PDU1032H-10C5中文资料

合集下载

ADM1032的应用

ADM1032的应用

ADM1032温度监测器及其应用发布日期:2006-02-18 作者:孟文慧 连 琦 来源:电子元器件应用1引言ADM1032是一个双通道的本地与远程温度传感器,具有过高/过低温度报警。

该器件提供的精度为1℃,可以安全地减小温度报警区间,提高系统性能。

该器件可连接一个NPN 或PNP三极管,用来测量微处理器的温度,该三极管可以是片内的或外接的,如2N3906。

该新颖的测量方法消除了三极管基极和发射极电压的绝对值,所以不需校正。

第二个测量通道可以测量片内温度传感器的输出,以监测器件及其环境温度。

该器件主要应用于台式电脑、笔记本电脑、智能充电器、工业控制器、电信设备、仪器、嵌入式系统。

2内部结构、引脚排列及功能说明2.1内部框图ADM1032的内部功能框图如图1所示。

2.2引脚排列及功能ADM1032的引脚排列如图2所示,引脚功能如表1所示。

表 1 引 脚 功 能 描 述3主要特点ADM1032的主要特点有:1)片内或远程温度传感2)具有系统校准补偿寄存器3)远程通道具有0.125℃的分辨率/1℃的精度4)本地通道具有1℃的分辨率/3℃的精度5)温度传感速度快(每秒测到64次)6)双线SMBus串行接口7)支持SMBus报警8)可编程过高/过低温度范围9)可编程故障排列10)过高温度THERM输出11)可编程THERM极限值和滞后值12)工作电流:170μA待机电流:5.5μA4工作原理ADM1032通过一个双线串行接口通讯,此接口与系统管理总线(SMBus)标准兼容。

它也可以通过串行总线编程低/高温温度限值。

当片内或远程温度测量超出范围时,A LERT引脚输出信号,该输出可以作为中断或者SMBus报警信号。

THERM引脚是一个比较输出端,允许CPU时钟控制冷却风扇的调节或者开/关。

ADM1032正常工作时,片内A/D转换器正常工作。

模拟输入多路选择器选择片内温度传感器测量本地温度,或者选择远程传感器测量远程温度。

硬件选型手册07继电器

硬件选型手册07继电器
3PDT(ThreePole Double Throw)三到双掷
4PDT(FourPole Double Throw)四到双掷
跳闸继电器
700DC-PL500Z2(AB)
700DC-P800Z2(AB)
700DC-PL500Z2双线圈机械保持继电器
具有五对可转换触点
10A@600VAC0.55A@600VDC
技术说明
工作时间+回跳时间9+1ms
释放时间+回跳时间3+3ms
隔离:EN60947 pollution3,Gr C250V
绝缘强度,线圈-触点5KV
绝缘强度,极与极间1000V
注:带指示灯的型号为C10-A10X。
RU系列通用继电器
触点指标
接点规格DPDT、4PDT
材质银合金
接点电流最大值10A@250VAC
吸合时间20ms
释放时间10ms
隔离:EN60947 pollution3,Gr C500V
绝缘强度,线圈/触点4KV
注:①C5-M10只有一对常开接点,需要常闭接点时要选用RF-5610,C5-M10带指示灯的型号为C5-M10X;
②AC1和DC1表示阻性负载,
AC15和DC13表示感性负载。
C5-R20(TURCK RELECO)
触点指标
材质Nickel Silver
最大开关电流10A@600VAC
技术说明
线圈功耗12.7V·A
吸合时间20ms
释放时间20ms
使用环境温度-20℃~40℃
700DC-P800Z2控制继电器
具有八对可转换触点
10A@600VAC0.55A@600VDC
触点指标

ADM1032资料

ADM1032资料

REV.0Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.aADM1032*One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/ Fax: 781/326-8703© Analog Devices, Inc., 2001؎1؇C Remote and Local System Temperature MonitorFUNCTIONAL BLOCK DIAGRAMDDTHERMD+FEATURESOn-Chip and Remote Temperature Sensing Offset Registers for System Calibration0.125؇C Resolution/1؇C Accuracy on Remote Channel 1؇C Resolution/3؇C Accuracy on Local Channel Fast (Up to 64 Measurements per Second)2-Wire SMBus Serial Interface Supports SMBus AlertProgrammable Over/Under Temperature Limits Programmable Fault QueueOver-Temperature Fail-Safe THERM Output Programmable THERM LimitsProgrammable THERM Hysteresis 170 ␮A Operating Current 5.5 ␮A Standby Current 3 V to 5.5 V SupplySmall 8-Lead SO and Micro_SO Package APPLICATIONSDesktop Computers Notebook Computers Smart BatteriesIndustrial Controllers Telecomms Equipment Instrumentation Embedded SystemsPentium is a registered trademark of Intel Corporation.*Patents 5,982,221, 6,097,239, 6,133,753, 6,169,442, 5,867,012.PRODUCT DESCRIPTIONThe ADM1032 is a dual-channel digital thermometer and under/over temperature alarm, intended for use in personal computers and thermal management systems. The higher 1°C accuracy offered allows systems designers to safely reduce temperature guardbanding and increase system performance.The device can measure the temperature of a microprocessor using a diode-connected NPN or PNP transistor, which may be provided on-chip or can be a low-cost discrete device such as the 2N3906. A novel measurement technique cancels out the absolute value of the transistor’s base emitter voltage, so that no calibration is required. The second measurement channel mea-sures the output of an on-chip temperature sensor, to monitor the temperature of the device and its environment.The ADM1032 communicates over a two-wire serial interface compatible with System Management Bus (SMBus) standards.Under and over temperature limits can be programmed into the device over the serial bus, and an ALERT output signals when the on-chip or remote temperature measurement is out of range.This output can be used as an interrupt, or as an SMBus alert.The THERM output is a comparator output that allows CPU clock throttling or on/off control of a cooling fan.ADM1032–SPECIFICATIONS(T A = T MIN to T MAX, V DD = V MIN to V MAX, unless otherwise noted.)Parameter Min Typ Max Unit Test Conditions/CommentsPOWER SUPPLYSupply Voltage, V DD 3.0 3.30 5.5VAverage Operating Supply Current, I CC170215µA0.0625 Conversions/Sec Rate15.510µA Standby ModeUndervoltage Lockout Threshold 2.35 2.55 2.8V V DD Input, Disables ADC, Rising Edge Power-On Reset Threshold1 2.4VTEMPERATURE-TO-DIGITAL CONVERTERLocal Sensor Accuracy±1±3°C0 ≤ T A≤ 100°C, V CC = 3 V to 3.6 V Resolution1°CRemote Diode Sensor Accuracy±1°C60°C ≤ T D≤ 100°C, V CC = 3 V to 3.6 V±3°C0°C ≤ T D≤ 120°CResolution0.125°CRemote Sensor Source Current230µA High Level, Note 213µA Low Level, Note 2Conversion Time35.7142.8ms From Stop Bit to Conversion Complete(Both Channels) One-Shot Mode withAveraging Switched On5.722.8ms One-Shot Mode with Averaging Off(i.e., Conversion Rate = 32 or 64Conversions per Second)OPEN-DRAIN DIGITAL OUTPUTS(THERM, ALERT)Output Low Voltage, V OL0.4V I OUT = –6.0 mA2High Level Output Leakage Current, I OH0.11µA V OUT = V DD2SMBus INTERFACE2Logic Input High Voltage, V IH 2.1V V DD = 3 V to 5.5 VSCLK, SDATALogic Input Low Voltage, V IL0.8V V DD = 3 V to 5.5 VHysteresis500mVSCLK, SDATASMBus Output Low Sink Current6mA SDATA Forced to 0.6 VALERT Output Low Sink Current1mA ALERT Forced to 0.4 VLogic Input Current, I IH, I IL–1+1µASMBus Input Capacitance, SCLK, SDATA5pFSMBus Clock Frequency100kHzSMBus Timeout2564ms Note 3SMBus Clock Low Time, t LOW 4.7µs t LOW between 10% PointsSMBus Clock High Time, t HIGH4µs t HIGH between 90% PointsSMBus Start Condition Setup Time, t SU:STA 4.7µsSMBus Start Condition Hold Time, t HD:STA4µs Time from 10% of SDATA to 90%of SCLKSMBus Stop Condition Setup Time, t SU:STO4µs Time from 90% of SCLK to 10%of SDATASMBus Data Valid to SCLK Rising Edge250ns Time for 10% or 90% of SDATA to Time, t SU:DAT10% of SCLKSMBus Data Hold Time, t HD:DAT300µsSMBus Bus Free Time, t BUF 4.7µs Between Start/Stop ConditionSCLK Falling Edge to SDATA1µs Master Clocking in DataValid Time, t VD,DATSCLK, SDATA Rise Time, t R1µsSCLK, SDATA Fall Time, t F300nsNOTES1See Table VI for information on other conversion rates.2Guaranteed by Design, not production tested.3The SMBus timeout is a programmable feature. By default it is not enabled. Details on how to enable it are available in the SMBus section of this data sheet. Specifications subject to change without notice.–2–REV. 0REV. 0–3–ADM1032Figure 1.Diagram for Serial Bus TimingORDERING GUIDETemperature Package Package Branding SMBus Model Range DescriptionOption Information Addr ADM1032AR0°C to 120°C 8-Lead SO PackageSO-81032AR 4C ADM1032ARM0°C to 120°C8-Lead Micro_SO PackageRM-8T2A4CPIN CONFIGURATIONPIN FUNCTION DESCRIPTIONSPin No.Mnemonic Description1V DD Positive Supply, 3 V to 5.5 V.2D+Positive Connection to Remote Temperature Sensor.3D–Negative Connection to Remote Temperature Sensor.4THERM Open-drain output that can be used to turn a fan on/off or throttle a CPU clock in the event of an over-temperature condition. Requires pull-up to V DD .5GND Supply Ground Connection6ALERT Open-Drain Logic Output Used as Interrupt or SMBus Alert.7SDATA Logic Input/Output, SMBus Serial Data. Open-Drain Output. Requires pull-up resistor.8SCLKLogic Input, SMBus Serial Clock. Requires pull-up resistor.ABSOLUTE MAXIMUM RATINGS *Positive Supply Voltage (V DD ) to GND . . . . . . –0.3 V, +5.5 V D+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V DD + 0.3 V D– to GND . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.6 V SCLK, SDATA, ALERT . . . . . . . . . . . . . . . . –0.3 V to +5.5 V THERM . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V DD + 0.3 V Input Current, SDATA, THERM . . . . . . . . . . . –1, +50 mA Input Current, D– . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA ESD Rating, All Pins (Human Body Model) . . . . . . >1000 V Maximum Junction Temperature (T J max) . . . . . . . . . 150°C Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C IR Reflow Peak Temp . . . . . . . . . . . . . . . . . . . . . . . . . 220°C Lead Temp (Soldering 10 sec) . . . . . . . . . . . . . . . . . . . 300°C*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.THERMAL CHARACTERISTICS8-Lead SO Package θJA = 121°C/W8-Lead Micro_SO Package θJA = 142°C/WREV. 0ADM1032–Typical Performance Characteristics–4–LEAKAGE RESIST ANCE – M ⍀T E M P E R A T U R E E R R O R – ؇C101002016–160–4–8–128412TPC 1. Temperature Error vs.Leakage Resistance FREQUENCY – HzT E M P E R A T U R E E R R O R – ؇C101M24681012TPC 4.Temperature Error vs. Power Supply Noise FrequencyFREQUENCY – HzT E M P E R A T U R E E R R O R – ؇C024681012100k1M 10M 100MTPC 7.Temperature Error mon-Mode Noise Frequency T E M P E R A T U R E E R R O R – ؇C–0.50.51.0TEMPERA TURE – ؇C20406080100120TPC 2.Temperature Error vs. Actual Temperature Using 2N390616111621263118160T E M P E R A T U R E E R R O R – C864212101436CAP ACIT ANCE – nFTPC 5.Temperature Error vs.Capacitance between D+ and D–SCLK FREQUENCY – kHz1510255075100S U P P L Y C U R R E N T – ␮A2505007501000TPC 8.Standby Supply Current vs.Clock Frequency FREQUENCY – Hz1311–1100k100M1MT E M P E R A T U R E E R R O R – C10M 75319TPC 3.Temperature Error vs.Differential Mode Noise FrequencyCONVERSION RA TE – Hz0.01S U P P L Y C U R R E N T – ␮A0.1110100TPC 6.Operating Supply Current vs. Conversion RateSUPPL Y VOL T AGE – V400S T A N D B Y S U P P L Y C U R R E N T – ␮A1.52.50.5 1.03.0 5.03.54.0 4.52.03530252015105TPC 9.Standby Supply Current vs.Supply VoltageREV. 0ADM1032–5–FUNCTIONAL DESCRIPTIONThe ADM1032 is a local and remote temperature sensor and over-temperature alarm. When the ADM1032 is operating normally, the on-board A-to-D converter operates in a free-running mode. The analog input multiplexer alternately selects either the on-chip temperature sensor to measure its local tem-perature, or the remote temperature sensor. These signals are digitized by the ADC and the results stored in the Local and Remote Temperature Value Registers.The measurement results are compared with local and remote,high, low and THERM temperature limits, stored in nine on-chip registers. Out-of-limit comparisons generate flags that are stored in the Status Register, and one or more out-of limit results will cause the ALERT output to pull low. Exceeding THERM temperature limits cause the THERM output to assert low.The limit registers can be programmed, and the device con-trolled and configured, via the serial System Management Bus (SMBus). The contents of any register can also be read back via the SMBus.Control and configuration functions consist of:•Switching the device between normal operation and standby mode.•Masking or enabling the ALERT output.•Selecting the conversion rate.MEASUREMENT METHODA simple method of measuring temperature is to exploit the negative temperature coefficient of a diode, or the base-emitter voltage of a transistor, operated at constant current. Unfortu-nately, this technique requires calibration to null out the effect of the absolute value of V BE , which varies from device to device.The technique used in the ADM1032 is to measure the change in V BE when the device is operated at two different currents.This is given by:where:K is Boltzmann’s constant (1.38 × 10–23).q is charge on the electron (1.6 × 10–19 Coulombs).T is absolute temperature in Kelvins.N is ratio of the two currents.n f is the ideality factor of the thermal diode.The ADM1032 is trimmed for an ideality factor of 1.008.Figure 2 shows the input signal conditioning used to measure the output of an external temperature sensor. This figure shows the external sensor as a substrate transistor, provided for tem-perature monitoring on some microprocessors, but it could equally well be a discrete transistor. If a discrete transistor is used, the collector will not be grounded, and should be linked to the base. To prevent ground noise interfering with the measure-ment, the more negative terminal of the sensor is not referenced to ground, but is biased above ground by an internal diode at the D– input. If the sensor is operating in a noisy environment,C1 may optionally be added as a noise filter. Its value is typi-cally 2200 pF, but should be no more than 3000 pF. See the section on Layout Considerations for more information on C1.To measure ∆V BE , the sensor is switched between operating cur-rents of I and N × I. The resulting waveform is passed through a 65 kHz low-pass filter to remove noise, thence to a chopper-stabilized amplifier that performs the functions of amplification and rectification of the waveform to produce a dc voltage pro-portional to ∆V BE . This voltage is measured by the ADC to give a temperature output in two’s complement format. To further reduce the effects of noise, digital filtering is performed by aver-aging the results of 16 measurement cycles.Signal conditioning and measurement of the internal tempera-ture sensor is performed in a similar manner.TEMPERATURE DATA FORMATOne LSB of the ADC corresponds to 0.125°C, so the ADC canmeasure from 0°C to 127.875°C. The temperature data format is shown in Tables I and II.The results of the local and remote temperature measurements are stored in the Local and Remote Temperature Value Registers,and are compared with limits programmed into the Local and Remote High and Low Limit Registers.Table I.Temperature Data Format (Local Temperature and Remote Temperature High Byte)Temperature Digital Output 0°C 000000001°C 0000000110°C 0000101025°C 0001100150°C 0011001075°C 010********°C 01100100125°C 01111101127°C01111111REMOTE SENSING V OUT+TO ADC V OUT –C1 = 2.2nF TYPICAL, 3nF MAX.Figure 2.Input Signal Conditioning∆V n KT q In N BE f =()×()ADM1032–6–Status RegisterBit 7 of the Status Register indicates that the ADC is busy con-verting when it is high. Bits 6 to 3, 1, and 0 are flags that indicate the results of the limit comparisons. Bit 2 is set when the remote sensor is open circuit.If the local and/or remote temperature measurement is above the corresponding high temperature limit, or below or equal to, the corresponding low temperature limit, one or more of these flags will be set. These five flags (Bits 6 to 2) NOR’d together, so that if any of them is high, the ALERT interrupt latch will be set and the ALERT output will go low. Reading the Status Register will clear the five flag bits, provided the error conditions that caused the flags to be set have gone away. While a limit comparator is tripped due to a value register containing an out-of-limit measure-ment, or the sensor is open circuit, the corresponding flag bit cannot be reset. A flag bit can only be reset if the corresponding value register contains an in-limit measurement or the sensor is good. The ALERT interrupt latch is not reset by reading the Status Register, but will be reset when the ALERT output has been serviced by the master reading the device address, provided the error condition has gone away and the Status Register flag bits have been reset.When Flags 1 and 0 are set, the THERM output goes low to indicate that the temperature measurements are outside the programmed limits. THERM output does not need to be reset, unlike the ALERT output. Once the measurements are within the limits, the corresponding Status register bits are reset and the THERM output goes high.Table IV. Status Register Bit AssignmentsBit Name Function7BUSY 1 When ADC Converting6LHIGH* 1 When Local High-Temp Limit Tripped5LLOW* 1 When Local Low-Temp Limit Tripped4RHIGH* 1 When Remote High-Temp Limit Tripped3RLOW* 1 When Remote Low-Temp Limit Tripped2OPEN* 1 When Remote Sensor Open-Circuit1RTHRM 1 When Remote Therm Limit Tripped0LTHRM 1 When Local Therm Limit Tripped*These flags stay high until the status register is read or they are reset by POR. Configuration RegisterTwo bits of the Configuration Register are used. If Bit 6 is 0, which is the power-on default, the device is in operating mode with the ADC converting. If Bit 6 is set to 1, the device is in standby mode and the ADC does not convert. The SMBus does, however, remain active in Standby Mode so values can be read from or written to the SMBus. The ALERT and THERM O/Ps are also active in Standby Mode.Bit 7 of the configuration register is used to mask the alert output. If Bit 7 is 0, which is the power-on default, the output is enabled. If Bit 7 is set to 1, the output is disabled.Table II.Extended Temperature Resolution (RemoteTemperature Low Byte)Extended Remote TemperatureResolution Low Byte0.000°C000000000.125°C001000000.250°C010000000.375°C011000000.500°C100000000.625°C101000000.750°C110000000.875°C11100000ADM1032 REGISTERSThe ADM1032 contains registers that are used to store theresults of remote and local temperature measurements, high andlow temperature limits, and to configure and control the device.A description of these registers follows, and further details aregiven in Tables III to VII.Address Pointer RegisterThe Address Pointer Register itself does not have, or require, anaddress, as it is the register to which the first data byte of everyWrite operation is written automatically. This data byte is anaddress pointer that sets up one of the other registers for thesecond byte of the Write operation, or for a subsequent readoperation.The power-on default value of the Address Pointer Register is00h, so if a read operation is performed immediately after power-on without first writing to the Address Pointer, the value of thelocal temperature will be returned, since its register address is 00h.Value RegistersThe ADM1032 has three registers to store the results of Localand Remote temperature measurements. These registers arewritten to by the ADC only and can be read over the SMBus.Offset RegisterSeries resistance on the D+ and D– lines in processor packagesand clock noise can introduce offset errors into the remote tem-perature measurement. To achieve the specified accuracy onthis channel these offsets must be removed.The offset value is stored as an 11-bit, two’s complement valuein registers 11h (high byte) and 12h (low byte, left justified).The value of the offset is negative if the MSB of register 11h is 1and it is positive if the MSB of register 12h is 0. The value isadded to the measured value of remote temperature.The offset register powers up with a default value of 0°C, andwill have no effect if nothing is written to them.Table III.Sample Offset Register CodesOffset Value11h12h–4°C1111110000000000–1°C1111111100000000–0.125°C1111 1111111000000°C0000000000000000+0.125°C0000000000100000+1°C0000000100000000+4°C0000010000000000REV. 0REV. 0ADM1032–7–Consecutive ALERT RegisterThis value written to this register determines how many out-of-limit measurements must occur before an ALERT is generated.The default value is that one out-of-limit measurement gener-ates an ALERT . The max value that can be chosen is 4. The purpose of this register is to allow the user to perform some filter-ing of the output. This is particularly useful at the faster two conversion rates where no averaging takes place.Table VII.Number of “Out-of-Limit”Register Value Measurements Required yxxx 000x 1yxxx 001x 2yxxx 011x 3yxxx 111x4NOTESx = Don’t care bit.y = SMBus timeout bit. Default = 0. See SMBus section for more information.SERIAL BUS INTERFACEControl of the ADM1032 is carried out via the serial bus. The ADM1032 is connected to this bus as a slave device, under the control of a master device.There is a programmable SMBus timeout. When this is enabled the SMBus will timeout after typically 25 ms of no activity. How-ever, this feature is not enabled by default. To enable it, set Bit 7of the Consecutive Alert Register (Addr = 22h).The ADM1032 supports Packet Error Checking (PEC) and its use is optional. It is triggered by supplying the extra clock for the PEC byte. The PEC byte is calculated using CRC-8. The Frame Check Sequence (FCS) conforms to CRC-8 by the polynomial:C (x ) = x 8 + x 2 + x 1 + 1Consult SMBus 1.1 specification for more information ().ADDRESSING THE DEVICEIn general, every SMBus device has a 7-bit device address (except for some devices that have extended, 10-bit addresses). When the master device sends a device address over the bus, the slave device with that address will respond. The ADM1032 is avail-able with one device address, which is Hex 4C (1001 100).The serial bus protocol operates as follows:1.The master initiates data transfer by establishing a START condition, defined as a high-to-low transition on the serial data line SDATA, while the serial clock line SCLK remains high. This indicates that an address/data stream will follow.All slave peripherals connected to the serial bus respond to the START condition, and shift in the next eight bits, con-sisting of a 7-bit address (MSB first) plus an R/W bit, which determines the direction of the data transfer, i.e., whether data will be written to or read from the slave device.The peripheral whose address corresponds to the transmitted address responds by pulling the data line low during the low period before the ninth clock pulse, known as the Acknowl-edge Bit. All other devices on the bus now remain idle while the selected device waits for data to be read from or written Table V. Configuration Register Bit AssignmentsPower-On Bit Name FunctionDefault 7MASK10 = ALERT Enabled 01 = ALERT Masked 6RUN/STOP0 = Run 01 = Standby 5–0ReservedConversion Rate RegisterThe lowest four bits of this register are used to program the conversion rate by dividing the internal oscillator clock by 1, 2,4, 8, 16, 32, 64, 128, 256, 512, or 1024 to give conversion times from 15.5 ms (code 0Ah) to 16 seconds (code 00h). This register can be written to and read back over the SMBus. The higher four bits of this register are unused and must be set to zero. Use of slower conversion times greatly reduces the device power consumption, as shown in Table VI.Table VI.Conversion Rate Register CodesAverage Supply Current Data Conversion/sec mA Typ at V DD = 5.5 V 00h 0.06250.1701h 0.1250.2002h 0.250.2103h 0.50.2404h 10.2905h 20.4006h 40.6107h 8 1.108h 16 1.909h 320.730Ah641.230B to FFhReservedLimit RegistersThe ADM1032 has nine Limit Registers to store local and remote,high, low, and THERM temperature limits. These registers can be written to and read back over the SMBus.The high limit registers perform a > comparison while the low limit registers perform a < comparison. For example, if the high limit register is programmed with 80°C, then measuring 81o C will result in an alarm condition. If the Low Limit Register is programmed with 0°C, measuring 0°C or lower will result in Alarm condition. Exceeding either the Local or Remote THERM limit asserts THERM low. A default hysteresis value of 10°C is provided, which applies to both channels. This hysteresis may be reprogrammed to any value after power up (Reg 0x21h).One-Shot RegisterThe One-Shot Register is used to initiate a single conversion and comparison cycle when the ADM1032 is in standby mode,after which the device returns to standby. This is not a data register as such, and it is the write operation that causes the one-shot conversion. The data written to this address is irrel-evant and is not stored. The conversion time on a single shot is 96 ms when the conversion rate is 16 conversions per second or less. At 32 conversions per second the conversion time is 15.3 ms.This is because averaging is disabled at the faster conversion rates (32 and 64 conversions per second).REV. 0ADM1032–8–to it. If the R/W bit is a 0, the master will write to the slave device. If the R/W bit is a 1, the master will read from the slave device.2.Data is sent over the serial bus in sequences of nine clock pulses, eight bits of data followed by an Acknowledge Bit from the slave device. Transitions on the data line must occur during the low period of the clock signal and remain stable during the high period, as a low-to-high transition when the clock is high may be interpreted as a STOP signal.The number of data bytes that can be transmitted over the serial bus in a single Read or Write operation is limited only by what the master and slave devices can handle.3.When all data bytes have been read or written, stop condi-tions are established. In Write mode, the master will pull the data line high during the tenth clock pulse to assert a STOP condition. In Read mode, the master device will override the acknowledge bit by pulling the data line high during the low period before the ninth clock pulse. This is known as No Acknowledge. The master will then take the data line low during the low period before the tenth clock pulse, then high during the tenth clock pulse to assert a STOP condition.Any number of bytes of data may be transferred over the serial bus in one operation, but it is not possible to mix read and write in one operation because the type of operation is determined at the beginning and cannot subsequently be changed without starting a new operation.In the case of the ADM1032, write operations contain either one or two bytes, while read operations contain one byte, and per-form the following functions:To write data to one of the device data registers or read data from it, the Address Pointer Register must be set so that the correct data register is addressed, then data can be written into that register or read from it. The first byte of a write operation always contains a valid address that is stored in the Address Pointer Register. If data is to be written to the device, the write operation contains a second data byte that is written to the register selected by the address pointer register.This is illustrated in Figure 3a. The device address is sent over the bus followed by R/W set to 0. This is followed by two data bytes. The first data byte is the address of the internal data register to be written to, which is stored in the Address Pointer Register. The second data byte is the data to be written to the internal data register.When reading data from a register there are two possibilities:1.If the ADM1032’s Address Pointer Register value is unknown or not the desired value, it is first necessary to set it to the correct value before data can be read from the desired data register. This is done by performing a write to the ADM1032as before, but only the data byte containing the register read address is sent, as data is not to be written to the register.This is shown in Figure 3b.A read operation is then performed consisting of the serial bus address, R/W bit set to 1, followed by the data byte read from the data register. This is shown in Figure 3c.2.If the Address Pointer Register is known to be already at the desired address, data can be read from the corresponding data register without first writing to the Address Pointer Register and Figure 3b can be omitted.Table VIII.List of ADM1032 RegistersRead Address (Hex)Write Address (Hex)NamePower-On Default Not Applicable Not Applicable Address PointerUndefined00Not Applicable Local Temperature Value0000 0000 (00h)01Not Applicable External Temperature Value High Byte 0000 0000 (00h)02Not Applicable StatusUndefined0309Configuration 0000 0000 (00h)040A Conversion Rate0000 1000 (08h)050B Local Temperature High Limit 0101 0101 (55h) (85°C)060C Local Temperature Low Limit0000 0000 (00h) (0°C)070D External Temperature High Limit High Byte 0101 0101 (55h) (85°C)080E External Temperature Low Limit High Byte 0000 0000 (00h) (0°C)Not Applicable 0FOne-Shot10Not Applicable External Temperature Value Low Byte 0000 00001111External Temperature Offset High Byte 0000 00001212External Temperature Offset Low Byte0000 00001313External Temperature High Limit Low Byte 0000 00001414External Temperature Low Limit Low Byte 0000 00001919External THERM Limit 0101 0101 (55h) (85°C)2020Local THERM Limit 0101 0101 (55h) (85°C)2121THERM Hysteresis 0000 1010 (0Ah) (10°C)2222Consecutive ALERT 0000 0001 (01h)FE Not Applicable Manufacturer ID 0100 0001 (41h)FFNot ApplicableDie Revision CodeUndefinedWriting to address 0F causes the ADM1032 to perform a single measurement. It is not a data register as such and it does not matter what data is written to it.。

Lenovo ThinkSystem NE1032T RackSwitch 产品说明书

Lenovo ThinkSystem NE1032T RackSwitch 产品说明书

ThinkSystem NE1032T RackSwitch Cloud-optimized 10GBase-T Ethernet aggregation leaf switchBetter Together The Lenovo ThinkSystem NE1032T RackSwitch is part of the Lenovo Top of Rack (ToR) RackSwitch enterprise switch family, tested and validated with Lenovo reference architectures to provide the best integration possible for Lenovo servers, storage, and networking in the data center. RackSwitches interoperate seamlessly with other vendors' hardware and management. In addition, Lenovo XClarity provides easy single-pane-of glass management for the Lenovo data center.Data Center Optimized NetworkingThe NE1032T is optimized for enterprise data centers with features that include:Software Defined Data Center interfaces ensure smooth interoperability with popular enterprise management applications.Nutanix Prism with Lenovo Network Orchestrator automates vlan changes to improve uptime and network security. VMware vRealize Log Insight collects logs and events to determine root cause and produce reports across multiple devices and vendors.VMware vRealize Network Orchestrator helps deploy workflows to automate complex IT processes.As a Microsoft Azure Stack solution partner, BGP,DCP, and switch-independent teaming deliver seamless interoperability.Open Architecture: NE1032T supports automation and control while integrating with industry-standard applications and APIs, such as REST, OpenStack,OpenContrail, and Ansible.OpenStack controls diverse pools of processing,storage, and networking resources throughout the data center.Ansible automation frees up operations teams for more strategic work.Resiliency: NE1032T offers outstanding faulttolerance with one of the quickest high-availability failovers in the industry.Low TCO NE1032T is an extremely cost-effective switch for low-end 10GBase-T hybrid cloud data center applications. It offers the following reduced costs:All software, management plugins, and XClarity Administrator are included in the purchase price.Switches come with a 3-year warranty and include free software updates and upgrades.Lower power consumption reduces operatingexpenses.© 2023 Lenovo. All rights reserved.Availability : Offers, prices, specifications and availability may change without notice. Lenovo is not responsible for photographic or typographic errors. Warranty : For a copy of applicable warranties, write to: Lenovo Warranty Information, 1009 Think Place, Morrisville, NC, 27560. Lenovo makes no representation or warranty regarding third-party products or services. Trademarks: Lenovo, the Lenovo logo, RackSwitch,ThinkSystem®, and XClarity® are trademarks or registered trademarks of Lenovo. Azure® and Microsoft® are trademarks of Microsoft Corporation in the United States, other countries, or both. Other company, product, or service names may be trademarks or service marks of others. Document number DS0011, published April 19, 2018. For the latest version, go to /ds0011.SpecificationsPerformance Line rate performance up to 640Gbps switching throughput; as low as 760 ns (SFP+) or 2.3 us (10GBASE-T) port-to-port switching latency; up to 476 million packets per second (Mpps) (64-byte packets); up to 9,216-byte jumbo frames; 12MB buffer sizeInterface Configurations 24x 10GBase-T + 8x 10Gb SFP+ Ethernet portsVirtualization VLAG, SDN readyCooling Front-to-rear or rear-to-front cooling, three variable-speed hot-swap fan assemblies that provide N+1cooling redundancyPower Dual load-sharing hot-swap internal power modules, 96W typical / 99W maximum consumptionManagement Software Supported Lenovo XClarity, VMware, OpenStack, Ganglia, NutanixAutomation Ansible, Chef, PuppetAPI Python, REST, TelemetryLimited Warranty3-year customer replaceable unit and software warranty Why LenovoLenovo is a global Fortune 500 company and a leader in providing innovative consumer, commercial, and enterprise technology. Lenovo enterprise systems deliver industry-leading performance, reliability, and security in virtualized and cloud environments for analytics,database, virtual desktop, infrastructure, and web workloads. Lenovo also offers simplified and extensible systems management tools so you can manage your infrastructure on your own terms. Consistently ranked #1in reliability and customer satisfaction, the Lenovo enterprise server, storage, and networking portfolio provides the hardware for businesses that never stand still.For More Information To learn more about the Lenovo ThinkSystem NE1032T RackSwitch, contact your Lenovo representative or Business Partner or visit: /networking . For detailed specifications, consult the NE1032T Product Guide . 2 | ThinkSystem NE1032T RackSwitch。

INTERSIL X9C102 X9C103 X9C104 X9C503 说明书

INTERSIL X9C102 X9C103 X9C104 X9C503 说明书

®X9C102, X9C103, X9C104, X9C503Digitally Controlled Potentiometer (XDCP™)FEATURES•Solid-state potentiometer•3-wire serial interface•100 wiper tap points—Wiper position stored in nonvolatile memory and recalled on power-up•99 resistive elements—Temperature compensated—End to end resistance, ±20%—Terminal voltages, ±5V•Low power CMOS—V CC = 5V—Active current, 3mA max.—Standby current, 750µA max.•High reliability—Endurance, 100,000 data changes per bit —Register data retention, 100 years•X9C102 = 1kΩ•X9C103 = 10kΩ•X9C503 = 50kΩ•X9C104 = 100kΩ•Packages—8 Ld SOIC and 8 Ld PDIP•Pb-free plus anneal available (RoHS compliant)DESCRIPTIONThe X9Cxxx are Intersil digitally controlled (XDCP) potentiometers. The device consists of a resistor array, wiper switches, a control section, and nonvola-tile memory. The wiper position is controlled by a three-wire interface.The potentiometer is implemented by a resistor array composed of 99 resistive elements and a wiper switch-ing network. Between each element and at either end are tap points accessible to the wiper terminal. The position of the wiper element is controlled by the CS, U/D, and INC inputs. The position of the wiper can be stored in nonvolatile memory and then be recalled upon a subsequent power-up operation.The device can be used as a three-terminal potentiom-eter or as a two-terminal variable resistor in a wide variety of applications including:–control–parameter adjustments–signal processingBLOCK DIAGRAMDeviceSSGeneralDetailed L/V L W/V W H/V HH/R HW/VL/R L SelectPIN DESCRIPTIONS Pin Symbol Brief Description1INC Increment . The INC input is negative-edge triggered. Toggling INC will move the wiper and either increment or decrement the counter in the direction indicated by the logic level on the U/D input.2U/D Up/Down. The U/D input controls the direction of the wiper movement and whether the counter is incremented or decremented.3R H /V HR H /V H . The high (V H /R H ) terminals of the X9C102/103/104/503 are equivalent to the fixedterminals of a mechanical potentiometer. The minimum voltage is -5V and the maximum is +5V. The terminology of V H /R H and V L /R L references the relative position of the terminal inrelation to wiper movement direction selected by the U/D input and not the voltage potential on the terminal.4V SS V SS5V W /R W V W /R W . V W /R W is the wiper terminal, and is equivalent to the movable terminal of a mechanical potentiometer. The position of the wiper within the array is determined by the control inputs. The wiper terminal series resistance is typically 40Ω.6R L /V LR L /V L . The low (V L /R L ) terminals of the X9C102/103/104/503 are equivalent to the fixedterminals of a mechanical potentiometer. The minimum voltage is -5V and the maximum is +5V. The terminology of V H /R H and V L /R L references the relative position of the terminal inrelation to wiper movement direction selected by the U/D input and not the voltage potential on the terminal.7CSCS. The device is selected when the CS input is LOW. The current counter value is stored innonvolatile memory when CS is returned HIGH while the INC input is also HIGH. After the store op-eration is complete the X9C102/103/104/503 device will be placed in the low power standby mode until the device is selected once again.8V CCV CCABSOLUTE MAXIMUM RATINGSTemperature under bias....................-65°C to +135°C Storage temperature.........................-65°C to +150°C Voltage on CS, INC, U/D and V CCwith respect to V SS ..................................-1V to +7V Voltage on V H /R H and V L /R Lreferenced to V SS ...................................-8V to +8V ΔV = |V H /R H - V L /R L |X9C102 ...............................................................4V X9C103, X9C503, and X9C104.........................10V Lead temperature (soldering, 10 seconds)......+300°C I W (10 seconds).................................................8.8mA Power rating X9C102........................................16mW Power rating X9C103/104/503..........................10mWCOMMENT Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.This is a stress rating only; functional operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.POTENTIOMETER CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)Notes:(1)Absolute linearity is utilized to determine actual wiper voltage versus expected voltage = [V W(n)(actual) - V W(n)(expected )] = ±1 MI Maximum. (2)Relative linearity is a measure of the error in step size between taps = V W(n + 1) - [V W(n) + MI ] = +0.2 MI.(3) 1 MI = Minimum Increment = R TOT /99(4)Typical values are for T A = +25°C and nominal supply voltage.(5)This parameter is not 100% tested.Symbol ParameterLimitsUnit Test Conditions/NotesMin.Typ.Max.R TOTAL End to end resistance variation -20+20%V VH/RH V H terminal voltage -5+5V V VL/RL V L terminal voltage -5+5V I W Wiper current -4.44.4mA R WWiper resistance 40100ΩWiper Current = ±1mA Noise (5)-120dBV Ref. 1kHzResolution 1%Absolute linearity (1)-1+1MI (3)V W(n)(actual) - V W(n)(expected)Relative linearity (2)-0.2+0.2MI (3)V W(n + 1)(actual) - [V W(n)+MI ]RTOTAL temperature coefficient ±300(5)ppm/°C X9C103/503/104RTOTAL temperature coefficient ±600(5)ppm/°C X9C102Ratiometric temperature coefficient±20ppm/°C C H /C L /C W(5)Potentiometer capacitances10/10/25pFSee Circuit #3, Macro ModelRECOMMENDED OPERATING CONDITIONS Temperature mercial 0°C +70°C Industrial-40°C+85°CSupply Voltage (V CC )Limits X9C102/103/104/5035V ±10%ENDURANCE AND DATA RETENTIONA.C. CONDITIONS OF TEST Symbol ParameterLimitsUnit Test ConditionsMin.Typ.(4)Max.I CC V CC active current 13mA CS = V IL , U/D = V IL or V IH and INC=****************CYC I SB Standby supply current 200750µA CS = V CC - 0.3V, U/D and INC = V SS or V CC -0.3V I LI CS, INC, U/D input leakage current±10µA V IN = V SS to V CCV IH CS, INC, U/D input HIGH voltage2VV IL CS, INC, U/D input LOW voltage0.8V C IN (5)CS, INC, U/D input capacitance10pFV CC = 5V, V IN = V SS , T A = 25°C, f = 1MHzParameter Min.UnitMinimum endurance 100,000Data changes per bit per registerData retention100yearsInput pulse levels 0V to 3V Input rise and fall times 10ns Input reference levels1.5VTest Circuit #1Test Circuit #2Test Circuit #3Test Point V W /R W V R /R HV SV L /R LForce Current V H /R HTest PointV W /R WV L /R LR HC H10pFC W R LC LR WR TOTAL25pF10pFMacro ModelPOWER-UP AND DOWN REQUIREMENTSAt all times, voltages on the potentiometer pins must be less than ±V CC . The recall of the wiper position from nonvola-tile memory is not in effect until the V CC supply reaches its final value. The V CC ramp rate spec is always in effect.A.C. TIMINGNotes:(6)Typical values are for T A = 25°C and nominal supply voltage.(7) This parameter is periodically sampled and not 100% tested.(8)MI in the A.C. timing diagram refers to the minimum incremental change in the V W output due to a change in the wiper position.Symbol ParameterLimitsUnit Min.Typ.(6)Max.t Cl CS to INC setup100ns t lD INC HIGH to U/D change 100ns t DI U/D to INC setup 2.9µs t lL INC LOW period 1µs t lH INC HIGH period1µs t lC INC inactive to CS inactive 1µs t CPH CS deselect time (STORE)20ms t CPH CS deselect time (NO STORE)100ns t IW (5)INC to V W/RW change 100µs t CYC INC cycle time2µs t R , t F (5)INC input rise and fall time 500µs t PU (5)Power-up to wiper stable 500µs t R V CC (5)V CC power-up rate0.250V/msCSINCU/DV Wt CIt ILt IHt CYCt IDt DIt IWMI(8)t ICt CPHt Ft R10%90%90%DETAILED PIN DESCRIPTIONS R H /V H and R L /V LThe high (V H /R H ) and low (V L /R L ) terminals of the X9C102/103/104/503 are equivalent to the fixed termi-nals of a mechanical potentiometer. The minimum voltage is -5V and the maximum is +5V. The terminol-ogy of V H /R H and V L /R L references the relative position of the terminal in relation to wiper movement direction selected by the U/D input and not the voltage potential on the terminal.R W /V WV W /R W is the wiper terminal, and is equivalent to the movable terminal of a mechanical potentiometer. The position of the wiper within the array is determined by the control inputs. The wiper terminal series resistance is typically 40Ω.Up/Down (U/D)The U/D input controls the direction of the wiper move-ment and whether the counter is incremented or dec-remented.Increment (INC)The INC input is negative-edge triggered. Toggling INC will move the wiper and either increment or decre-ment the counter in the direction indicated by the logic level on the U/D input.Chip Select (CS)The device is selected when the CS input is LOW.The current counter value is stored in nonvolatile memory when CS is returned HIGH while the INC input is also HIGH. After the store operation is com-plete the X9C102/103/104/503 device will be placed in the low power standby mode until the device is selected once again.PIN CONFIGURATIONPIN NAMESPRINCIPLES OF OPERATIONThere are three sections of the X9Cxxx: the input con-trol, counter and decode section; the nonvolatile mem-ory; and the resistor array. The input control section operates just like an up/down counter. The output of this counter is decoded to turn on a single electronic switch connecting a point on the resistor array to the wiper output. Under the proper conditions the contents of the counter can be stored in nonvolatile memory and retained for future use. The resistor array is com-prised of 99 individual resistors connected in series. At either end of the array and between each resistor is an electronic switch that transfers the potential at that point to the wiper.The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. That is, the counter does not wrap around when clocked to either extreme.The electronic switches on the device operate in a “make before break” mode when the wiper changes tap positions. If the wiper is moved several positions,multiple taps are connected to the wiper for t IW (INC to V W /R W change). The R TOTAL value for the device can temporarily be reduced by a significant amount if the wiper is moved several positions.When the device is powered-down, the last wiper posi-tion stored will be maintained in the nonvolatile mem-ory. When power is restored, the contents of the memory are recalled and the wiper is set to the value last stored.V CC CS V L /R L V W /R WINC U/D V SS12348765V H /R H X9C102/103/104/503DIP/SOICSymbol DescriptionV H /R H High Terminal V W /R W Wiper Terminal V L /R L Low Terminal V SS Ground V CC Supply Voltage U/D Up/Down Control Input INC Increment Control Input CS Chip Select Control Input NCNo ConnectionINSTRUCTIONS AND PROGRAMMINGThe INC, U/D and CS inputs control the movement of the wiper along the resistor array. With CS set LOW the device is selected and enabled to respond to the U/D and INC inputs. HIGH to LOW transitions on INC will increment or decrement (depending on the state of the U/D input) a seven-bit counter. The output of this counter is decoded to select one of one-hundred wiper positions along the resistive array.The value of the counter is stored in nonvolatile mem-ory whenever CS transitions HIGH while the INC input is also HIGH.The system may select the X9Cxxx, move the wiper, and deselect the device without having to store the lat-est wiper position in nonvolatile memory. After the wiper movement is performed as described above and once the new position is reached, the system must keep INC LOW while taking CS HIGH. The new wiper position will be maintained until changed by the sys-tem or until a power-down/up cycle recalled the previ-ously stored data.This procedure allows the system to always power-up to a preset value stored in nonvolatile memory; then during system operation minor adjustments could be made. The adjustments might be based on user pref-erence: system parameter changes due to tempera-ture drift, etc...The state of U/D may be changed while CS remains LOW. This allows the host system to enable the device and then move the wiper up and down until the proper trim is attained.MODE SELECTIONSYMBOL TABLECS INC U/D ModeL H Wiper UpL L Wiper DownH X Store Wiper PositionH X X Standby CurrentL X No Store, Return to StandbyL H Wiper Up (not recommended)L L Wiper Down (not recommended)WAVEFORM INPUTS OUTPUTSMust besteadyWill besteadyMay changefrom Lo w toHighWill changefrom Lo w toHighMay changefrom High toLowWill changefrom High toLowDon’t Care:ChangesAllowedChanging:State NotKnownN/A Center Lineis HighImpedancePERFORMANCE CHARACTERISTICSContact the factory for more information.APPLICATIONS INFORMATIONElectronic digitally controlled (XCDP) potentiometers provide three powerful application advantages; (1) the variability and reliability of a solid-state potentiometer, (2) the flexibility of computer-based digital controls, and (3) the retentivity of nonvolatile memory used for the storage of multiple potentiometer settings or data.Basic Configurations of Electronic PotentiometersV RBasic CircuitsX9C102, X9C103, X9C104, X9C503Small Outline Package Family (SO)GAUGE PLANEA2A1LL1DETAIL X4° ±4°SEATING PLANEeHbC0.010BM C A 0.004C0.010BM C A BD(N/2)1E1EN(N/2)+1APIN #1I.D. MARKh X 45°ASEE DETAIL “X”c0.010MDP0027SMALL OUTLINE PACKAGE FAMILY (SO)SYMBOLSO-8SO-14SO16 (0.150”)SO16 (0.300”) (SOL-16)SO20 (SOL-20)SO24 (SOL-24)SO28 (SOL-28)TOLERANCENOTESA 0.0680.0680.0680.1040.1040.1040.104MAX -A10.0060.0060.0060.0070.0070.0070.007±0.003-A20.0570.0570.0570.0920.0920.0920.092±0.002-b 0.0170.0170.0170.0170.0170.0170.017±0.003-c 0.0090.0090.0090.0110.0110.0110.011±0.001-D 0.1930.3410.3900.4060.5040.6060.704±0.0041, 3E 0.2360.2360.2360.4060.4060.4060.406±0.008-E10.1540.1540.1540.2950.2950.2950.295±0.0042, 3e 0.0500.0500.0500.0500.0500.0500.050Basic -L 0.0250.0250.0250.0300.0300.0300.030±0.009-L10.0410.0410.0410.0560.0560.0560.056Basic -h 0.0130.0130.0130.0200.0200.0200.020Reference -N 8141616202428Reference-Rev. L 2/01NOTES:1.Plastic or metal protrusions of 0.006” maximum per side are not included.2.Plastic interlead protrusions of 0.010” maximum per side are not included.3.Dimensions “D” and “E1” are measured at Datum Plane “H”.4.Dimensioning and tolerancing per ASME Y14.5M -199411All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.Intersil Corporation’s quality certifications can be viewed at /design/qualityIntersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.For information regarding Intersil Corporation and its products, see FN8222.1December 20, 2006X9C102, X9C103, X9C104, X9C503Plastic Dual-In-Line Packages (PDIP)MDP0031PLASTIC DUAL-IN-LINE PACKAGESYMBOLPDIP8PDIP14PDIP16PDIP18PDIP20TOLERANCENOTESA 0.2100.2100.2100.2100.210MAX A10.0150.0150.0150.0150.015MIN A20.1300.1300.1300.1300.130±0.005b 0.0180.0180.0180.0180.018±0.002b20.0600.0600.0600.0600.060+0.010/-0.015c 0.0100.0100.0100.0100.010+0.004/-0.002D 0.3750.7500.7500.890 1.020±0.0101E 0.3100.3100.3100.3100.310+0.015/-0.010E10.2500.2500.2500.2500.250±0.0052e 0.1000.1000.1000.1000.100Basic eA 0.3000.3000.3000.3000.300Basic eB 0.3450.3450.3450.3450.345±0.025L 0.1250.1250.1250.1250.125±0.010N814161820ReferenceRev. B 2/99NOTES:1.Plastic or metal protrusions of 0.010” maximum per side are not included.2.Plastic interlead protrusions of 0.010” maximum per side are not included.3.Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane.4.Dimension eB is measured with the lead tips unconstrained.5.8 and 16 lead packages have half end-leads as shown.DAebA1NOTE 5A2SEATING PLANELNPIN #1INDEXE112N/2b2EeBeA c。

PMP取证人员获取PDU积分指南-2016

PMP取证人员获取PDU积分指南-2016

PDU积分指南 PDU专业发展计划
2、 PDU专业发展计划
和其他非项目管理专业人士所认识的不同,获得PMP证书并非项目 管理学习的结束,而是项目管理专业人士学习的真正开始。为了加强 PMP专业持续发展,维持PMP的国际证书信誉,PMI推出了一整套持续认 证体系(CCR),该体系要求每位PMP在每个持续认证周期内积累至少 60个PDU以维护证书信誉。
PDU积分指南 PMI持续认证计划概述
3、PMI持续认证计划概述
为了保证PMP国际证书的信誉,鼓励PMP自身的专业持续发展,每 个PMP每三年必须重新进行认证,重新认证。需提供: 1.至少60个专业发展单元(PDU); 2.保证愿意遵守PMI的职业道德标准。
PDU积分指南 证书更新周期
4、证书更新周期(CCR周期)
PDU积分指南 如何获取PDU
5、获得PDU的几种方式
第三类:Cat-C : Self-Directed Learning 自学活动 每一个能被证明的小时被投入到为加强项目管理知识技能而进行 的自学,都能获得一个PDU,当以这种途径申请 PDU时,除提交表格外 还要提交这种活动的记录。自学活动是指非正式的个人性的学习和研 究活动,如和同事、客户、咨询顾问一起参加的培训课程或讨论。它 包括文章、书籍、指导手册、录象、光盘或其他材料。
这些活动须与项目管理相关,有目的性并使用了有知识含量的素
材。
PDU积分指南 如何获取PDU
5、获得PDU的几种方式
第四类: Cat-D : Creating New Project Management Knowledge 创建新的项目管理知识 A、在符合出版标准的项目管理杂志上发表与PM内容相关文章,与 他人合作发表的,每篇文章得20个PDU,独立发表的每篇得30个PDU。 B、在非出版物杂志上(如PM NETWORK)发表相关文章的,合作发 表的每篇得10个,独立发表的每篇得15个。

爱默生模块及监控中文说明书

爱默生模块及监控中文说明书

PowerMaster智能高频开关电力操作电源系统合作生产技术指导书资料版本归档日期2008-10-17BOM 编码艾默生网络能源有限公司为客户提供全方位的技术支持,用户可与就近的艾默生网络能源有限公司办事处或客户服务中心联系,也可直接与公司总部联系。

艾默生网络能源有限公司版权所有,保留一切权利。

内容如有改动,恕不另行通知。

艾默生网络能源有限公司地址:深圳市南山区科技工业园科发路一号邮编:518057公司网址:客户服务投诉热线:0E-mail第一章充电模块(必选件)1.1 HD22010-3系列1.1.1 模块简介HD22010-3系列充电模块是电力电源最主要的配置模块,广泛应用于35kV到330kV的变电站电力电源中。

HD22010-3系列充电模块采用自冷和风冷相结合的散热方式,在轻载时自冷运行,符合电力系统的实际运行情况。

型号说明产品系列产品系列见下表。

表1-1 订货信息工作原理概述以HD22010-3模块的工作原理框图如下图所示。

图1-1 HD22010-3充电模块原理图HD22010-3充电模块由三相无源PFC和DC/DC两个功率部分组成。

在两功率部分之外还有辅助电源以及输入输出检测保护电路。

前级三相无源PFC电路由输入EMI和三相无源PFC组成,用以实现交流输入的整流滤波和输入电流的校正,使输入电路的功率因素大于,以满足DL/T781-2001中三相谐波标准和GB/T 中相关EMI、EMC标准。

后级的DC/DC变换器由PWM发生器控制前级PFC输出的DC电压、经过高频变压器输出后再整流滤波输出DC电压等电路组成,用以实现将前级整流电压转换成电力操作系统要求的稳定的直流电压输出。

辅助电源在输入三相无源PFC之后,DC/DC变换器之前,利用三相无源PFC的直流输出,产生控制电路所需的各路电源。

输入检测电路实现输入过欠压、缺相等检测。

DC/DC的检测保护电路包括输出电压电流的检测,散热器温度的检测等,所有这些信号用以DC/DC的控制和保护。

NBC-103 型数据采集器 说明书

NBC-103 型数据采集器 说明书
在您联络本公司之前,请您务必:
1、阅读本使用手册 2、准备您设备的 ˙型号 ˙序号 ˙购买日期凭证 3、准备您的设备,客服人员可能会请您操作设备。 4、列出您要解决的问题,详细的问题叙述可以协助客服人员迅速 解决问题。
- 47 -
NBC-103 型数据采集器 用户使用手册
第四章 高级功能使用 ............................. 25
-3-
NBC-103 型数据采集器 用户使用手册
2. 保修期限
重要信息:本段文字为硬件产品保修声明,请仔细阅读。
* 设备硬件保修一年 *
自设备购买时收款凭证上的购买日期一年内,在材料与制造上无缺 陷保证。
如果我公司收到保修期间上述定义缺陷通知,我公司可自行决定是 否要修复或是更换该经证明有缺陷产品。
1. GPRS 网络联机设定 ...............................25 2. WLAN 网络联机设定 ...............................33 3. 自动扫描条形码 ..................................38
第五章 常见故障处理 ............................. 39
- 46 -
NBC-103 型数据采集器 用户使用手册
在其他设备上正常充电的电池,在此设备上无法充电,则说明此设备有 问题需要维修。 触摸屏失灵或触控笔无法使用 此现象为硬件故障,需送返我公司进行维修。 无声音 若不是音量设置问题,则为硬件故障,需返回维修。 不识别 SD 卡 检查是否 SD 卡问题,如果 SD 卡正常,此现象为硬件故障需返修。
-7-
NBC-103 型数据采集器 用户使用手册 无法开机或无法充电 电池无法充电,检测方法:将此电池放入另一个正常充电的充电设备 中,将另一个可以正常充电的电池放入此充电设备中。 对于直充无法充电,先把电池放入另一台设备中,如果可以充电说明电 池没问题,如果无法充电则电池需要维修。首先判断充电设备与电源适 配器之间的连接是否正常。 直充判断方法:

PDU 产品说明书

PDU 产品说明书

7.4kW Single-Phase Switched PDU, LX Interface, 230V Outlets (16-C13), IEC-309 Blue 230V 32A, 3.6m Cord, 2U Rack-Mount, TAAMODEL NUMBER:PDUMH32HVNETDescriptionThis Switched PDU offers advanced network control and monitoring with the ability to turn on, turn off, recycle or lock out power to each individual receptacle, monitor site electrical conditions and remotely monitor output power consumption. Built-in LX Platform network management interface enables full remote access for PDU status monitoring and email notifications via secure web browser, SNMP, telnet or SSH. It supports 10/100 Mbps auto-sensing for optimum communication with an Ethernet network. Optional EnviroSense2 modules (sold separately) provide a variety of environmental monitoring capabilities. Protocols supported include HTTP, HTTPS, SMTP, SNMPv1, SNMPv2, SNMPv3, telnet, SSH, FTP, DHCP and NTP. Individually switched outlets can be controlled in real time to remotely reboot unresponsive network hardware or be custom programmed for user-defined power-up and power-down sequences to ensure proper startup of interdependent IT systems and prevent inrush-related overloads as network equipment is first energized. Unused PDU outlets can be electronically locked off to prevent the connection of unauthorized hardware. PDU output current consumption in amps is displayed locally via front panel current meter or remotely via web/network interface to warn of potential overloads before critical IT mains or branch breakers trip.Features230V Switched PDU with built-in web/network interface in 2U rackmount form factor; 32A capacityqBlue 230V IEC-309 32A (2P+E) input cable; 12 ft. / 3.6m power cable includedq16 switched C13 outletsq2U horizontal rackmount form factorqSupports power-on, power-off or reboot of each outlet on a real-time or programmable basisqEnables reboot of locked equipment, custom power-on/power-off sequences, load-shedding of optional loads and disabling unused outletsqNetwork interface provides PDU control and data regarding input voltage, frequency and loading informationqDigital display reports load level information in ampsqSupports user-specified alarm notification thresholdsqDHCP/Manual configuration supportq10/100 Mbps auto-sensingq HighlightsSwitched 32A 7.4kW 230VPDU; 2U horizontal rackmount qPre-installed WEBCARDLX with latest version of PADM20 for IP-based Auto Probe featureqVisual current meter; Reversible housingqBlue 230V IEC-309 32A (2P+E) input cableq16 C13 switched outlets withplug-lock cable retention inserts qTemperature, humidity andcontact closure optionsqTAA CompliantqPackage IncludesPDUMH32HVNET SwitchedPDUqRack installation bracketsqCable retention insertsqConfiguration cableqOwner's manualqSpecificationsReal-time clock backup maintains the time of day and date even if the PDU is unpowered q Alert notifications via email or SNMP traps offer immediate event notification q Firmware upgrade ability supports future product enhancementsq Pre-installed WEBCARDLX with the latest version of PowerAlert Device Manager firmware (PADM20)provides enhanced remote management capabilitiesqPADM20 and PowerAlert Element Manager (PAEM) form a powerful tool for expanding maintenance functions in large installations, including firmware update checks and backup and restoration of device configurationsqIP-based Auto Probe detects lost connectivity and restores service autonomouslyq Mounting flanges support installation in 2 and 4 post racks, with additional support for wall-mount and under-counter installation formatsqMounting ears are reversible for front or rear facing rackmount installation q Included cord retention brackets q TAA Compliantq© 2023 Eaton. All Rights Reserved. Eaton is a registered trademark. All other trademarks are the property of their respective owners.。

PDU格式详解

PDU格式详解

A.收到PDU SMS-DELIVER (Mobile Terminated)收到DELIVER-PDU格式SCAPDU TYPEOAPIDDCSSCTSUDLUD服务中心号码原地址协议表示编码标准服务中心时间戳用户数据长度用户数据手机显示的内容为(0751后共有35个汉字字符,这些字需要72个字节的UD)0751浙江联通欢迎您来到杭州。

客户服务热线1001。

地址:杭州市延安路501号SIM卡中存储的PDU编码为0891683110300605F02404815017000810805031648523486D596D5F8054901A6B228FCE60A8 67655230676D5DDE30025BA26237670D52A170ED7EBF0031003000300031300257305740FF 1A676D5DDE5E025EF65B898DEF00350030003153F7具体分析如下0891683110300605F02404815017000810805031648523486D596D5F8054901A6B228FCE60A8 67655230676D5DDE30025BA26237670D52A170ED7EBF0031003000300031300257305740FF 1A676D5DDE5E025EF65B898DEF00350030003153F71. SCA服务中心号: 08 91 683110300605F00891683110300605F0Length (长度)Tosca(服务中心类型)Address(地址)SCA(服务中心号码)长度:08即SCA区去除08外后面的字节数,单位是字节。

如上91683110300605F0,共8字节。

但是,当长度值为00时,后面SCA区将只有00,后面的号码类型和地址都不存在,发送短消息时从SIM卡读出SCA号码,此号码要用at+csca=×××设定。

PMP认证手册(中文)

PMP认证手册(中文)

PMP®(项目管理专业人士)资质认证手册注:中文手册仅供参考,请以英文手册为准。

您成为备受认可的项目领导之指南目录内容页码版权和修改信息 (2)关于PMI认证 (3)您为何需要本认证手册 (3)在线申请 (4)PMI联系方式 (4)关于PMP认证 (5)PMP资格要求 (5)PMP考试信息和计划 (7)PMP认证费用和退费规定 (9)保持PMP认证 (10)PMP认证申请核对表 (11)申请处理 (12)认证费用支付流程 (12)考试预约说明 (13)考试管理 (14)考试语言辅助 (14)考试特殊帮助 (15)如何预约考试 (15)取消考试/缓考/缺考 (18)PMI考试安全及保密规定 (19)考场要求和指南 (19)考试成绩通知和成绩单 (21)重考 (22)PMI申诉程序 (22)PMI审查流程 (23)继续认证要求(CCR)计划 (24)PMI职业和道德行为规范 (31)PMI认证申请/续证协议 (36)使用PMI认证 (37)PMP认证申请表PMI认证特殊帮助表PMI认证重考表PMP认证手册本手册包括了如何申请极富价值并备受全球认可的PMP认证的信息。

本手册适用于机考和笔考的考生。

认证手册最后一次更新为2008年3月©2000 项目管理协会,保留所有权利曾在2005,2006,2007,2008年修改“PMI”、PMI标志、“Making project management indispenssable for business results”、“PMP”、PMP标志、“PgMP”和“CAPM”是项目管理协会的注册标志。

“Program Management Professional (PgMP)”是项目管理协会的服务标志。

要了解PMI标志的完整清单,请联系PMI法律部门。

关于PMI认证作为有着39年历史的项目管理倡导历史的全球组织,项目管理协会(PMI®)通过客观地评估和衡量经验、教育和实践知识的项目管理认证,为从业人士提供支持。

英可瑞直流电源模块用户手册

英可瑞直流电源模块用户手册

3
4 外形结构与接口
4.1 外形结构
图 1:模块外形图
4.2 输入输出的接口
图 2:航空组件定义图 表 2:整流模块插座定义表 信号名称 交流输入 引脚号 1 2 3 7 8 11 12 15 直流输出 16 18 直流输出正 直流输出负 大地 PE 保护地,请可靠连接。 信号定义 交流输入 A 相 交流输入 B 相 交流输入 C 相 RS485 说 明
2
1 概述
GF22010-10 系列高频开关整流模块先进的 LLC 谐振软开关技术, 效率高;采用无源 PFC 技术,功率因数高;内置完善的 EMC 设计,满足 GB/T 19826-2005 标准中 EMC 相关输入,可以满 足 380VAC 和 415VAC 电网需求。


≥0.9
/
≥0.9
/
额定输入/额定输出
回缩电流≤40%额定电流,可恢复 300±5VDC,不可恢复 145±3VDC,不可恢复 需手动恢复 交流电压正常后, 自动恢复工作 降温后自动恢复
305±10VAC(恢复电压 317±10VAC) 485±10VAC(恢复电压 468±10VAC) 80℃±5(恢复温度:65℃±5) 温度和电流联合控制,线性调速 88mm×177mm×310mm(宽×高×深) ≤4Kg
2 主要特点
● 输入电压工作范围宽:323VAC~480VAC; ● 采用先进的 LLC 谐振高频软开关技术,效率高,功率密度高; ● 完善的 EMC 设计,满足相关标准要求; ● 内置短路回缩保护,即使模块输出长期处于短路状态也不致损坏; ● 采用 LED 显示,可查询模块的电压、电流、地址及故障信息; ● 完善的保护及告警功能,包括输入过/欠压、输出过压、过温、过流等; ● 风机采用温度联合电流控制调速,噪音小,可靠性高; ● 内置可拆卸式防尘网罩,方便维护; ● 内置防反接保护,支持带电热拔插。

系列光端机

系列光端机
2
一、概述
光端机用户手册 HS-OPT101/HS-OPT102/HS-OPT103
HS-OPT101/HS-OPT102/HS-OPT103 光端机是本公司使用自主开发的专用集成电路研制生产 的光传输设备。该系列设备是以超大规模集成电路为核心构成的多路光电合一传输设备,支持多 个 E1 接口,适用于小容量交换机组网、用户环路网,移动通信(基站)、专网、DDN 网等。
感谢阁下购买本公司生产的 HS-OPT101/HS-OPT102/HS-OPT103 光端机,在使用之前请详细 阅读本用户手册。
适用范围
本用户手册是 HS 系列光端机专用用户手册,适用以下型号的产品。 ◆ HS-OPT101 ◆ HS-OPT102 ◆ HS-OPT103
注意
本手册任何部分不得复印,翻制或以任何形式在网络中发送,除非得到本公司的书面许可。 本用户手册所提及的商标所有权由各商标持有人所有。
本公司有权随时更改产品性能及本用户手册而不事先通知客户。
对于以任何形式修改产品及本用户手册而造成的产品功能不能实现或对其他产品、人身造成 影响,本公司将不负任何责任。
本公司对由合法渠道取得产品的用户提供三年有限质保,但不包括由于操作不当、错误连接
和意外而造成的产品损坏及人员伤害。
在质保期内由于产品本身质量而造成不能正常使用的,本公司负责更换,回收的产品由本公 司所有。
进行时钟提取和解码,经码速恢复电路和内部数字锁相环电路平滑,恢复成 2.048Mb/s 信号,经 输出驱动电路送出符合接口要求的 HDB3 信号。
E1信号
100Base-Tx 信号
E1 单双 变换
Eth PHY
E1 映 射 电路
复用
包映射
解复用

PDU格式短信解析(GSM)

PDU格式短信解析(GSM)

PDU格式短信解析(GSM)AT指令收发短信主要有两种模式:Text模式和PDU(Protocol Data Unit,协议数据单元)模式。

使用Text模式收发短信代码简单,很容易实现,最大缺点不支持中文短信。

PDU模式不仅能发送中文短信,也能发送英文短信。

PDU收发短信有三种编码可用:7-bit、8-bit和UCS2编码。

7-bit编码用于发送普通的ASCII字符,即英文短信,最多可发送160字符。

8- bit编码通常用于发送数据消息。

UCS2编码用于发送Unicode字符,可发送中文字符,最多发送70字符。

短信发送实例:Text模式(向号码为150****0677的手机发送“TEST”):PDU模式(向号码为150****0677的手机发送“你好”):有的“猫”用“串口调试器”发送总是失败:Text模式接收到的是乱码,PDU模式发送不出去。

我用的这个就是这个样子,给我郁闷了很多天,后来发现在串口调试器中我们摁下的“回车”被解析为”\r\n”,而我用的这个modem只有在只发送AT指令+”\r”时才能正确的发送短信。

发现后发送短信都能成功,高兴了好一会儿。

不说废话了,开始PDU短信编码的解析。

这是我的理解,更多详细资料参考下列标准:GSM 03.04 着重介绍短信发送中对字符集的控制部分GSM 03.08GSM 03.41GSM 07.05 介绍 at 的一些控制命令GSM 07.07 着重介绍 at 的短信相关命令,可以说是at的sms 规范元素名称长度描述SCA Service Center Address 1-12 短消息服务中心号码PDU-Type Protocol Data Unit 1 协议数据单元类型MR Message Reference 1 所有成功的短信发送参考数目(0..255)OA Originator Address 2-12 发送方地址(手机号码)DA Destination Address 2-12 接收方地址(手机号码)PID Protocol Identifer 1 参数显示消息中心以何种方式处理消息内容(比如FAX,Voice)DCS Data Coding Scheme 1 参数显示用户数据编码方案SCTS Service Center Time Stamp 7 消息中心收到消息时的时间戳VP Validity Period 0,1,7 参数显示消息有效期UDL User Data Lenghth 1 用户数据长度UD User Data 0-140 用户数据发送方PDU格式:SCA PDU-Type MR DA PID DCS VP UDL UD1-12 1 1 2-12 1 1 0,1,7 1 0-140 示例:向150****0677发送一条短信,内容“Test”0011000D91685150800576F70000C404D4F29C0E向150****0677发送一条短信,内容“你好”0011000B815150800576F70008C4044F60597DSCA PDU-Type MR DA PID DCS VP UDL UD1-12 1 1 2-12 1 1 0,1,7 1 0-14000 11 00 0D91685150800576F7 00 00 C4 04 D4F29C0E 00 11 00 0B815150800576F7 00 08 C4 04 4F60597D接收方PDU格式:SCA PDU-Type OA PID DCS SCTS UDL UD1-12 1 2-12 1 1 7 1 0-140 示例:从150****0677接收一条短信,内容“Test”0891683110402505F0240BA151********F7000001112081 60302304D4F29C0E从150****0677接收一条短信,内容“你好”0891683110402505F0240BA151********F7000801112081 600423044F60597DSCA PDUType OA PIDDCSSCTS UDLUD1-12 1 2-12 1 1 7 1 0-1400891683110402505 F0 24 0BA151********F700 00 0111208160302304 D4F29C0E089168311040250524 0BA1515080057600 08 01112081600404 4F60597F0 F7 23 D SCA:短消息服务中心地址格式服务中心地址包含三个部分:1-12个8位位组第一个位组指示服务中心地址长度,第二个位组指示服务中心类型,第三个位组为服务中心地址。

ds1032时钟

ds1032时钟

图 1-3 内部时钟方式电路
二.MAX232//摘抄于网络
芯片是专门为电脑的 RS-232 标准串口设计的单电源电平转换芯片,使用+5v 单电源供电。
图 2-1 MAX232 引脚图
引脚介绍: 第一部分是电荷泵电路。由 1、2、3、4、5、6 脚和 4 只电容构成。功能 是产生+12v 和-12v 两个电源,提供给 RS-232 串口电平的需要。 第二部分是数据转换通道。由 7、8、9、10、11、12、13、14 脚构成两 个数据通道。其中 13 脚(R1IN) 、12 脚(R1OUT) 、11 脚(T1IN) 、14 脚(T1OUT) 为第一数据通道;8 脚(R2IN) 、9 脚(R2OUT) 、10 脚(T2IN) 、7 脚(T2OUT)为 第二数据通道;TTL/CMOS 数据从 T1IN、T2IN 输入转换成 RS-232 数据从 T1OUT、 T2OUT 送到电脑 DB9 插头;DB9 插头的 RS-232 数据从 R1IN、R2IN 输入转换成 TTL/CMOS 数据后从 R1OUT、R2OUT 输出。 第三部分是供电。15 脚 GND、16 脚 VCC(+5v) 。 主要特点: 1、符合所有的 RS-232C 技术标准 2、只需要单一 +5V 电源供电 3、片载电荷泵具有升压、电压极性反转能力,能够产生+10V 和-10V 电 压 V+、V4、功耗低,典型供电电流 5mA 5、内部集成 2 个 RS-232C 驱动器 6、内部集成两个 RS-232C 接收器下图为 MX232 双串口的连接图,可以分别 接单片机的串行通信口或者实验板的其它串行通信接口,保证了能正常的下载调 试程序,设计单片机与 PC 间通信接口电路 7、程序下载口芯片及电路: STC89C52 单片机支持 SPI 技术,可以通过 3 根线进行在线下载。MAX232 是 下载口电路的核心芯片, 它完成计算机与单片机电平一致的转换。其电路如图所

PDU产品规格说明书

PDU产品规格说明书
额定电压
220V/250VAC 50/60Hz
额定电流
10A
最大电流
10A
最大功率
2500W
安规认证
CE. RoHS.
标识
TurnLink
产商
慈溪市师桥金驰塑胶电器厂
No.
辅助项目
1
插位组合
1位2P空气开关、1位滤波防雷、20位万用孔插座
2
内部连接线
2.5mm2铜带
3
内部连接线方式
一体化铜带连接
4
电缆线固定方式
固定孔中心距离
1750mm
13
外壳长度
1725mm
14
出厂配件
φ6×16mm十字螺钉2个、M6浮动螺母2个、PDU安装手册(选配)
15
产品标识
产品名称
Designated Power Distribution Unit for Cabinet
规格型号
TUL-WN(10)N1520WXD2KPDY30BFE
2
插座制式
国标
3
输出单元
GB2099.3万用插孔4ຫໍສະໝຸດ 供电输入方式单向左进线
5
安装支架方式
垂直
6
电缆线插头

7
控制功能
2P施耐德空气开关10A
8
保护功能
滤波防雷
9
外壳颜色
黑色(BLACK)
10
电缆线规格
H05VV-F3G×1.5mm2接线柱
11
产品尺寸规格
长×宽×高=1775×62.1×44.4mm
12
产品规格说明书
编制日期:2010-1-14编号:100114-1
用户单位

许继串口103协议

许继串口103协议

许继 103 通信规约日期:2004-02-23 1 前言本文是许继电气公司的变电站自动化产品贯彻执行IEC60870-5-103和DL/T 667-1999标准的通信规约。

本通信规约完全执行IEC60870-5-103标准和DL/T 667-1999标准的全部规定,它描述了许继电气公司CBZ8000变电站自动化系统中的继电保护自动化产品的实际运用情况,以供产品的开发和使用参考。

2 引用标准IEC60870-5-103:1997 继电保护设备信息接口配套标准,DL/T 667-1999 远动设备及系统第5部分传输规约第103篇继电保护设备信息接口配套标准。

3 规约3.1 通信接口1.接口标准:RS232或RS485。

2.通信格式:异步,1位启始位,8位数据位,1位偶校验,1位停止位。

3.通信速率:9600 bit/s。

4.通信方式:主从式,装置为从站。

3.2 报文格式IEC60870-5-103通信规约有固定帧长和可变帧长两种报文格式。

前者用于传送“复位、召唤、确认、无所要求、链路状态/响应、忙帧”等信息。

后者主要用于传送“命令、数据”等信息。

3.2.1 固定帧长报文格式(见表1)表1 固定帧长报文格式10H 启动字符CODE 控制域ADDR 地址域CS 校验和16H 结束字符注:校验和=控制域+地址域3.2.2可变帧长报文格式(见表2)表2 可变帧长报文格式68H 启动字符Length 长度Length 长度(重复)68H 启动字符CODE 控制域ADDR 地址域ASDU 链路用户数据CS 校验和16H 结束字符注: a. 校验和CS=控制域+地址域+链路用户数据代码和b. ASDU链路用户数据包的具体格式详见下文介绍c. Length=ASDU链路用户数据包的字节数+23.2.3控制域控制域分“主-->从”和“从-->主”两种情况。

(1)“主-->从”报文的控制域D7 D6 D5 D4 D3 D2 D1 D0备用FUNCTION CODEPRM=1 FCB FCV注:a. 当FCV=1时FCB有效,当FCV=0时FCB无效。

普通型温湿度控制器型号

普通型温湿度控制器型号

接线图
WH48-01/H
1 路加热升温
W-1(1)
1 2 7 8 9 10
L N 加 热 升 温 21 22 辅 助 电 源 控 制 触 点 W-1传感器
WH48-10/H
1 路加热除湿
H-1(1)
1 2 7 8 9 10
L N 加 热 除 湿 23 24 辅 助 电 源 控 制 触 点 H-1传感器
10312技术指标技术参数控制类型加热升温5启动13停止鼓风降温40启动35停止加热去湿85启动77停止控制精度温度湿度5rh控制触点容量5aac250v无源接点辅助电源电压ac85265vdc100350v功耗3va绝缘电阻100m工频耐压电源与外壳可触及金属件电源与其它端子组2kv1minacrms平均无故障工作时间50000小时工作环境控制器温度1055湿度95rh不结露无腐蚀性气体海拔2500加热器或风扇
产品符合国标 GB/T15309-1994。
10.2 工作原理 温湿度控制器主要由传感器、控制器、加热器(或风扇等)三部分组成,其工作原理如
下图所示:
传感器检测箱内温湿度信息,并传递到控制器由控制器分析处理:当箱内的温度、湿度 达到或超过预先设定的值时,控制器中的继电器触点闭合,加热器(或风扇)接通电源开始 工作,对箱内进行加热或鼓风等;一段时间后,箱内温度或湿度远离设定值,控制器中的继 电器触点断开,加热或鼓风停止。除基本功能外不同型号还带有断线报警输出、变送输出、 通信、强制加热鼓风等辅助功能。
≥100MΩ
工频耐压
电源与外壳可触及金属件/电源与其它端子组 2kV/1min(AC,RMS)
平均无故障工作时间
≥50000 小时
工作环境 (控制器)
温度 湿度 海拔
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5-BIT, ECL-INTERFACEDPROGRAMMABLE DELAY LINE (SERIES PDU1032H)FEATURES PACKAGES• Digitally programmable in 32 delay steps • Monotonic delay-versus-address variation • Precise and stable delays• Input & outputs fully 10KH-ECL interfaced & buffered• Fits 32-pin DIP socketFUNCTIONAL DESCRIPTIONThe PDU1032H-series device is a 5-bit digitally programmable delay line.The delay, TD A , from the input pin (IN) to the output pin (OUT) dependson the address code (A4-A0) according to the following formula:TD A = TD 0 + T INC * Awhere A is the address code, T INC is the incremental delay of the device, and TD 0 is the inherent delay of the device. The incremental delay isspecified by the dash number of the device and can range from 0.5ns through 20ns, inclusively. Theenable pin (ENB) is held LOW during normal operation. When this signal is brought HIGH, OUT is forced into a LOW state. The address is not latched and must remain asserted during normal operation.SERIES SPECIFICATIONS3231262524171 27 8 9 111516GNDENBA0VEE GND INA3VEEGND OUT A1 A2 GND A4NC NC OUT GND ENB NC NC NC GND ENB NC NC NC NC NC NC NC GND ENB IN NC NC A2 A1 VEE A0 NC NC A4 VEE A3 NC NC NC NC NC NC NC VEE NCP DU1032H-xxC5 SMDPDU1032H-xxMC5 MilSMD P DU1032H-xx DIP PDU1032H-xxM Mil DIPPIN DESCRIPTIONSIN Signal InputOUT Signal OutputA0-A4 Address BitsENB Output EnableVEE -5 VoltsGND GroundDASH NUMBER SPECIFICATIONSPart Number Incremental Delay Per Step (ns) Total Delay (ns) PDU1032H-.5 0.5 ± 0.3 15.5 ± 2.0 PDU1032H-1 1.0 ± 0.5 31 ± 2.0 PDU1032H-2 2.0 ± 0.5 62 ± 3.1 PDU1032H-3 3.0 ± 1.0 93 ± 4.6 PDU1032H-4 4.0 ± 1.0 124 ± 6.2 PDU1032H-5 5.0 ± 1.0 155 ± 7.8 PDU1032H-6 6.0 ± 1.0 186 ± 9.3 PDU1032H-8 8.0 ± 1.0 248 ± 12.4 PDU1032H-10 10.0 ± 1.5 310 ± 15.5 PDU1032H-12 12.0 ± 1.5 372 ± 18.6 PDU1032H-15 15.0 ± 1.5 465 ± 23.2 PDU1032H-20 20.0 ± 2.0 620 ± 31.0NOTE: Any dash number between .5 and 20 not shown is also available.• Total programmed delay tolerance: 5% or 2ns, whichever is greater • Inherent delay (TD 0): 5.5ns typical for dash numbersup to 5, greater for larger #’s• Setup time and propagation delay: Address to input setup (T AIS ): 3.6nsDisable to output delay (T DISO ): 1.7nstypical • Operating temperature: 0° to 70° C• Temperature coefficient: 100PPM/°C (excludes TD 0) • Supply voltage V EE : -5VDC ± 5%• Power Dissipation: 615mw typical (no load) • Minimum pulse width: 20% of total delay2003 Data Delay DevicesAPPLICATION NOTESADDRESS UPDATEThe PDU1032H is a memory device. As such, special precautions must be taken when changing the delay address in order to prevent spurious output signals. The timing restrictions are shown in Figure 1.After the last signal edge to be delayed has appeared on the OUT pin, a minimum time, T OAX, is required before the address lines can change. This time is given by the following relation:T OAX = max { (A i - A i-1) * T INC , 0 }where A i-1 and A i are the old and new address codes, respectively. Violation of this constraint may, depending on the history of the input signal, cause spurious signals to appear on the OUT pin. The possibility of spurious signals persists until the required T OAX has elapsed.A similar situation occurs when using the ENB signal to disable the output while IN is active. In this case, the unit must be held in the disabled state until the device is able to “clear” itself. This is achieved by holding the ENB signal high and the IN signal low for a time given by:T DISH = A i * T INCViolation of this constraint may, depending on the history of the input signal, cause spurious signals to appear on the OUT pin. The possibility of spurious signals persists until the required T DISH has elapsed.INPUT RESTRICTIONSThere are three types of restrictions on input pulse width and period listed in the AC Characteristics table. The recommended conditions are those for which the delay tolerance specifications and monotonicity are guaranteed. The suggested conditions are those for which signals will propagate through the unit without significant distortion. The absolute conditions are those for which the unit will produce some type of output for a given input. When operating the unit between the recommended and absolute conditions, the delays may deviate from their values at low frequency. However, these deviations will remain constant from pulse to pulse if the input pulse width and period remain fixed. In other words, the delay of the unit exhibits frequency and pulse width dependence when operated beyond the recommended conditions. Please consult the technical staff at Data Delay Devices if your application has specific high-frequency requirements.Please note that the increment tolerances listed represent a design goal. Although most delay increments will fall within tolerance, they are not guaranteed throughout the address range of the unit. Monotonicity is, however, guaranteed over all addresses.A4-A0ENBINOUTFigure 1: Timing DiagramDEVICE SPECIFICATIONSTABLE 1: AC CHARACTERISTICSUNITSTYPMINPARAMETER SYMBOLT INC Total Programmable Delay TD T31ns* Inherent Delay TD0 5.5Disable to Output Low Delay T DISO 1.7 nsAddress to Enable Setup Time T AENS 1.0 nsAddress to Input Setup Time T AIS 3.6 nsEnable to Input Setup Time T ENIS 3.6 nsOutput to Address Change T OAX SeeTextTextDisable Hold Time T DISH SeePER IN16 % of TD T AbsoluteInput Period Suggested PER IN40 % of TD TRecommendedPER IN200 % of TD TPW IN8 % of TD T AbsoluteInput Pulse Width Suggested PW IN20 % of TD TPW IN100 % of TD T Recommended* Greater for dash numbers larger than 5TABLE 2: ABSOLUTE MAXIMUM RATINGSNOTES PARAMETER SYMBOL MIN MAXUNITSDC Supply Voltage V EE -7.0 0.3 VInput Pin Voltage V IN V EE - 0.3 0.3 VStorage Temperature T STRG -55 150 Csec Lead Temperature T LEAD300 C10TABLE 3: DC ELECTRICAL CHARACTERISTICS(0C to 75C)UNITS NOTESMAXTYPPARAMETER SYMBOLMINHigh Level Output Voltage V OH -1.020 -0.735 V V IH = MAX,50Ω to -2V Low Level Output Voltage V OL -1.950 -1.600 V V IL = MIN, 50Ω to -2VVHigh Level Input Voltage V IH-1.070Low Level Input Voltage V IL -1.480 VHigh Level Input Current I IH475µA V IH = MAXLow Level Input Current I IL 0.5 µA V IL = MINPACKAGE DIMENSIONSPDU1032H-xx (Commercial DIP) PDU1032H-xxM (Military DIP)PDU1032H-xxC5 (Commercial SMD) PDU1032H-xxMC5 (Military SMD)DELAY LINE AUTOMATED TESTINGTEST CONDITIONSINPUT: OUTPUT:Ambient Temperature: 25o C ± 3oC Load: 50Ω to -2VSupply Voltage (Vcc): -5.0V ± 0.1V C load : 5pf± 10% Input Pulse: Standard 10KH ECL Threshold: (V OH + V OL ) / 2 levels (Rising & Falling) Source Impedance: 50Ω Max. Rise/Fall Time: 2.0 ns Max. (measured between 20% and 80%) Pulse Width: PW IN = 1.5 x Total Delay Period: PER IN = 10 x Total DelayNOTE: The above conditions are for test only and do not in any way restrict the operation of the device.Test SetupTiming Diagram For TestingINPUT SIGNALSIGNAL。

相关文档
最新文档