-, 解得1x =-,经检验1x =-是原方程的解,故原方程的解为:1x =-【点睛】本题考查解分式方程,注意分式方程要检验.46.(2022·广东)先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式的化简求值,掌握平方差公式是解题关键.47.(2022·内蒙古通辽)先化简,再求值:242a a a a ⎛⎫--÷ ⎪⎝⎭,请从不等式组104513a a +>⎧⎪-⎨≤⎪⎩ 的整数解中选择一个合适的数求值.【答案】22a a +,3【分析】根据分式的加减运算以及乘除运算法则进行化简,然后根据不等式组求出a 的值并代入原式即可求出答案. 【详解】解:242a a a a ⎛⎫--÷ ⎪⎝⎭ 2242a a a a -=⋅- ()()2222a a a a a +-=⋅- 22a a =+,104513a a +>⎧⎪⎨-≤⎪⎩①②, 解不等式①得:1a >-解不等式②得:2a ≤,∵12a -<≤,∵a 为整数,∵a 取0,1,2,∵0,20a a ≠-≠,∵a =1,当a =1时,原式21213=+⨯=.【点睛】本题考查分式的化简求值,解一元一次不等式组,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型.48.(2022·山东聊城)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中112sin 452a -⎛⎫=︒+ ⎪⎝⎭.【答案】2a a -1 【分析】运用分式化简法则:先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答. 【详解】解:()()()222244422222a a a a a a a a a a a a +---⎛⎫÷--=⨯- ⎪--⎝⎭- 22222a a a a a +=-=---,∵112sin 452222a -⎛⎫=︒+== ⎪⎝⎭,代入得:原式1=;故答案为:2a a -1. 【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.49.(2022·山东潍坊)(12103时,小亮的计算过程如下:解:2103= 41627316+-+=- 2=-小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①224-=;②10(1)1-=-;③66-=-;____________________________________________________________________________.请写出正确的计算过程.(2)先化简,再求值:22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭,其中x 是方程2230x x --=的根. 【答案】(1)⑤(-2)-2=14,⑥(-2)0=1;28;(2)13x +,12. 【分析】(1)根据乘方、绝对值、特殊角的三角函数值、立方根、负整数指数幂、零指数幂的法则计算即可;(2)先把括号内通分,接着约分得到原式=13x +,然后利用因式分解法解方程x 2-2x -3=0得到x 1=3,x 2=-1,则利用分式有意义的条件把x =-1代入计算即可.【详解】(1)其他错误,有:⑤(-2)-2=14,⑥(-2)0=1, 正确的计算过程:2103= 41627111--++=-+ =28;(2)22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭ 223(3)(3)(3)x x x x x x x -+-=⋅-+ 23(3)(3)(3)x x x x x x +-=⋅-+ =13x +, ∵x 2-2x -3=0,∵(x -3)(x +1)=0,x -3=0或x +1=0,∵x 1=3,x 2=-1,∵x =3分式没有意义,∵x 的值为-1,当x =-1时,原式=113-+=12. 【点睛】本题考查了实数的运算,解一元二次方程---因式分解法,分式的化简求值.也考查了特殊角的三角函数值、立方根、负整数指数幂、零指数幂.50.(2022·辽宁锦州)先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中|1x =+.【答案】11x -,2 【分析】根据分式的运算法则“除以一个数等于乘以它的倒数”把除法改写成乘法;利用平方差公式和完全平方公式将分式的分子分母分别因式分解;约分化简后,求x 的值;去掉绝对值符号时注意正负,正数的绝对值是他本身,负数的绝对值是它的相反数,最后将x 的值代入原式.【详解】解:原式=2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭=23(1)11()(1)(1)311x x x x x x x x -+-⨯-++---- =111x x x x +--- =11x -|1x =+1∴原式【点睛】此题考查了分式的混合运算,熟练地掌握分式的混合运算法则和用公式法进行因式分解是解题的关键.注意最后求值的结果要分母有理化.51.(2022·四川广安)先化简:2242(2)244x x x x x x -++÷--+,再从0、1、2、3中选择一个适合的数代人求值. 【答案】x ;1或者3【分析】根据分式的混合运算法则即可进行化简,再根据分式有意义的条件确定x 可以选定的值,代入化简后的式子即可求解. 【详解】2242(2)244x x x x x x -++÷--+ 224(2)(2)44222[]x x x x x x x x+--+⨯=+--- 2244(2)2(2)x x x x x +--=-⨯-222x x x x=-⨯- x =根据题意有:0x ≠,20x -≠,故0x ≠,2x ≠,即在0、1、2、3中,当x =1时,原式=x =1;当x =3时,原式=x =3.【点睛】本题主要考查了运用分式的混合运算法则将分式的化简并求值、分式有意义的条件等知识,熟练掌握分式的混合运算法则是解题的关键.52.(2022·广西贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?【答案】(1)绳子的单价为7元,实心球的单价为30元(2)购买绳子的数量为30条,购买实心球的数量为10个【分析】(1)设绳子的单价为x 元,则实心球的单价为(23)x +元,根据“84元购买绳子的数量与360元购买实心球的数量相同”列出分式方程,解分式方程即可解题;(2)根据“总费用为510元,且购买绳子的数量是实心球数量的3倍”列出一元一次方程即可解题.(1)解:设绳子的单价为x 元,则实心球的单价为(23)x +元, 根据题意,得:8436023x x =+, 解分式方程,得:7x =,经检验可知7x =是所列方程的解,且满足实际意义,∵2330x +=,答:绳子的单价为7元,实心球的单价为30元.(2)设购买实心球的数量为m 个,则购买绳子的数量为3m 条,根据题意,得:7330510m m ⨯+=,解得10m =∵330m =答:购买绳子的数量为30条,购买实心球的数量为10个.【点睛】本题考查分式方程和一元一次方程的应用,根据题目中的等量关系列出方程是解题的关键. 53.(2022·辽宁)2022年3月23日“天官课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A 、B 两款物理实验套装,其中A 款套装单价是B 款套装单价的1.2倍,用9900元购买的A 款套装数量比用7500元购买的B 款套装数量多5套.求A 、B 两款套装的单价分别是多少元.【答案】A 款套装的单价是180元、B 款套装的单价是150元.【分析】设B 款套装的单价是x 元,则A 款套装的单价是1.2x 元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设B 款套装的单价是x 元,则A 款套装的单价是1.2x 元, 由题意得:9900750051.2x x=+, 解得:x =150,经检验,x =150是原方程的解,且符合题意,∵1.2x =180.答:A 款套装的单价是180元、B 款套装的单价是150元.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,正确列出分式方程.54.(2022·贵州贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【答案】每辆大货车货运量是16吨,每辆小货车货运量是12吨【分析】设小货车货运量x 吨,则大货车货运量()4x +,根据题意,列出分式方程,解方程即可求解.【详解】解:设小货车货运量x 吨,则大货车货运量()4x +,根据题意,得,80604x x=+, 解得12x =,经检验,12x =是原方程的解,412416x +=+=吨,答:每辆大货车货运量是16吨,每辆小货车货运量是12吨.【点睛】本题考查了分式方程的应用,根据题意列出方程是解题的关键.。

中考数学—分式的真题汇编含答案

中考数学—分式的真题汇编含答案

一、选择题1.下列计算正确的是( ). A .32b b b x x x+= B .0a a a b b a -=-- C .2222bc a a b c ab⋅=D .22()1aa a a a -÷=- 2.化简:(a-2)·22444a a a --+的结果是( )A .a-2B .a +2C .22-+a a D .22+-a a 3.下列等式成立的是( ) A .212x y x y=++ B .2(1)(1)1x x x ---=- C .x xx y x y=--++ D .22(1)21x x x --=++ 4.分式(a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的C .不变D .缩小为原来的 5.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯6.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .a b d c <<<7.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥38.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1C .1-D .±19.化简21(1)211x x x x ÷-+++的结果是( )A .11x + B .1x x+ C .x +1 D .x ﹣110.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的11.下列各式12x y +,52a b a b --,2235a b -,3m ,37xy中,分式共有( )个.A .2B .3C .4D .512.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 13.分式中,最简分式个数为( )个.A .1B .2C .3D .414.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+=D .0.250.25a b a ba b a b++=++15.已知为整数,且分式的值为整数,则可取的值有( )A .1个B .2个C .3个D .4个16.已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A .12- B . 0 C .8 D .128或 17.(2015秋•郴州校级期中)当x=3,y=2时,代数式的值是( )A .﹣8B .8C .D .18.在,,中,是分式的有( )A .0个B .1个C .2个D .3个 19.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9B .227C .πD .(3)020.下列分式中,最简分式是( ) A .B .C .D .21.下列4个分式:①;②;③;④中最简分式有( )A .1个B .2个C .3个D .4个22.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5 C .2.1×10-6 D .21×10-623.若02(1)2(2)x x ----无意义,则x 的取值范围是( )A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x =24.化简-的结果是( ) A .B .C .D .25.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣5【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 A 选项:∵334b b b b b x x x x++==,∴A 错误; B 选项:∵2a a a a aa b b a a b a b a b -=+=-----,∴B 错误; C 选项:∵2222bc a a b c ab⋅=,故C 正确; D 选项:∵221()(1)(1)1a a a a a a a a a--÷=-⋅=--,∴D 错误; 故选C.2.B解析:B . 【解析】试题解析:原式=(a-2)•2(2)(2)(2)a a a +--=a+2,故选B .考点:分式的乘除法.3.D解析:D 【分析】此题考查了分式的基本性质,解答此类题一定要熟练掌握分式的基本性质是解题的关键.根据分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,即可得出答案. 【详解】A 、2122x y x y =++,22x y +≠1x y+,不符合题意;B 、(-x-1)(1-x )=[-(x+1)](1-x )=-(1-x 2)=x 2-1,不合题意;C 、x x y -+=--x x y ,x x y -+≠-+x x y,不合题意;D 、(-x-1)2=x 2+2x+1,符合题意. 故选D.考点:分式的基本性质.4.B解析:B 【解析】,分式的值缩小为原来的 .故选B .5.B解析:B 【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B 【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.6.D解析:D【解析】试题解析:因为a=-3-2=-211=-39, b=-0.32=-0.09, c=(-13)-2=21913=⎛⎫- ⎪⎝⎭,d=(-15)0=1, 所以c >d >a >b . 故选D .【点睛】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数>0;0>负数;两个负数,绝对值大的反而小.7.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.8.B解析:B 【解析】由题意得:101x x -=⇒= ,故选B.9.A解析:A 【分析】根据分式混合运算法则计算即可. 【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ . 故选:A . 【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.10.B解析:B 【解析】试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的.考点:分式的值11.B解析:B 【解析】试题解析:2235a b -,37xy的分母中均不含有字母,因此它们是整式,而不是分式.12x y +,52a b a b --,3m的分母中含有字母,因此是分式. 故选B .12.C解析:C . 【解析】试题分析:先把2222-21a a a a a ++++进行化简得222(1)a a a -+,再把012=-+a a 化简为:2-a 2=a+1,21a a +=,代入即可求值.试题解析:2222222(2)21(1)a a a a a a a a a a ++-+-=++++ =222(1)a a a -+ ∵012=-+a a ∴2-a 2=a+1,21a a +=原式=2211111(1)(1)1a a a a a a a +====+++ 故选C . 考点:分式的值.13.C解析:C 【解析】根据最简分式的定义——分子和分母没有公因式的分式.易得共3个是最简分式:,,故选C.14.D解析:D 【解析】 A 选项错误,x y x y -+=-y xy x-+;B 选项错误, x y y x +-=x y y x y x y x +---()()()()=()222y xx y --;C 选项错误,2a a ab+=1a a ab +()=1a b +;D 选项正确. 故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变.解析:C 【详解】==,由题意可知x-1=1,-1,-2,2为整数,且x≠±1,解得:x=2,0,3 故选:C.16.C解析:C 【解析】试题分析:因为032=-b a ,所以3a=b 2,所以234=83122a b b b b a b b b b++==--,故选:C . 考点:分式的化简求值.17.C解析:C 【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x=3,y=2代入进行计算即可. 解:原式=•=﹣,当x=3,y=2时,原式=﹣=﹣. 故选C .考点:分式的化简求值.18.C解析:C【解析】解:的分母中不含有字母,因此它们是整式,而不是分式.,的中分母中含有字母,因此是分式. 故选:C .19.C解析:C 【解析】9,227是无限循环小数,π是无限不循环小数,031=,所以π是无理数,故选C .解析:B 【解析】试题分析:选项A ,原式=,所以A 选项错误;选项B ,是最简分式,所以B 选项正确;选项C ,原式=,所以C 选项错误;选项D ,原式=,所以D 选项错误.故选B . 考点:最简分式.21.B解析:B 【解析】①是最简分式;②,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个; 故选:B.22.C解析:C【解析】0.0000021=2.1×10-6,故选C .23.C解析:C 【解析】∵()()02x 12x 2----无意义, ∴x −1=0或x −2=0, ∴x=1或x=2. 故选C.24.D解析:D 【解析】试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8.故选B.。

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。

初三数学分式试题答案及解析

初三数学分式试题答案及解析

初三数学分式试题答案及解析1.分式在实数范围内有意义,则x的取值范围是.【答案】.【解析】根据分式分母不为0的条件,要使在实数范围内有意义,必须.【考点】分式有意义的条件.2.方程的解是.【答案】x=2.【解析】首先去掉分母,观察可得最简公分母是x(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:方程的两边同乘x(x+2),得2x=x+2,解得x=2.检验:把x=2代入x(x+2)=8≠0.∴原方程的解为:x=2.【考点】解分式方程.3.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2【答案】D【解析】分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选D.【考点】最简公分母4.先化简,再求值:(a+)÷(a﹣2+),其中,a满足a﹣2=0.【答案】;3【解析】先将每一个括号中的两项通分并利用同分母分式的加法法则计算,然后按照分式除法法则进行变形,约分即可得到最简结果,将a的值代入计算即可求出值.试题解析:原式=÷=•=,当a﹣2=0,即a=2时,原式=3.【考点】分式的化简求值5.先化简,再求值:(﹣)•(x﹣1),其中x=2.【答案】【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x的值代入计算即可求出值.试题解析:解:原式=•(x﹣1)=,当x=2时,原式=.【考点】分式的化简求值6.随着城市雾霾的日益严重,人民越来越重视空气质量和呼吸防护.为了确保员工的身心健康,某供电公司决定向户外工作的员工发放防PM2.5粉尘口罩,应对持续的雾霾天气.经统计,供电公司第一批急需600只口罩.经过A、B、C三个纺织厂的竞标得知,A、B两厂的工作效率相同,且都为C厂的2倍.若由一个纺织厂单独完成,C厂比A 厂要多用10天.供电公司决定由三个纺织厂同时纺织,要求至多6天完成纺织工作.三个纺织厂都按原来的工作效率纺织2天时,供电公司提出急需第二批口罩360只,为了不超过6天时限,纺织厂决定从第3天开始,各自都提高工作效率,A、B厂提高的工作效率仍然都是C厂提高的2倍,这样他们至少还需要3天才能成整个纺织工作.⑴求A厂原来平均每天纺织口罩的只数;⑵求A厂提高工作效率后平均每天多纺织口罩的只数的取值范围.【答案】(1)60;(2)6≤2m≤28.【解析】(1)设C厂原来平均纺织口罩x只,则A、B两厂平均纺织口罩2x只.此题的等量关系为:由一个纺织厂单独完成,C厂比A 厂要多用10天.据此列出方程;(2)设C厂提高工效后平均每天多纺织口罩m只.则施工2天时,已纺织(60+60+30)×2=300只,从第3天起还需纺织口罩的只数应为(300+360)=660只.根据“从第3天开始,各自都提高工作效率,A、B厂提高的工作效率仍然都是C厂提高的2倍,这样他们至少还需要3天才能成整个纺织工作”列出不等式.试题解析:(1)设C厂原来平均纺织口罩x只,根据题意得:解得:x=30经检验:x=30是原方程的根,则2x=60.答:A厂原来平均每天纺织口罩60只.(2)设C厂提高工效后平均每天多纺织口罩m只.施工2天时,已纺织(60+60+30)×2=300只,从第3天起还需纺织口罩的只数应为(300+360)=660只.根据题意得:解得:3≤m≤14∴6≤2m≤28答:A厂提高工效后,平均每天多纺织口罩的只数的取值范围是:6≤2m≤28.【考点】1.分式方程的应用;2.一元一次不等式组的应用.7.计算:【答案】x.【解析】将各分式分子分母因式分解后约分即可.试题解析:原式.【考点】1.分式的化简;2.提公因式法和应用公式法因式分解.8.化简分式的结果是A.2B.C.D.﹣2【解析】原式=故选A.【考点】分式的化简.9.化简:·.【答案】【解析】解:原式=×=.10.先化简,再求值:,其中x=【答案】.【解析】先对分式进行化简,再求值.试题解析:,把x=代入上式,原式=.【考点】分式的化简求值.11.下列等式正确的有A.=B.=C.=(a≠0)D.=(a≠-1)【答案】D【解析】依据分式的基本性质进行判断.==(a≠-1),所以选D.12.下列分式中,不论x取何值,都有意义的是A.B.C.D.【答案】B【解析】不论x取何值,都有意义,就是说不论x取何值,分式的分母都不等于0,而x2+1永远不等于0,选B.13.若,则的值等于().A.B.C.D.5【答案】A.【解析】∵;∴.【考点】分式的求值.14.若式子有意义,则x的取值范围是()A.x≥-2B.x>-2且x≠1C.x≤-2D.x≥-2且x≠1【答案】D.【解析】根据二次根式及分式有意义的条件解答即可.根据二次根式的性质可知:x+2≥0,即x≥-2,又因为分式的分母不能为0,所以x-1≠0,即x≠1;所以x的取值范围是x≥-2且x≠1.故选D.考点: 1.二次根式有意义的条件,2.分式有意义的条件.15.先化简再求值:,其中.【答案】,2.【解析】先将括号里面的通分后,将除法转换成乘法,约分化简。

中考数学 真题精选 专题试卷 分式(含答案解析) (含答案解析)

中考数学 真题精选 专题试卷  分式(含答案解析) (含答案解析)

分式一.选择题(共11小题)1.(•台州)把多项式2x2﹣8分解因式,结果正确的是()﹣2.(•枣庄)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()=73.(•衡阳)若分式的值为0,则x的值为()4.(•丽水)分式﹣可变形为()﹣=﹣,5.(•山西)下列运算错误的是().=1=,正确,6.(•南昌)下列运算正确的是()•=﹣1 +=﹣1==7.(•义乌市)化简的结果是()﹣==8.(•济南)化简﹣的结果是()=9.(•山西)化简﹣的结果是()B﹣﹣,10.(•江西)下列运算正确的是()+=﹣1 •=﹣1=•=11.(•益阳)下列等式成立的是().+====﹣==,错误,二.填空题(共13小题)12.(•黄冈)分解因式:x3﹣2x2+x=x(x﹣1)2.13.(•黄石)分解因式:3x2﹣27=3(x+3)(x﹣3).14.(•巴中)分解因式:2a2﹣4a+2=2(a﹣1)2.15.(•潍坊)因式分解:ax2﹣7ax+6a=a(x﹣1)(x﹣6).16.(•菏泽)若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=4.17.(•内江)已知实数a,b满足:a2+1=,b2+1=,则|a﹣b|=1.+1=,,两式相减可得﹣,则有(=,,﹣,=18.(•珠海)若分式有意义,则x应满足x≠5.有意义,得19.(•上海)如果分式有意义,那么x的取值范围是x≠﹣3.20.(•无锡)化简得.故答案为:.21.(•吉林)计算:•=x+y.•=22.(•梅州)若=+,对任意自然数n都成立,则a=,b﹣;计算:m=+++…+=.=+=,即=﹣(﹣+﹣+…+﹣=故答案为:;﹣;.23.(•泉州)计算:+=2.=24.(•昆明)计算:﹣=..故答案为:.三.解答题(共6小题)25.(•眉山)计算:.=•=26.(•柳州)计算:+.+27.(•宜昌)化简:+.首先约分,然后根据同分母分式加减法法则,求出算式的值是多少+28.(•厦门)计算:+.29.(•佛山)计算:﹣.﹣=.30.(•福州)化简:﹣.﹣。

最新最新初中数学—分式的真题汇编含答案解析

最新最新初中数学—分式的真题汇编含答案解析

一、选择题1.在物理并联电路里,支路电阻1R 、2R 与总电阻R 之间的关系式为12111R R R =+,若1R R≠,用R 、1R 表示2R 正确的是 A .121RR R R R =- B .121RR R R R =- C .121R R R RR -= D .121R R R RR -= 2.下列各式、、、+1、中分式有( )A .2个B .3个C .4个D .5个3.化简:(a-2)·22444a a a --+的结果是( ) A .a-2 B .a +2 C . 22-+a a D .22+-a a 4.下列等式成立的是( )A .212x y x y=++ B .2(1)(1)1x x x ---=-C .x x x y x y=--++ D .22(1)21x x x --=++5.若分式的值为零,则x 的值为( )A .0B .﹣2C .2D .﹣2或26.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥3 7.如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .﹣12+8B .16﹣8C .8﹣4D .4﹣2 8.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1 C .1- D .±19.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c 10.函数中自变量x 的取值范围是( ) A .x≠2 B .x≥2 C .x≤2 D .x >211.PM 2.5是指大气中直径小于或等于2.5μm (1μm =0.000001m )的颗粒物,也称为可入肺颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm 用科学记数法可表示为( )A .23×10﹣5mB .2.3×10﹣5mC .2.3×10﹣6mD .0.23×10﹣7m 12.在2x ,1()3x y +,3ππ-,5a x -,24x y -中,分式的个数为( ) A .1 B.2 C.3 D .413.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y 2 B .11a - C .x D .13π14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( ) A .2个 B .3个 C .4个 D .5个15.无论x 取何值,总是有意义的分式是( )A .21x x +B .221x x +C .331x x +D .21x x + 16.在式子31x - 、2xy π 、2334a b c 、2x x 中,分式的个数是( ) A .1个 B .2个 C .3个 D .4个17.下列各式的约分,正确的是A .1a b a b --=-B .1a b a b--=-- C .22a b a b a b -=-+ D .22a b a b a b-=++ 18.若分式的值为0,则x 的值是( )A .3B -3C .4D .-419.下列49227,π,30,其中无理数是( ) A 9B .227 C .π D .30 20.下列分式中是最简分式的是( )A .B .C .D .21.下列运算错误的是A .B .C .D .22.若02(1)2(2)x x ----无意义,则x 的取值范围是( )A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x = 23.化简-的结果是( ) A . B . C . D .24.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+= D .0.250.25a b a b a b a b ++=++ 25.如果把分式22a b ab +中的a 和b 都扩大了2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】 试题解析:12111R R R =+, 21111R R R =-1211R R R RR -= 得R 2═11RR R R-. 故选B .2.A解析:A【解析】试题分析:根据分式的定义进行解答即可.试题解析:这一组数数中,与是分式,共2个.故选A.考点:分式的定义. 3.B解析:B .【解析】试题解析:原式=(a-2)•2(2)(2)(2)a a a +--=a+2, 故选B .考点:分式的乘除法. 4.D解析:D【分析】此题考查了分式的基本性质,解答此类题一定要熟练掌握分式的基本性质是解题的关键.根据分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,即可得出答案.【详解】A 、2122x y x y =++,22x y +≠1x y+,不符合题意; B 、(-x-1)(1-x )=[-(x+1)](1-x )=-(1-x 2)=x 2-1,不合题意;C 、x x y -+=--x x y ,x x y -+≠-+x x y,不合题意; D 、(-x-1)2=x 2+2x+1,符合题意.故选D.考点:分式的基本性质.5.B解析:B【解析】试题分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解:由分子x 2﹣4=0解得:x=±2. 当x=2时分母x 2﹣2x=4﹣4=0,分式没有意义; 当x=﹣2时分母x 2﹣2x=4+4=8≠0. 所以x=﹣2.故选B .6.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.7.A解析:A【解析】面积分别为16cm 2和12cm 2的两张正方形的边长分别为4cm 、cm ,所以图中空白部分的面积为4(4+)-(12+16)=-12+8 (cm 2),故选A. 点睛:本题考查了二次根式的混合运算在实际中的应用,根据题意正确求得两个正方形的边长是解题的关键.8.B解析:B【解析】由题意得:101x x -=⇒= ,故选B.9.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a 、b 、c 、d 的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b ,故选B.10.A解析:A【解析】试题解析:根据题意得:2﹣x≠0,解得:x≠2. 故函数中自变量x 的取值范围是x≠2.故选A .考点:函数自变量的取值范围. 11.C解析:C【详解】解:2.3μm=2.3×0.000001m=2.3×10﹣6m ,故选C .【点睛】本题考查科学记数法—表示较小的数.12.B解析:B【解析】 试题分析:根据分式的概念,分母中含有未知数的是分式,所以在2x ,1()3x y +,3ππ-,5a x -,24x y -中分式有2x ,5a x -;特别注意3ππ-不是分式,它是分数 考点:分式 点评:本题考查分式,解答本题的关键是掌握分式的概念,利用分式的概念来判断是否是分式 13.B解析:B【解析】 试题解析:由于11a -中,分母含有字母, 故选B. 14.C解析:C【解析】原式=()()()2111m m m +++=21m +,当m =-3时,原式=-1;当m =-2时,原式=-2;当m =0时,原式=2;当m =1时,原式=1.m 的值有4个.故选C.15.B解析:B【解析】A. 当2x+1≠0时,分式有意义,即x≠−12,所以A 选项错误; B. 当x 为任何实数,分式有意义,所以B 选项正确; C. 当3x +1≠0时,分式有意义,即x≠−1,所以C 选项错误;D. 当x²≠0时,分式有意义,即x≠0,所以D 选项错误.故选B.16.B解析:B【解析】2xy π、2334a b c的分母中均不含有字母,因此它们是整式,而不是分式.31 x-,2xx的分母中含有字母,因此是分式.故选B.17.C解析:C.【解析】试题分析:根据分式的基本性质作答.试题解析:A.()1a b a ba b a b---+=≠--,故该选项错误;B.()1a b a ba b a b---+=≠---,故该选项错误;C.22()()a b a b a ba ba b a b-+-==-++,故该选项正确;D.22()()a b a b a ba b a ba b a b-+-==-≠+++,故该选项错误.故选C.考点:约分.18.A解析:A【解析】试题分析:当x-3=0时,分式的值为0,所以x=3,故选:A.考点:分式的值为0的条件.19.C解析:C【解析】9=3,227是无限循环小数,π是无限不循环小数,()031=,所以π是无理数,故选C.20.A解析:A【解析】选项A,的分子、分母都不能再分解,且不能约分,是最简分式;选项B,原式=2x;选项C,原式=11x+;选项D,原式=-1.故选A.21.D解析:D【解析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.解:A 、==1,故本选项正确; B 、==﹣1,故本选项正确; C 、,故本选项正确; D 、,故本选项错误;故选D . 22.C解析:C【解析】∵()()02x 12x 2----无意义,∴x −1=0或x −2=0,∴x=1或x=2.故选C. 23.D解析:D【解析】 试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D24.D解析:D【解析】A 选项错误,x y x y -+=-y x y x-+; B 选项错误, x y y x +-=x y y x y x y x +---()()()()=()222y x x y --; C 选项错误,2a a ab+=1a a ab +()=1a b +; D 选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变.25.C解析:C【解析】 分式22a b ab+中的a 和b 都扩大了2倍,得: 4212822a b a b ab ab++=⨯, 所以是缩小了2倍.故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.若04(2)(3)x x ----有意义,那么x 的取值范围是( )A .x >2B .x >3C .x ≠2或x ≠3D .x ≠2且x ≠32.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .B .C .D .3.下列等式成立的是( )A .212x y x y =++B .2(1)(1)1x x x ---=-C .x x x y x y=--++ D .22(1)21x x x --=++4.若分式的值为零,则x 的值为( )A .0B .﹣2C .2D .﹣2或25.若分式的值为0,则x 的值为( ) A .0B .2C .﹣2D .2或﹣2 6.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x + C .x +1 D .x ﹣17.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的 8.函数中自变量x 的取值范围是( )A .x≠2B .x≥2C .x≤2D .x >2 9.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米. A .7.6×10﹣11 B .7.6×10﹣8 C .7.6×10﹣9 D .7.6×10﹣510.无论a 取何值,下列分式总有意义的是( )A .21a a +B .211a a -+C .211a -D .11a + 11.若式子212x x m -+不论x 取任何数总有意义,则m 的取值范围是( ) A .m≥1B .m>1C .m≤1D .m<1 12.在2x ,1()3x y +,3ππ-,5a x -,24x y -中,分式的个数为( ) A .1 B.2 C.3 D .413.有个花园占地面积约为 800000平方米,若按比例尺 1 : 2000缩小后,其面积大约相当于( )A .一个篮球场的面积B .一张乒乓球台台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积14.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+= D .0.250.25a b a b a b a b ++=++ 15.(2015秋•郴州校级期中)当x=3,y=2时,代数式的值是( )A .﹣8B .8C .D . 16.在代数式,,+,,中,分式有( ) A .1个 B .2个 C .3个 D .4个17.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x ≠C .x >﹣2D .x ≠﹣218.式子①,②,③,④中,是分式的是( )A .①② B.③④ C.①③ D.①②③④19.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ).A .19或﹣1B .19或1 C .﹣1 D .1 20.下列4个分式:①;②;③;④中最简分式有( ) A .1个 B .2个 C .3个 D .4个21.计算的结果是( )A .a+bB .2a+bC .1D .-122.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5C .2.1×10-6D .21×10-623.若a >-1,则下列各式中错误..的是( ) A .6a >-6 B .2a >-12 C .a +1>0 D .-5a <-524.雾霾已经成为现在生活中不得不面对的重要问题,PM2.5是大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( )A .2.5×10﹣6B .0.25×10﹣6C .2.5×10﹣5D .0.25×10﹣5 25.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥ B .2x > C .2x ≠ D .2x ≤【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:根据题意得:x-2≠0且x-3≠0解得: x ≠2且x ≠3故选D .考点:1.非零数的零次幂;2.负整数指数幂.2.A解析:A【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程. 3.D解析:D【分析】此题考查了分式的基本性质,解答此类题一定要熟练掌握分式的基本性质是解题的关键.根据分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,即可得出答案.【详解】A 、2122x y x y =++,22x y +≠1x y+,不符合题意; B 、(-x-1)(1-x )=[-(x+1)](1-x )=-(1-x 2)=x 2-1,不合题意; C 、x x y -+=--x x y ,x x y -+≠-+x x y ,不合题意; D 、(-x-1)2=x 2+2x+1,符合题意.故选D.考点:分式的基本性质.4.B解析:B【解析】试题分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解:由分子x 2﹣4=0解得:x=±2. 当x=2时分母x 2﹣2x=4﹣4=0,分式没有意义; 当x=﹣2时分母x 2﹣2x=4+4=8≠0. 所以x=﹣2.故选B .5.B解析:B【解析】根据分式的值为0,分子为0,分母不为0可得 且x+2≠0,解得x=2,故选B.6.A解析:A【分析】根据分式混合运算法则计算即可.【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ .【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.7.B解析:B【解析】试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的. 考点:分式的值8.A解析:A【解析】试题解析:根据题意得:2﹣x≠0,解得:x≠2. 故函数中自变量x 的取值范围是x≠2.故选A .考点:函数自变量的取值范围. 9.B解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8.故选B . 10.B解析:B【解析】分式有意义的条件是:“分母的值不为0”,在A 中,当0a =时,分式无意义;在C 中当1a =±时,分式无意义;在D 中当1a =-时分式无意义;只有B 中,无论a 为何值,分式都有意义;故选B.11.B解析:B【解析】 试题解析:分式212x x m-+不论x 取何值总有意义,则其分母必不等于0, 即把分母整理成(a+b )2+k (k >0)的形式为(x 2-2x+1)+m-1=(x-1)2+(m-1),因为论x 取何值(x 2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,即m >1.12.B解析:B【解析】 试题分析:根据分式的概念,分母中含有未知数的是分式,所以在2x ,1()3x y +,3ππ-,5a x -,24x y -中分式有2x ,5a x -;特别注意3ππ-不是分式,它是分数 考点:分式 点评:本题考查分式,解答本题的关键是掌握分式的概念,利用分式的概念来判断是否是分式 13.C解析:C【解析】试题解析:设其缩小后的面积为xm 2,则x :800000=(1:2000)2,x=0.2m 2,其面积相当于报纸的一个版面的面积,故选C .考点:数学常识.14.D解析:D【解析】A 选项错误,x y x y -+=-y x y x-+; B 选项错误, x y y x +-=x y y x y x y x +---()()()()=()222y x x y --; C 选项错误,2a a ab+=1a a ab +()=1a b +; D 选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变.15.C解析:C【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x=3,y=2代入进行计算即可.解:原式=•=﹣,当x=3,y=2时,原式=﹣=﹣.故选C.考点:分式的化简求值.16.B解析:B【解析】试题分析:依据分式的定义进行判断即可.解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选B17.D解析:D【解析】试题分析:根据分母不为零分式有意义,可得答案.解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.18.C解析:C【解析】试题分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:①,③是分式,②,④是整式,故选:C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.解析:D .【解析】试题分析:根据分式值为零的条件可得:|x ﹣2|﹣1=0,且269x x -+≠0,再解即可.由题意得:|x ﹣2|﹣1=0,且269x x -+≠0,解得:x=1.故选:D .考点:分式的值为零的条件;负整数指数幂.20.B解析:B 【解析】①是最简分式; ②,不是最简分式; ③=,不是最简分式; ④是最简分式;最简分式有①④,共2个;故选:B.21.C解析:C 【解析】试题解析:故选C. 22.C解析:C【解析】0.0000021=2.1×10-6,故选C .23.D解析:D【解析】根据不等式的基本性质可知,A. 6a >−6,正确;B. 2a >12- , 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误;故选D.24.A【解析】由科学记数法知0.0000025=2.5×10−6,故选A.25.B解析:B【详解】解:根据题意得:x﹣2≥0且x﹣2≠0,解得:x>2.故选B.【点睛】本题考查函数自变量的取值范围.。

相关文档
最新文档