平抛运动高中
高中物理第四章 第2讲 平抛运动的规律及应用
【变式训练】在同一平台上的O点抛出的3个物体,做平抛运动 的轨迹如图所示,则3个物体做平抛运动的初速度vA、vB、vC的 关系及落地时间tA、tB、tC的关系分别是( )
A.vA>vB>vC,tA>tB>tC C.vA<vB<vC,tA>tB>tC
Байду номын сангаас
B.vA=vB=vC,tA=tB=tC D.vA<vB<vC,tA<tB<tC
考点 3 平抛运动的综合问题(三年6考)
解题技巧 【考点解读】 涉及平抛运动的综合问题主要是以下几种类型: (1)平抛运动与其他运动形式(如匀速直线运动、竖直上抛运动、 自由落体运动、圆周运动等)的综合题目,在这类问题的分析中 要注意平抛运动与其他运动过程在时间上、位移上、速度上的
方 分 解 速 度
法
内
容
斜
面
总
结
水平:vx=v0 竖直:vy=gt 合速度: v= v x 2 v y 2 水平:x=v0t 合位移: x 合= x 2 y 2
1 竖直:y= gt2 2
分解速 度,构建 速度三 角形
分 解 位 移
分解位 移,构建 位移三 角形
【典例透析 2】滑雪比赛惊险刺激,如图所示,一名跳台滑雪运 动员经过一段加速滑行后从O点水平飞出,经过3.0s落到斜坡上
g 2h 知,时间取决于下落高度h,与初速度v0 g
(3)落地速度:v= v x 2 v y 2 v0 2 2gh ,以θ 表示落地速度与 x轴正方向间的夹角,有tanθ = 初速度v0和下落高度h有关。
vy vx 2gh ,所以落地速度只与 v0
(4)速度改变量:因为平抛运动的加速度为恒 定的重力加速度g,所以做平抛运动的物体在 任意相等时间间隔Δ t内的速度改变量
高中物理:平抛运动知识点总结与解题技巧
一. 主要知识点:知识点1 平抛运动的特点1. 平抛运动的概念水平抛出的物体只在重力(不考虑空气阻力)作用下所做的运动。
2. 平抛运动的特点由于做平抛运动的物体只受重力的作用,由牛顿第二定律可知,其加速度恒为g,所以平抛运动是匀变速运动;又因为重力与速度不在一条直线上,故物体做曲线运动。
所以,平抛运动是匀变速曲线运动,其轨迹是抛物线。
3. 平抛运动的研究方法(1)运动的独立性原理:物体的各个分运动都是相互独立、互不干扰的。
(2)研究的方法:利用运动的合成与分解。
做平抛运动的物体在水平方向上不受力的作用,做匀速直线运动,在竖直方向上初速为零,只受重力,做自由落体运动。
所以平抛运动是水平方向上的匀速直线运动和竖直方向上的自由落体运动的合运动。
知识点2 平抛运动的规律以抛出点为坐标原点,水平抛出的方向为x轴的正方向,竖直向下的方向为y轴正方向,建立一个直角坐标系xOy。
1. 平抛运动物体的运动轨迹如图所示。
①水平方向上:物体不受力,所以水平方向上做匀速直线运动,有;②竖直方向上:物体只受重力作用,加速度恒为g,而初速度为零,所以做自由落体运动,有;③运动轨迹:。
所以平抛运动的轨迹为抛物线(一半)2. 平抛运动物体的位移如图所示。
①位移的大小:l=;②位移的方向:。
思考:能否用l求P点的位移?3. 平抛运动物体的速度如图所示速度的方向和大小:思考:①能否用求P点的速度?②由以上分析得:,是否有?二. 重难点分析:1、平抛运动的速度变化水平方向分速度保持,竖直方向,加速度恒为g,速度,从抛出点起,每隔△t时间的速度的矢量关系如图所示,这一矢量关系有两个特点:(1)任意时刻的速度水平分量均等于初速度;(2)任意相等时间间隔△t内的速度改变量均竖直向下,且△v=△=。
做平抛运动的物体,在任一时刻的速度都可以分解为一个大小和方向不变的水平速度分量和一个竖直方向随时间正比例变化的分量和构成速度直角三角形如图所示,通过几何知识容易建立起以及之间的关系,许多问题可以从这里入手解决。
高中物理教科版必修2课件:第一章 第3节 平抛运动
斜面上的平抛运动问题
[典例] 如图 1-3-3 所示,跳台滑雪运动员
经过一段加速滑行后从 O 点水平飞出,经过 3.0 s
落到斜坡上的 A 点。已知 O 点是斜坡的起点,
斜坡与水平面的夹角 θ=37°,运动员的质量 m
=50 kg。不计空气阻力,取 sin 37°=0.60,cos 37°=0.80,g 取 10 m/s2。求:
当垂直斜面方向的速度减为零时,运动员离斜坡距离最远,有 v0sin 37°-gcos 37°·t=0,解得 t=1.5 s。
[答案] (1)75 m (2)20 m/s (3)1.5 s
斜面上平抛运动问题的两类情况
方法
内容
分解 速度
分解 位移
水平 vx=v0 竖直 vy=gt 合速度 v=
[解析] (1)运动员在竖直方向做自由落体运动,有 y=Lsin 37° =12gt2 得 A 点与 O 点的距离 L=2signt237°=75 m。
(2)设运动员离开 O 点时的速度大小为 v0,运动员在水平方向做 匀速直线运动,即 x=Lcos 37°=v0t
解得 v0=Lcost 37°=20 m/s。
2.一小球以初速度 v0 水平抛出,落地时速度为 v,空气阻力不 计,求: (1)小球在空中飞行的时间; (2)抛出点离地面的高度; (3)小球的水平射程; (4)小球的位移大小。
解析:(1)由平抛运动的规律可知 v= vx2+vy2 故有 v= v02+gt2,所以 t= v2-g v02。
(2)小球在竖直方向做自由落体运动,所以有
第3节
平抛运动
1.平抛运动是初速度沿水平方向,加速度 为重力加速度的匀变速曲线运动。
2.平抛运动可以分解为水平方向的匀速直 线运动和竖直方向的自由落体运动。
物理人教(2019)必修第二册5.4平抛运动的规律(共21张ppt)
一 平抛运动的规律
(1)设落地时竖直方向的速度为vy,水平速度为v0
vy=vsin 53°=50×0.8 m/s=40 m/s
v0=vcos 53°=50×0.6 m/s=30 m/s
抛出点的高度为
v h=y2Fra bibliotek=80
m
2g
水平射程
x
=v0t=v0·
vy=30×40
g
10
m=120
m。
一 平抛运动的规律
速度g取10 m/s2,则下列说法正确的是( D )
A.QM的长度为10 m B.质点从O到P的运动时间为1 s C.质点在P点的速度v大小为40 m/s D.质点在P点的速度与水平方向的夹角为45°
课堂练习
解析 根据平抛运动在竖直方向做自由落体运动有 h=12gt2,可得 t=2 s;质点 在水平方向的位移为 x=v0t=40 m,根据平抛运动的推论可知 Q 是 OM 的中 点,所以 QM=20 m,故 A、B 错误;质点在 P 点的竖直速度 vy=gt=10×2 m/s =20 m/s,所以在 P 点的速度为 v= v2x+vy2= 202+202 m/s=20 2 m/s,故 C 错误;因为 tan θ=vvxy=1,所以质点在 P 点的速度方向与水平方向的夹角为 45°,故 D 正确。
4、两个二级结论: 速度与水平方向的夹角的正切是位移与水
平方向夹角的正切的2倍。
速度的反向延长线交于水平位移的中点。
一 平抛运动的规律
例1、从某一高度处水平抛出一物体,它落地时速度是50 m/s,方向与
水平方向成53°角斜向下。(不计空气阻力,g取10 m/s2,cos 53°=0.6,
sin 53°=0.8)求: (1)抛出点的高度和水平射程; (2)抛出后3 s末的速度;
高中物理必修2-平抛运动
平抛运动知识集结知识元平抛运动知识讲解1.平抛运动的定义将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2.平抛运动的条件(1)只受重力作用;(2)有水平方向的初速度.3.平抛运动的性质由于平抛运动的加速度恒为重力加速度g,且速度方向与加速度方向不共线,所以平抛运动是一种匀变速曲线运动.4.运动分解(1)水平方向:以初速度为v0做匀速直线运动,v x=v0,x=v0t,a x=0.(2)竖直方向:自由落体运动,v y=gt,y=21gt2,a y=g.(3)实际运动:轨迹是抛物线,v=y,s=,a=g.5.平抛运动的重要推论(1)做平抛运动的物体的落地速度为v=+2gh2,即落地速度只与初速度v0和下落高度h有关.(2)平抛物体的运动中,任意两个时刻的速度变化量Δv=g·Δt,方向恒为竖直向下,其中v0、Δv、v t三个速度矢量构成的三角形一定是直角三角形,如图所示.(3)平抛运动竖直方向上是自由落体运动,在连续相等的时间t内位移之比为1∶3∶5∶7∶…∶(2n-1),且相邻的后一个t比前一个t内多下落Δy=gt2,而水平方向在连续相等的时间内位移相等例题精讲平抛运动例1.如图所示,在倾角为θ的斜面上A点以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点所用的时间为()A.B.C.D.例2.'如图所示,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,从水平飞出时开始计时,经t=3.0s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg,不计空气阻力.取重力加速度g=10m/s2,sin37°=0.6,co s37°=0.8.求:(1)A点与O点的距离L;(2)运动员离开O点时的速度v1和落到A点时的速度v2的大小.例3.如图所示,在2011年12月17日全国自由式滑雪比赛中,我国某一运动员从弧形雪坡上沿水平方向飞出后,又落回到斜面雪坡上,如图所示,若斜面雪坡的倾角为θ,飞出时的速度大小为v0,不计空气阻力,运动员飞出后在空中的姿势保持不变,重力加速度为g,则()A.如果v0不同,则该运动员落到雪坡时的速度方向也就不同B.不论v0多大,该运动员落到雪坡时的速度方向都是相同的C.运动员落到雪坡时的速度大小是D.运动员在空中经历的时间是实验:研究平抛运动知识讲解一、探究平抛运动物体在竖直方向的运动规律演示实验1:平抛物体和自由落体物体从同一高度同时开始运动,可观察到它们的落地时间相等.一、探究平抛运动物体在竖直方向的运动规律演示实验1:平抛物体和自由落体物体从同一高度同时开始运动,可观察到它们的落地时间相等.演示实验2:2个初速度不同的平抛物体与自由落体同时从同一高度开始运动,可观察到它们的落地时间相等.结论:平抛运动的竖直分运动是自由落体运动,平抛运动的落地时间与它的初速度无关.二、探究平抛运动物体在水平方向的运动规律演示实验:如图所示的装置研究平抛物体的运动.两个相同的弧形轨道M、N,分别用于发射小铁球P、Q,其中N的末端与可看作光滑的水平板相切,两轨道上端分别装有电磁铁C、D,调节电磁铁C、D的高度,使AC=BD,从而保证小铁球P、Q在轨道出口处的水平初速度相等.现将小铁球P、Q分别吸在电磁铁C、D上,然后切断电源,使两个小铁球能以相同的初速度同时分别从轨道M、N的下端射出,可以看到P、Q两球相碰,只改变弧形轨道M的高度,重复上述实验,仍能观察到相同的现象.结论:在相等的时间间隔内物体在水平方向的位移相等,这说明平抛运动在水平方向做匀速直线运动.三、探究平抛物体运动规律1.实验目的(1)用实验的方法描出平抛运动的轨迹.(2)用实验轨迹求解平抛运动的初速度.2.实验原理使小球做平抛运动,利用描迹法描绘小球的运动轨迹,建立直角坐标系,测出轨迹曲线上某一点的坐标x和y,由公式:x=v0t和y=12gt2,可得v0=xg2y.3.实验器材(以斜槽法为例)斜槽(带小球)、木板及竖直固定支架、白纸、图钉、重垂线、三角板、铅笔、刻度尺.4.实验步骤(1)如图所示安装实验装置,使斜槽末端水平(小球在斜槽末端恰好静止).(2)以水平槽末端端口上小球球心位置为坐标原点O,过O点画出竖直的y轴和水平的x 轴.(3)使小球从斜槽上同一位置由静止滚下,把笔尖放在小球可能经过的位置上,如果小球运动中碰到笔尖,就用铅笔在该位置画上一点.用同样方法,在小球运动路线上描下若干点.(4)将白纸从木板上取下,从O点开始连接画出的若干点描出一条平滑的曲线,如图乙所示.5.实验注意事项(1)固定斜槽时,要保证斜槽末端的切线水平,保证小球的初速度水平.(2)固定木板时,木板必须处在竖直平面内且与小球运动轨迹所在的竖直平面平行,固定时要用重垂线检查坐标纸竖线是否竖直.(3)小球每次从斜槽上的同一位置由静止释放,为此,可在斜槽上某一位置固定一个挡板.(4)要在斜槽上适当高度释放小球,使它以适当的水平初速度抛出,其轨迹由木板左上角到达右下角,这样可以减小测量误差.(5)坐标原点不是槽口的端点,应是小球出槽口时球心在木板上的投影点.(6)计算小球的初速度时,应选距抛出点稍远一些的点为宜,以便于测量和计算.6.判断平抛运动的轨迹是不是抛物线(1)原理:若平抛运动的轨迹是抛物线,则当以抛出点为坐标原点建立直角坐标系后,轨迹上各点的坐标具有y =ax 2的关系,且同一轨迹上a 是一个特定的值.(2)验证方法方法一:代入法用刻度尺测量几个点的x 、y 坐标,分别代入y =ax 2中求出常数a ,看计算得到的a 值在误差范围内是否为一常数.方法二:图像法建立y -x 2坐标系,根据所测量的各个点的x 、y 坐标值分别计算出对应y 值的x 2值,在y -x 2坐标系中描点,连接各点看是否在一条直线上,并求出该直线的斜率即为a 值.7.计算平抛运动的初速度(1)平抛轨迹完整(即含有抛出点)在轨迹上任取一点,测出该点离原点的水平位移x 及竖直位移y ,就可求出初速度v 0.因x =v 0t ,y =12gt 2,故v 0=x g2y .(2)平抛轨迹残缺(即无抛出点)如图所示,在轨迹上任取三点A 、B 、C ,使A 、B 间及B 、C 间的水平距离相等,由平抛运动的规律可知,A 、B 间与B 、C 间所用时间相等,设为t ,则Δh =h BC -h AB =gt 2.所以t =hBC -hAB g ,所以初速度v 0=x t =x ghBC -hAB .演示实验2:2个初速度不同的平抛物体与自由落体同时从同一高度开始运动,可观察到它们的落地时间相等.结论:平抛运动的竖直分运动是自由落体运动,平抛运动的落地时间与它的初速度无关.二、探究平抛运动物体在水平方向的运动规律演示实验:如图所示的装置研究平抛物体的运动.两个相同的弧形轨道M、N,分别用于发射小铁球P、Q,其中N的末端与可看作光滑的水平板相切,两轨道上端分别装有电磁铁C、D,调节电磁铁C、D的高度,使AC=BD,从而保证小铁球P、Q在轨道出口处的水平初速度相等.现将小铁球P、Q分别吸在电磁铁C、D上,然后切断电源,使两个小铁球能以相同的初速度同时分别从轨道M、N的下端射出,可以看到P、Q两球相碰,只改变弧形轨道M的高度,重复上述实验,仍能观察到相同的现象.结论:在相等的时间间隔内物体在水平方向的位移相等,这说明平抛运动在水平方向做匀速直线运动.三、探究平抛物体运动规律1.实验目的(1)用实验的方法描出平抛运动的轨迹.(2)用实验轨迹求解平抛运动的初速度.2.实验原理使小球做平抛运动,利用描迹法描绘小球的运动轨迹,建立直角坐标系,测出轨迹曲线上某一点的坐标x和y,由公式:x=v0t和y=12gt2,可得v0=xg2y.3.实验器材(以斜槽法为例)斜槽(带小球)、木板及竖直固定支架、白纸、图钉、重垂线、三角板、铅笔、刻度尺.4.实验步骤(1)如图所示安装实验装置,使斜槽末端水平(小球在斜槽末端恰好静止).(2)以水平槽末端端口上小球球心位置为坐标原点O,过O点画出竖直的y轴和水平的x轴.(3)使小球从斜槽上同一位置由静止滚下,把笔尖放在小球可能经过的位置上,如果小球运动中碰到笔尖,就用铅笔在该位置画上一点.用同样方法,在小球运动路线上描下若干点.(4)将白纸从木板上取下,从O点开始连接画出的若干点描出一条平滑的曲线,如图乙所示.5.实验注意事项(1)固定斜槽时,要保证斜槽末端的切线水平,保证小球的初速度水平.(2)固定木板时,木板必须处在竖直平面内且与小球运动轨迹所在的竖直平面平行,固定时要用重垂线检查坐标纸竖线是否竖直.(3)小球每次从斜槽上的同一位置由静止释放,为此,可在斜槽上某一位置固定一个挡板.(4)要在斜槽上适当高度释放小球,使它以适当的水平初速度抛出,其轨迹由木板左上角到达右下角,这样可以减小测量误差.(5)坐标原点不是槽口的端点,应是小球出槽口时球心在木板上的投影点.(6)计算小球的初速度时,应选距抛出点稍远一些的点为宜,以便于测量和计算.6.判断平抛运动的轨迹是不是抛物线(1)原理:若平抛运动的轨迹是抛物线,则当以抛出点为坐标原点建立直角坐标系后,轨迹2的关系,且同一轨迹上a是一个特定的值.上各点的坐标具有y=ax(2)验证方法方法一:代入法2中求出常数a,看计算得到的a值在误差范用刻度尺测量几个点的x、y坐标,分别代入y=ax围内是否为一常数.方法二:图像法2坐标系,根据所测量的各个点的x、y坐标值分别计算出对应y值的x2值,在y-x2建立y-x坐标系中描点,连接各点看是否在一条直线上,并求出该直线的斜率即为a 值.7.计算平抛运动的初速度(1)平抛轨迹完整(即含有抛出点)在轨迹上任取一点,测出该点离原点的水平位移x 及竖直位移y ,就可求出初速度v 0.因x =v 0t ,y =12gt 2,故v 0=x g 2y .(2)平抛轨迹残缺(即无抛出点)如图所示,在轨迹上任取三点A 、B 、C ,使A 、B 间及B 、C 间的水平距离相等,由平抛运动的规律可知,A 、B 间与B 、C 间所用时间相等,设为t ,则Δh =h BC -h AB =gt 2.所以t =hBC -hAB g ,所以初速度v 0=x t =x ghBC -hAB .平抛运动的规律如图所示,以抛出点O 为坐标原点,水平方向为x 轴(正方向与初速度v 0方向相同),以竖直方向为y 轴(正方向向下),经时间t 做平抛运动的质点到达P 位置,速度为v .x 方向y 方向合运动方向受力情况0m g mg 竖直向下加速度0g g 竖直向下初速度v 00v 0水平方向运动类型匀速直线运动自由落体匀变速曲线运动t 时刻速度v x =v 0v y =gt v =2+g2t2tan θ=vy vx =gt v0位移x =v 0t y =12gt 2s =1g2t4tan α=y x =gt 2v0轨迹方程y =20x 2注:平抛运动的速度偏角与位移偏角的关系两偏角关系:tan θ=2tan α例题精讲实验:研究平抛运动例1.图甲是“研究平抛物体的运动”的实验装置图.(1)实验前应对实验装置反复调节,直到斜槽末端切线________.每次让小球从同一位置由静止释放,是为了每次平抛______________.(2)图乙是正确实验取得的数据,其中O为抛出点,则此小球做平抛运动的初速度为__________m/s.(g=9.8m/s2)(3)在另一次实验中将白纸换成方格纸,每个格的边长L=5cm,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为__________m/s;B点的速度为__________m/s.(g=10m/s2)例2.回答下面有关“研究平抛运动”的实验的问题:(1)在做“研究平抛运动”的实验时,让小球多次沿同一轨道运动,通过描点法画出小球平抛运动的轨迹,为了能较准确地描绘运动轨迹,下面列出一些操作要求,将你认为正确选项的前面字母填在横线上:__________A.通过调节使斜槽的末端保持水平B.每次释放小球的位置必须不同C.每次必须由静止释放小球D.记录小球位置用的木条(或凹槽)每次必须严格地等距离下降E.小球运动时不应与木板上的白纸(或方格纸)相接触F.将球的位置记录在纸上后,取下纸,用直尺将点连成折线(2)在研究平抛物体运动的实验中,用一张印有小方格的纸来记录轨迹,每小格边长均为L=5cm,若小球在平抛运动途中的几个位置如图中ABC所示,由竖直方向可知相邻两位置间的时间间隔表达式为T=____,则小球平抛初速度的表达式为v0=____,小球平抛初速度的大小为v0=__________m/s(g=10m/s2)例3.在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:A.让小球多次从________位置自由滚下,在一张印有小方格的纸记下小球碰到铅笔笔尖的一系列位置,如右图中a、b、c、d所示.B.按图安装好器材,注意调节斜槽末端切线________,记下平抛初位置O点和过O点的竖直线.C.取下白纸以O为原点,以竖直线为y轴建立坐标系,用平滑曲线画平抛运动物体的轨迹.(1)完成上述步骤,将正确的答案填在横线上.(2)上述实验步骤的合理顺序是_____________.(3)已知图中小方格的边长L=1.25cm,则小球平抛的初速度为v0=_____________(用L、g表示),其值是_____________(取g=9.80m/s2),小球在b点的速率_____________(保留三位有效数字).当堂练习单选题练习1.在同一水平直线上的两位置分别沿同水平方向抛出两小球A和B,两球相遇于空中的P点,它们的运动轨迹如图所示.不计空气阻力,下列说法中正确的是()A.在P点,A球的速度大小大于B球的速度大小B.在P点,A球的速度大小小于B球的速度大小C.抛出时,先抛出A球后抛出B球D.抛出时,先抛出B球后抛出A球练习2.如图,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点.O为半圆轨道圆心,半圆轨道半径为R,OB 与水平方向夹角为60°,重力加速度为g,则小球抛出时的初速度为()A.B.C.D.练习3.如图所示,在倾角为θ的斜面上A点以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点所用的时间为()A.B.C.D.练习4.2010年3月1日,第21届温哥华冬奥会闭幕,中国代表队以5金2银3铜的好成绩挤进前十,在众多比赛项目中,跳台滑雪是非常好看刺激的项目.如图所示是简化后的跳台滑雪的雪道示意图.运动员从助滑雪道AB上由静止开始下滑,到达C点后水平飞出,以后落到F 点.E是运动轨迹上的某一点,在该点运动员的速度方向与轨道CD平行.设运动员从C到E 与从E与F的运动时间分别为t CE和t E F,FG和斜面CD垂直,则()A.t CE大于t EF,C G等于GFB.t CE等于t EF,C G小于GFC.t CE大于t EF,C G小于GFD.t CE等于t EF,C G等于GF练习5.从倾角为θ的足够长的斜面上的A点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v1,球落到斜面上的瞬时速度方向与斜面夹角为α1,第二次初速度为v2,球落到斜面上的瞬时速度方向与斜面夹角为α2,若v1>v2,则()A.α1>α2B.α1=α2C.α1<α2D.无法确定练习6.如图所示.一足够长的固定斜面与水平面的夹角为37°,物体A以初速度v1从斜面顶端水平抛出,物体B在斜面上距顶端L=15m处同时以速度v2沿斜面向下匀速运动,经历时间t物体A 和物体B在斜面上相遇,则下列各组速度和时间中满足条件的是(sin37°=0.6,cos37°=0.8,g=10m/s2)()A.v1=16m/s,v2=15m/s,t=3sB.v1=16m/s,v2=16m/s,t=2sC.v1=20m/s,v2=20m/s,t=3sD.v1=20m/s,v2=16m/s,t=2s练习7.如图所示,在研究平抛运动时,小球A沿轨道滑下,离开轨道末端(末端水平)时撞开接触开关S,被电磁铁吸住的小球B同时自由下落,改变整个装置的高度H做同样的实验,发现位于同一高度的A、B两个小球总是同时落地,该实验现象说明了A球在离开轨道后()A.水平方向的分运动是匀速直线运动B.水平方向的分运动是匀加速直线运动C.竖直方向的分运动是自由落体运动D.竖直方向的分运动是匀速直线运动练习8.平抛物体的运动规律可以概括为两点:一是水平方向上做匀速直线运动;二是竖直方向上做自由落体运动.为了研究平抛物体的运动,可做这样的实验:如图所示,用小锤打击弹性金属片,A球水平飞出,同时B球被松开,做自由落体运动.两球同时落到地面.则这个实验()A.只能说明上述规律中的第一条B.只能说明上述规律中的第二条C.不能说明上述规律中的任何一条D.能同时说明上述两条规律练习9.如图所示,研究一平抛运动时,两个完全相同的弧形轨道M、N,分别用于发射小铁球P、Q,其中N的末端可看作与光滑的水平板相切,现将小铁球P、Q同时释放,以相同的初速度v0分别从轨道M、N的末端射出.仅改变弧形轨道M的高度,重复上述实验,总能观察到P球击中Q球,则()A.说明P球在离开轨道后水平方向的分运动是匀速直线运动B.说明P球在离开轨道后水平方向的分运动是匀加速直线运动C.说明P球在离开轨道后竖直方向的分运动是自由落体运动D.能同时说明上述选项A、C所述的规律填空题练习1.如图1所示的演示实验中,A、B两球同时落地,说明了平抛运动在竖直方向上是____________________.某同学设计了如图2的实验:将两个质量相等的小钢球,从两个相同斜面的同一高度由静止同时释放,滑道2与光滑水平板稳接,则他将观察到的现象是____________________.这说明平抛运动在水平方向上是____________________.练习2.图甲是“研究平抛物体的运动”的实验装置图.(1)实验前应对实验装置反复调节,直到斜槽末端切线________.每次让小球从同一位置由静止释放,是为了每次平抛______________.(2)图乙是正确实验取得的数据,其中O为抛出点,则此小球做平抛运动的初速度为__________m/s.(g=9.8m/s2)(3)在另一次实验中将白纸换成方格纸,每个格的边长L=5cm,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为__________m/s;B点的速度为__________m/s.(g=10m/s2)练习3.在研究平抛运动的实验中,用一张印有小方格的纸记录轨迹,小方格的边长L=1.25cm,若小球在平抛运动途中的几个位置如图中a、b、c、d所示,则小球平抛的初速度为v0=_____________(用L、g表示),其值是_______________.(g取9.8m/s2)练习4.回答下面有关“研究平抛运动”的实验的问题:(1)在做“研究平抛运动”的实验时,让小球多次沿同一轨道运动,通过描点法画出小球平抛运动的轨迹,为了能较准确地描绘运动轨迹,下面列出一些操作要求,将你认为正确选项的前面字母填在横线上:__________A.通过调节使斜槽的末端保持水平B.每次释放小球的位置必须不同C.每次必须由静止释放小球D.记录小球位置用的木条(或凹槽)每次必须严格地等距离下降E.小球运动时不应与木板上的白纸(或方格纸)相接触F.将球的位置记录在纸上后,取下纸,用直尺将点连成折线(2)在研究平抛物体运动的实验中,用一张印有小方格的纸来记录轨迹,每小格边长均为L=5cm,若小球在平抛运动途中的几个位置如图中ABC所示,由竖直方向可知相邻两位置间的时间间隔表达式为T=____,则小球平抛初速度的表达式为v0=____,小球平抛初速度的大小为v0=__________m/s(g=10m/s2)解答题练习1.'如图所示,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,从水平飞出时开始计时,经t=3.0s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg,不计空气阻力.取重力加速度g=10m/s2,sin37°=0.6,co s37°=0.8.求:(1)A点与O点的距离L;(2)运动员离开O点时的速度v1和落到A点时的速度v2的大小.'练习2.'如图所示,倾角为37°的粗糙斜面的底端有一质量m=1kg的凹形小滑块,小滑块与斜面间的动摩擦因数μ=0.25.现小滑块以某一初速度从斜面底端上滑,同时在斜面底端正上方有一小球以v0水平抛出,经过0.4s,小球恰好垂直斜面方向落入凹槽,此时,小滑块还在上滑过程中.(已知sin37°=0.6,cos37°=0.8),g取10m/s2,求:(1)小球水平抛出的速度v0的大小;(2)小滑块的初速度的大小.'。
高中物理必修一---平抛运动
▪ 结论: ▪ 1.飞行时间: t
2h g
,在同一地点做平抛运动
的物体的飞行时间只与抛出点和落地点的高
度差有关,与物体的质量及初速度无关.
▪ 2.水平射程:S=v0t= v0
2h g
,s由h及v0共同决定.
▪ 3.平抛物体的落地速度的大小和方向由h及v0 共同决定.
41
o VO
x ′ xB
A
B v0
23
(2)竖直方向
观察实验:A,B两球开始在同一水平面,重锤敲击后, A球获得一水平初速度,B球自由下落.
A
B v0
24
(2)竖直方向
观察实验:A,B两球开始在同一水平面,重锤敲击后, A球获得一水平初速度,B球自由下落.
A
B v0
25
(2)竖直方向
观察实验:A,B两球开始在同一水平面,重锤敲击后, A球获得一水平初速度,B球自由下落.
飞机离地面810米高度,以250千米/时的速度水平飞行,应该 在离轰炸目标的水平距离多远处投弹,才能击中地面目标。
O
x
51
y
三、例题讲解
飞机离地面810米高度,以250千米/时的速度水平飞行,应该 在离轰炸目标的水平距离多远处投弹,才能击中地面目标。
O
x
52
y
三、例题讲解
飞机离地面810米高度,以250千米/时的速度水平飞行,应该 在离轰炸目标的水平距离多远处投弹,才能击中地面目标。
55
45
1、动物管理员在森林里寻找到了一 只丢失的猴子,立即用麻醉枪水平 地射击,设子弹从枪口水平射出的 瞬间,精明的猴子便从静止开始自 由下落.猴子跑掉了吗?为什么?
46
练习:
人教版高中物理必修二 5.2平抛运动
tan2tan定任通意过时该刻段的时速间度内的水反平向位延移长的线中一点
结论总结
a、运动时间t 2 h g
即运动时间由高度h惟一决定
b、水平射程为 x v 0
2h g
即由v0、h共同决定
c、合速度 v v02 2gh d、速度的变化量 △v=g△t,△t时间内速度改变量相等,
△v方向是竖直向下的.
v0 O
x
α P (x,y)
vx α
y
vy
v
合速度:v vx2vy2 v02(g)t2 速度的偏向角: tan vy gt
vx v0
二、平抛运动规律
2)位移
水平方向:x v 0 t 竖直方向:y 1 gt 2
2
O v0 θ
x
P (x,y)
y
合位移: s x2y2 (v0t)2(1 2g2t)2
v0
vx
30°
vy v
2.跳台滑雪是一种极为壮观的运动.如图所示,运动员从 倾角为30°的山坡顶端的跳台上A点,以v0= 5 3 沿水平方 向飞出,恰好落到山坡底端的水平面上的B点.不计空气 阻力,取g=10 m/s2,求: (1)运动员在空中飞行的时间; (2)AB之间的距离. (3)运动员何时离开斜面的距离最大?
10.小球从空中以某一初速度水平抛出,落地前1s时刻, 速度方向与水平方向夹300角,落地时速度方向与水平方 向夹600角,g=10m/s2,求小球在空中运动时间及抛出的 初速度。
一、平 抛 运 动 定义:水平抛出的物体只在重力作用下的运动 条件:(1)初速度v0水平(2)只受重力作用 运动性质:平抛运动是匀变速曲线运动 研究方法:采用运动的合成和分解 水平方向:匀速直线运动 竖直方向:自由落体运动 运动规律 (1)速度关系
高中物理人教版必修二第二讲(平抛运动)
P
x
(x,y)
位移偏角与速度偏角不相等
AB=OB/2
y
解平抛运动类问题的一般思维: 1.分解速度:根据速度中合速度和分速度的 方向(角度)和大小关系进行求解 2.分解位移:根据位移中分运动和合运动的 大小和方向(角度)关系进行求解
题型:基本规律的应用 斜面上的抛体运动 类平抛运动
要点一 对平抛运动规律的进一步理解 1.速度的变化规律 水平方向分速度保持vx=v0不变;竖直方向加速度恒 为g,速度vy=gt,从抛出点起,每隔Δt时间,速度的 矢量关系如右图所示,这一矢量关系有两个特点;
vy
B
) Vy
Vx
gt v x vo
tanθ= 2tanα
推论2
平抛物体任意时刻瞬时时速度方向的反向延长线与 初速度延长线的交点到抛出点的距离都等于水平位 移的一半。 证明:设时间t 内物体的水平位移为s,竖直位移为h, 则末速度的水平分量vx=v0=s/t, 而竖直分量vy=2h/t,
v0 h
1 2 0 t 2 gt 2
2
s
s1
t
x
竖直方向: 合位移大小:
s x2 y2
s2
y 位移方向:
y g t tanα= x 2v o
4.平抛运动的轨迹:
推论1
O
v0 ) s y
O x ’ )
x
A
y g t tanα= x 2v o
tanθ=
[解析]
rumg u (1)a= = r g= 2.5 m/s2 m
2 由 v2 B- v0=- 2ax
得 vB= - 2ax+ v2 0= 5.0 m/s 1 (2)h= gt2 2 s= vBt 由以上两式解得: s= 2.0 m.
高中物理平抛运动的知识点详细介绍
高中物理平抛运动的知识点详细介绍物体以一定的初速度沿水平方向抛出,如果物体仅受重力作用,这样的运动叫做平抛运动。
平抛运动是匀变速曲线运动。
平抛运动可看作水平方向的匀速直线运动以及竖直方向的自由落体运动的合运动。
其实,这里平抛运动,就是数学中讲到的抛物线二次曲线中“抛物”二字的由来了。
平抛运动的公式1平抛运动的位移公式2平抛运动的分速度公式平抛运动轨迹是二次函数的证明前文中讲到了,平抛运动轨迹与是数学中讲到的抛物线一致。
下面我们来给大家做一个证明。
我们知道抛物线轨迹是二次曲线函数y关于自变量x的二次曲线,下面我们来对抛物线轨迹做一个证明,证明其也是二次函数关系。
这是新课标改革新添加的内容,在大纲版中没有涉及。
前面已经提及,做平抛运动的物体,在水平与竖直两个方向上的位移公式如下:水平方向x=v0t;1竖直方向y=½gt2;2把1中的t=x/v0带入到2中,不难得到这样的结论y=gx2/2v02我们可以将其写成y=kx2的形式;其中k=g/2V02。
显然,y与x这两个位移量之间是二次线性关系,且此函数图像过原点。
这个二次函数y=ax2+bx+c的特点是b和c均为零。
平抛运动的三种典型轨迹分析1落到斜面上示意图如下图所示,这种情况下,同学们要列出唯一方程。
因为根据题中限制,要求的是平抛运动轨迹与斜面直线相交。
需写出唯一方程,这种情况下在N点满足y和x的比例,等于θ角的正切值。
2垂直打到斜面上示意图如图所示,这种情况下要从速度方程入手。
题中的垂直落到,指的是速度的问题,速度的方向与斜面所在直线垂直。
因此,满足的是在P点,物体的合速度方向与水平速度方向的夹角与斜面夹角互余。
3距离斜面最远示意图如下图所示,这种情况下,满足的是B点合速度的方向与斜面方向平行。
从A点到B点,物体的始终在偏离斜面,而从B点到C点物体始终在接近斜面。
因此,在B点时,物体距离斜面最远。
此时合速度与水平方向的夹角等于斜面的夹角。
高中物理第五章曲线运动第二节平抛运动 新人教版必修2
37°=vv0y,则有 v0= 1.32gR= 4
321g5R,故 C 项正确,A、
B、D 项错误.
答案:C
拓展三 类平抛运动
1.什么是类平抛运动? 提示:物体以一定的初速度开始运动,受到的合外 力恒定且垂直于初速度.这样的运动都可以称为类平抛 运动. 2.如何处理类平抛运动问题? 提示:处理类平抛运动问题的方法与处理平抛运动 的方法类似.
A.
3gR 2
B.
36gR 15
C. 32gR 15
D. 2gR
解析:飞行过程中恰好与半圆轨道相切于 B 点,已
知速度与水平方向的夹角为 37°,设位移与水平方向的夹
角为 θ, 则有:tan θ=tan237°=38,因为 tan θ=xy=
R+y0.6R,则竖直位移 y=0.6R,v2y=2gy=1.2gR,所以 tan
答案:ABC
2.如图所示,一小球(可视为质点)从一半
圆轨道左端 A 点正上方某处开始做平抛运
动,运动轨迹恰好与半圆轨道相切于 B 点.半
圆轨道圆心为 O,半径为 R,且 OB 与水平方向夹角为 53°,
重力加速度为 g,则小球抛出时的初速度大小为(sin 53°
=0.8,cos 53°=0.6)( )
提示:链球、铅球、铁饼、标枪等,若被抛出后所受空 气阻力可忽略不计,可以看成是抛体运动.它们的初速度不 一定沿水平方向,所以它们不一定是平抛运动.
1.物体做平抛运动的条件. 物体的初速度 v0 不等于零且沿水平方向,只受重力 作用.
2.平抛运动的性质. 加速度为 g 的匀变速曲线运动. 3 平抛运动的特点.
大小:v= v2x+v2y= v20+g2t2
(3)合速度方向:tan
高中物理实验:探究平抛运动的特点
明理由。
解析:记录物体位置的a、b、c、d相邻两点间的水平距离均相等,为两个小格,
即水平方向上在相同时间内发生的位移相等,故物体在水平方向上做匀速直线运
动;相邻两点间的竖直距离分别为1格、2格、3格,所以在竖直方向满足“相邻
相等时间内位移差相等”,故竖直方向上做匀加速直线运动。
(1)水平方向
B
A
V0
观察如下实验,两小球具有相同初速度V0,B球在一光滑平板上.
(1)水平方向
B
A
V0
观察如下实验,两小球具有相同初速度V0,B球在一光滑平板上.
对A球B球:
y
x
因为
Fx=0
则
ax=0
所以A、B两球在水平方向上均做匀速直线运动.
(2)竖直方向
A
B
观察实验:A、B两球开始在同一水平面,重锤敲击后,
m/s。
丙
3. 在用如图甲所示装置“探究平抛运动的特点”的实验中,利用斜槽和贴着
带有方格白纸的竖直板描绘出小球平抛运动的轨迹,实验简要步骤如下:
【解析】
A.让小球多次从 斜槽同一 位置上滚下,在印有小方格的纸上记下小球碰
为保证小球做平抛运动,斜槽末端要水平,为
到铅笔笔尖的一系列位置,如图乙中a、b、c、d所示。
B球获得一水平初速度, A球自由下落.
(2)竖直方向
A
B
观察实验:A、B两球开始在同一水平面,重锤敲击后,
B球获得一水平初速度, A球自由下落.
观察实验:A、B两球开始在同一水平面,重锤敲击后,
B球获得一水平初速度, A球自由下落.
(2)竖直方向
平抛运动(类平抛和斜抛运动)人教版高中物理必修二
课后作业:
完成类平抛和斜抛运动相关练习 预习《5.3实验:研究平抛运动》相关知识
则 l=1at2=1t2gsin 22
α……②,联立①②
得:s=v0
2l .
gsin α
如图所示,两个足够大的倾角分别为30°、45°的光滑斜面放在同
一水平面上,两斜面间距大于小球直径,斜面高度相等,有三个完全相同
的小球a、b、c,开始均静止于斜面同一高度处,其中b小球在两斜面之间。
若同时释放a、b、c小球到达该水平面的时间分别为t1、t2、t3。若同时沿 水平方向抛出,初速度方向如图所示,到达水平面的时间分别为t1′、t2′、
位移公式 x=v0cosθ·t (位置坐标) y=v0sinθ·t-0.5gt2
斜下抛运动
水平方向:vx=v0cos θ 竖直方向:vy=v0sin θ+gt
x=v0cosθ·t y=v0sinθ·t+0.5gt2
典型例题2:从某高处以6 m/s的初速度、30°抛射角斜向上方抛出一石子, 落地时石子的速度方向和水平线的夹角为60°,求石子在空中运动的时间和 抛出点离地面的高度(g取10 m/s2).
5.2平抛运动
(类平抛和斜抛问题)
人教版 高中物理必修二 第五章曲线运动
平抛运动的初速度水平,只受与初速度垂直的竖直向下的重力,a=g; 类平抛运动的初速度不一定水平,但合外力与初速度方向垂直且为恒力, a=F合/m。
一、类平抛运动
定义
物体在某个方向做匀速直线运动,在垂直于该方向的方向做初速度为零的匀 加速直线运动(受恒定的合外力)
方 特殊 对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为ax, 法 分解 ay,速度v分解为vx,vy,然后分别在x、y方向列方程求解
高中物理平抛运动类平抛运动课件
平抛运动的合运动规律
曲线运动
平抛运动是水平方向和竖直方向上运动的合成,因此轨迹 是曲线。
轨迹方程
平抛运动的轨迹方程可以用参数方程表示为x = vt, y = (1/2)gt²,其中v是初速度,t是时间,g是重力加速度。
速度方向
平抛运动的速度方向与水平方向的夹角θ的正切值等于竖 直方向速度分量与水平方向速度分量的比值,即tanθ = v_y / v_x。
通过模拟结果可以得出平抛运动的轨迹方程,进一步分析平抛运 动的性质和规律。
利用示波器演示平抛运动
准备示波器
调整示波器参数,使其处于合适的状态。
操作步骤
将小球从一定高度释放,使其撞击到示波器上,观察小球的运动轨迹。
结果分析
通过观察示波器上的波形,可以得出小球在竖直方向做自由落体运动,在水平方向做匀速 直线运动的结论。同时可以通过测量波形振幅、周期等参数,进一步分析平抛运动的规律 和性质。
篮球运动
在篮球比赛中,球员将篮球投出,篮球在空中以一条弧线的形式飞行 ,这个飞行过程也是一种平抛运动。
03
其他球类运动
羽毛球、乒乓球等其他球类运动中,当球员发球或击球时,球在空中
以弧线形式飞行,同样也是平抛运动的实践应用。
炮弹发射时的平抛运动
炮弹发射
在军事领域,炮弹是常用的武器之一。炮弹发射时,以一定 的初速度沿与地面成一定角度射出,在重力作用下以匀变速 曲线运动形式向前飞行,这种运动也是平抛运动的实践应用 。
位移方向
平抛运动的位移方向与水平方向的夹角φ的正切值等于竖 直方向位移分量与水平方向位移分量的比值,即tanφ = y / x。
03 平抛运动的实践 应用
球类运动中的平抛运动
01 02
高中物理 第五章 曲线运动 第2节 平抛运动(含解析)
第2节 平抛运动一、 抛体运动1.抛体运动:以一定的速度将物体抛出,物体只受重力作用的运动。
2.平抛运动:初速度沿水平方向的抛体运动。
3.平抛运动的特点: (1)初速度沿水平方向。
(2)只受重力作用。
二、 平抛运动的速度将物体以初速度v 0水平抛出,由于物体只受重力作用,t 时刻的速度为: 1.水平方向:v x =v 0。
2.竖直方向:v y =gt 。
3.合速度⎩⎪⎨⎪⎧大小:v = v x 2+v y 2= v 02+g 2t2方向:tan θ=v y v x=gtvθ为速度方向与x 轴的夹角三、 平抛运动的位移将物体以初速度v 0水平抛出,经时间t 物体的位移为: 1.水平方向:x =v 0t 。
2.竖直方向:y =12gt 2。
1.物体被抛出后仅在重力作用下的运动叫抛体运动, 初速度沿水平方向的抛体运动叫平抛运动。
2.平抛运动一般可以分解为在水平方向上的匀速直线 运动和在竖直方向上的自由落体运动。
3.斜抛运动与平抛运动的处理方法类似,只是竖直方 向上的初速度不为0;斜上抛运动的最高点物体的 瞬时速度沿水平方向。
3.合位移⎩⎪⎨⎪⎧大小:l =x 2+y 2=v 0t2+⎝ ⎛⎭⎪⎫12gt 22方向:tan α=y x =gt2v。
α为位移方向与x 轴的夹角四、一般的抛体运动物体抛出的速度v 0沿斜上方或斜下方时,物体做斜抛运动(设v 0与水平方向夹角为θ)。
(1)水平方向:物体做匀速直线运动,初速度v x =v 0cos_θ。
(2)竖直方向:物体做竖直上抛或竖直下抛运动,初速度v y =v 0sin_θ。
如图所示。
1.自主思考——判一判(1)水平抛出的物体所做的运动就是平抛运动。
(×) (2)平抛运动的物体初速度越大,下落得越快。
(×)(3)做平抛运动的物体下落时,速度与水平方向的夹角θ越来越大。
(√) (4)如果下落时间较长,平抛运动的物体的速度方向变为竖直方向。
高中物理 必修二 5.2平抛运动
二、平抛运动的速度和位移
1.平抛运动的速度:
(1)水平方向:不受力,为_匀__速__直__线__运动,vx=v0。
(2)竖直方向:只受重力,为_自__由__落__体__运动,vy=gt。
(3)合速度:
gt
大小:v=
vx2 vy2 =__v_0_2 __g_2_t2_;方向:tanθ
=
vy vx
(3)速度:平抛运动的水平分速度恒定不变,竖直分速度的大小越来 越大,合速度的大小、方向都不断变化,合速度的方向与竖直方向的 夹角逐渐减小,但不会是零。 (4)位移:平抛运动位移的大小、方向都不断变化,其方向与速度方 向不一致。
【过关训练】 1.(多选)关于平抛运动,下列说法正确的是( ) A.平抛运动是匀变速运动 B.平抛运动是变加速运动 C.任意时刻的加速度相同 D.任意两段相等时间内速度变化量相同
【解析】选C、D。平抛运动的物体水平方向为匀速直线运动,竖直方
向为自由落体运动。已知落地时速度的大小和方向,则初速度为落地
速度的水平分速度,故C正确;若知道物体落地时位移s的大小和方
向,设位移与水平方向的夹角为α
,则scosα
=v0t,ssinα
=
1 gt2,
2
两式联立可求出初速度的大小,故A、B错,D正确。
【正确解答】选A、C、D。由l=v0t得物体在空中飞行的时间为
l ,故A正确;由h= 1 gt2,得t=
v0
2
2h ,故B错误;由vy=
g
v2 v02
以及vy=gt,得t= v2 v02 ,故C正确;由于竖直方向为初速度为0的
g
匀变速直线运动,故h= vy ·t,所以t= 2h ,故D正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动
例1. 图1是研究平抛运动实验后在白纸上作的图和所测数据,根据图中给出的数据,计算出此平抛运动的初速度。
例2. 如图2所示为一小球做平抛运动的闪光照相片的一部分,图中背景方格的边长均为5cm。
如果取g=10m/s2,那么:
(1)闪光频率是____________Hz。
(2)小球运动中水平分速度的大小是_____________m/s。
(3)小球经过B点时的速度大小是_______________m/s。
例3. 在研究平抛运动的实验中,某同学只在竖直板面上记下了重锤线y的方向,但忘了记下平抛的初位置,在坐标纸上描出了一段曲线的轨迹,如图3所示,现在曲线上取A、B两点量出它们到y轴的距离,
,以及AB的竖直距离h,用这些可以求得小球平抛时初速度为_________________。
例4. 放在赤道上的物体I和放在北纬60°处的物体II,由于地球的自转,它们的:
A. 角速度之比为
B. 线速度之比为
C. 向心加速度之比为
D. 向心加速度之比为
例5. 如图4所示,已知,它们距轴的关系是,三物体与转盘表面的动摩擦因数相同,当转盘的转速逐渐增加时:()
A. 物体A先滑动;
B. 物体B先滑动;
C. 物体C先滑动;
D. B与C同时开始滑动。
例6. 甲、乙两球位于同一竖直直线上的不同位置,甲比乙高出h。
将甲、乙两球以的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是:()
A. 同时抛出,且;
B. 甲迟抛出,且;
C. 甲早抛出,且;
D. 甲早抛出,且。
例7. 甲乙两人在一幢楼的三楼窗口比赛掷垒球,他们都尽力水平掷出同样的垒球,不计空气阻力,甲掷的水平距离正好是乙的两倍,若乙要想水平掷出相当于甲在三楼窗口掷出的距离,则乙应(不计一楼窗口离地高度):()
A. 在5楼窗口水平掷出
B. 在6楼窗口水平掷出
C. 在9楼窗口水平掷出
D. 在12楼窗口水平掷出
例8. 如图6所示一农用水泵的出水管是水平的。
若仅有一钢卷尺和一直棍,怎样估算水泵的流量。
例9. 张明在楼梯走道边将一颗质量为20g的弹子沿水平方向弹出,不计阻力,弹子滚出走道后直接落到“2”台阶上,如图7所示,设各级台阶宽、高都为20cm,则他将弹子打出的速度大小在_____________范围,打出弹子时他消耗的体能在____________范围。
万有引力与航天
1、关于开普勒第三定律中的公式,下列说法中正确的是()
A.适用于所有天体B.适用于围绕地球运行的所有卫星
C.适用于围绕太阳运行的所有行星D.以上说法均错误
2、关于人造地球卫星所受向心力与轨道半径r的关系,下列说法中正确的是()
A.由可知,向心力与r2成反比B.由可知,向心力与r成反比
C.由可知,向心力与r成正比D.由可知,向心力与r无关
3、已知地球半径为R,地球表面的重力加速度为g,若高空中某处的重力加速度为 g,则该处距地面球表面的高度为()
A.(—1)R B.R C.R D.2 R
4、2005年7 月4 日13 时52 分,美国宇航局“深度撞击”号探测器释放的撞击器“击中”目标——“坦普尔一号”彗星。
假设“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其轨道周期为5.74 年,则下列关于“坦普尔一号”彗星的说法中正确的是()
A.绕太阳运动的角速度不变
B.近日点处线速度大于远日点处线速度
C.近日点处加速度大于远日点处加速度
D.其椭圆轨道半长轴的立方与周期的平方之比是一个与太阳质量有关的常数
5、地球的半径为R,地球表面处物体所受的重力为mg,近似等于物体所受的万有引力,关于物体在下列位置所受万有引力大小的说法中,正确的是()
A.离地面高度处为4mg B.离地面高度R处为mg
C.离地面高度2R处为mg D.离地面高度R处为4mg
6、已知下面的哪组数据,可以算出地球的质量(引力常量G已知)()
A.月球绕地球运动的周期T1及月球到地球中心的距离R1
B.地球绕太阳运行周期T2及地球到太阳中心的距离R2
C.人造卫星在地面附近的运行速度v3和运行周期T3
D.地球绕太阳运行的速度v4及地球到太阳中心的距离R4
7、万有引力定律首先揭示了自然界物体间的基本相互作用的规律,则()
A.物体的重力不是地球对物体的万有引力引起的
B.人造地球卫星离地球越远,受到地球的万有引力越大
C.人造地球卫星绕地球运动的向心力由地球对它的万有引力提供
D.宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用
8、搭载“勇气”号火星车的美国火星着陆探测器,于北京时间2003年6月11日凌晨1时58分成功升空,经过了206个昼夜、长达4亿8千万千米漫长的星际旅行,于北京时间2004年1月4日12时35分终于成功登陆在火星表面的复环性山,刚一“亲吻”到火星土地的它,兴奋地在火星表面弹跳着,似乎是在表达它的自豪和喜悦。
关于火星探测器的发射原理,下列说法正确的是()
A.发射速度只要大于第一宇宙速度即可
B.发射速度只有达到第三宇宙速度才可以
C.发射速度应大于第二宇宙速度,但不需要达到第三宇宙速度
D.发射后应使探测器进入一个椭圆的行星轨道,它的远日点轨道和火星的运转轨道相切,且和火星同时到达轨道上的切点附近位置才可以在火星上着陆
机械能守恒定律
1.某班同学从山脚下某一水平线上同时开始沿不同路线爬山,最后所有同学都陆续到达山顶上的平台。
则下列结论正确的是
A.体重相等的同学,克服重力做的功一定相等
B.体重相同的同学,若爬山路径不同,重力对它们做的功不相等
C.最后到达山顶的同学,克服重力做功的平均功率最小
D.先到达山顶的同学,克服重力做功的平均功率最大
2.某同学在一高台上,以相同的速率分别把三个球竖直向下、竖直向上、水平抛出,不计空气阻力,则
A.三个小球落地时,重力的瞬时功率相等
B.从抛出到落地的过程中,重力对它们做功的平均功率相等
C.从抛出到落地的过程中,重力对它们做功相等
D.三个小球落地时速度相同
3.质量为m的汽车在平直公路上以恒定功率P从静止开始运动,若运动中所受阻力恒定,大小为f。
则
A.车先做匀加速直线运动,后做匀速直线运动
B.汽车先做加速度减小的加速直线运动,后做匀速直线运动
C.汽车做匀速运动时的速度大小为
D.汽车匀加速运动时,发动机牵引力大小等于f
4.下列说法正确的是
A.物体机械能守恒时,一定只受重力和弹力的作用
B.物体做匀速直线运动时机械能一定守恒
C.物体除受重力和弹力外,还受到其它力作用,物体系统的机械能可能守恒
D.物体的动能和重力势能之和增大,必定有重力以外的其它力对物体做功
5.小朋友从游乐场的滑梯顶端由静止开始下滑,从倾斜轨道滑下后,又沿水平轨道滑动了一段距离才停了下来,则
A.下滑过程中滑梯的支持力对小朋不做功
B.下滑过程中小朋友的重力做正功,它的重力势能增加
C.整个运动过程中小朋友、地球系统的机械能守恒
D.在倾斜轨道滑动过程中摩擦力对小朋友做负功,他的机械能减少
6.质量为m的滑块,以初速度v o沿光滑斜面向上滑行,不计空气阻力。
若以距斜面底端h高处为重力势能参考面,当滑块从斜面底端上滑到距底端高度为h的位置时,它的动能是
A. B.mgh C. D.
7.一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。
假定空气阻力可忽略,运动员可视为质点,下列说法正确的是
A.运动员到达最低点前重力势能始终减小
B.蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加
C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒
D.蹦极过程中,重力势能的改变与重力势能零点的选取有关
8.如图1所示,分别用质量不计不能伸长的细线与弹簧分别吊质量相同的小球A、B,将两球拉开使细线与弹簧都在水平方向上,且高度相同,而后由静止放开A、B两球,两球在运动中空气阻力不计,到最低点时两球在同一水平面上,则两球在最低点时的速度
A.A球的速度大 B.B球的速度大
C.A、B球的速度大小相等 D.无法判定
9.质量为m的物体从高度为h、倾角为θ的光滑斜面的顶端从静止开始滑下,若不计空气阻力,则物体
A.滑到斜面底端时减少的机械能等于mgh
B.滑到斜面底端时增加的动能等于mgh
C.滑到斜面底端时重力对物体做的功功率等于
D.小球滑到斜面底端时的速度大小与斜面倾角无关
10.如图2所示,质量不同的两物体通过轻绳相连,M>m,滑轮光滑且质量不计,轻绳的伸长不计,空气阻力不计。
由静止释放两物体,则物体M下降h距离过程中
A.两物体减少的机械能总量等于
B.轻绳的拉力对m做的功等势mgh
C.M的速度大小等于
D.m的速度大小等于。