(完整版)中考数学专题复习真题汇编卷(初中数学全套)

合集下载

中考数学综合复习题共三套(含答案)(K12教育文档)

中考数学综合复习题共三套(含答案)(K12教育文档)

(完整word版)中考数学综合复习题共三套(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)中考数学综合复习题共三套(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)中考数学综合复习题共三套(含答案)(word版可编辑修改)的全部内容。

复习题(一) 一、选择题:(本题共10小题,每小题4分,共40分. 在每题所给出的四个选项中,只有一项是符合题意的. 请把所选项前的字母代号填在题后的括号内。

) 1、计算2)3(-,结果正确的是( )A 、-9B 、9C 、-6D 、6 2、若a 为任意实数,则下列等式中恒成立的是 ( ).A 、2a a a =+B 、a a a 2=⋅C 、1=÷a aD 、0=-a a3、如图,桌面上有一个一次性纸杯,它的俯视图应是如图所示的( )4、下列结论中正确的是( )A 、无限小数都是无理数B 、33是分数 C 、(-4)2的平方根是±4 D 、a a 221-=-5、已知反比例函数y =xa 2-的图象在第二、四象限,则a 的取值范围是( )A 、a ≤2B 、a ≥2C 、a <2D 、a >2 6、正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( )A 、55B 、255C 、12D 、27、如图,奥运会五环旗是由五个圆组成的图形,此图中存在的圆和圆的位置关系有( )A 、相交与内含B 、只有相交C 、外切与外离D 、相交与外离8、如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位 置,若B A AC ''⊥,则BAC ∠是( )A 、50°B 、60°C 、70°D 、80° 9、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1,则这个圆锥的底面半径为( )A 、21B 、22C 、2D 、2210、固体物质的溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解的克数。

【刷题】初中数学(全国通用)中考专项复习(数与式)试题题库02(50题含解析)

【刷题】初中数学(全国通用)中考专项复习(数与式)试题题库02(50题含解析)

【刷题】初中数学(全国通用)中考专项复习(数与式)试题题库02(50题含解析)一、填空题1.(2023·播州模拟)4的算术平方根是.2.(2017·双柏模拟)5的倒数是.3.已知x+y=8,xy=2,则x2y+xy2=.4.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.5.(2022·金华模拟)函数中自变量x的取值范围是.6.(2023·惠山模拟)函数中,自变量的取值范围是.7.(2023·宁南模拟)25的算术平方根是.8.(2023·城阳模拟)如图,在中,,,,点D、点E、点F 分别是,,边的中点,连接、,得到,它的面积记作S;点、点、点分别是,,边的中点,连接、,得到,它的面积记作,照此规律作下去,则.9.若式子在实数范围内有意义,则x的取值范围是.10.某粒子的直径约为0.00000021米,用科学记数法表示0.00000021是. 11.(2022·易县模拟)一个数的平方根是a+4和2a+5,则a=,这个正数是.12.(2022·丽江模拟)若实数满足,则.13.(2022·石景山模拟),,若,,请借助下图直观分析,通过计算求得的值为.14.(2022·和平模拟)若,,则的值为.15.(2022·定远模拟)因式分解:.16.(2022·镇海区模拟)当,时,代数式的值是. 17.(2022·灌阳模拟)分解因式:x2-x=.18.若x4=625,则x=.二、选择题19.(2017·深圳模拟)9的平方根是()A.±3B.3C.﹣3D.8120.25的算术平方根是()A.5B.±5C.±D.21.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克22.(2023·桓台模拟)年月日工业和信息化部负责人在“世界电信和信息社会日”大会上宣布,我国目前已建成基站近万个,成为全球首个基于独立组网模式规模建设网络的国家,将数据万用科学记数法表示为()A.B.C.D.23.(2023·杭州模拟)的相反数是()A.2023B.C.D.-2023 24.(2023·杭州模拟)数学是研究化学的重要工具,数学知识广泛应用于化学邻域,比如在学习化学的醇类化学式中,甲醇化学式为,乙醇化学式为,丙醇化学式为,设碳原子的数目为为正整数,则醇类的化学式可以用下列哪个式子来表示()A.B.C.D.25.计算的结果是()A.B.C.D.26.(2022·安次模拟)a、b为两个连续整数,若,则的值为().A.B.C.D.27.(2022·竞秀模拟)在物联网时代的所有芯片中,芯片已成为需求的焦点.已知.下面将用科学记数法表示正确的是()A.B.C.D.28.(2022·海陵模拟)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣10,当实数a变化时,x与y的大小关系是()A.x>y B.x=yC.x<y D.x>y、x=y、x<y都有可能29.(2022·崂山模拟)石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料,石墨烯中每两个相邻碳原子间的键长为0.000000000142米,数字“0.000000000142”用科学记数法表示为()A.B.C.D.30.﹣(﹣20)的绝对值是()A.﹣B.C.﹣20D.20 31.(2022·镇海区模拟)计算:的结果是()A.B.C.D.32.(2022·婺城模拟)金华轨道交通是服务于金华市的城市轨道交通系统,其首条线路——金义东线金义段已正式通行,线路全长约107000米.用科学记数法表示数107000结果为()A.B.C.D.33.(2022·婺城模拟)正数2的平方根可以表示为()A.B.C.D.34.能使等式成立的x的取值范围是()A.且B.C.D.35.下列运算正确的是()A.B.C.D.36.(2021·永嘉模拟)数0,﹣2,,2中最小的是()A.0B.﹣2C.D.2 37.(2021·永嘉模拟)据永嘉县气象部门统计,2020年11月至2021年1月中旬,累计开展3次人工降雨作业,发射24枚火箭弹,增加雨量约1520000吨,数据1520000用科学记数法表示为()A.1.52×106B.1.52×105C.15.2×105D.0.152×107 38.(2021·永嘉模拟)下列计算正确的是()A.a6÷a2=a4B.a6•a2=a12C.a6•a2=a36D.a2+a2=a2三、计算题39.(2023·杭州模拟)(1)计算:;(2)解不等式:.40.计算.41.(2022·镇海区模拟)(1)计算:;(2)计算:.42.(2022·金华模拟)计算:43.计算:44.(2021·永嘉模拟)(1)计算:|﹣3|+(﹣1)﹣+(﹣)0;(2)化简:(a+b)2﹣a(a+2b).四、综合题45.(2022·九江模拟)(1);(2)如图,已知在△ABC中,D是BC上的一点,∠BAC=90°,∠DAC=∠C.求证:AD=BD.46.(1)计算:(2)求代数式的值:,其中.47.(2022·温州模拟)(1)计算(2)先化简,再求值:,其中,48.(2022·婺城模拟)定义:对于两个关于x的函数y1,y2.如果x=t,两个函数的函数值相等,即y1=y2,那么称y1,y2互为“等值函数”,其中x=t叫做函数y1,y2的“等值根”.例如:对于函数.当x=1时,y1=y2=2.因此y1,y2互为“等值函数”,x=1是这两个函数的“等值根”.(1)函数与(填“是”或“不是”)“等值函数”;(2)已知函数与,.函数y2的图象如图所示.①若,求y 1与y2的“等值根”;②若y1与y2只存在一个“等值根”,则k的取值范围为▲。

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(试题部分)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·21x −<的解集是 .25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解.30.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来. 31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(答案详解)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1 B .2 C .3 D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .【答案】A【分析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案. 【详解】解:12x +≥,1x ∴≥.∴在数轴上表示如图所示:故选:A .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+ B .22a b −>− C .a b −<− D .22a b <【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x < B .2x > C .<2x − D .2x >−【答案】A【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键. 移项可得一元一次不等式的解集. 【详解】解:20x −<, 解得,2x <, 故选:A .5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可. 【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <, 解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <, ∴13m +≥, ∴2m ≥; 故选B .7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m < B .1m < C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m −<<−, 解得:1m <; 故选B .8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+ B .55x y −<− C .55x y > D .55x y −>−【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C .9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥− B .2x ≤− C .2x >− D .2x <−【答案】A【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键. 【详解】解:移项得,34x x −≥−, 合并同类项得,24x ≥−, 系数化为1得,2x ≥−, 故选:A .10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变. 直接利用不等式的性质逐一判断即可. 【详解】解:1a b >−,A 、1a b +>,故错误,该选项不合题意;B 、12a b −>−,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意; 故选:D .12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤【答案】D【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:212321x x x x +>+⎧⎨+≥−⎩①②,解不等式①,得1x >, 解不等式②,得4x ≤, 故不等式组的解集为14x <≤. 故选:D .13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键. 【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−【答案】A【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可. 【详解】根据题意1x −>,可得1x <−, A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意; 故选:A15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【分析】本题考查解一元一次不等式组和在数轴上表示不等式的解集,先分别求出每一个不等式的解集,再根据不等式的解集在数轴上表示方法画出图示是解题的关键.【详解】解:()211326x x −≥⎧⎪⎨−>−⎪⎩①②,解不等式①,得:1x ≥, 解不等式②,得:4x <, ∴不等式组的解集为14x ≤<. 在数轴上表示如下: .故选:A .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b , 根据1班班长的对话,得180x ≤,350x a +=, ∴350x a =− ∴350180a −≤, 解得170a ≥, 故①错误,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =−, ∴290140y −>, ∴150y <, 故②正确, 故选:C .18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .【答案】1−(答案不唯一)【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨−<⎩①②,由①得:1x ≥−, 由②得:3x <,∴不等式组的解集为:13x −≤<, ∴不等式组的一个整数解为:1−; 故答案为:1−(答案不唯一).20.(2024·广西·中考真题)不等式7551x x +<+的解集为 . 【答案】<2x −【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x −<−, 合并同类项得,24x <−, 系数化为1得,<2x −, 故答案为:<2x −.21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .不等式组22.(2024·吉林·中考真题)不等式组230x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.∴0x >,且x 为正整数, ∴x 的最小值为1,∴绿球的个数的最小值为3, ∴袋子中至少有3个绿球, 故答案为:3.24.(2024·福建·中考真题)不等式321x −<的解集是 . 【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解. 【详解】解:321x −<,33x <, 1x <,故答案为:1x <.25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .【答案】3x ≥/3x ≤【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >, ∴不等式组的解集为3x ≥, 故答案为:3x ≥.26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ;27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可).三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键. 【详解】解:去分母得,()131x x +≥−, 去括号得,133x x +≥−, 移项得,331x x −≥−−, 合并同类项得,24x −≥−, 系数化为1得,2x ≤, ∴不等式的正整数解为1,2.29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 【答案】2,3,4【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将3479x −<−≤变形为347479x x −<−⎧⎨−≤⎩,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.【详解】解:由题意得347479x x −<−⎧⎨−≤⎩①②,解①得:1x >, 解②得:4x ≤,∴该不等式组的解集为:14x <≤, ∴整数解为:2,3,430.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来.这个不等式的解集在数轴上表示如下:31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______. 【答案】(1)1x ≤ (2)3x ≥− (3)见解析 (4)31x −≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (3)根据前两问的结果,在数轴上表示不等式的解集; (4)根据数轴上的解集取公共部分即可. 【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥−, 故答案为:3x ≥−;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x −≤≤, 故答案为:31x −≤≤.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩ 【答案】17x −<<【分析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 【答案】整数解为:1,0,1−【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >−解不等式②得:1x ≤∴不等式组的解集为:21x −<≤,∴整数解为:1,0,1−36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x −本,根据题意可得等量关系:x 本数学书的厚度(90)x +−本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +−=,解得:60x =,9030x −=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a (a 为正整数)折售出,最终获利1577元,请直接写出商店的进货方案. 【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x 元和y 元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可; (2)设商店计划购进特级鲜品猴头菇m 箱,则购进特级干品猴头菇()80m −箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;元和38.(2024·江苏扬州·中考真题)解不等式组260412x x x −≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =−≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a −.当a<0时,表示数a 的点与原点的距离等于0a −.应用如图,在数轴上,动点A 从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x −+,B 表示的数为122x −,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;≤40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩, 解得5030x y =⎧⎨=⎩, 答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;(2)解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a −棵,根据题意,得()5030100038000a a +−≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩? 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩, 解得56x y =⎧⎨=⎩, 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;(2)解:设种植甲作物a 亩,则种植乙作物()10a −亩,。

2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,数轴上点P 表示的数是( )A .1−B .0C .1D .22.(2024·四川遂宁·中考真题)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯3.(2024·湖南·中考真题)据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A .70.401510⨯B .64.01510⨯C .540.1510⨯D .34.01510⨯4.(2024·河南·中考真题)据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A .8578410⨯B .105.78410⨯C .115.78410⨯D .120.578410⨯ 5.(2024·河南·中考真题)计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是( ) A .5a B .6a C .3a a + D .3a a6.(2024·天津·中考真题)据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯7.(2024·四川乐山·中考真题)2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A .8410⨯B .9410⨯C .10410⨯D .11410⨯8.(2024·广西·中考真题)广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A .90.84910⨯B .88.4910⨯C .784.910⨯D .684910⨯ 9.(2024·黑龙江绥化·中考真题)实数12025−的相反数是( ) A .2025 B .2025− C .12025− D .1202510.(2024·甘肃临夏·中考真题)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为( )A .82.710⨯B .100.2710⨯C .92.710⨯D .82710⨯11.(2024·吉林·中考真题)长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯12.(2024·四川达州·中考真题)有理数2024的相反数是( )A .2024B .2024−C .12024D .12024− 13.(2024·重庆·中考真题)下列各数中最小的数是( )A .1−B .0C .1D .214.(2024·广东·中考真题)2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A .43.8410⨯B .53.8410⨯C .63.8410⨯D .538.410⨯15.(2024·重庆·中考真题)下列四个数中,最小的数是( )A .2−B .0C .3D .12− 16.(2024·四川德阳·中考真题)下列四个数中,比2−小的数是( )A .0B .1−C .12−D .3−17.(2024·四川广安·中考真题)下列各数最大的是( )A .2−B .12−C .0D .118.(2024·云南·中考真题)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A .100米B .100−米C .200米D .200−米19.(2024·四川广元·中考真题)将1−在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1−B .1C .3−D .320.(2024·四川凉山·中考真题)下列各数中:553025.827−−−+,,,,,,负数有( ) A .1个 B .2个 C .3个 D .4个21.(2024·江苏苏州·中考真题)用数轴上的点表示下列各数,其中与原点距离最近的是( )A .3−B .1C .2D .322.(2024·湖北·中考真题)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A .10+元B .10−元C .20+元D .20−元23.(2024·湖南·中考真题)在日常生活中,若收入300元记作300+元,则支出180元应记作( )A .180+元B .300+元C .180−元D .480−元24.(2024·河北·中考真题)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D . 25.(2024·广东广州·中考真题)四个数10−,1−,0,10中,最小的数是( )A .10−B .1−C .0D .1026.(2024·贵州·中考真题)下列有理数中最小的数是( )A .2−B .0C .2D .427.(2024·浙江·中考真题)以下四个城市中某天中午12时气温最低的城市是( )A .北京B .济南C .太原D .郑州 28.(2024·四川内江·中考真题)2023年我国汽车出口491万辆,首次超越日本,成为全球第一大汽车出口国,其中491万用科学记数法表示为( )A .44.9110⨯B .54.9110⨯C .64.9110⨯D .74.9110⨯29.(2024·广西·中考真题)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A .B .C .D .30.(2024·福建·中考真题)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯31.(2024·北京·中考真题)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯32.(2024·湖北武汉·中考真题)国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯33.(2024·浙江·中考真题)2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .920.13710⨯B .80.2013710⨯C .92.013710⨯D .82.013710⨯34.(2024·吉林·中考真题)若()3−⨯的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1−35.(2024·内蒙古赤峰·中考真题)央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A .95.210⨯B .110.5210⨯C .95210⨯D .105.210⨯36.(2024·内蒙古包头·中考真题)若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A .14B .12C .2D .437.(2024·四川内江·中考真题)下列四个数中,最大数是( )A .2−B .0C .1−D .338.(2024·甘肃·中考真题)下列各数中,比2−小的数是( )A .1−B .4−C .4D .139.(2024·山东威海·中考真题)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A .7+B .5−C .3−D .1040.(2024·内蒙古赤峰·中考真题)如图,数轴上点A ,M ,B 分别表示数a a b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A .a b +B .a b −C .abD .a b −二、填空题41.(2024·黑龙江大兴安岭地·中考真题)国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为 .42.(2024·江苏连云港·中考真题)如果公元前121年记作121−年,那么公元后2024年应记作 年. 43.(2024·湖北·中考真题)写一个比1−大的数 .44.(2024·湖南·中考真题)计算:()2024−−= .45.(2024·湖北武汉·中考真题)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2记作 ℃.46.(2024·陕西·中考真题)小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是 .(写出一个符合题意的数即可)47.(2024·黑龙江齐齐哈尔·中考真题)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为 .48.(2024·上海·中考真题)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示) 49.(2024·四川广元·中考真题)2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810−秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为秒.50.(2024·北京·中考真题)联欢会有A,B,C,D四个节目需要彩排.所有演员到场后节目彩排开始。

九年级全册数学复习试卷【含答案】

九年级全册数学复习试卷【含答案】

九年级全册数学复习试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 26cmB. 28cmC. 30cmD. 32cm2. 已知函数f(x) = 2x + 3,那么f(3)的值为多少?A. 9B. 11C. 12D. 153. 在直角坐标系中,点A(2, -3)关于x轴的对称点坐标为?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,那么第10项的值为多少?A. 19B. 20C. 21D. 225. 已知一个圆的半径为5cm,那么这个圆的面积为多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 若两个角的和为90°,则这两个角互为补角。

()2. 任何数乘以0都等于0。

()3. 在直角三角形中,斜边是最长的一边。

()4. 若一个等差数列的公差为0,则这个数列的所有项都相等。

()5. 任何数乘以-1都等于这个数的相反数。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为______cm。

2. 已知函数f(x) = 3x 5,那么f(4)的值为______。

3. 在直角坐标系中,点B(-3, 4)关于原点的对称点坐标为______。

4. 若一个等差数列的首项为2,公差为3,那么第7项的值为______。

5. 已知一个圆的直径为10cm,那么这个圆的周长为______cm。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请解释等差数列和等比数列的区别。

3. 请说明圆的面积公式。

4. 请简述函数的概念。

5. 请解释直角坐标系中点的坐标表示。

五、应用题(每题2分,共10分)1. 一个长方形的长为10cm,宽为5cm,求这个长方形的面积。

中考复习数与式真题汇编及答案

中考复习数与式真题汇编及答案

数与式真题及答案1. 计算:2-18cos45°+(31)-1-(π-1)0. 2. 计算:(-3)×(-6)+1-2+(5-2π)0.3. 计算:)(11821++π0-sin45°+2-2. 4. 计算:4cos30°+(1-2)0-2-12+.5. 已知m 2-m -2=0,求代数式m (m -1)+(m +1)(m -2)的值.6. 先化简,再求值:(2x+y )2+(x-y )(x+y )-5x (x-y ),其中x =12+,y =1-2.7.随后用卡片遮住了一个二次三项式,x =x 2-5x +1. (1)求所遮住的二次三项式;(2)若x =16+,求所遮盖的二次三项式的值。

8. 先化简,再求值:(x +2)(x -2)+x (4-x ),其中x =41. 9. 先化简,再求值:(x +1)2+x (x -2),其中x =3.10. 化简并求职:(m +1)2+(m +1)(m -1),其中m 是方程x 2+x -1=0的一个根。

11. 先化简,再求值:(x+y )2-2y (x+y ),其中x =1-2,y =3.12. 先化简,再求值:1÷⎪⎭⎫ ⎝⎛11+12-x x -x ,其中x =1+2.13. 先化简,再求值:1+2+1÷⎪⎭⎫ ⎝⎛1+222x x -x -x x x ,其中x 的值从不等式组⎩⎨⎧4<121≤x-,x -的整数解中选取。

14. 先化简,再求值:1-5=1+5=⎪⎭⎫⎝⎛1-1÷2-2+2-2b a a b b a b ab ,,其中2a . 15. 先化简,再求值:⎪⎪⎭⎫⎝⎛1++2÷-1-22x x x x 2x ,其中1-2=x . 16. 先化简,再求值:m m m m 1-÷⎪⎭⎫ ⎝⎛1-1+22,其中1+3=m .17. 先化简,再求值:,2+-1+2-2+÷1-12x xx x x x 其中2-︒604=sin x . 18.化简:.9-1-÷⎪⎭⎫ ⎝⎛3+16+5-2x x x x19.先化简,再求值:.tan ,1--︒60=6-31-÷⎪⎭⎫⎝⎛1+2-12a a a a 其中20.先化简,再求值:.,-1+2=⎪⎭⎫ ⎝⎛1-21÷1+2-3-2a a a a a 其中化简21.,⎪⎪⎭⎫⎝⎛2-3-4+4-2-÷4-3-222x x x x x x x 并从1,2,3,-2四个数中,取一个合适的数作为x 的值代入求值。

初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)

初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)

平均数,中位数,众数,方差一、选择题1.(浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了 6 次测试,成绩如下表:甲和乙两位同学 6 次测试成绩 ( 每分钟输入汉字个数 ) 及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;答案: C2.(淅江金华)金华火腿闻名遐迩。

某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500 克的火腿心片。

现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙 D 、不能确定答案: A3.(浙江义乌 )国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003 年至 2007 年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是()A.6969 元B.7735 元C.8810 元D.10255元答案: B4.(湖南益阳)某班第一小组 7 名同学的毕业升学体育测试成绩 (满分 30 分 )依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,25答案: D5.(浙江省绍兴市 )在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7,6.5, 9.1, 7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁答案: B6.(四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案: A7.(四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17 的平均数约为 () A. 14.15B.14.16C.14.17D.14.20答案: B8.(陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 8 位工作者的捐款分别是 5 万, 10 万, 10 万, 10 万, 20 万, 20 万,50 万, 100 万.这组数据的众数和中位数分别是()A.20 万, 15 万B.10 万,20 万C.10 万,15 万D.20万,10万答案: C9.(北京)众志成城,抗震救灾.某小组7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30, 50,25,135.这组数据的众数和中位数分别是()A.50,20B. 50,30C.50,50D.135,50答案: C10.(湖北鄂州)数据的众数为,则这组数据的方差是()A. 2B.C.D.答案: B11.(浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(山东省枣庄市)小华五次跳远的成绩如下(单位:m): 3.9, 4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是 0.4B.众数是 3.9C.中位数是 3.98D.平均数是 3.98答案: B13.(山东济南)“迎奥运,我为先” 联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题 . 联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20 张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10 张,发现有2 张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60 张B.80 张C.90张D.110答案: B14.(湖北黄石)若一组数据2, 4,, 6,8 的平均数是 6,则这组数据的方差是()A.B.8C.D.40答案: B15.( 湖南益阳 )某班第一小组7名同学的毕业升学体育测试成绩(满分 30 分)依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是 ( )A. 23,25B. 23,23C. 25,23D. 25,25答案: D16.( 重庆 )数据2,1,0,3,4的平均数是()A、0B、1C、 2D、3答案: C17.( 08 厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案: C18.(08 乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案: B19.(08 绵阳市)某校初三·一班 6 名女生的体重(单位:kg)为:353638 404242 则这组数据的中位数等于().A.38B.39C.40D.42答案: B20.(浙江金华)金华火腿闻名遐迩。

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。

2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。

3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。

4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。

代数式及整式(46题)(原卷版)—2024年中考数学真题分类汇编(全国通用)

代数式及整式(46题)(原卷版)—2024年中考数学真题分类汇编(全国通用)

代数式及整式(46题)一、单选题1.(2024·辽宁·中考真题)下列计算正确的是( )A .2352a a a +=B .236a a a ×=C .()325a a =D .2(1)a a a a +=+2.(2024·江苏常州·中考真题)计算222a a -的结果是( )A .2B .2aC .23aD .42a 3.(2024·四川巴中·中考真题)下列运算正确的是( )A .33a b ab+=B .325a a a ×=C .()8240a a a a ÷=≠D .()222a b a b -=-4.(2024·四川雅安·中考真题)下列运算正确的是( )A .34a b ab +=B .()325a a =C .326a a a ×=D .54a a a ÷=5.(2024·四川资阳·中考真题)下列计算正确的是( )A .325a a a +=B .32a a a -=C .()325a a =D .523a a a ÷=6.(2024·湖北·中考真题)223x x ×的值是( )A .25xB .35xC .26xD .36x 7.(2024·湖北武汉·中考真题)下列计算正确的是( )A .236a a a ×=B .()1432a a =C .()2236a a =D .()2211a a +=+8.(2024·福建·中考真题)下列运算正确的是( )A .339a a a ×=B .422a a a ÷=C .()235a a =D .2222a a -=9.(2024·广东·中考真题)下列计算正确的是( )A .2510a a a ×=B .824a a a ÷=C .257a a a -+=D .()5210a a =10.(2024·云南·中考真题)按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是( )A .2n xB .()1n n x -C .1n nx +D .()1n n x +11.(2024·山东济宁·中考真题)如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为( )A .90B .91C .92D .9312.(2024·甘肃兰州·中考真题)计算:22(1)2a a a --=( )A .aB .a -C .2aD .2a-13.(2024·四川成都·中考真题)下列计算正确的是( )A .()2233x x =B .336x y xy +=C .()222x y x y +=+D .()()2224x x x +-=-14.(2024·湖南长沙·中考真题)下列计算正确的是( )A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+15.(2024·山东·中考真题)下列运算正确的是( )A .437a a a +=B .()2211a a -=-C .()2332a b a b =D .()2212a a a a +=+16.(2024·山东泰安·中考真题)下列运算正确的是( )A .22223x y xy x y-=-B .82224422x y x y x ÷=C .()()22x y x y x y ---=-D .()22346x y x y =17.(2024·四川·中考真题)下列计算正确的是( )A .()2222a a +=+B .2a a a +=C .23515a a a ×=D .()222a b a b +=+18.(2024·四川眉山·中考真题)如图,图1是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图1中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图2,则图2中大正方形的面积为( )A .24B .36C .40D .4419.(2024·内蒙古呼伦贝尔·中考真题)下列计算正确的是( )A .()341226a a -=-B .253a a a -÷=C .111a a a a +-=D .()()2233a b a ab b a b +-+=+20.(2024·吉林长春·中考真题)下列运算一定正确的是( )A .236a a a ×=B .236a a a ×=C .()222ab a b =D .()235a a =21.(2024·青海·中考真题)计算1220x x -的结果是( )A .8xB .8x -C .8-D .2x 22.(2024·四川广安·中考真题)下列运算中,正确的是( )A .235a a a +=B .()32628a a -=-C .22(1)1a a -=-D .842a a a ÷=23.(2024·四川德阳·中考真题)下列计算正确的是( )A .236a a a ×=B .()a b a b--=-+C .()211a a a +=+D .222()a b a b +=+24.(2024·四川南充·中考真题)下列计算正确的是( )A .235a a a +=B .842a a a ÷=C .236a a a ×=D .()326327a a =25.(2024·四川泸州·中考真题)下列运算正确的是( )A .34325a a a +=B .236326a a a ×=C .()23624a a -=D .62344a a a ÷=26.(2024·四川达州·中考真题)下列计算正确的是( )A .235a a a +=B .()22224a a a +=++C .()3236928ab a b -=-D .1262a a a ÷=27.(2024·四川宜宾·中考真题)下列计算正确的是( )A .2a a a +=B .532a a -=C .2326x x x ×=D .32()()x x x-÷-=28.(2024·四川遂宁·中考真题)下列运算结果正确的是( )A .321a a -=B .236a a a ×=C .()44a a -=-D .()()2339a a a +-=-29.(2024·四川广安·中考真题)代数式3x -的意义可以是( )A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商二、填空题30.(2024·四川雅安·中考真题)如图是1个纸杯和若干个叠放在一起的纸杯的示意图,在探究纸杯叠放在一起后的总高度H 与杯子数量n 的变化规律的活动中,我们可以获得以下数据(字母),请选用适当的字母表示H = .①杯子底部到杯沿底边的高h ;②杯口直径D ;③杯底直径d ;④杯沿高a .31.(2024·四川德阳·中考真题)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为 .32.(2024·山东济宁·中考真题)已知2210a b -+=,则241b a +的值是 .33.(2024·四川广安·中考真题)若2230x x --=,则2241x x -+= .34.(2024·吉林长春·中考真题)单项式22a b -的次数是 .35.(2024·上海·中考真题)计算()()a b b a +-= .36.(2024·江苏苏州·中考真题)计算:32x x ×= .37.(2024·黑龙江大庆·中考真题)已知1a a +=,则221a a +的值是 .38.(2024·四川·中考真题)已知223x x +=,那么2245x x +-的值是 .39.(2024·山东泰安·中考真题)单项式23ab -的次数是 .40.(2024·四川乐山·中考真题)计算:2a a += .三、解答题41.(2024·江苏常州·中考真题)先化简,再求值:()()211x x x +-+,其中1x =.42.(2024·山东济宁·中考真题)先化简,再求值:(4)(2)(2)x y x x y x y -++-,其中12x =,2y =.43.(2024·重庆·中考真题)计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -æö+÷ç÷--+èø.44.(2024·四川南充·中考真题)先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.45.(2024·内蒙古通辽·中考真题)先化简,再求值:()()()()224+--+-a b a b a b a b ,其中2==a b .46.(2024·湖南长沙·中考真题)先化简,再求值:()()()2233m m m m m --++-,其中52m =.。

(完整版)中考数学专题复习题及答案

(完整版)中考数学专题复习题及答案

2018年中考数学专题复习第一章 数与式 第一讲 实数【基础知识回顾】一、实数的分类:1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。

如:2π是 数,不是 数, 722是 数,不是 数。

2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。

2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。

a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。

【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】 三、科学记数法、近似数和有效数字。

1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。

其中a 的取值范围是 。

⎪ ⎪ ⎪⎪ ⎩⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪⎨ ⎧ 正无理数无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数(a >0)(a <0) 0 (a=0)止,中间所有的数字都叫这个数的有效数字。

【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。

2、近似数3.05万是精确到 位,而不是百分位】 四、数的开方。

中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)-人教版初中九年级全册数学试题

中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)-人教版初中九年级全册数学试题

不等式(组)1. (2018·某某江汉·3分)若关于x的一元一次不等式组的解集是x >3,则m的取值X围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.2.(2018·某某省某某·3分)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值X 围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1.2.3,则3≤a<4.故答案为:3≤a<4.3.(2018·某某省某某市)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为.故选B.4. (2018•呼和浩特•3分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值X围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,∴m<,∴m≤﹣4故选:D.5.(2018·某某某某·3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.1.(2018·某某省某某市)(3.00分)不等式组的解集是﹣2≤x<2 .【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.(2018·某某省某某市)不等式组的解集是0<x≤8.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.3. (2018•呼和浩特•3分)若不等式组的解集中的任意x,都能使不等式x ﹣5>0成立,则a的取值X围是.解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴﹣2a≥5或﹣a+2≥5,解得:a≤﹣2.5或a≤﹣6,经检验a≤﹣2.5不符合,故答案为:a≤﹣6.1. (2018·某某贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧X,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.2. (2018·某某某某·8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1.2.3,原式=•[﹣]=•=,∵x≠±3.1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.3.(2018·某某荆州·5分)求不等式组的整数解.【解答】解:解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1.0.4.(2018·某某省某某)某某市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么X围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的X围.5.(2018·某某省某某·8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.6.(2018·某某省·8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A.B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)3 2 120A商品200B商品设生产A种商品x千克,生产A.B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值X围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.7.(2018·某某省某某·8分)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.8.(2018·某某省某某市) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建6个足球场.9.(2018·某某省某某市)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.10.(2018·某某省某某市)(12.00分)为落实“美丽某某”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.11. (2018•某某•9分)解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.12. (2018•某某•3分)已知点P(1﹣a,2a+6)在第四象限,则a的取值X围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.【点评】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(2018·某某某某·9分)解不等式组:解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.14. (2018·某某某某·10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于=(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值X围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为,解得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,word综合起来可知汽车总数为8辆,故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.15.(2018·某某某某·8分)解方程组和不等式组:(2)【分析】(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.16.(2018·某某某某·5分)(2)解不等式组:【解答】解:(2)解不等式2x﹣4>0,得:x>2,解不等式x+1≤4(x﹣2),得:x≥3,则不等式组的解集为x≥3.11 / 11。

【刷题】初中数学(全国通用)中考专项复习(数与式)试题题库01(50题含解析)

【刷题】初中数学(全国通用)中考专项复习(数与式)试题题库01(50题含解析)

【刷题】初中数学(全国通用)中考专项复习(数与式)试题题库01(50题含解析)一、填空题1.(2020·文山模拟)﹣2的倒数是.2.(2022·鄞州模拟)计算:=.3.(2021·硚口模拟)计算:=.4.(2020·建水模拟)-3的相反数是.5.(2019·长春模拟)计算:=.6.(2023·莱西模拟)中国共产主义青年团是中国共产党领导的先进青年的群团组织,是中国共产党的助手和后备军.据中国共青团团内统计公报:截至2021年12月31日,全国共有共青团员7371.5万名,其中学生团员4381万名.将4381万用科学记数法表示为.7.(2023·原平模拟)如图所示的是一组有规律的图案,则第n个图案中“”的个数为.(用含n的代数式表示)8.(2023·潍城模拟)因式分解.9.(2022·大理模拟)2021年5月15日7时18分,执行我国首次火星探测任务的“天问一号”探测器在火星着落,在火星上首次留下中国印迹.火星是太阳系九大行星之一,火星的半径约为3395000米,用科学记数法表示“3395000”为.10.(2022·宣州模拟)计算的结果是.11.(2022·沈北模拟)分解因式:.12.(2022·禄劝模拟)观察下列等式:,,,…按此规律,则第8个等式为.13.(2022·晋中模拟)计算:(+)(-)的结果等于.14.(2022·晋中模拟)如图,是一组有规律的图案,第(1)个图案由4个基础图形组成,第(2)个图案由7个基础图形组成,第(3)个图案由10个基础图形组成,…按此规律排列下去,则第n个图案中基础图形的个数为.(用n的代数式表示)……15.计算:;16.若3x=2,3y=4,则3x+y=.二、选择题17.(2023·松原模拟)党的二十大报告中指出,我国全社会研发经费支出从一万亿元增加到二万八千亿元,居世界第二位,研发人员总量居世界首位.将2800000000000用科学记数法表示为()A.0.28×1013B.2.8×1011C.2.8×1012D.28×1011 18.(2019·常德模拟)观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是()A.31B.46C.51D.66 19.(2021·邹城模拟)一种商品进价为每件a元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利()A.0.125a元B.0.15a元C.0.25a元D.1.25a元20.(2019·河池模拟)的相反数是()A.B.C.D.2 21.(2021·绵竹模拟)已知x2+16x+k是完全平方式,则常数k等于()A.64B.48C.32D.16 22.(2023·西青模拟)计算的结果等于()A.1B.C.D.6 23.(2023·周村模拟)上网搜索“淄博烧烤”,网页显示找到相关结果约31600000个.数据31600000用科学记数法表示为()A.B.3.16×106C.3.16×107D.31.6×106 24.(2023·南开模拟)化简的结果为()A.B.C.D.25.(2023·恩施模拟)的相反数等于()A.B.2023C.D.26.(2023·金乡县模拟)中国2023年2月份重要宏观经济数据先后已公布,其中1—2月份发电量约为13500亿千瓦时,同比增长0.7%,13500亿用科学记数法表示为()A.B.C.D.27.2023年《政府工作报告》提出,“义务教育优质均衡发展”.根据预算报告,支持学前教育发展资金安排250亿元、增加20亿元,扩大普惠性教育资源供给.其中250亿元用科学记数法表示为()A.元B.元C.元D.元28.(2022·无为模拟)下列运算正确的是()A.B.C.D.29.(2022·宣州模拟)计算的结果为()A.B.C.D.30.(2022·大连模拟)下列计算正确的是()A.B.C.D.31.(2022·玉溪模拟)2022年北京冬奥会于2月4日开幕作为2022年北京冬奥会雪上项目的主要举办地,张家口市崇礼区建成7家大型滑雪场,拥有169条雪道,共162000米.数字162000用科学记数法表示为()A.B.C.D.32.(2022·浦东模拟)下列二次根式中,的同类二次根式是()A.B.C.D.33.(2022·任城模拟)2的算术平方根是()A.±B.-C.D.4 34.(2022·安宁模拟)观察下列等式:,,,,…,则()A.B.C.D.35.(2022·罗平模拟)有一列按一定规律排列的式子:﹣3m,9m,﹣27m,81m,﹣243m,…,则第n个式子是()A.(﹣3)n m B.(﹣3)n+1m C.3n m D.﹣3n m 36.(2022·丘北模拟)按一定规律排列的单项式:﹣a,4a2,﹣9a3,16a4,﹣25a5,⋯⋯,则第n个单项式为()A.(﹣n)2a n B.(﹣1)n2n a nC.(﹣1)n n2a n D.(﹣1)n+1n2a n+137.(2022·晋中模拟)下列运算正确的是()A.2a+5a=7a2B.(-2a)3=8a³C.-8a²÷2a=-4a D.3a2·a3=3a638.使代数式有意义的x的取值范围是()A.B.C.且D.一切实数39.下列运算正确的是()A.B.C.D.40.若二次根式有意义,则下列数中,实数x不可以取的值是()A.﹣1B.0C.1D.2 41.(2023·抚州模拟)把二次三项式2x2﹣8xy+5y2因式分解,下列结果中正确的是()A.(x﹣y)(x﹣y)B.(2x﹣4y+y)(x﹣y)C.(2x﹣4y+y)(x﹣y)D.2(x﹣y)(x﹣y)42.(2022·诸城模拟)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣843.冠状病毒因在显微镜下观察类似王冠而得名,新型冠状病毒是以前从未在人体中发现的冠状病毒,新型冠状病毒的半径约是0.000000045米,将数0.000000045用科学记数法表示为()A.4.5×108B.45×10﹣7C.4.5×10﹣8D.0.45×10﹣944.下列计算正确的是()A.a3•a2=a5B.(a3)2=a5C.a10÷a2=a5D.a2+a3=a5三、计算题45.(2022·沈河模拟)计算:.46.(2022·宝山模拟)计算:四、解答题47.(2023·东阿模拟)先化简,再求值,其中.48.已知某正数的两个不同的平方根是和;的立方根为;是的整数部分.求的平方根.五、综合题49.(2022·垦利模拟)(1)计算:;(2)先化简,再求代数式的值,其中x是不等式组的整数解.50.(2022·寻乌模拟)【概念感知】我们把两个二次项系数之和为1,对称轴相间,且图象与y轴交点也相同的二次函数称为“友好对称二次函数”,例如:的“友好对称二次函数”为.(1)【特例求解】的“友好对称二次函数”为;的“友好对称二次函数”为.(2)【性质探究】关于“友好对称二次函数”,下列结论正确的是(填入正确的序号)①二次项系数为1的二次函数没有“友好对称二次函数”;②二次项系为的二次函数的“友好对称二次函数”是它本身;③的“友好对称二次函数”为.④任意两个“友好对称二次函数”与y轴一定有交点,与x轴至少有一个二次函数有交点.(3)【拓屐应用】如图,二次函数与其“友好对称二次函数”都与y轴交于点A,点B,C分別在,上,点B,C的横坐标均为,它们关于的对称轴的称点分别力,,连接,,,.①若,且四边形为正方形,求m的值;②若,且四边形邻边之比为,直接写出a的值.答案解析部分1.【答案】﹣【解析】【解答】解:﹣2的倒数是﹣.【分析】根据倒数定义可知,﹣2的倒数是﹣.2.【答案】4【解析】【解答】解:原式==4.【分析】运用开平方定义化简.3.【答案】3【解析】【解答】解:故答案为:3.【分析】根据二次根式的性质进行化简即可。

中考数学复习专题复习训练试题汇总(附答案)

中考数学复习专题复习训练试题汇总(附答案)

中考数学复习专题复习训练试题汇总(附答案)一、代数部分1. 题目:求解一元二次方程 $ x^2 3x + 2 = 0 $ 的解。

答案:$ x_1 = 1, x_2 = 2 $。

2. 题目:求解一元二次方程 $ x^2 + 4x 5 = 0 $ 的解。

答案:$ x_1 = 5, x_2 = 1 $。

3. 题目:求解一元二次方程 $ x^2 5x + 6 = 0 $ 的解。

答案:$ x_1 = 2, x_2 = 3 $。

二、几何部分1. 题目:求直角三角形 $ ABC $ 中,已知 $ AB = 3 $,$ AC = 4 $,求 $ BC $ 的长度。

答案:$ BC = 5 $。

2. 题目:求直角三角形 $ ABC $ 中,已知 $ BC = 5 $,$ AC = 4 $,求 $ AB $ 的长度。

答案:$ AB = 3 $。

3. 题目:求直角三角形 $ ABC $ 中,已知 $ AB = 3 $,$ BC =4 $,求 $ AC $ 的长度。

答案:$ AC = 5 $。

三、应用题部分1. 题目:某工厂生产的产品,每件成本为 50 元,销售价为 80 元。

已知该工厂生产 100 件产品的总成本为 5000 元,求该工厂生产的产品数量。

答案:该工厂生产的产品数量为 100 件。

2. 题目:某商店销售一款商品,原价为 100 元,打 8 折后的售价为 80 元。

求该商品的折扣率。

答案:该商品的折扣率为 20%。

3. 题目:某水果店购买一批苹果,每千克进价为 5 元,销售价为 10 元。

已知该水果店购买了 100 千克苹果,求该水果店的利润。

答案:该水果店的利润为 500 元。

中考数学复习专题复习训练试题汇总(附答案)四、函数部分1. 题目:已知一次函数 $ y = 2x + 1 $,求 $ x = 3 $ 时的$ y $ 值。

答案:当 $ x = 3 $ 时,$ y = 7 $。

2. 题目:已知二次函数 $ y = x^2 4x + 4 $,求该函数的顶点坐标。

初中数学中考计算题复习(最全)-含答案(word文档良心出品)

初中数学中考计算题复习(最全)-含答案(word文档良心出品)

一. 解答题(共30小题)1. 计算题:①;②解方程: .2. 计算: +(π﹣2013)0.3. 计算: |1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4. 计算: ﹣.5. 计算: .6..7. 计算: .8. 计算: .计算: .10. 计算: .11. 计算: .12..计算: .14. 计算: ﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15. 计算: .16. 计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|. (2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)(1)17. 计算:(2)(﹣1)2013﹣|﹣7|+×0+()﹣1;(3).计算: .解方程: .20. 计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°解方程: = ﹣.(1)计算: .求不等式组的整数解.(1)计算:先化简, 再求值: (﹣)÷, 其中x= +1. (1)计算: tan30°解方程: .25. 计算:(1)先化简, 再求值: ÷+ , 其中x=2 +1. (1)计算: ;解方程: .计算: .计算: .计算: (1+ )2013﹣2(1+ )2012﹣4(1+ )2011.计算: .1. 化简求值: , 选择一个你喜欢且有意义的数代入求值.2.先化简, 再求值, 然后选取一个使原式有意义的x值代入求值.3. 先化简再求值: 选一个使原代数式有意义的数代入中求值.4.先化简, 再求值: , 请选择一个你喜欢的数代入求值.5. (2010•红河州)先化简再求值: . 选一个使原代数式有意义的数代入求值.6. 先化简, 再求值: (1﹣)÷, 选择一个你喜欢的数代入求值.7. 先化简, 再求值:(﹣1)÷, 选择自己喜欢的一个x求值.8.先化简再求值: 化简, 然后在0, 1, 2, 3中选一个你认为合适的值, 代入求值.9. 化简求值(1)先化简, 再求值, 选择你喜欢的一个数代入求值.(2)化简, 其中m=5.10. 化简求值题:(1)先化简, 再求值: , 其中x=3.(4)先化简, 再求值: , 其中x=﹣1.11. (2006•巴中)化简求值: , 其中a= .12. (2010•临沂)先化简, 再求值: ()÷, 其中a=2.13. 先化简: , 再选一个恰当的x值代入求值.14. 化简求值: (﹣1)÷, 其中x=2.15. (2010•綦江县)先化简, 再求值, , 其中x= +1.16. (2009•随州)先化简, 再求值: , 其中x= +1.17. 先化简, 再求值: ÷, 其中x=tan45°.18. (2002•曲靖)化简, 求值: (x+2)÷(x﹣), 其中x=﹣1.19. 先化简, 再求值: (1+ )÷, 其中x=﹣3.20. 先化简, 再求值: , 其中a=2.21. 先化简, 再求值÷(x﹣), 其中x=2.22. 先化简, 再求值: , 其中.23. 先化简, 再求值: (﹣1)÷, 其中x—.24. 先化简代数式再求值, 其中a=﹣2.25. (2011•新疆)先化简, 再求值: (+1)÷, 其中x=2.26. 先化简, 再求值: , 其中x=2.27. (2011•南充)先化简, 再求值: (﹣2), 其中x=2.28. 先化简, 再求值: , 其中a=﹣2.29. (2011•武汉)先化简, 再求值:÷(x﹣), 其中x=3.30.化简并求值:•, 其中x=2. 2。

人教版中考数学总复习资料完整版+中考数学综合复习题共三套(含答案)

人教版中考数学总复习资料完整版+中考数学综合复习题共三套(含答案)

⼈教版中考数学总复习资料完整版+中考数学综合复习题共三套(含答案)⼈教版中考数学总复习资料完整版+中考数学综合复习题共三套(含答案)数学中考总复习资料完整版⼀有理数1、有理数的基本概念 (1)正数和负数定义:⼤于0的数叫做正数。

在正数前加上符号“-”(负)的数叫做负数。

0既不是正数,也不是负数。

(2)有理数正整数、0、负整数统称整数。

正分数、负分数统称分数。

整数和分数统称为有理数。

2、数轴规定了原点、正⽅向和单位长度的直线叫做数轴。

3、相反数代数定义:只有符号不同的两个数叫做互为相反数。

⼏何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表⽰的数,叫做互为相反数。

⼀般地,a 和-a 互为相反数。

0的相反数是0。

a =-a 所表⽰的意义是:⼀个数和它的相反数相等。

很显然,a =0。

4、绝对值定义:⼀般地,数轴上表⽰数a 的点与原点的距离叫做数a 的绝对值,记作|a |。

⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0。

即:如果a >0,那么|a |=a ;如果a =0,那么|a |=0;如果a <0,那么|a |=-a 。

a =|a |所表⽰的意义是:⼀个数和它的绝对值相等。

很显然,a ≥0。

5、倒数定义:乘积是1的两个数互为倒数。

1a a=所表⽰的意义是:⼀个数和它的倒数相等。

很显然,a =±1。

6、数的⽐较⼤⼩法则:正数⼤于0,0⼤于负数,正数⼤于负数;两个负数,绝对值⼤的反⽽⼩。

7、乘⽅定义:求n 个相同因数的积的运算,叫做乘⽅。

乘⽅的结果叫做幂。

如:an na a a a 个=读作a 的n 次⽅(幂),在a n 中,a 叫做底数,n 叫做指数。

性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。

8、科学记数法定义:把⼀个⼤于10的数表⽰成a×10n的形式(其中a⼤于或等于1且⼩于10,n是正整数),这种记数⽅法叫做科学记数法。

中考数学专题复习真题汇编卷(初中数学全套)

中考数学专题复习真题汇编卷(初中数学全套)

中考数学专题复习真题汇编卷(初中数学全套)一元一次方程一、多项选择题1.下列各式中,是方程的是()a.b、 145=9摄氏度。

a>3bd。

x=12.方程3x+6=2x8移项后,正确的是()a.3x+2x=68b.3x2x=8+6c.3x2x=68d.3x2x=86三.如果三个连续奇数之和为81,则中间奇数为()a.23b.25c.27d.294.方程3x=6的解是()a、 x=2x=3c.2d.185.在下列方程中,不是积分方程的是()ab.Cx27=0d。

x5x2=06.如果□ ×(-3)=1,然后是要填写的实数“□“是()吗b.3b.x=x=c、 -3d。

7.甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙若设x秒后甲追上乙,列出的方程应为()a.7x=6.5b.7x=6.5(x+2)c.7(x+2)=6.5xd.7(x2)=6.5x8.6. 如果阳光公司以21元的购买价销售一款电子产品,并以10%的价格销售,它仍然可以获得20%的利润,那么这个电子产品的价格是()a.26元b.27大约28元元d.29元9.方程(x-3)(x+4)=(x+5)(x-6)的解为()a.x=9b.x=-9c.x=6d.x=-610.如图所示,根据图中提供的信息,杯子的价格为()a.5135元人民币元c.87.5元人民币11.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的-3.6和x,则()a、 9<x<10b。

10<x<11c。

11<x<12d。

12<x<1312。

运动员a和B正在成长的直道(这是直道两端的点)以恒定的速度来回跑训练,两人同时从点起跑,到达点后,立即转身跑向点,到达点后,又立即转身跑向点……若甲跑步的速度为B.跑步速度很快,则起跑后在…内两人相遇的次数为()a、 5b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习真题汇编卷(初中数学全套)一元一次方程一、选择题 1.下列各式中,是方程的是A.﹣5=9>3b=1 2.方程3x+6=2x﹣8移项后,正确的是A. 3x+2x=6﹣8 B. 3x﹣2x=﹣8+6C. 3x﹣2x=﹣6﹣8D. 3x﹣2x=8﹣63.三个连续奇数的和是81,则中间一个奇数是 A. 23 B.25 C. 27 D.29 4.方程﹣3x=6的解是 A. x=2x=﹣3 C. 2 D. 18 5.下列方程中,不是整式方程的是 A.B. C. x2﹣7=0D. x5﹣x2=0 6.如果□×(-3)=1,则“□”内应填的实数是 A.B. 3=﹣x=﹣C. -3D. 7.甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙若设x秒后甲追上乙,列出的方程应为 A. 7x= B. 7x= C. 7= D. 7= .阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为( ) A. 26元 B. 27元 C. 28元D. 29元9.方程(x-3)(x+4)=(x+5)(x-6)的解是( ) A. x=9 B. x=-9 C. x=6 D. x=-6 10.如图,根据根据图中提供的信息,可知一个杯子的价格是A. 51元 B. 35元 C. 8元D. 元11.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-和x,则( ) A. 9<x<10 B. 10<x<11 C.11<x<12 D. 12<x<13 12.甲、乙两运动员在长为的直道上进行匀速往返跑训练,两人同时从点起跑,到达点后,立即转身跑向点,到达点后,又立即转身跑向点……若甲跑步的速度为,乙跑步的速度为,则起跑后内,两人相遇的次数为 A. 5B. 4C. 3D. 2二、填空题13.已知二元一次方程3x-y=12,用含x的代数式表示y,则y=________。

14.若m的2倍与n的倍的和等于6,列为方程是________.15.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于________.16.多项式(mx+4)(2-3x)展开后不含x项,则m=________.17.商场一件商品按标价的九折销售仍获利20%,已知商品的标价为28元,则商品的进价是________元.18.一组数据2,x,4,3,3的平均数是3,则这组数据的中位数是__.19.已知2a+3b--1=0,则6a+9b的值是________。

20.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是________元.三、解答题21.解方程22.已知x=﹣1是关于x 的方程8x﹣4x+kx+9=0的一个解,求3k ﹣15k﹣95的值.23.已知关于x 的方程24.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根与方程3=4x﹣5的解相同,求a 的值.322据该统计图回答下列问题:求甲公司经营的蛋糕店数量和该市蛋糕店的总数.甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.25.人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.求甲种牛奶、乙种牛奶的进价分别是多少元?若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?答案解析一、选择题 1.【答案】D 【解析】:A、不是方程,故此选项错误;B、不是方程,故此选项错误;C、不是方程,故此选项错误;D、是方程,故此选项正确;故选:D.【分析】根据方程的定义:含有未知数的等式叫方程可得答案.2.【答案】C 【解析】:原方程移项得:3x﹣2x=﹣6﹣8.故选C.【分析】本题只要求移项,移项注意变号就可以了. 3.【答案】C 【解析】:设中间的奇数为x,则另外两个奇数分别为、,根据题意得:x﹣2+x+x+2=81,解得:x=27.答:中间的奇数为27.故选C.【分析】设中间的奇数为x,则另外两个奇数分别为、,根据三数之和为81即可得出关于x的一元一次方程,解之即可得出结论. 4.【答案】C 【解析】:﹣3x=6,系数化1得:x=﹣2.故选C.【分析】直接将原方程系数化1,即可求得答案. 5.【答案】B 【解析】:A、C、D的分母中或根号下均不含未知数,是整式方程;B、分母中含有未知数,不是整式方程,故答案为:B.【分析】整式方程就是分母与根号下均不含未知数的等式. 6.【答案】D 【解析】设“□”内应填的实数是x,则-3x=1, 解得,x= 故答案为:D. 【分析】设“□”内应填的实数是x,根据题意列出方程,求解即可得出答案。

7.【答案】B 【解析】设x秒后甲追上乙,根据等量关系:甲x秒所跑的路程=乙x秒所跑的路程+乙2秒所跑的路程.列方程得:7x=,故答案为:B.【分析】设x秒后甲追上乙,题意可得等量关系:甲x秒所跑的路程=乙x秒所跑的路程+乙2秒所跑的路程.根据相等关系列出方程。

8.【答案】C 【解析】设电子产品的标价为x元,根据题意得:﹣21=21×20% 解得:x=28 所以这种电子产品的标价为28元.故答案为:C.【分析】设电子产品的标价为x元,按照等量关系“标价×﹣进价=进价×20%”,列出一元一次方程求解即可。

9.【答案】B 【解析】:根据(x-3)(x+4)=x2+x-12,(x+5)(x-6))=x2-x-30,解答得到x=-9,选B【分析】根据多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加;即元,根据题意,得2+3x=94,解得x=8.答:一个杯子的价格是8元.故选C.【分析】设一个杯子的价格是x元,那么一个热水瓶的价格是元,根据2个热水瓶的价格+3个杯子的价格=94元列出方程,求解即可.11.【答案】C 【解析】:根据题意得:x+=15, 解得:x= ; 故答案为:C【分析】根据数轴上两点间的距离得出原点右边的线段长度+原点左边的线段长度=15,列出方程,求解得出x的值,从而得出答案。

12.【答案】B 【解析】:甲、乙两运动员一共跑了:×100=900,所用时间为200÷= s.方法一:∵甲、乙是同时从A点起跑的,∴每次相遇甲、乙两人共跑了200m,则900÷200=4……100,答:起跑后100s内,两人相遇的次数是4次.方法二:∵甲、乙是同时从A点起跑的,∴每次相遇甲、乙两人都需要经过则100÷= ,即两人相遇的次数是4次.s,故答案为:B. 【分析】理清行驶过程:甲、乙两运动员同时从起点A出发,因为甲的速度比乙的快,所以甲先到达B点,再返回A 点,才与乙第一次相遇,此时甲与乙共跑了200m,而且所用时间为200÷= 为s,则依此类推,相邻两次相遇之间甲与乙共跑200m,且间隔时间s,共用了100s可求出相遇的次数.二、填空题13.【答案】3x-12 【解析】:移项得:3x-12=y, ∴y=3x-12 故答案为:3x-12 【分析】根据等式的性质,移项得出3x-12=y,再根据等式的对称性即可得出。

14.【答案】2m+ n=6 【解析】:根据题意得:2m+ n=6.【分析】题中根据的已知条件是:若m的2倍与n的倍的和等于6,列方程即可。

15.【答案】-1 【解析】:∵x=2是关于x的方程2x+3m ﹣1=0的解∴4+3m﹣1=0 解之得:m=-1 【分析】将x=2代入方程,建立关于m 的方程,求解即可。

16.【答案】6 【解析】:(mx+4)(2-3x) =2mx-3mx2+8-12x =-3mx+x+8 ∵多项式(mx+4)(2-3x)展开后不含x项, ∴2m-12=0 解之:m=6 故答案为:6 【分析】先利用多项式乘以多项式的法则,将括号展开,合并同类项,再根据题意得出一次项系数为0,建立方程求解即可。

17.【答案】21 【解析】设商品的进价为x元,根据题意得:(1+20%)x=28×90%,=,x=21. 故答案为:21. 2【分析】抓住题中关键的已知条件:按标价的九折销售仍获利20%,因此等量关系为:×进价=标价×90%,设未知数列方程求解即可。

18.【答案】3 【解析】题意得:2+x+4+3+3=3×5,解得:x=3,所以将这组数据排序得:2、3、3、3、4,所以中位数是3,故答案为:3. 【分析】根据这组数据的总和等于各个数据之或及平均数与这组数据的乘积,从而列出方程,求解得出x的值,再将这组数据按从小到大的顺序排列,除以最中间位置的数就是中位数。

19.【答案】3 【解析】:∵2a+3b--1=0 ∴2a+3b=1 ∴6a+9b=3 故答案为:3【分析】将已知方程转化为2a+3b=1,再利用等式的性质即可求解。

20.【答案】a+ b 【解析】:设原收费标准为x元,根据题意得=b =b x-a=b x=a+b 故答案为:a+b【分析】根据题意等量关系为:=b,设未知数,建立方程求解即可。

三、解答题21.【答案】解:【解析】【分析】根据去括号法则,将括号去掉,再移项、合并同类项、系数化为1.即可求解;先去分母,再去括号、移项、合并同类项、然后把系数化为1,即可求解;先去分母,再去括号、移项、合并同类项、然后把系数化为1,即可求解;22.【答案】解:将x=﹣1代入方程得:﹣8﹣4﹣k+9=0,解得:k=﹣3,当k=﹣3时,3k2﹣15k﹣95=27+45﹣95=﹣23 【解析】【分析】将x=1代入方程求出k的值,代入所求式子中计算即可求出值.23.【答案】解:解方程3=4x﹣5得:x=﹣1,把x=﹣1代入方程得:解得:a=﹣11 【解析】【分析】先求出第二个方程的解,把x=﹣1代入第一个方程,求出方程的解即可.24.【答案】解:150×600×=100 =600 ﹣=﹣1﹣1,答:甲蛋糕店数量为100家,该市蛋糕店总数为600家。

解:设甲公司增设x家蛋糕店,题意得20%=100+x 解得x=25 答:甲公司需要增设25家蛋糕店。

相关文档
最新文档