第5章 数组和广义表

合集下载

第五章数组和广义表

第五章数组和广义表
ai,1 ai,2 … ai,j … ai,n an,1 an,2… an,j … an,n
i(i-1)/2+j-1 (i≥j) k= 第五章数j组(j和-1广)义/2表+i-1 (i<j)
第五章数组和广义表
5.1 数组的类型定义 5.2 数组的顺序存储和实现 5.3 特殊矩阵的压缩存储 5.4 广义表
第五章数组和广义表
5.1 数组的定义和运算
数组是一种数据类型。从逻辑结构上看,数 组可以看成是一般线性表的扩充。二维数组可 以看成是线性表的线性表。例如:
Am×n=
a11 a12 … a1j ……
LO(0C ,0,..0.) , ci ji (Cn=L,ci-1=bi*ci,1<i≤n) i1
数组元素的存储位置是其下标的线性函数,由于计算各 个元素存储位置的时间相等,所以存储数组中任一元素的 时间也相等,称具有这一第五特章数点组和的广义存表 储结构为随机存储结构。
N维数组数据元素存储地址计算
i= (ai1,ai2, …,aij ,…,ain)。
B

a11 a12 … a1j … a1n
1
……

Am×n= ai1 ai2 … aij … ain
i
……

am1 am2 … amj … amn
m
第五章数组和广义表
看一个二维数组的简单情况。
D={aij|0≤i≤b1-1,0≤j≤b2-1, aij∈ ElemType}
}
第五章数组和广义表
5.3 矩阵的压缩存储
• 压缩存储:为多个值相同的元素只分配一个存 储空间,对零元素不分配空间。
• 目的:节省存储空间 • 任务:压缩存储矩阵并使矩阵的运算有效进行。 • 矩阵的存储:二维数组 • 可压缩存储的矩阵有两类:

第5章数组与广义表

第5章数组与广义表


5.2 数组的顺序表示和实现

特点:用一组地址连续的存储单元按照某种规则存放数组 中的数据元素。 两种规则(顺序存储方式):


以行序为主(低下标优先)—将数组元素按行排列,第 i+1个行向量紧接在第i个行向量后。如:PASCAL、C。 以列序为主(高下标优先)—将数组元素按列排列,第 j+1个列向量紧接在第j个列向量后。如:FORTRAN。
am-1,0 a01 a11 …… am-1,1
……
按 列 序 为 主 序
a0,n-1 a1,n-1
……
am-1,n-1 am-1,n-1 ?A[2][3][2]以行序为主存储,写出其元素存放的先后顺序
5.2 数组的顺序表示和实现


计算数组任一元素(a j1 j2 ... jn )的地址需要的三要素: ①数组的起始地址(即基地址) ②数组维数和各维的长度; ③数组中每个元素所占的存储单元 已知二维数组Ab1*b2,每个元素占L个存储单元, LOC(0,0)是 数组第一个元素的起始地址,以行序为主存储,求LOC(i,j)。
N维数组数据元素存储地址计算
1、数组M[1..10][-1..6][[0..3],起始地址是1000,每个元素占3个 存储单元,数组元素个数是 ,M[2][4][2]的地址是 。 2、数组A[0 .. 8][1 .. 10]的成员由6个字节组成,存放a要 个字 节,a的第8行第5列占 个字节。按行序a[8][5]与按列序 起始地址相同。 (10-1+1)*(6-(-1)+1)*(3-0+1)=320 LOC(M[2][4][2])=1000+[(i-1)*b2*b3+(j-(-1))*b3+k]*l =1000+[32*(2-1)+4*(4+1)+2]*3=1162 LOC(a[8][5])=a(起始地址)+(i*n+(j-1))*l =a+(8*10+4)*6=a+504, LOC(a[3][10])=a(起始地址)+((j-1)*m+i)*l =a+(9*9+3)*6=a+504。

数据结构-第五章 数组与广义表-文档资料

数据结构-第五章 数组与广义表-文档资料

上 三 角 矩 阵 下 三 角 矩 阵
a00 a10 a 20 an10
0 1 2
a01 a11 a21 an11
3 4
a02 a12 a22 an12
5

6 7
a0 n1 a1n1 a2 n1 an1n1
行 列 值 (row) (col) (value) 0 4 91 1 1 11 2 5 28 3 0 22 3 2 -6 5 1 17 5 3 39 6 0 16
用三元组表表示的稀疏矩阵及其转置
行 列 值 (row) (col) (value) 0 3 22 0 6 15 1 1 11 1 5 17 2 3 -6 3 5 39 4 0 91 5 2 28 行 列 值 (row) (col) (value) 0 4 91 1 1 11 2 5 28 3 0 22 3 2 -6 5 1 17 5 3 39 6 0 16
4 5 6 7 8 9 10
B a00 a01 a10 a11 a12 a21 a22 a23 … an-1n-2 an-1n-1
三对角矩阵中除主对角线及在主对角线上 下最临 近的两条对角线上的元素外,所有其它元素均为 0。总共有3n-2个非零元素。 将三对角矩阵A中三条对角线上的元素按行存放在 一维数组 B 中,且a00存放于B[0]。 在三条对角线上的元素aij 满足 0 i n-1, i-1 j i+1 在一维数组 B 中 A[i][j] 在第 i 行,它前面有 3*i-1 个非零元素, 在本行中第 j 列前面有 j-i+1 个,所 以元素 A[i][j] 在 B 中位置为 k = 2*i + j。
三对角矩阵的压缩存储

数据结构第五章数组和广义表

数据结构第五章数组和广义表
typedef elemtype Array2[m][n]; 等价于
typedef elemtype Array1[n]; typedef Array1 Array2[m]; 同理,可以用 n-1 维数组的数据类型来定义 n 维数组。
8
第8页
5.2 数组的顺序存贮结构
一、数组的顺序表示和实现
(1) 类型特点 ① 只有引用型操作,一般不作插入或删除操作; ② 数组是多维的结构,而存储空间是一个一维的结构。
第 17 页
(2) 压缩存储的有关概念 ① 压缩存储:为多个值相同的元素分配一个存储空间,对零 元不分配空间。 ② 特殊矩阵:值相同的元素或零元素在矩阵中的分布有一定 规律。 ③ 稀疏矩阵:值相同的元素或者零元素在矩阵中的分布无规 律。
第 18 页
(3) 特殊矩阵
① 概念:若n阶矩阵 A 中的元满足:aij=aji 1≤i,j≤n,则 称为n 阶对称矩阵。
第1页
第五章 数组和广义表
5. 1 数组的定义 5.2 数组的顺序存储结构 5. 3 矩阵的压缩存储 5. 4 广义表的定义 5.5 广义表的存储结构
第2页
第五章 数组和广义表
前4章介绍的数据结构共同特点: ▲ 都属于线性数据结构; ▲ 每种数据结构中的数据元素,都作为原子数据, 不再进行分解; 本章讨论的两种数据结构:数组和广义表,其共 同特点是: ▲ 从逻辑结构上看它们,可看成是线性结构的一 种扩展; ▲ 数据元素本身也是一个数据结构;
4
第4页
(2) 二维数组的解释
二维数组中的每个元素都受两个 线性关系的约束,即行关系和列关系, 在每个关系中,每个元素aij都有且仅 有一个直接前趋,都有且仅有一个直 接后继。
aa … 00 01

《数据结构——用C语言描述(第二版)》第5章 数组和广义表

《数据结构——用C语言描述(第二版)》第5章  数组和广义表
是指矩阵的下三角(不含对角线)中的元素均为常数C或零的n阶矩阵,下 三角矩阵则与之相反,如图5.3所示。
第五章 数组和广义表
在压缩存储时,矩阵中值相同的元素C可共享一个存储空间,元素 为零则可不必分配空间,而其余的元素有 n(n+1)/2个,因此三角矩阵 可用一维数组M[n×(n+1)/2+1]来存储,其中常数C放在数组的最后一 个下标变量中。
假设A和B矩阵分别用matrix型指针变量a和b表示,矩阵的转置可以 按以下进行:由于B的行是A的列,所以可按照b->data三元组表的次序在 a->data中找到相应的三元组进行转置,即可按a->data的列序转置,所得 到的转置矩阵B的三元组表b->data必定是按行优先存放的。因此,可以对 三元组表a->data从第一行起扫描,找到A的每一列中所有的非零元素,就 可以实现转置。
LOC ( aij ) =LOC ( a00) +(i×n+j) × c 同理可推导出以列为主序优先存储时数据元素a i j 的存储地址,其计算公式 为:
LOC( a i j ) =LOC( a00 ) +( j × n +i ) × c 对于三维数组Am×n×p而言,若以行为主序优先存储时,则其数据元 素aijk的存储地址可为: LOC ( a i j k) =LOC ( a000) +[ i × m×p +j ×p +k] × c 对于一般的二维数组A[c1…d1,c2…d2]而言,此处c1,c2的值不一定是 0,a i j 的地址为: LOC ( a i j ) =LOC ( a c 1 c 2 ) +[ ( i – c 1 )* ( d 2 – c 2 +1) +j – c 2 ] * c

数据结构第5章

数据结构第5章

第5章:数组和广义表 1. 了解数组的定义;填空题:1、假设有二维数组A 6×8,每个元素用相邻的6个字节存储,存储器按字节编址。

已知A 的起始存储位置(基地址)为1000,则数组A 的体积(存储量)为 288 B ;末尾元素A 57的第一个字节地址为 1282 。

2、三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的 行下标 、 列下标 和 元素值 。

2. 理解数组的顺序表示方法会计算数组元素顺序存储的地址;填空题:1、已知A 的起始存储位置(基地址)为1000,若按行存储时,元素A 14的第一个字节地址为 (8+4)×6+1000=1072 ;若按列存储时,元素A 47的第一个字节地址为 (6×7+4)×6+1000)=1276 。

(注:数组是从0行0列还是从1行1列计算起呢?由末单元为A 57可知,是从0行0列开始!) 2、设数组a[1…60, 1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为 8950 。

答:不考虑0行0列,利用列优先公式: LOC(a ij )=LOC(a c 1,c 2)+[(j-c 2)*(d 1-c 1+1)+i-c 1)]*L 得:LOC(a 32,58)=2048+[(58-1)*(60-1+1)+32-1]]*2=8950选择题:( A )1、假设有60行70列的二维数组a[1…60, 1…70]以列序为主序顺序存储,其基地址为10000,每个元素占2个存储单元,那么第32行第58列的元素a[32,58]的存储地址为 。

(无第0行第0列元素)A .16902B .16904C .14454D .答案A, B, C 均不对 答:此题(57列×60行+31行)×2字节+10000=16902( B )2、设矩阵A 是一个对称矩阵,为了节省存储,将其下三角部分(如下图所示)按行序存放在一维数组B[ 1, n(n-1)/2 ]中,对下三角部分中任一元素a i,j (i ≤j), 在一维数组B 中下标k 的值是:A .i(i-1)/2+j-1B .i(i-1)/2+jC .i(i+1)/2+j-1D .i(i+1)/2+j3、从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。

第5章数组广义表

第5章数组广义表

am-1,n-1
Loc(aij) = b+( aij前元素个数)•L= b+[i×n+j]×L( 存储器)
例5-1 设二维数组A[7][8],起始地址b=1000,每个元素所占单元量L=3, 则Loc(a5,6)=1000+(5•8+6)3 = 1138。
数组元素的地址计算
3.三维数组: aijk ai00 aij0
数组元素的地址计算
4.n 维数组 从以上的地址公式推导中得出这样一条规律: 任意维数组中任一元素的地址= 起址b+ 该元素前的个数×元素单元量L。 故n维数组A[u1][u2]…..[un],其中任一元素ai1....in的地址为:
Loc(ai1i2……in)=b+(i1•u2•u3• … •un+i2•u3•u4• …un+…+in-1•un+in)•L =b+(

A[i]
A(2) = A[m][n] =
ai0 ai1 …… aij ….… ain-1
………………………….

A[m-1]
am-10 am-11 …am-1j … am-1n-1
= (A[0]……A[i]……A[m-1] )-----线性表形式
2.数组的基本运算
多维数组是线性表的推广,而线性表是多维数组的特例。 在算法语言中,数组一旦生成,其元素的存储空间就固定下来,故数组 的运算一般不包括插入和删除这样的操作。对数组运算有: (1) 构造一个n维数组:Setarray(A,n,d1d2,......dn),即生成: A[d1][d2].....[dn](C语言中,1≤n≤8)。 (2) 撤消一个数组:Dearray(A),释放数组A的存储空间。 (3) 取值:Aget(A,i1,...,in,x),将A[i1][i2],...,[in]的值传给变量 x。 (4) 赋值:Assign(A,i1,...,in,x),将变量 x的值传给A[i1][i2].....[in]。

第5章 数组和广义表

第5章 数组和广义表

第五章数组和广义表讲课提要【主要内容】1.多维数组的顺序存储结构2.特殊矩阵的压缩存储3.广义表的定义及其与线性表的关系4.广义表的存储结构5.广义表运算实现中递归的应用【教学目标】1.掌握多维数组的顺序存储结构2.掌握特殊矩阵的压缩存储方法3.掌握广义表的定义及其与线性表的关系4.掌握广义表的存储结构5.了解广义表运算实现中递归的应用学习指导1.多维数组的顺序存储结构对于多维数组,有两种存储方式:一是以行为主序(或先行后列)的顺序存放,如BASIC、PASCAL、C等程序设计语言中用的是以行为主的顺序分配,即一行分配完了接着分配下一行。

另一种是以列为主序(先列后行)的顺序存放,如FORTRAN语言中,用的是以列为主序的分配顺序,即一列一列地分配。

以行为主序的分配规律是:最右边的下标先变化,即最右下标从小到大,循环一遍后,右边第二个下标再变,…,从右向左,最后是左下标。

以列为主序分配的规律是:最左边的下标先变化,即最左下标从小到大,循环一遍后,左边第二个下标再变,…,从左向右,最后是右下标。

不论按何种方式存储,只要确定了数组的首地址以及每个数组元素所占用的单元数,就可以将数组元素的存储地址表示为其下标的线性函数。

设有m×n二维数组A mn,以“以行为主序”的分配为例,按照元素的下标确定其地址的计算方法如下。

设数组的基址为LOC(a11),每个数组元素占据L个地址单元,计算a ij 的物理地址的函数为:LOC(a ij) = LOC(a11) + ( (i-1)*n + j-1 ) * L同理,对于三维数组A mnp,即m×n×p数组,对于数组元素a ijk其物理地址为:LOC(a ijk)=LOC(a111)+( ( i-1) *n*p+ (j-1)*p +k-1) )*L注意:在C语言中,数组中每一维的下界定义为0,则:LOC(a ij) = LOC(a00) + ( i*n + j ) * L【例4-1】二维数组A的每一个元素是由6个字符组成的串,其行下标i=0,1,…,8,列下标j=1,2,…,10。

第5章数组和广义表

第5章数组和广义表
//L=1,指针的增减以元素的大小为单位 For(i=dim-2;i>0;--i)
A.contants[i]=A.bounds[i+1]*A.constants[i+1]; return ok; }
第5章 数组和广义表
Status DestoryArray(Array &A){ //销毁数组 if(!A.base) return ERROR; free(A.base); A.base=NULL; if(!A.bounds) return ERROR; free(A.bounds); A.bounds=NULL; if(!A.contants) return ERROR; free(A.contants) A.contants=NULL; return ok;
(3) Value(A,&e, index1, …, indexn): 若下标合法,则 用e返回数组A中由index1, …, indexn所指定的元素的值。
(4) Assign(&A,e,indexl,…indexn):若各下标不超界, 则将e赋值为所指定的A的元素值,并返回OK。 。
第5章 数组和广义表
三维数组A(1..r , 1..m , 1..n)可以看成是r个m×n的二维数组,
如图5.5所示。
n
m n
r j- 1
m
k- 1
图5.5 三维数组看成r个m×n的二维数组
第5章 数组和广义表
假定每个元素占一个存储单元,采用以行为主序的方法存 放,即行下标r变化最慢, 纵下标n变化最快。 首元素a111的地 址为Loc[1, 1, 1],求任意元素aijk的地址。
第5章 数组和广义表
以上我们以二维数组为例介绍了数组的结构特性,实际 上数组是一组有固定个数的元素的集合。也就是说,一旦定 义了数组的维数和每一维的上下限,数组中元素的个数就固 定了。 例如二维数组A3×4,它有3行、4列,即由12个元素组 成。由于这个性质,使得对数组的操作不像对线性表的操作 那样可以在表中任意一个合法的位置插入或删除一个元素。 对于数组的操作一般只有两类:

大学数据结构课件--第5章 数组和广义表

大学数据结构课件--第5章 数组和广义表

a 32 a 33 a 34 0 0
a 43 a 44 a 45 0
a 54 a 55 a 56 a 65 a 66
5.3.2 稀疏矩阵
稀疏矩阵的存储:如何表示非零元素的位置信息 1. 三元组表:每个元素用一个三元组(i,j,v)来表示。 i j v
0 1 6 1 1 6 2 3 8 12 9
2
3 4 5 6 7 8
2
5.2 数组的顺序表示和实现
a00 a00 a10 a01 存储单元是一维结构,而数组是个多维结构 , …… …… 则用一组连续存储单元存放数组的数据元素就有 am-1,0 a0,n-1 个次序约定问题。 a01 a10
a11
……
a11
……
二维数组可有两种存储方式: am-1,1 a1,n-1
……
K=
i*n-i(i-1)/2+j-i n(n+1)/2
当 i≤j 当i>j
0 a11 ... a1n-1 ... ... ... ... 0 0 0 an-1n-1
当i ≤ j时,a[i][j]是非零元素, a[i][j]前面有i行,共有n+(n-1)+(n-2)+…(n-(i-1))
=i(n+[n-(i-1)])/2=i*n-i(i-1)/2个元素,a[i][j]前面有j列,共j-i个非零元素,
A m× n
( a10 a11 … a1,n-1 )
=
注:
( … … …… ) ( am-1,0 am-1,2 … am-1,n-1 ) ( ( ( (
① 数组中的元素都具有统一的类型; ② 数组元素的下标一般都具有固定的上界和下界,即数组一旦 被定义,它的维数和维界就不再发生改变; ③ 数组的基本操作简单:初始化、销毁、存取元素和修改元素值

第五章数组和广义表

第五章数组和广义表
TransposeSMatrix ( M, &T )
稀疏矩阵M存在
由稀疏矩阵M复制 得到T
稀疏矩阵M与N的行 求稀疏矩阵的和Q 数和列数对应相等 =M+N
稀疏矩阵M与N的行 求稀疏矩阵的差Q 数和列数对应相等 =M-N
稀疏矩阵M的列数 求稀疏矩阵乘积Q
等于N的行数
=M*N
稀疏矩阵M存在
求稀疏矩阵M的转 置矩阵T
M.chead
M.rhead
30 05
113
145
M = 0 -1 0 0
2 000
2 2 -1
312
稀疏矩阵的十字链表存储表示:
typedef struct OLNode { int i, j ; // 非零元的行和列下标 ElemType e ; Struct OLNode *right, *down ; // 该非零元所在行表和列表的后继链域
1 当i

j
a00 a10 a11 a20 k= 0 1 2 3
… an-1, 0 … n(n-1)/2
an-1, n-1 n(n+1)/2-1
ADT SparseMatris { 数据对象:
D = { aij | i = 1, 2, …, m; j =1, 2, … , n; aij∈ElemSet,m和n分别称为矩阵的行数和列数}
第五章 数组和广义表
ADT Array { 数据对象:{ ji = 0, … , bi-1 , i = 1, 2 , … ,
n, D = { aj1j2…jn | n ( > 0 )称为数组的维数, bi是数组第i维的长度, ji是数组元素的第i维下标, aj1j2…jn∈ElemSet } 数据关系:R = { R1, R2, …, Rn }

数据结构第5章数组与广义表

数据结构第5章数组与广义表
0 0 3 0 1 0 1 2 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 2 0
一个稀疏矩阵里存在大量的零元素,若 以常规方法,即以二维数组来存储稀疏矩 阵时产生如下问题: 1) 零值元素占了很多空间; 2) 如果进行计算,则会进行很多和零值 的运算,如是除法,还需判别除数是否为 零。
2 三角矩阵 以主对角线划分,三角矩阵有上三角 和下三角两种。如图所示。其中(a)图为下 三角矩阵:主对角线以上均为同一个常 数;(b)图为上三角矩阵,主对角线以下均 为同一个常数。
(1) 下三角矩阵 三角矩阵中的重复元素c可共享一个 存储空间,其余的元素正好有n(n+1)/2 个,因此,三角矩阵可压缩存储到向量 SA[0…n(n+1)/2]中,其中c存放在向量的 最后1个分量SA[n(n+1)/2]中。 该存储方式可节约n*(n-1)/2-1个存储 单元。
传统矩阵的转置算法为: for(col=1; col<=n ;++col) for(row=0 ; row<=m ;++row) b[col][row]=a[row][col] ;
时间复杂度为O(n×m) 当非零元素的个数tn和m×n同数量级时,算法 TransMatrix的时间复杂度为O(m×n2)。
以“行优先顺序”存储: (1) 第1行中的每个元素对应的(首)地址是: LOC[a1j]=LOC[a11]+(j-1) ×L (2) 第2行中的每个元素对应的(首)地址是: LOC[a2j]=LOC[a11]+n×L +(j-1) ×L (3) 第m行中的每个元素对应的(首)地址是: LOC[amj]=LOC[a11]+(m-1) n×L +(j-1) ×L

数据结构第五章 数组和广义表

数据结构第五章 数组和广义表

5.3.1
特殊矩阵
1、对称矩阵 在一个n阶方阵A中,若元素满足下述性质: aij = aji 1≤i,j≤n 则称A为对称矩阵。 a11 1 5 1 3 7 a21 a 22 5 0 8 0 0 a31 a32 a33 1 8 9 2 6 ……………….. 3 0 2 5 1 an 1 a n 2 a n 3 …a n n 7 0 6 1 3
第5章
数组和广义表
5.1 数组的定义
5.2 数组的顺序表示和实现
5.3 矩阵的压缩存储
5.3.1 特殊矩阵
5.3.2 稀疏矩阵
5.4 广义表的定义
5.1 数组的定义
数组-----线性表的扩展 A =(a0,a1,a2,…,an-1)
a00 a10 ┇ Am×n= ai0 ┇ am-1,0 a01 … a0j … a11 … a1j … ┇ ai2 … aij … ┇ am-1,2 … am-1,j … a0,n-1 a1,n-1 ai,n-1 am-1,n-1 α0 α1 ┇ Am×n= α i ┇ α m-1
Assign( &A, e, index1, ..., indexn) 赋值操作 初始条件:A是n维数组,e为元素变量,随后是n个下标值。 操作结果:若下标不超界,则将e的值赋给所指定的A的元 素,并返回OK。 对于数组来说一旦维数确定了,每个元素的下标确定了, 那么整个数组就确定了,这样的一个数组结构除了能改变 某元素的值,其他的不能再改变。
5.2 数组的顺序表示和实现
数组类型特点: 1) 只有引用型操作,没有加工型操作; 2) 数组是多维的结构,而存储空间是一个一维的结构。 有两种顺序映象的方式。
有两种顺序映像方法: 1)以行序为主序(行优先,先行后列):先存储行号较小 的元素,行号相同者先存储列号较小的元素;

数据结构讲义第5章-数组和广义表

数据结构讲义第5章-数组和广义表
对于一个矩阵结构,显然用一个二维数组来表示是非常 恰当的.但有时会遇到这样一类矩阵:在这种矩阵中有 许多值相同的元素或者是零元素,为了节省存储空间, 可以对这类矩阵进行压缩存储. 压缩存储是:为多个值相同的元素只分配一个存储空间: 对零元素不分配存储空间. 特殊矩阵:值相同的元素或者零元素在矩阵中的分布有 一定规律,则称此类矩阵为特殊矩阵,反之,称为稀疏 矩阵.
5.4 广义表
5)若广义表不空,则可分成表头和表尾,反之,一对表头和表尾 可唯一确定广义表 对非空广义表:称第一个元素为L的表头,其余元素组成的表称 为LS的表尾; B = (a,(b,c,d)) 表头:a 表尾 ((b,c,d)) 即 HEAD(B)=a, C = (e) D = (A,B,C,f ) 表头:e 表尾 ( ) TAIL(B)=((b,c,d)),
5.4 广义表
4)下面是一些广义表的例子; A = ( ) 空表,表长为0; B = (a,(b,c,d)) B的表长为2,两个元素分别为 a 和子表(b,c,d); C = (e) C中只有一个元素e,表长为1; D = (A,B,C,f ) D 的表长为4,它的前三个元素 A B C 广义表, 4 A,B,C , 第四个是单元素; E=( a ,E ) 递归表.
以二维数组为例:二维数组中的每个元素都受两个线性关 系的约束即行关系和列关系,在每个关系中,每个元素aij 都有且仅有一个直接前趋,都有且仅有一个直接后继. 在行关系中 aij直接前趋是 aij直接后继是 在列关系中 aij直接前趋是 aij直接后继是
a00 a01 a10 a11
a0 n-1 a1 n-1
a11 a21 ┇ a12 a22 ┇ ai2 ┇ … amj … amn … aij … ain … … a1j a2j … … a1n a2n β1 β2 ┇ βi ┇ βm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 数组的顺序表示和实现
类型特点: 1) 只有引用型操作,没有加工型操作; 2) 数组是多维的结构,而存储空间是 一个一维的结构。 有两种顺序映像的方式: 1)以行序为主序(低下标优先); 2)以列序为主序(高下标优先);
以“行序为主序”的存储映像
例如:
a0,0 a0,1 a0,2 a1,0 a1,1 a1,2
解决问题的原则:
1) 尽可能少存或不存零值元素;
2) 尽可能减少没有实际意义的运算; 3) 操作方便; 即: 能尽可能快地找到 与下标值 (i, j) 对应的元素; 能尽可能快地找到 同一行或同一列的非零值元;
有两类稀疏矩阵:
1) 特殊矩阵
非零元在矩阵中的分布有一定规则
例如: 三角矩阵 对角矩阵
2) 随机压缩存储方法:
一、三元组顺序表 二、行逻辑链接的顺序表
三、 十字链表
一、三元组顺序表
#define MAXSIZE 12500 typedef struct { int i, j; //该非零元的行下标和列下标 ElemType e; // 该非零元的值 } Triple; // 三元组类型 typedef struct { Triple data[MAXSIZE + 1]; int mu, nu, tu; } TSMatrix; // 稀疏矩阵类型
三、 十字链表
M .c h e a d
^
M .rh e a d
1 13
1 45
^^
2 2 -1
^^
312
^^
3 0 0 5 0 -1 0 0 2 0 0 0
5.4 广义表的类型定义
ADT Glist { 数据对象:D={ei | i=1,2,..,n; n≥0; ei∈AtomSet 或 ei∈GList, AtomSet为某个数据对象 } 数据关系: LR={<ei-1, ei >| ei-1 ,ei∈D, 2≤i≤n} 基本操作:
n
的存储位置是其下标的线性函数
5.3 稀疏矩阵的压缩存储
何谓稀疏矩阵?
假设 m 行 n 列的矩阵含 t 个非零元素,
则称
mt n
为稀疏因子 通常认为 0.05 的矩阵为稀疏矩阵
以常规方法,即以二维数组表示
高阶的稀疏矩阵时产生的问题:
1) 零值元素占了很大空间; 2) 计算中进行了很多和零值的运算, 遇除法,还需判别除数是否为零;
分析上述算法的时间复杂度
累加器ctemp初始化的时间复杂度为(M.muN.nu), 求Q的所有非零元的时间复杂度为(M.tuN.tu/N.mu), 进行压缩存储的时间复杂度为(M.muN.nu), 总的时间复杂度就是(M.muN.nu+M.tuN.tu/N.mu)。
若M是m行n列的稀疏矩阵,N是n行p列的稀疏矩阵, 则M中非零元的个数 M.tu = Mmn, N中非零元的个数 N.tu = Nnp, 相乘算法的时间复杂度就是 (mp(1+nMN)) , 当M<0.05 和N<0.05及 n <1000时, 相乘算法的时间复杂度就相当于 (mp)。
Status MultSMatrix (RLSMatrix M, RLSMatrix N, RLSMatrix &Q) {
if (M.nu != N.mu) return ERROR; Q.mu = M.mu; Q.nu = N.nu; Q.tu = 0; if (M.tu*N.tu != 0) { // Q是非零矩阵 for (arow=1; arow<=M.mu; ++arow) { // 处理M的每一行 } // for arow } // if return OK; } // MultSMatrix
Status FastTransposeSMatrix(TSMatrix M, TSMatrix &T){
T.mu = M.nu; T.nu = M.mu; T.tu = M.tu; if (T.tu) { for (col=1; col<=M.nu; ++col) num[col] = 0; for (t=1; t<=M.tu; ++t) ++num[M.data[t].j]; cpot[1] = 1; for (col=2; col<=M.nu; ++col) cpot[col] = cpot[col-1] + num[col-1]; for (p=1; p<=M.tu; ++p) { 转置矩阵元素 } } // if return OK; } // FastTransposeSMatrix
ctemp[] = 0; // 当前行各元素累加器清零 Q.rpos[arow] = Q.tu+1; for (p=M.rpos[arow]; p<M.rpos[arow+1];++p) { //对当前行中每一个非零元 处 brow=M.data[p].j; 理 if (brow < N.nu ) t = N.rpos[brow+1]; M else { t = N.tu+1 } 的 for (q=N.rpos[brow]; q< t; ++q) { ccol = N.data[q].j; // 乘积元素在Q中列号 每 ctemp[ccol] += M.data[p].e * N.data[q].e; 一 } // for q 行 } // 求得Q中第crow( =arow)行的非零元 for (ccol=1; ccol<=Q.nu; ++ccol) if (ctemp[ccol]) { if (++Q.tu > MAXSIZE) return ERROR; Q.data[Q.tu] = {arow, ccol, ctemp[ccol]}; } // if
则构造相应的数组A,并 返回OK。
DestroyArray(&A) 操作结果:销毁数组A。
Value(A, &e, index1, ..., indexn) 初始条件:A是n维数组,e为元素变量, 随后是n 个下标值。 操作结果:若各下标不超界,则e赋值为
所指定的A 的元素值,并返 回OK。
Assign(&A, e, index1, ..., indexn) 初始条件:A是n维数组,e为元素变量, 随后是n 个下标值。 操作结果:若下标不超界,则将e的值赋 给所指定的A的元素,并返回 OK。
Q初始化; if Q是非零矩阵 { // 逐行求积 for (arow=1; arow<=M.mu; ++arow) { // 处理M的每一行 ctemp[] = 0; // 累加器清零
计算Q中第arow行的积并存入ctemp[] 中; 将ctemp[] 中非零元压缩存储到Q.data;
} // for arow } // if
矩阵乘法的精典算法: for (i=1; i<=m1; ++i) for (j=1; j<=n2; ++j) { Q[i][j] = 0; for (k=1; k<=n1; ++k) Q[i][j] += M[i][k] * N[k][j]; } 其时间复杂度为: O(m1×n2×n1)
两个稀疏矩阵相乘(QMN) 的过程可大致描述如下:
三元组顺序表又称有序的双下标 法,它的特点是,非零元在表中按行
序有序存储,因此便于进行依行顺序
处理的矩阵运算。然而,若需随机存
取某一行中的非零元,则需从头开始
进行查找。
修改前述的稀疏矩阵的结构定义, 增加一个数据成员rpos, 其值在稀疏矩 阵的初始化函数中确定。
#define MAXMN 500 typedef struct { Triple data[MAXSIZE + 1]; int rpos[MAXMN + 1]; int mu, nu, tu; } RLSMatrix; // 行逻辑链接顺序表类型
基本操作:
InitArray(&A, n, bound1, ..., boundn)
DestroyArray(&A) Value(A, &e, index1, ..., indexn) Assign(&A, e, index1, ..., indexn)
InitArray(&A, n, bound1, ..., boundn) 操作结果:若维数 n 和各维长度合法,
col = M.data[p].j; q = cpot[col]; T.data[q].i = M.data[p].j; T.data[q].j = M.data[p].i; T.data[q].e = M.data[p].e; ++cpot[col]
分析算法FastTransposeSMatrix的时间 复杂度:
for (col=1; col<=M.nu; ++col) … … for (t=1; t<=M.tu; ++t) … … for (col=2; col<=M.nu; ++col) … … for (p=1; p<=M.tu; ++p) … …
时间复杂度为: O(M.nu+M.tu)
二、行逻辑链接的顺序表
如何求转置矩阵?
0 0 36 14 7 0 0 0 0 0 0 28 5 0 0
0 14 0 0 5 0 7 0 0 0 36 0 0 28 0
用常规的二维数组表示时的算法
相关文档
最新文档