试验设计(DOE)经典课程培训

合集下载

DOE(培训教材)

DOE(培训教材)

一.概述1.试验设计所要研究和解决的问题:如何以尽可能少的试验次数获得足够有效的数据,并分析得出比较可靠的结论。

2.20世纪20年代由英国R.A.Fisher等人最早提出试验设计技术,并首先应用于农业,以后逐渐被应用于生物学、遗传学等方面。

1935年,R.A.Fisher的专著《试验设计》的出版标志着一门新的学科的诞生。

20世纪30、40年代,该方法在欧美盛行,应用到工业领域。

二次大战后,该方法在日本得到进一步的发展和应用,特别是以田口玄一为首的一批人员,将试验设计方法应用于改进产品和系统的质量,成为战后推动质量管理的重要工具之一。

3.质量管理中,经常会遇到多因素、有误差、周期长的一类试验,希望通过试验解决以下几个问题:1)对质量指标的影响,哪些因素重要,哪些因素不重要?2)每个因素取什么水平为好?3)各个因素按什么样的水平搭配起来使指标较好?实践证明,正交试验设计是处理这类试验问题的一种简便易行、行之有效的方法。

4.田口方法介绍。

产品质量的形成贯穿于产品寿命周期的全过程,包括设计、制造和使用过程。

田口博士提出产品的三次设计思想:系统设计、参数设计和容差设计。

同时,他将正交试验设计方法应用于产品研制阶段对参数的合理选择,为提高产品的设计质量提供了一套理论和方法。

二.正交试验设计的基本方法正交表是一种规格化的表格,各种各样的正交表都已构造出来了,对于解决实际问题的应用来说,只要掌握正交表的应用方法就达到目的了。

上图是一张正交表,有4列,每列的数字代表水平符号;有9行,每一行的水平组合代表一个试验条件。

这张表简记为L9(34)。

L表示正交表,下标9表示试验次数,34表示应用这个表最多可以安排3水平4因子的试验。

这张表的性质(整齐可比性性质,或称正交性性质):1)在任意一列中,各水平出现的次数相同,即水平1、2、3出现的次数相同;2)对任意列的任一水平,其他列的水平1、2、3与之在同行上相遇的次数相同。

DOE(试验设计)培训课件

DOE(试验设计)培训课件

医学领域试验设计案例分析
试验设计规范
医学领域的试验设计必须符合严格的伦理和法律规定,同时需要遵循科学的原则 和方法。本课件会介绍医学领域试验设计的规范和原则,包括人体实验的特殊要 求。
试验设计应用
医学领域的试验设计应用非常广泛,例如新药的开发和疗效比较、医疗器械的性 能检测等。本课件会通过实际案例来说明这些试验设计的具体应用和操作流程。
• 确定研究目的和问题 • 制定试验方案 • 选择合适的试验方法和材料 • 制定详细的试验计划和操作规程 • 进行试验并收集数据 • 分析数据并得出结论 • 撰写试验报告或论文
02
试验设计基本原则
科学性原则
试验设计需具备科学性,要能够反映出研究问题的本质和 规律。
科学性原则要求试验设计必须有明确的研究目的、研究对 象、研究方法和数据分析方法。
详细描述
将试验分为若干个阶段,每个阶段中包含不同的因素。在每个阶段中,将试验单元按照某种规则分为 若干个裂区,每个裂区内包含相同数量的试验单元。在每个裂区内选择一个试验单元进行试验,记录 其结果。该方法能够有效地控制误差,并能够研究不同因素之间的交互作用。
均匀设计
总结词
一种适用于多因素、多水平的试验设计方法。
试验设计包括了一系列的方法和技术,如随机化、重复性、 误差控制等。
试验设计的作用
1
试验设计可以帮助研究者明确研究目的、问题 和假设,并制定合理的试验方案。
2
试验设计可以有效地控制误差和变异,提高研 究的可靠性和准确性。
3
试验设计可以帮助研究者发现新的问题和现象 ,推动科学的进步和发展。
试验设计的流程
随机区组设计
总结词
一种常用的试验设计方法,适用于具有同一性质或同一类别的试验单元。

DOE(试验设计)培训课件

DOE(试验设计)培训课件

随机性
确保每个试验单元被选 中的机会相同。
重复性
相同条件下进
试验结果能够反映实际 情况,具有实际意义。
可操作性
试验过程易于实施和控 制。
03
试验设计方法
完全随机设计
总结词
完全随机设计是一种简单易行的试验设计方法,适用于处理单个因素或多个因 素对试验结果的影响。
THANKS
谢谢您的观看
佳条件以达到预期的结果。
DOE旨在提高实验效率和降低 成本,同时减少实验次数和缩短
研发周期。
DOE的目的和意义
确定关键因素和最佳条件
通过DOE,可以确定对产品或过程性 能有显著影响的因素,并确定最佳条 件以获得最佳性能。
提高产品或过程性能
降低成本和减少变异
DOE有助于减少实验次数和缩短研发 周期,从而降低成本。此外,它还可 以减少产品或过程中的变异,提高可 重复性和可靠性。
性和完整性。
06
实际应用案例分析
案例一:提高某产品的良品率
总结词
通过DOE方法,提高产品良品率
详细描述
针对某产品良品率低的问题,采用 DOE方法进行试验设计,通过调整工 艺参数、优化原料配方等手段,提高 产品良品率,降低生产成本。
案例二:优化某生产过程的工艺参数
总结词
通过DOE方法,优化生产过程工艺参数
JMP
强大的统计分析功能和可视化工具
VS
JMP是SAS公司开发的一款强大的统 计分析软件,它提供了丰富的统计方 法和可视化工具,可以帮助用户进行 各种复杂的数据分析和试验设计。 JMP具有直观的用户界面和易于使用 的操作方式,使得用户可以轻松地进 行数据处理和分析。同时,JMP还支 持多种数据格式,可以与其他软件进 行数据交换和共享。

最经典的DOE培训资料

最经典的DOE培训资料

最经典的DOE培训资料一、DOE培训简介DOE(Design of Experiments)即试验设计,是一种科学的统计方法,用于优化和改进产品、流程或系统。

本文将介绍最经典的DOE培训资料,帮助读者快速掌握DOE的基本概念和应用技巧。

二、DOE基本原理DOE的基本原理是通过合理安排实验来获取尽可能多的有用信息,以便推断出因果关系和优化条件。

在DOE中,研究者通过改变实验因子的水平,观察响应变量的变化情况,从而确定影响响应变量的主要因素,并找到最优的因素水平组合。

三、DOE的常用方法1. 完全随机设计(Completely Randomized Design):在完全随机设计中,实验因子的各个水平组合以完全随机的方式分配给试验单元。

这种设计适用于因素水平较少的情况,能够较好地估计因素效应。

2. 随机区组设计(Randomized Complete Block Design):随机区组设计将试验区分为几个均匀分布的区块,每个区块内的试验因子水平组合是随机分配的。

这种设计适用于试验区存在显著差异的情况,能够减小区组间的差异对因素效应评估的影响。

3. 多因子实验设计(Factorial Design):多因子实验设计同时考虑两个或多个因素对响应变量的影响。

通过观察各个因素水平组合下的响应变量值,可以评估因素间的交互作用,并确定最佳的因素组合。

4. 响应曲面法(Response Surface Methodology):响应曲面法利用数学模型来描述因素和响应变量之间的关系。

通过在响应曲面图上寻找最大或最小值点,可以找到最优的因素组合。

四、DOE的应用领域DOE广泛应用于各个领域,包括制造业、医药、食品、化工等。

以制造业为例,DOE可以用于优化工艺参数,提高产品质量和生产效率;在医药领域,DOE可以用于药物配方的优化和剂量的确定。

DOE的灵活性和可迅速得到结果的特点,使其成为许多领域中问题解决和优化的重要工具。

DOE(试验设计)培训课件

DOE(试验设计)培训课件
详细说明如何使用DOE软件工具进行实验设计 、数据采集、数据分析和模型构建等。
介绍DOE软件工具中各种选项和参数的意义及 设置方法,例如实验设计类型、因子和水平设 置等。
DOE软件工具的应用案例
通过实际案例介绍如何使用DOE软件工具进行实验 设计和数据分析。
通过案例展示DOE软件工具在工业生产、新产品研 发等领域的应用。
DOE基本原则
随机化原则
试验设计应遵循随机化原则,以避 免潜在的人为偏见和系统误差。
重复性原则
为提高试验结果的可靠性和精确度 ,应尽可能遵循重复性原则,即在 相同条件下多次进行试验。
对照原则
通过设置对照组,可以更好地评估 试验组中目标变量与影响因素之间 的关系。
简约性原则
在满足试验目的的前提下,应尽可 能采用简约的试验设计,以降低试 验成本和时间。
设计实验方案
采用正交表进行实验设计,选择了三因素三水平的正交 表,设计了九组实验方案,每组方案重复五次。
实施实验并收集数据
按照设计的实验方案进行实验,并收集了三十组实验数 据。
分析数据并得出结论
对收集的实验数据进行统计分析,发现生产温度对产品 质量影响最大,其次是生产压力,最后是生产时间
06
DOE软件工具介绍与操作指南
试验设计的基本原则
试验设计需要遵循随机化、重复性和对照等基本原则。
试验设计在生产中的应用
试验设计可以应用于生产过程中,通过优化生产工艺和参数,提高产品质量和生产效率。
试验设计在研发中的应用
试验设计可以应用于产品研发过程中,通过科学筛选和优化设计方案,降低产品成本和提高性能。
DOE与六西格玛的关系
DOE的基本概念
设计实验方案
采用正交表进行实验设计,选择了三因素三水平的正交表 ,设计了九组实验方案,每组方案重复三次。

DOE实验设计培训教材 经典完整版

DOE实验设计培训教材 经典完整版

DOE实验设计培训教材经典完整版实验设计是科学研究中至关重要的一环,它能够帮助研究者准确、有效地得出结论,并为进一步的实验提供可靠的依据。

为了提高实验设计的质量和效果,了解并应用正交试验设计(Design of Experiments, DOE)成为必要的技能。

本教材将介绍DOE的基本原理和方法,帮助读者达到熟练运用DOE设计实验的能力。

DOE简介DOE作为一种系统的实验设计方法,可以同时考虑多个因素对实验结果的影响,通过设计合理的实验方案,得出可靠的结论。

相比于传统的试错法,DOE具有高效、精确、经济的特点,适用于各种科研和工程实验。

1. 实验设计基础1.1 可变因素与响应变量在实验中,可变因素是指可以被科学研究者操纵的因素,而响应变量则是受这些可变因素影响的实验结果指标。

了解可变因素与响应变量的关系是进行实验设计的基础。

1.2 实验设计的目标实验设计的目标是寻找可变因素对响应变量的最佳组合,从而得到对研究问题有重要意义的结论。

常见的实验设计目标包括确定最优条件、寻找影响因素、找出因素间的相互作用等。

2. 正交试验设计2.1 正交试验设计的原理正交试验设计是一种基于统计学原理的实验设计方法,通过选定一组正交表,将试验因素进行组合,来实现对多个试验变量的全面考虑。

通过正交试验设计,可降低实验次数,并减少实验中因非试验因素带来的误差。

2.2 正交试验设计的步骤2.2.1 确定试验因素与水平在进行正交试验设计之前,需要明确研究中的试验因素及其各个水平。

试验因素可以是任何对响应变量产生影响的因素,而水平则是试验因素的具体取值。

2.2.2 构建正交表根据试验因素的水平个数,选择适当的正交表进行构建。

正交表的选择要满足试验因素个数和水平个数的要求,以保证实验设计的合理性。

2.2.3 设计实验方案根据所选正交表的要求,将试验因素与各个水平进行组合,得到实验的方案。

通过合理的组合,可以实现对多个试验因素的全面考虑。

实验设计(DOE)方法培训

实验设计(DOE)方法培训

和偏差。
控制干扰因素
02
考虑并控制可能干扰实验结果的干扰因素,如仪器误差、环境
变化等。
可重复性与可扩展性
03
确保实验方案具有可重复性和可扩展性,以便验证实验结果和
推广应用。
注意数据收集与分析的准确性
数据质量
确保数据收集过程中准确记录和处理数据,避免数据失真或遗漏 。
数据分析方法
根据实验目的和数据类型选择合适的数据分析方法,如回归分析 、方差分析、主成分分析等。
降低成本
通过优化实验设计,可以 减少不必要的实验次数和 资源消耗,从而降低成本 。
提高生产效率
通过实验设计,可以确定 最佳的工艺参数和操作条 件,从而提高生产效率。
DOE的历史与发展
历史
实验设计起源于20世纪20年代的统计学领域,随着计算机技术的发展,实验设 计方法得到了广泛应用。
发展
现代实验设计方法已经广泛应用于各个领域,如制造业、医药、生物技术等。 同时,随着大数据和人工智能技术的发展,实验设计方法也在不断创新和发展 。
02
实验设计(DOE)基本原理
因子与水平
因子
影响产品、过程或系统性能的变量称为因子。
水平
因子的不同状态或取值。
因子与水平的选择
根据实际需求和条件选择合适的因子和水平。
实验设计类型
完全随机设计
每个因子在每个水平上的 组合都是随机的。
部分因子设计
只选取部分因子和水平进 行实验。
饱和设计
包含所有因子和水平的组 合。
确定实验设计的主要目的和研究问题,确保实验结果能够解 决实际问题。
确定研究范围
明确实验研究的范围和边界条件,避免不必要的复杂性和确定影响实验结果的关键因素或变量 ,这些因素可能对实验结果产生影响 。

DOE(试验设计)培训课件

DOE(试验设计)培训课件

正交设计
利用正交表安排多因素多水平的 试验,寻找最优组合。
均匀设计
在一定范围内均匀选取试验点, 进行多因素多水平的试验,寻找 最优组合。
03
试验设计的应用
试验设计在产品研发中的应用
80%
确定产品性能指标
通过试验设计,确定产品的性能 指标,确保产品能够满足用户需 求。
100%
优化产品设计
试验设计可以帮助优化产品设计 ,提高产品的性能、可靠性和安 全性。
DOE的重要性
• 试验设计在生产或制造过程中具有非常重要的意义。通过试验设计,可以有效地确定影响产品或过程的关键因素,提高产品质量和生效率 。此外,试验设计还可以帮助企业优化资源配置,降低生产成本,提高市场竞争力。
DOE的发展历程
试验设计作为一种科学方法,最初起源于20世纪20年代的农业科 学研究。随着工业革命的推进,试验设计逐渐被应用于工业制造 领域。在20世纪60年代,美国通用电气公司成功应用试验设计方 法优化了其生产过程,取得了显著的经济效益。此后,试验设计 逐渐受到全球各行各业的关注和应用。
DOE(试验设计)培训课件
汇报人:
2023-12-05

CONTENCT

• DOE简介 • DOE基本原理 • 试验设计的应用 • DOE案例分析 • DOE实践建议 • 相关工具介绍
01
DOE简介
什么是DOE
• DOE(Design of Experiments)是试验设计的英文缩写,它是一种系统性的方法,用于确定和优化在生产或制造过程中影 响关键输出的因素。试验设计通过合理地选择试验因子和水平,以及科学地安排试验顺序,来揭示影响关键输出的因素, 并为优化关键输出提供依据。

DOE培训教材经典版

DOE培训教材经典版

DOE培训教材经典版DOE培训教材经典版是为了推广和普及DOE(设计实验)方法而编写的一本教材。

本教材旨在通过理论知识和实践案例的结合,帮助读者全面了解DOE方法并能够灵活应用于实际工作中。

下面将分为三部分介绍DOE的基本概念、应用场景以及实施步骤。

一、DOE的基本概念在介绍DOE的基本概念之前,我们先了解一下什么是DOE。

DOE 是指设计实验(Design of Experiments),是一种通过系统的实验设计和数据分析来寻找影响产品或过程性能的关键因素的统计方法。

DOE 方法在质量管理、产品改进、工艺优化等方面都有广泛应用。

DOE的基本概念包括因素、水平、响应变量和设计矩阵。

因素是影响产品或过程性能的各种变量,如温度、压力、材料等;水平是指每个因素在实验中设置的取值,如高水平、低水平等;响应变量是对因素设置不同水平后所观察到的结果;设计矩阵是实验设计的核心,通过合理地安排因素的组合和水平来进行试验。

二、DOE的应用场景DOE方法可以应用于各个行业和领域,下面介绍一些常见的应用场景。

1. 制造业:在生产过程中,通过使用DOE方法,可以识别出影响产品质量的关键因素,进而优化工艺参数,提高产品质量。

2. 医药研发:在新药研发过程中,DOE方法可以帮助科研人员确定药物配方的最佳组合,以及影响药物疗效的因素。

3. 电子通信:DOE方法可以用于优化无线通信系统的参数设置,提高通信质量和性能。

4. 金融行业:DOE方法可以应用于风险管理和投资组合优化等领域,帮助分析师制定合理的投资策略。

三、DOE的实施步骤DOE方法的实施包括确定实验目标、选择设计类型、制定实验计划、实施实验、收集数据、分析数据和建立模型等步骤。

1. 确定实验目标:根据实际需求,明确需要优化或改进的目标和关键因素。

2.选择设计类型:根据实验目标和因素水平的个数,选择合适的设计类型,如完全随机设计、因子水平设计、Taguchi设计等。

3. 制定实验计划:根据选择的设计类型,制定实验的具体安排,确定每个因素的水平组合。

DOE试验设计培训讲义

DOE试验设计培训讲义

2.1.2 正交表 2.1.2.1 两张常用的正交表
表 2-1 与 2-2 为两张常用的 3 因子 2 水平与 4 因子 3 水平正交表 表 2-1 正交表 L4(23) A B L4(23) 1 2 1 2 3 4 1 1 2 2 1 2 1 2 C 3 1 2 2 1 表 2-2 正交表 L9(34) A B 1 1 1 1 2 2 2 3 3 3 2 1 2 3 1 2 3 1 2 3 C 3 1 2 3 2 3 1 3 1 2 D 4 1 2 3 3 1 2 2 3 1
1.4.2 试验设计的实施
实施中要解决好下列几个问题: (1)按怎样的顺序进行试验,因试验常不止一次。 (2)认真进行试验,记录试验情况,妥善解决新发生的问题。 (3)试验结果如何准确和精确地测定。 (4)多少时间内完成。
1.4.3 数据的统计分析
对不同的 DOE,采用不同的数据分析方法。例如正交试验设计中,采用极差分析、方 差分析和显著性检验的 F 检验。
1.1.2 试验
试验是目的在于回答一个或几个经过构思的问题的行为过程。 目的可以是: 为了提高质 量;为了寻找最佳工艺搭配;为了寻找原因;为了开发新产品等等。构思可深可浅:试验会 出现哪些结果;试验中出现哪些问题?如何预防?试验报告如何写等等? 在质量管理中,经常会遇到多个因素、有误差及周期长的一类试验,希望通过试验解决 以下几个问题: (1)对质量指标的影响,哪些因素重要?哪些因素不重要?(2)各个因素 取什么状况(参数)为好?(3)各个因素按什么样的状况(参数)搭配起来使指标最好? 这是多个因素试验中比较典型的问题。
1.1.3 解决试验问题的三个阶段
解决任何一个试验问题都有三个阶段: (1)制订试验计划; (2)实施试验计划,记录试 验结果; (3)分析试验数据,给出问题的答案。 试验设计是研究如何合理地制订试验计划(设计问题)和如何科学地分析试验结果(分 析问题) ,它涉及第一与第三阶段。

DOE经典培训资料

DOE经典培训资料

方差分析法
方差分析法(ANOVA )
用于确定多个因素对一个或多个输出变量的 影响。通过比较因素的方差,可以确定哪些 因素对输出变量有显著影响。
适用场景
适用于实验设计,以评估不同因素对实验结 果的影响。
优点
缺点
可以确定因素对输出的影响,并比较不同因 素影响的程度。
仅适用于因素数量较少的情况,且要求数据 满足正态分布。
适用范围
当需要考虑多个因素对实验结果的影响,且每个因素都有多个水平时,可以采用正交表设计。
步骤
1.确定实验目的和变量;2.选择合适的正交表;3.将实验因素按照正交表的行和列进行排列;4.对每个单元格内的实验对象 进行相应的处理;5.观察并记录实验结果。
04
DOE的实验实施步骤
确定目标和变量
明确实验目标
不同的处理组;4.对处理组进行相应的处理;5.观察并记录实验结果

随机区组设计
定义
随机区组设计是一种将实验对象按照某种特征分成若干个区组,然后在每个区组内随机分 配实验对象到不同的处理组,以观察每个处理组的效果差异。
适用范围
当实验对象之间存在显著差异,且这种差异对实验结果有影响时,可以采用随机区组设计 。
田口方法
01
田口方法
又称为正交试验设计法,是一种 通过正交表安排多因素多水平的 试验,以最小实验次数获得最优 实验条件的方法。这种方法旨在 通过控制因素的水平变化,研究 因素对实验结果的影响。
03
02
优点
适用场景
适用于实验设计,特别是在产品开 发、工艺优化等方面。
可以减少实验次数,获得最优实 验条件。
回归分析法
回归分析法
通过建立自变量与因变量之间的数学模型,预测因变量的 取值。这种方法可以确定自变量对因变量的影响程度和方 向。

DOE(试验设计)培训课件

DOE(试验设计)培训课件

试验设计的特点包括:系统性、有目的性、有组织性、有计 划性、有经济性、有交流性等。
试验设计的发展历程
试验设计方法的发展历程包括:传统试验设计、近代试验 设计、现代试验设计等阶段。
试验设计方法的应用和发展,经历了从简单到复杂、从单 一到多元化的发展过程,逐渐形成了较为完善的理论体系 和应用实践。
试验设计的应用范围
根据专业知识和经验进行选择
选择试验设计方法需要具备一定的专业知识和经验,应根据实际情况和专业知识进行选择。
提高试验设计效率的建议
要点一
预先制定详细的试验 计划
在试验开始前,应制定详细的试验计 划,包括试验的目的、方案、材料、 时间、人员等,以便提高试验效率。
要点二
采用自动化和智能化 设备
积极采用自动化和智能化设备,减少 人工操作和误差,提高试验效率和质 量。
02
试验设计基本原则与步骤
试验设计的基本原则
科学性
以科学理论为指导,客观地、全面 地、系统地进行试验设计。
对比性
通过对比试验,突出试验组与对照 组的差异,便于数据的分析和解释 。
可重复性
在相同条件下,可以多次重复试验 ,以方便在 其他类似场景中应用。
优点
能够有效地控制嵌套因素的影响, 提高试验的精度和可靠性。
缺点
嵌套设计的难度较大,需要专业知 识和经验。
04
试验设计案例分析
案例一:水泥强度试验设计
目的
确定不同水泥品种、粒度、水 灰比等对水泥强度的影响,寻
找最优配比。
试验设计
采用正交试验设计方法,选取9个 因素,每个因素选取3个水平,共 进行3^9次试验。
问题与解答
学员提问
鼓励学员主动提出问题,针对学员提出的问题进行解答,并对重点问题进行 强调和补充说明。

试验设计(DOE)经典课程培训

试验设计(DOE)经典课程培训

试验设计(DOE)经典课程培训简介:从20世纪20年代费希尔(R.A.Fisher)在农业生产中使用试验设计(Design Of Experiment,DOE)方法以来,试验设计方法已经在农业、生物学、遗传学、工程学等领域得到广泛的应用和发展。

试验设计主要应用理统计学的基本知识,讨论如何合理地安排试验、取得数据,然后进行综合科学分析,从而尽快获得最优组合方案。

...深圳开课;课程时长:2天;详细会务信息请登陆森涛培训网查看适合对象:企业中高层管理者,研发、工艺、品质、设备、制造等部门骨干人员,负责改善及革新项目的骨干人员及对本课程有兴趣的人士。

课程介绍成果鉴定:培训后经考核合格学员将颁发《试验设计(DOE)培训证书》。

课程背景从20世纪20年代费希尔(R.A.Fisher)在农业生产中使用试验设计(Design Of Experiment,DOE)方法以来,试验设计方法已经在农业、生物学、遗传学、工程学等领域得到广泛的应用和发展。

试验设计主要应用理统计学的基本知识,讨论如何合理地安排试验、取得数据,然后进行综合科学分析,从而尽快获得最优组合方案。

在产品设计中,利用试验设计能以最低的试验成本,最短时间内有效的设计和验证产品的性能;在制造过程中,利用试验设计可以从诸多影响因素中,快速找到对过程输出指标影响显著的工艺参数,并将其最佳化。

试验设计的用途:1)析因分析,识别哪些变量X对响应量Y有显著影响;2)参数优化,确定有显著影响的X设置在何处时,可使Y几乎总是接近于期望值;3)减小变异,确定有影响的X设置在何处时,可使Y的变异最小;4)稳健设计,确定有影响的X设置在何处时,可使不可控变量U的效应最小。

学习目标1、了解试验设计的作用、用途、分类及特点2、熟悉统计学基础知识(数据类型、母体与抽样…),熟悉Minitab软件操作3、掌握试验设计的实施流程及过程要点4、掌握单因子试验设计(OFAT)的操作步骤,理解其建模思想5、掌握2水平全因子设计的创建、执行和分析方法,理解结果解读标准6、理解2水平部分因子实验的设计原理7、了解一般全因子设计和响应曲面设计(RSM)的作用与用途培训模式培训过程中,我们摒弃单调枯燥的理论讲解,更加侧重于应用和实战。

DOE(试验设计)培训

DOE(试验设计)培训
响应表面法)。
1、优化; 2、在存在噪声因素变化的场合发现输出最小
变异时对应的因素水平。
1、优化; 2、优化产品或制造过程的函数; 3、使输出对噪声因素敏感性最小,对输入因
素敏感性最大。
7个因素以上 3个因素以上 5个因素以上 7个因素以上
ቤተ መጻሕፍቲ ባይዱ
三)试验方案(类别)的选择流程:如下图:
确定试验目标 Y 需要进行试验吗?
可 控 对输出的 试验时改 因 素 影响度 变难易度
是否依为 试验因素
如是试验因素 如非试验因素
目前水平
目标水平
如何固定 其为常量
在何种 水平
备注:◎有重大影响,容易改变; ○有中等影响,相对容易改变;
△影响很小,很难改变.
三)
____过程噪声因素表
噪声 因素
对输 出的 影响

试验时改 变难易度
DOE试验案例说明
案例一(结论确定型)
型号:748H00483-00M.客户 要求 的CPK尺寸标准为: 33.91±0.1mm(两个定位孔的距离). 但最近出现多次尺寸变异偏长,因是客 户要求的CPK重点尺寸,品管部决定试 验重新验证现在的生产条件,并寻找最 佳的机台条件。(机台吨位:200T).
一)进行试验:
1、试验目标:是确定不同生产条件对产 品尺寸的影响及确定最佳条件组合;、
2、测量指标:油压产品的尺寸; 3、影响因素X`S:本试验已确定是考察 不同生产条件(硫化时间,机台压力)对测量 指标的影响,即影响因素为2个:硫化时间, 机台压力; 4、确定可能影响到输出指标的噪声因素; 5、列出DOE试验计划表:
DOE试验简介
DOE(design of experiments)

DOE经典培训资料

DOE经典培训资料

通过实验可以评估研发过程的质量和 效率,发现不足和问题,提出改进措 施。
03
效益预测与方案优化
通过实验可以对研发成果进行效益预 测,为企业制定优化方案提供支持。
THANKS
谢谢您的观看
03
DoE数据分析
数据收集和整理
明确数据收集目的和范围
在数据收集前,需要明确数据收集的目的和范围,以避免数据冗余和误判。
多渠道收集数据
通过多种渠道,如调查、互联网等收集数据,以保证数据的多样性和客观性。
数据清洗与整理
对收集到的数据进行清洗、整理,去除异常值、缺失值和重复数据。
数据分析方法
描述性统计分析
检测方法选择
01
DoE实验可以用来评估不同检测方法的有效性和可靠性,从而
为选择合适的检测方法提供依据。
检测灵敏度评估
02
DoE实验可以评估检测方法的灵敏度,从而确定其是否能够满
足产品质量检测的要求。
检测数据分析
03
DoE实验的结果可以用来分析检测数据,从而确定产品质量的
波动和趋势,为后续的质量改进提供依据。
06
DoE在研发管理中的应用
DoE在研发战略中的应用
要点一
确定研发目标和方向
要点二
探索市场和客户需求
通过实验设计,可以帮助企业确定研 发目标和方向,避免盲目投入。
通过实验可以了解市场和客户需求, 为企业研发提供参考依据,提高产品 市场竞争力。
要点三
技术预研和风险评估
通过实验可以评估技术可行性和风险 ,为企业制定研发计划提供支持。
DoE经典培训资料
xx年xx月xx日
目 录
• 引言 • DoE实验设计 • DoE数据分析 • DoE在生产中的应用 • DoE在质量管理中的应用 • DoE在研发管理中的应用

DOE实验设计培训教材

DOE实验设计培训教材

DOE实验设计培训教材一、引言实验设计是科学研究中至关重要的环节,它能够帮助研究者系统地收集数据、分析结果和做出准确的结论。

然而,不合理的实验设计可能导致数据的偏差和结论的不准确,从而影响科研工作的可信度和可重复性。

因此,掌握有效的实验设计方法是每个研究者都应该具备的基本能力之一。

二、DOE实验设计简介DOE(Design of Experiments)实验设计是一种统计学方法,它可以通过合理地安排实验因素来减少干扰因素的影响,提高实验数据的可靠性和有效性。

DOE实验设计方法旨在通过对实验过程中的因素进行系统性的分析和优化,从而探索出主要因素的影响及其相互关系,进而得出准确的结论。

三、DOE实验设计的步骤和原则1. 确定实验目标:在进行实验设计之前,需要明确实验的目标以及所要研究的问题或假设。

2. 确定实验因素和水平:实验因素是指可以影响实验结果的变量,而水平则是指每个实验因素的取值范围。

3. 设计实验方案:选择适当的实验设计方法,如完全随机设计、阶段随机设计、因子分析设计等,制定实验方案。

4. 进行实验:按照实验设计方案进行实验,记录实验数据。

5. 数据分析和结论:利用统计学方法对实验数据进行分析,得出结论,并评估实验结果的可靠性和有效性。

6. 优化实验设计:根据实验结果和结论,对实验设计进行优化并进行进一步的实验,以获得更准确和可靠的结果。

四、常用的DOE实验设计方法1. 完全随机设计(Completely Randomized Design,CRD):适用于因素水平较少、实验设计简单的情况。

2. 阶段随机设计(Randomized Complete Block Design,RCBD):适用于因素水平较多、可能存在随机误差的情况。

3. 因子分析设计(Factorial Design):用于分析多个因素对实验结果的影响及其相互作用。

4. 方案比较设计(Comparative Design):用于比较不同实验方案的效果,并确定最佳方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试验设计(DOE)经典课程培训
简介:从20世纪20年代费希尔(R.A.Fisher)在农业生产中使用试验设计(Design Of Experiment,DOE)方法以来,试验设计方法已经在农业、生物学、遗传学、工程学等领域得到广泛的应用和发展。

试验设计主要应用理统计学的基本知识,讨论如何合理地安排试验、取得数据,然后进行综合科学分析,从而尽快获得最优组合方案。

...
深圳开课;课程时长:2天;详细会务信息请登陆森涛培训网查看
适合对象:
企业中高层管理者,研发、工艺、品质、设备、制造等部门骨干人员,负责改善及革新项目的骨干人员及对本课程有兴趣的人士。

课程介绍
成果鉴定:培训后经考核合格学员将颁发《试验设计(DOE)培训证书》。

课程背景
从20世纪20年代费希尔(R.A.Fisher)在农业生产中使用试验设计(Design Of Experiment,DOE)方法以来,试验设计方法已经在农业、生物学、遗传学、工程学等领域得到广泛的应用和发展。

试验设计主要应用理统计学的基本知识,讨论如何合理地安排试验、取得数据,然后进行综合科学分析,从而尽快获得最优组合方案。

在产品设计中,利用试验设计能以最低的试验成本,最短时间内有效的设计和验证产品的性能;在制造过程中,利用试验设计可以从诸多影响因素中,快速找到对过程输出指标影响显著的工艺参数,并将其最佳化。

试验设计的用途:
1)析因分析,识别哪些变量X对响应量Y有显著影响;
2)参数优化,确定有显著影响的X设置在何处时,可使Y几乎总是接近于期望值;
3)减小变异,确定有影响的X设置在何处时,可使Y的变异最小;
4)稳健设计,确定有影响的X设置在何处时,可使不可控变量U的效应最小。

学习目标
1、了解试验设计的作用、用途、分类及特点
2、熟悉统计学基础知识(数据类型、母体与抽样…),熟悉Minitab软件操作
3、掌握试验设计的实施流程及过程要点
4、掌握单因子试验设计(OFAT)的操作步骤,理解其建模思想
5、掌握2水平全因子设计的创建、执行和分析方法,理解结果解读标准
6、理解2水平部分因子实验的设计原理
7、了解一般全因子设计和响应曲面设计(RSM)的作用与用途
培训模式
培训过程中,我们摒弃单调枯燥的理论讲解,更加侧重于应用和实战。

老师将采用讲授法、问答法、案例研讨与分组讨论等多样方式相结合的教学模式。

课前准备
1、空杯的心态
2、不被打扰的学习时间
3、做好计划,准时出席
课程特色
1、小班授课:互动性强,一对一针对性指导。

2、结果导向:真实案例贯穿始终,注重理论与实践的结合;
3、教学相长:关注学员项目管理技能的培养;透过案例分析、实战演练、小组研讨分享经验和知识。

课程大纲
专家介绍
李国武老师
美国质量协会会员,ASQ-CSSBB
美国质量协会注册精益六西格玛黑带
中国质量协会注册黑带
精益六西格玛黑带大师(MBB)
《中国质量》杂志质量专家
高级顾问,六西格玛项目总监,主要负责六西格玛、精益六西格玛等领域的咨询和培训业务,有超过8年六西格玛流程改进、精益六西格玛、六西格玛设计的现场实施和辅导经验,专注于为制造型企业提供精益六西格玛方法论和工具应用。

具有深厚的理论功底并拥有丰富的精益六西格玛项目实施、辅导和培训经验并具有极强的沟通能力。

曾任职于台达集团精益六西格玛人才培育部负责人、精益六西格玛专案执行委员会主任,有丰富的精益六西格玛推进、宣传和实施经验。

在担任台达黑带大师(MBB)期间,培训黑带(BB)和绿带(GB)工程师227人,辅导BB项目130个,辅导GB项目180个,总计年收益超过RMB 4000万。

李老师擅长企业商业、流程、精益战略评估分析、整体规划、企业经营战略、事务革新、制造革新等管理。

在六西格玛项目(Champion、BB、GB)挖掘、项目实施、项目辅导、项目评审、项目成果维持和项目管理等方面,企业品质管理体系、新产品设计过程与导入品质、制造过程品质、供应商品质控制、品质成本管理等领域有丰富的实践经验。

在人工费、材料费(GVE和Cost Down)、动力费、包装物流费、Q-Cost、消耗修缮费和一般经费等有丰富的经验和成功案例。

作为MBB指导企业有中国航天集团、台湾台达电子集团、富士康科技集团、仁宝集团、格力电器、美的冰箱、LG显示(Display)、上海富士通信息、中国电子长城信息、中国银行、生命人寿保险、伊利集团、红牛饮料、中国烟草沈阳公司、中国烟草龙岩烟厂、东风本田、陕西汽车、汉德车桥、天海同步科技、河北冀雅电子、杭州五星铝业、桂林两江国际机场、美国 EASTEK医疗电子、香港
新玛德电器、香港豪鹏电池、深圳金洲精工、西安隆基硅科技、凯邦电机、LEO泵业…等众多企业。

培训育成黑带和绿带人才1千余名,成功辅导黑带项目560余个,总计年收益超过RMB2亿6千万. 咨询风格:
课程精彩,经验丰富,非常强的项目辅导能力,能够帮助企业和黑带实施突破性改善。

余老师
黑带大师(MBB)
精益六西格玛改善专家
美国质量协会(ASQ)会员
ASQ注册六西格玛黑带(BB)
台达电首席6SIGMA讲师
履历:
曾就职于全球电子产业500强企业台湾台达电子(东莞)有限公司,先后担任质量经理、六西格玛项目经理、精益六西格玛专案执行委员会主任等要职,同时,兼任台达电子六西格玛黑带大师(MBB)、品质技术课程内训师等职。

余老师是台达电子六西格玛管理倡导者之一,也是台达电子导入六西格玛方法论过程中产生的第一批六西格玛黑带大师(MBB)之一,主导编写了台达电子第一部六西格玛黑带教材和教案。

优势:
从事六西格玛黑带大师(MBB)工作以来,指导过台达电子(东莞)、富士康科技(成都)、华宝通讯(南京)、美的电器(佛山)、美心家具(重庆)、中国平安(深圳)、红旗电缆(上海)、明阳光电(江门)、力帆汽车(重庆)、LG电子(广州)、玉柴集团(玉林)、骅陞科技(东莞)、创科集团(TTI)、凯邦电机(珠海)、达创科技(东莞)、强生婴儿(上海)、花王(上海)、湖北金龙非织造布等企业,凭借渊博的知识和风趣的教学风格深得客户和学员的好评。

培训育成六西格玛黑带和绿带改善人才达700人,指导实施黑带项目120余个,绿带项目230余个,共计实现年收益超过人民币2个亿。

指导项目多次荣获中国质量协会优秀六西格玛项目奖,以及客户企业内部竞赛之奖项。

温馨提示: 本课程可引进到企业内部培训,欢迎预约!
资料来源: 森涛培训网。

相关文档
最新文档