2014届高考数学一轮专题复习 高效测试17 两角和与差的正弦、余弦和正切公式 新人教A版
高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式
高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎪⎭⎫ ⎝⎛∈+≠+Z k k ,2,,ππβαβα 两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎪⎭⎫ ⎝⎛∈+≠+≠Z k k k ,且42ππαππα 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角. 二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎪⎪⎭⎫ ⎝⎛+=+=2222cos ,sin b a ab a b ϕϕ三、考点解析考点一 三角函数公式的直接应用例、(1)已知sin α=35,α∈⎪⎭⎫ ⎝⎛ππ,2,tan β=-12,则tan(α-β)的值为( ) A .-211 B.211 C.112 D .-112(2)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( ) A .-229 B .-429 C.229 D.429[解题技法]应用三角公式化简求值的策略:(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.跟踪训练1.已知sin α=13+cos α,且α∈⎪⎭⎫ ⎝⎛2,0π,则)4sin(2cos παα+的值为( ) A .-23 B.23 C .-13 D.132.已知sin α=45,且α∈⎪⎭⎫ ⎝⎛23,2ππ,则sin ⎪⎭⎫ ⎝⎛+32πα的值为________. 考点二 三角函数公式的逆用与变形用例、(1)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解题技法]两角和、差及倍角公式的逆用和变形用的技巧:(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin α=⎝⎛⎭⎫sin α2±cos α22;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1; cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.跟踪训练1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b 2.已知cos ⎪⎭⎫ ⎝⎛-6πα+sin α=435,则sin ⎪⎭⎫ ⎝⎛+6πα=________. 3.化简sin 2⎪⎭⎫ ⎝⎛-6πα+sin 2⎪⎭⎫ ⎝⎛+6πα-sin 2α的结果是________.考点三 角的变换与名的变换考法(一) 三角公式中角的变换典例、已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎪⎭⎫ ⎝⎛--54,53,若角β满足sin(α+β)=513,则cos β的值为________.[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+ββα22a 等.考法(二) 三角公式中名的变换典例、已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.[解题技法]三角函数名的变换技巧:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.跟踪训练1.已知tan θ+1tan θ=4,则cos 2⎪⎭⎫ ⎝⎛+4πα=( ) A.12 B.13 C.14 D.152.若sin ⎪⎭⎫ ⎝⎛+4πA =7210,A ∈⎪⎭⎫ ⎝⎛ππ,4,则sin A 的值为( ) A.35 B.45 C.35或45 D.343.已知sin α=-45,α∈⎥⎦⎤⎢⎣⎡ππ223,,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136 C .-613 D .-136课后作业1.sin 45°cos 15°+cos 225°sin 165°=( )A .1 B.12 C.32 D .-122.若2sin x +cos ⎪⎭⎫ ⎝⎛-x 2π=1,则cos 2x =( ) A .-89 B .-79 C.79 D .-7253.若cos ⎪⎭⎫ ⎝⎛-6πα=-33,则cos ⎪⎭⎫ ⎝⎛-3πα+cos α=( ) A .-223 B .±223C .-1D .±1 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A. 3 B.2 C.22 D.335.若α∈⎪⎭⎫ ⎝⎛ππ,2,且3cos 2α=sin ⎪⎭⎫ ⎝⎛-απ4,则sin 2α的值为( ) A .-118 B.118 C .-1718 D.17186.已知sin 2α=13,则cos 2⎪⎭⎫ ⎝⎛-4πα=( ) A .-13 B.13 C .-23 D.237.已知sin ⎪⎭⎫ ⎝⎛+2πα=12,α∈⎪⎭⎫ ⎝⎛-0,2π,则cos ⎪⎭⎫ ⎝⎛-3πα的值为________. 8.已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________. 9.若tan ⎪⎭⎫ ⎝⎛-4πα=16,则tan α=________. 10.化简:sin 235°-12cos 10°cos 80°=________. 11.已知tan α=2.(1)求tan ⎪⎭⎫ ⎝⎛+4πα的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.。
高考论坛新课标数学理一轮教师备课练习3.5两角和与差的正弦、余弦和正切公式(含答案详析)
第五节两角和与差的正弦、余弦和正切公式[考情展望] 1.利用两角和与差的正弦、余弦和正切公式进行三角函数式的化简与求值.2.利用二倍角公式进行三角函数式的化简与求值.3.与三角函数y=A sin(ωx+φ)的图象和性质相结合,考查学生的综合能力.一、两角和与差的正弦、余弦、正切公式1.六个公式:①sin(α±β)=sin_αcos_β±cos_αsin_β;②cos(α±β)=cos_αcos_β∓sin_αsin_β;③tan(α±β)=tan α±tan β1∓tan αtan β.2.公式T(α±β)的变形:①tan α+tan β=tan(α+β)(1-tan_αtan_β);②tan α-tan β=tan(α-β)(1+tan_αtan_β).二、二倍角的正弦、余弦、正切公式1.三个公式:①sin 2α=2sin_αcos_α;②cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;③tan 2α=2tan α1-tan2α.2.公式S2α、C2α的变形:①sin αcos α=12sin 2α;②sin2α=12(1-cos 2α);③cos2α=12(1+cos 2α).1.sin 34°sin 26°-cos 34°cos 26°的值是( ) A.12B.32C .-12D .-32【解析】 sin 34°sin 26°-cos 34°cos 26°=-(cos 34°cos 26°-sin 34°sin 26°)=-cos 60°=-12. 【答案】 C2.下列各式中,值为32的是( ) A .2sin 15°cos 15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°【解析】 2sin 15°cos 15°=sin 30°=12,cos 215°-sin 215°=cos 30°=32,2sin 215°-1=-cos 30°=-32,sin 215°+cos 215°=1.故选B. 【答案】 B3.已知tan(α+β)=3,tan(α-β)=5,则tan 2α=( ) A.18 B .-18 C.47D .-47【解析】 tan 2α=tan[(α+β)+(α-β)] =tan (α+β)+tan (α-β)1-tan (α+β)·tan (α-β)=3+51-3×5=-47.【答案】 D4.若cos α=-45,α是第三象限角,则sin ⎝ ⎛⎭⎪⎫α+π4=( )A .-7210 B.7210 C .-210D.210【解析】 由题意知sin α=-35,∴sin ⎝ ⎛⎭⎪⎫α+π4=sin αcos π4+cos αsin π4=-35×22+⎝ ⎛⎭⎪⎫-45×22=-7210.【答案】 A5.(2013·江西高考)若sin α2=33,则cos α=( ) A .-23 B .-13 C.13D.23【解析】 cos α=1-2sin 2α2=1-2×⎝ ⎛⎭⎪⎫332=1-23=13.【答案】 C6.(2013·四川高考)设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________.【解析】 由sin 2α=2sin αcos α及sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π解出α,进而求得tan 2α的值.∵sin 2α=-sin α,∴2sin αcos α=-sin α. ∵α∈⎝ ⎛⎭⎪⎫π2,π,sin α≠0,∴cos α=-12.又∵α∈⎝ ⎛⎭⎪⎫π2,π,∴α=23π,∴tan 2α=tan 43π=tan ⎝ ⎛⎭⎪⎫π+π3=tan π3= 3. 【答案】3考向一 [060] 三角函数的给值求值(1)(2014·郑州模拟)若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( )A.33 B .-33 C.539 D .-69 (2)(2013·广东高考)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R. ①求f ⎝ ⎛⎭⎪⎫-π6的值;②若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,求f ⎝ ⎛⎭⎪⎫2θ+π3.【思路点拨】(2)①把x =-π6代入函数解析式,借助特殊角的三角函数值和诱导公式求f ⎝ ⎛⎭⎪⎫-π6. ②由cos θ求出sin θ,利用两角和的余弦公式和二倍角公式求f ⎝ ⎛⎭⎪⎫2θ+π3.【尝试解答】 (1)∵0<α<π2,∴π4<π4+α<34π, 所以由cos ⎝ ⎛⎭⎪⎫π4+α=13,得sin ⎝ ⎛⎭⎪⎫π4+α=223,又-π2<β<0,且cos ⎝ ⎛⎭⎪⎫π4-β2=33,则π4<π4-β2<π2,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63,故cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=593. 【答案】 C(2)①因为f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,所以f ⎝ ⎛⎭⎪⎫-π6=2cos ⎝ ⎛⎭⎪⎫-π6-π12=2cos ⎝ ⎛⎭⎪⎫-π4=2cos π4=2×22=1.②因为θ∈⎝ ⎛⎭⎪⎫3π2,2π,cos θ=35,所以sin θ=-1-cos 2θ=-1-⎝ ⎛⎭⎪⎫352=-45, cos 2θ=2cos 2θ-1=2×⎝ ⎛⎭⎪⎫352-1=-725, sin 2θ=2sin θcos θ=2×35×⎝ ⎛⎭⎪⎫-45=-2425.所以f ⎝ ⎛⎭⎪⎫2θ+π3=2cos ⎝ ⎛⎭⎪⎫2θ+π3-π12=2cos ⎝ ⎛⎭⎪⎫2θ+π4=2×⎝ ⎛⎭⎪⎫22cos 2θ-22sin 2θ=cos 2θ-sin 2θ=-725-⎝ ⎛⎭⎪⎫-2425=1725.规律方法1 给值求值问题,解决的关键是把所求角用已知角表示.,(1)当已知角有两个时,所求角一般表示为两个已知角的和或差的形式.(2)当已知角有一个时,此时应着眼于所求角与已知角的和或差的关系,然后应用诱导公式把所求角变成已知角.(3)注意根据角的象限确定三角函数值的符号.对点训练 (1)(2012·江苏高考)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.(2)已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6=________.【解析】 (1)∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45,∴sin ⎝ ⎛⎭⎪⎫α+π6=35.∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π6-π4 =sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos 2⎝ ⎛⎭⎪⎫α+π6sin π4 =2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6-22⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π6-1=2×35×45-22⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫452-1 =12225-7250=17250.(2)cos ⎝ ⎛⎭⎪⎫α-π6+sin α=cos αcos π6+sin αsin π6+sin α=32cos α+32sin α=3sin ⎝ ⎛⎭⎪⎫α+π6=45 3.∴sin ⎝ ⎛⎭⎪⎫α+π6=45,∴sin ⎝ ⎛⎭⎪⎫α+76π=sin ⎝ ⎛⎭⎪⎫π+α+π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45.【答案】 (1)17250 (2)-45考向二 [061] 三角函数的给值求角已知0<α<π2<β<π,tan α2=12,cos(β-α)=210. (1)求sin α的值;(2)求β的值.【思路点拨】 (1)tan α2――→二倍角公式tan α――→同角三角函数的关系sin α. (2)cos(β-α)――→同角三角函数的关系sin(β-α)――→拆角变换sin β――→结合β的范围β 【尝试解答】 (1)由tan α2=12,得tan α=2tan α21-tan 2α2=43, ∴cos α=34sin α,①又sin 2α+cos 2α=1,②由①、②联立,得25sin 2α=16,∵0<α<π2,∴sin α=45. (2)由(1)知,cos α=35,sin α=45, 又0<α<π2<β<π,∴0<β-α<π. 由cos(β-α)=210,得0<β-α<π2. ∴sin(β-α)=9810=7210,∴sin β=sin[(β-α)+α]=sin(β-α)cos α+cos(β-α)·sin α=7210×35+210×45=25250=22.由π2<β<π得β=34π.规律方法2 1.第(2)问中,由sin β=22 易错误得出β=π4,这些错误的原因都是忽视了角的范围.2.“给值求角”的求解思路:(1)求角的某一三角函数值,(2)讨论角的范围,确定角的大小.其中求角的某一三角函数值时,应选择在该范围内是单调函数,若角的范围是(0,π),选余弦较好;若角的范围为(-π2,π2) ,选正弦较好.对点训练 已知cos α=17,cos(α-β)=1314,且0<β<α<π2,试求角β的值. 【解】 由cos α=17,0<α<π2,得sin α=1-cos 2α=1-(17)2=437.由0<β<α<π2,得0<α-β<π2. 又∵cos(α-β)=1314, ∴sin(α-β)=1-cos 2(α-β)=3314,由β=α-(α-β),得cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. 又0<β<π2,所以β=π3.考向三 [062] 三角函数式的化简化简:(1)sin 50°(1+3tan 10°); (2)()1+sin θ+cos θ⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π).【思路点拨】 (1)切化弦,逆用两角和的正弦公式; (2)统一为θ2的三角函数,变形化简. 【尝试解答】 (1)sin 50°()1+3tan 10° =sin 50°⎝ ⎛⎭⎪⎫cos 10°+3sin 10°cos 10°=2sin 50°⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°sin (30°+10°)cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.(2)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0. 因此2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ2=⎝ ⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ2 =2cos θ2⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ.规律方法3 1.本例(2)中有开方运算,联想二倍角公式的特征进行升幂,化为完全平方式.2.三角函数式的化简要遵循“三看”原则,(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,帮助我们找到变形的方向. 对点训练 化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫x +π4.【解】 原式=2cos 2x (cos 2x -1)+122tan ⎝ ⎛⎭⎪⎫π4-x ·cos 2⎝ ⎛⎭⎪⎫π4-x=-4cos 2x sin 2x +14cos ⎝ ⎛⎭⎪⎫π4-x sin ⎝ ⎛⎭⎪⎫π4-x =1-sin 22x 2sin ⎝ ⎛⎭⎪⎫π2-2x=cos 22x 2cos 2x =12cos 2x .规范解答之五 三角函数中给值求值问题的解题策略 ——— [1个示范例] ———[1个规范练] ———(12分)(2012·广东高考)已知函数f (x )=A cos ⎝ ⎛⎭⎪⎫x 4+π6,x ∈R ,且f ⎝ ⎛⎭⎪⎫π3= 2.(1)求A 的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫4α+43π=-3017,f ⎝ ⎛⎭⎪⎫4β-23π=85,求cos(α+β)的值.【规范解答】 (1)由f ⎝ ⎛⎭⎪⎫π3=2得A cos ⎝ ⎛⎭⎪⎫π12+π6=2,2分即A ·cos π4=2,∴A =2.4分 (2)由(1)知f (x )=2cos ⎝ ⎛⎭⎪⎫x 4+π6.由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫4α+43π=-3017,f ⎝ ⎛⎭⎪⎫4β-23π=85,得⎩⎪⎨⎪⎧2cos ⎝ ⎛⎭⎪⎫α+π3+π6=-3017,2cos ⎝ ⎛⎭⎪⎫β-π6+π6=85,6分解得⎩⎪⎨⎪⎧ sin α=1517,cos β=45.8分∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,∴cos α=1-sin 2α=817, sin β=1-cos 2β=35.10分∴cos(α+β)=cos αcos β-sin αsin β=817×45-1517×35=-1385.12分 【名师寄语】 (1)在利用诱导公式时,先判断角的范围,确定三角函数值的符号,再写出结果.(2)对于两角和与差的余弦公式,应特别注意符号的差别,防止出错.(2014·三明模拟)已知0<α<π4,β为f (x )=cos ⎝ ⎛⎭⎪⎫2x +π8的最小正周期,a =⎝ ⎛⎭⎪⎫tan ⎝ ⎛⎭⎪⎫α+14β,-1,b =(cos α,2),且a·b =m ,求2cos 2α+sin 2(α+β)cos α-sin α的值. 【解】 因为β为f (x )=cos ⎝ ⎛⎭⎪⎫2x +π8的最小正周期,所以β=2π2=π. 又a·b =cos αtan ⎝ ⎛⎭⎪⎫α+14β-2=m , 故cos αtan ⎝ ⎛⎭⎪⎫α+π4=m +2. 由于0<α<π4,所以2cos 2α+sin 2(α+β)cos α-sin α=2cos 2α+sin (2α+2π)cos α-sin α=2cos 2α+sin 2αcos α-sin α=2cos α(cos α+sin α)cos α-sin α=2cos α·1+tan α1-tan α=2cos αtan ⎝ ⎛⎭⎪⎫α+π4=2(2+m ).。
2014高考数学一轮汇总训练《两角和与差的正弦、余弦、正切公式》理 新人教A版
第五节 两角和与差的正弦、余弦、正切公式[备考方向要明了][归纳²知识整合]1.两角和与差的正弦、余弦、正切公式 sin(α±β)=sin_αcos_β±cos _αsin_β cos(α±β)=cos_αcos_β∓sin_αsin_β tan(α±β)=tan α±tan β1∓tan αtan β[探究] 1.两角和与差的正切公式对任意角都适用吗?若出现不适用的情况如何化简?提示:在T(α+β)与T(α-β)中,α,β,α±β都不等于k π+π2(k ∈Z ),即保证tan α,tan β,tan(α+β)都有意义;若α,β中有一角是k π+π2(k ∈Z ),可利用诱导公式化简.2.二倍角余弦公式的常用变形是什么?它有何重要应用?提示:二倍角余弦公式的常用变形是:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,这就是使用极其广泛的降幂扩角公式.在三角恒等变换中,这两个公式可以实现三角式的“次数”降低,利于问题的研究.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α tan 2α=2tan α1-tan 2α[自测²牛刀小试]1.计算cos 28°cos 17°-sin 28°sin 17°的结果等于( ) A.12 B.22 C.32D.33解析:选B 原式=cos(28°+17°)=cos 45°=22. 2.已知tan ⎝ ⎛⎭⎪⎫α-π6=37,tan ⎝ ⎛⎭⎪⎫π6+β=25,则tan(α+β)的值为( )A.2941 B.129C.141D .1解析:选D tan(α+β)=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+⎝ ⎛⎭⎪⎫π6+β =tan ⎝ ⎛⎭⎪⎫α-π6+tan ⎝ ⎛⎭⎪⎫π6+β1-tan ⎝ ⎛⎭⎪⎫α-π6²ta n ⎝ ⎛⎭⎪⎫π6+β=37+251-37³25=1.3.(教材习题改编)下列各式中,值为12的是( )A .2sin 15°cos 15°B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°解析:选A 2sin15°cos 15°=sin 30°=12;cos 215°-sin 215°=cos 30°=32; 2sin 215°-1=-cos 30°=-32;sin 215°+cos 215°=1.4.(教材习题改编)已知cos α=35,0<α<π,则cos ⎝ ⎛⎭⎪⎫α-π6=________. 解析:∵cos α=35,0<α<π,∴sin α=45,∴cos ⎝ ⎛⎭⎪⎫α-π6=cos αcos π6+sin αsin π6 =32cos α+12sin α=32³35+12³45 =4+3310. 答案:4+33105.(教材习题改编)在△ABC 中,cos A =45,tan B =2,则tan(2A +2B )=________.解析:在△ABC 中,∵cos A =45,0<A <π,得sin A =35.∴tan A =sin A cos A =34.∴tan 2A =2tan A 1-tan 2A =247, tan 2B =2tan B 1-tan 2B =-43,∴tan(2A +2B )=tan 2A +tan 2B 1-tan 2A ²tan 2B =44117.答案:44117[例1] (1)化简:1+sin θ+cos θ⎝⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π);(2)求值:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°.[自主解答] (1)原式=⎝ ⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ24cos2θ2=cos θ2⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2²cos θ⎪⎪⎪⎪⎪⎪cos θ2.因为0<θ<π,所以0<θ2<π2,所以cos θ2>0,所以原式=-cos θ.(2)原式=2cos 210°2³2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5°=cos 10°2sin 10°-sin 10°²cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°²cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin 30°-10°2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.———————————————————1.三角函数式化简的原则三角函数式的化简要遵循“三看”原则,即一看角,二看名,三看式子结构与特征. 2.解决给角求值问题的基本思路对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有: 1化为特殊角的三角函数值; 2化为正、负相消的项,消去求值;3化分子、分母出现公约数进行约分求值.1.化简下列各式:(1)sin α+cos α-1sin α-cos α+1sin 2α;(2)sin 50°1+3tan 10°-cos 20°cos 80°1-cos 20°.解:(1)原式=⎝ ⎛⎭⎪⎫2sin α2cos α2-2sin 2α2⎝ ⎛⎭⎪⎫2sin α2cos α2+2sin 2α24sin α2cos α2cos α=⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2sin α2cos α2cos α=⎝⎛⎭⎪⎫cos 2α2-sin 2α2sin α2cos α2cos α=cos αsinα2cos α2cos α=tan α2.(2)∵sin 50°(1+3tan 10°) =sin 50°²cos 10°+3sin 10°cos 10°=sin 50°²2sin 40°cos 10°=1,cos 80°1-cos 20°=sin 10°2sin 210°=2sin 210°. ∴sin 50°1+3tan 10°-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2.[例2] (2012²广东高考)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫5α+53π=-65,f ⎝ ⎛⎭⎪⎫5β-56π=1617,求cos(α+β)的值.[自主解答] (1)∵f (x )=2cos ⎝⎛⎭⎪⎫ωx +π6,ω>0的最小正周期T =10π=2πω,∴ω=15. (2)由(1)知f (x )=2cos ⎝ ⎛⎭⎪⎫15x +π6,而α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝⎛⎭⎪⎫5α+5π3=-65,f ⎝⎛⎭⎪⎫5β-5π6=1617, 即2cos ⎣⎢⎡⎦⎥⎤15⎝ ⎛⎭⎪⎫5α+5π3+π6=-65, 2cos ⎣⎢⎡⎦⎥⎤15⎝ ⎛⎭⎪⎫5β-5π6+π6=1617, 即cos ⎝ ⎛⎭⎪⎫α+π2=-35,cos β=817, 于是sin α=35,cos α=45,sin β=1517,故cos(α+β)=cos αcos β-sin αsin β=45³817-35³1517=-1385.———————————————————解决给值求值问题的方法三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”的关系.2.已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.解:∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝⎛⎭⎪⎫α2-β=53, sin ⎝⎛⎭⎪⎫α-β2=1-cos 2⎝⎛⎭⎪⎫α-β2=459, ∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=c os ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19³53+459³23=7527,∴cos(α+β)=2cos 2α+β2-1=2³49³5729-1=-239729.[例3] 若sin A =55,sin B =1010,且A ,B 均为钝角,求A +B 的值. [自主解答] ∵A 、B 均为钝角且sin A =55,sin B =1010,∴cos A =-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010,∴cos(A +B )=cos A cos B -sin A si n B =-255³⎝ ⎛⎭⎪⎫-31010-55³1010=22,① 又∵π2<A <π,π2<B <π,∴π<A +B <2π,② 由①②知,A +B =7π4.若将“A ,B 均为钝角”改为“A ,B 均为锐角”,如何求解? 解:∵A ,B 均为锐角,且sin A =55,sin B =1010, ∴cos A =1-sin 2A =255,cos B =1-sin 2B =31010,∴cos A +B =cos A c os B -sin A sin B =255³31010-55³1010=22.又∵A ,B ∈(0, π2),∴A +B ∈0,π, ∴A +B =π4.———————————————————1.解决给值求角问题的一般步骤 (1)求角的某一个三角函数值; (2)确定角的范围;(3)根据角的范围写出要求的角.2.在求角的某个三角函数值时,应注意根据条件选择恰当的函数 (1)已知正切函数值,选正切函数;(2)已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.3.已知cos α=17,cos(α-β)=1314,且0<β<α<π2.(1)求tan 2α的值;(2)求β. 解:(1)由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫172=437.故tan α=sin αcos α=437³71=4 3.于是tan 2α=2tan α1-tan 2α=2³431-432=-8347. (2)由0<β<α<π2,得0<α-β<π2.又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2α-β=1-⎝ ⎛⎭⎪⎫13142=3314. 由β=α-(α-β),得cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=17³1314+437³3314=12. ∴β=π3.1组关系——两角和与差的正弦、余弦、正切公式与倍角公式的关系2个技巧——拼角、凑角的技巧 (1)用已知角表示未知角2α=(α+β)+(α-β);2β=(α+β)-(α-β); α=(α+β)-β=(α-β)+β;α=α+β2+α-β2,β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.(2)互余与互补关系⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2;⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2;⎝ ⎛⎭⎪⎫3π4-α+⎝ ⎛⎭⎪⎫π4+α=π;⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π; …3个变化——应用公式解决问题的三个变化角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.易误警示——三角函数求角中的易误点[典例] (2011²天津高考)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4. (1)求f (x )的定义域与最小正周期;(2)设α∈⎝ ⎛⎭⎪⎫0,π4,若f ⎝ ⎛⎭⎪⎫α2=2cos 2α,求α的大小.[解] (1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z ,所以f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R |x ≠π8+k π2,k ∈Z .f (x )的最小正周期为π2. (2)法一:由f ⎝ ⎛⎭⎪⎫α2=2cos 2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α,sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).∵α∈⎝⎛⎭⎪⎫0,π4,所以sin α+cos α≠0.∴(co s α-sin α)2=12,即sin 2α=12.由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝⎛⎭⎪⎫0,π2,∴2α=π6,即α=π12.法二:∵由f ⎝ ⎛⎭⎪⎫α2=2cos 2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α,即tan ⎝ ⎛⎭⎪⎫α+π4=2sin ⎝ ⎛⎭⎪⎫π2+2α=2sin2⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=4sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α. 又∵α∈⎝ ⎛⎭⎪⎫0,π4,∴sin ⎝⎛⎭⎪⎫α+π4≠0.∴1cos ⎝⎛⎭⎪⎫α+π4=4cos ⎝⎛⎭⎪⎫π4+α. ∴cos 2⎝⎛⎭⎪⎫π4+α=14.∵α∈⎝ ⎛⎭⎪⎫0,π4,∴π4+α∈⎝ ⎛⎭⎪⎫π4,π2.∴cos ⎝ ⎛⎭⎪⎫π4+α=12,π4+α=π3.即α=π3-π4=π12.[易误辨析]1.解决本题易忽视“α∈⎝ ⎛⎭⎪⎫0,π4”,由sin 2α=12得出2α=π6或2α=56π,即α=π12或α=512π的错误结论或由cos 2⎝ ⎛⎭⎪⎫π4+α=14得出cos ⎝ ⎛⎭⎪⎫π4+α=12或cos ⎝⎛⎭⎪⎫π4+α=-12,从而造成结论错误. 2.在解决三角函数中的问题时,要牢记:当求出某角的三角函数值,如果要求这角的取值时,一定要考虑角的范围,只有同时满足三角函数值及角的范围的角才是正确的.[变式训练]1.已知tan α,tan β是方程x 2+33x +4=0的两根,若α、β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β=( )A.π3B.π3或-23π C .-π3或23πD .-23π解析:选D 由题意得tan α+tan β=-33,tan αtan β=4.所以tan α<0,tan β<0.又α,β∈⎝ ⎛⎭⎪⎫-π2,π2, 故α,β∈⎝ ⎛⎭⎪⎫-π2,0,所以-π<α+β<0. 又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3.故α+β=-2π3.2.如图所示,点B 在以PA 为直径的圆周上,点C 在线段AB 上,已知PA =5,PB =3,PC =1527,设∠APB =α,∠APC =β,α,β均为锐角,则角β的值为________.解析:因为点B 在以PA 为直径的圆周上,所以∠ABP =90°,所以cos α=PB PA =35,sinα=45,所以tan α=43.因为cos ∠CPB =cos(α-β)=PB PC =31527=7210,所以sin(α-β)=210,所以tan(α-β)=17,tan β=tan[α-(α-β)]=tan α-tan α-β1+tan αtan α-β=1.又β∈⎝⎛⎭⎪⎫0,π2,所以β=π4.答案:π4一、选择题(本大题共6小题,每小题5分,共30分)1.(2012²辽宁高考)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22C.22D .1解析:选A 由sin α-cos α=2sin ⎝ ⎛⎭⎪⎫α-π4=2,α∈(0,π),解得α=3π4,所以tan α=tan 3π4=-1.2.(2012²江西高考)若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:选D 法一:∵tan θ+1tan θ=1+tan 2θtan θ=4,∴4tan θ=1+tan 2θ, ∴sin 2θ=2sin θcos θ=2sin θcos θsin 2 θ+cos 2 θ=2tan θ1+tan 2θ=2tan θ4tan θ=12.法二:∵tan θ+1tan θ=sin θcos θ+cos θsin θ=1cos θsin θ=2sin 2θ,∴4=2sin 2θ,故sin 2θ=12.3.已知α为第二象限角,s in α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)²(cos α+sin α)=-53. 4.在△ABC 中,tan B =-2,tan C =13,则A 等于( )A.π4B.3π4C.π3D.π6解析:选A tan A =tan[π-(B +C )]=-tan(B +C )=-tan B +tan C1-tan B tan C =--2+131--2³13=1.故A =π4.5.已知α+β=π4,则(1+tan α)(1+tan β)的值是( )A .-1B .1C .2D .4 解析:选C ∵α+β=π4,tan(α+β)=tan α+tan β1-tan αtan β=1,∴tan α+tan β=1-tan αtan β.∴(1+tan α)(1+tan β)=1+tan α+tan β+tan αtan β =1+1-tan αtan β+tan αtan β=2.6.若cos 2αsin α+7π4=-22,则sin α+cos α的值为( )A .-22B .-12C.12D.72解析:选C 由已知三角等式得cos 2α-sin 2α22sin α-cos α=-22,整理得sin α+cos α=12. 二、填空题(本大题共3小题,每小题5分,共15分) 7.3-sin 70°2-cos 210°=________. 解析:3-sin 70°2-cos 210°=3-cos 20°2-cos 210°=3-2cos 210°-12-cos 210°=2. 答案:28.已知cos(α+β)=16,cos(α-β)=13,则tan αtan β的值为________.解析:因为cos(α+β)=16,所以cos αcos β-sin αsin β=16.①因为cos(α-β)=13,所以cos αcos β+sin αsin β=13.②①+②得cos αcos β=14.②-①得sin αsin β=112.所以tan αtan β=sin αsin βcos αcos β=13.答案:139.(2013²南通模拟)设f (x )=1+cos 2x 2sin ⎝ ⎛⎭⎪⎫π2-x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4的最大值为2+3,则常数a =________.解析:f (x )=1+2cos 2x -12cos x +sin x +a 2sin ⎝⎛⎭⎪⎫x +π4=cos x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4=2sin ⎝ ⎛⎭⎪⎫x +π4+a 2sin ⎝ ⎛⎭⎪⎫x +π4=(2+a 2)sin ⎝⎛⎭⎪⎫x +π4.依题意有2+a 2=2+3,故a =± 3. 答案:± 3三、解答题(本大题共3小题,每小题12分,共36分) 10.已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域.(2)若α为第二象限角,且f ⎝⎛⎭⎪⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. 解:(1)因为f (x )=1+cos x -3sin x =1+2cos ⎝⎛⎭⎪⎫x +π3,所以函数f (x )的最小正周期为2π,值域为[-1,3]. (2)因为f ⎝⎛⎭⎪⎫α-π3=13,所以1+2cos α=13,即cos α=-13.又因为α为第二象限角, 所以sin α=223.因为cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin αcos α-sin α2cos αcos α-sin α=cos α+sin α2cos α,所以原式=cos α+sin α2cos α=-13+223-23=1-222.11.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解:(1)∵由题意得(sin α+cos α)2=95,即1+sin 2α=95,∴sin 2α=45.又2α∈⎝ ⎛⎭⎪⎫0,π2,∴cos 2α=1-sin 22α=35,∴tan 2α=sin 2αcos 2α=43.(2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,∴cos ⎝⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β,∴cos 2β=-2425. 又2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin 2β=725.又cos 2α=1+cos 2α2=45⎝ ⎛⎭⎪⎫α∈⎝ ⎛⎭⎪⎫0,π4,∴cos α=255,sin α=55.∴cos(α+2β)=cos αcos 2β-sin αsin 2β =255³⎝ ⎛⎭⎪⎫-2425-55³725=-11525. 12.(2013²岳阳模拟)已知向量a =(sin ωx ,cos ωx ),b =(cos φ,sin φ),函数f (x )=a²b ⎝ ⎛⎭⎪⎫ω>0,π3<φ<π的最小正周期为2π,其图象经过点M ⎝ ⎛⎭⎪⎫π6,32.(1)求函数f (x )的解析式;(2)已知α,β∈⎝ ⎛⎭⎪⎫0,π2,且f (α)=35,f (β)=1213, 求f (2α-β)的值.解:(1)依题意有f (x )=a²b =sin ωx cos φ+cos ωx sin φ=sin(ωx +φ).∵函数f (x )的最小正周期为2π,∴2π=T =2πω,解得ω=1. 将点M ⎝ ⎛⎭⎪⎫π6,32代入函数f (x )的解析式, 得sin ⎝⎛⎭⎪⎫π6+φ=32.∵π3<φ<π,∴π6+φ=2π3,∴φ=π2. 故f (x )=sin ⎝⎛⎭⎪⎫x +π2=cos x .(2)依题意有cos α=35,cos β=1213,而α,β∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=1-⎝ ⎛⎭⎪⎫352=45,sin β= 1-⎝ ⎛⎭⎪⎫12132=513,∴sin 2α=2425,cos 2α=cos 2α-sin 2α=925-1625=-725,∴f (2α-β)=cos(2α-β)=cos 2αcos β+sin 2αsin β =-725³1213+2425³513=36325.1.化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .解:原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=121-sin 22x 2sin ⎝ ⎛⎭⎪⎫π4-x cos π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x =12cos 2x .2.已知sin ⎝ ⎛⎭⎪⎫α-π4=7210,cos 2α=725,求sin α及tan ⎝ ⎛⎭⎪⎫α+π3的值. 解:由题设条件,应用两角差的正弦公式,得sin ⎝⎛⎭⎪⎫α-π4=22(sin α-cos α). 又sin ⎝ ⎛⎭⎪⎫α-π4=7210,所以sin α-cos α=75.① 由题设条件,应用二倍角的余弦公式,得cos 2α=cos 2α-sin 2α=(cos α-sin α)(cos α+sin α) =-75(cos α+sin α).又cos 2α=725,故cos α+sin α=-15.②联立①②,解得sin α=35,cos α=-45,因此tan α=-34.由两角和的正切公式,得tan ⎝⎛⎭⎪⎫α+π3=tan α+31-3tan α=48-25311. 3.已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值; (2)若sin(θ-φ)=1010,0<φ<π2,求cos φ的值. 解:(1)∵a⊥b ,∴sin θ-2cos θ=0, 又∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin θ=255,c os θ=55.(2)∵sin(θ-φ)=1010, ∴cos(θ-φ)=31010或-31010.当cos(θ-φ)=31010时,cos φ=cos[θ-(θ-φ)]=cos θ²cos(θ-φ)+sin θ²sin(θ-φ)=55³31010+255³1010=22. 当cos(θ-φ)=-31010时,cos φ=cos[θ-(θ-φ)]=cos θ²cos(θ-φ)+sinθ²sin(θ-φ)=-55³31010+255³1010=-210<0.∵φ∈⎝⎛⎭⎪⎫0,π2,∴cos φ<0不合题意,舍去.∴cos φ的值等于22. 4.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:∵tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=12-171+12³17=13>0,∴0<α<π2.又tan 2α=2tan α1-tan 2α=2³131-19=34>0, ∴0<2α<π2.此时tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34³17=1.∵tan β=-17<0,∴π2<β<π.则-π<2α-β<0.∴2α-β=-3π4.。
2014高考数学一轮汇总训练《两角和与差的正弦、余弦、正切公式》理 新人教A版
第五节 两角和与差的正弦、余弦、正切公式[备考方向要明了][归纳·知识整合]1.两角和与差的正弦、余弦、正切公式 sin(α±β)=sin_αcos_β±cos _αsin_β cos(α±β)=cos_αcos_β∓sin_αsin_β tan(α±β)=tan α±tan β1∓tan αtan β[探究] 1.两角和与差的正切公式对任意角都适用吗?若出现不适用的情况如何化简?提示:在T(α+β)与T(α-β)中,α,β,α±β都不等于k π+π2(k ∈Z ),即保证tan α,tan β,tan(α+β)都有意义;若α,β中有一角是k π+π2(k ∈Z ),可利用诱导公式化简.2.二倍角余弦公式的常用变形是什么?它有何重要应用?提示:二倍角余弦公式的常用变形是:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,这就是使用极其广泛的降幂扩角公式.在三角恒等变换中,这两个公式可以实现三角式的“次数”降低,利于问题的研究.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α tan 2α=2tan α1-tan 2α[自测·牛刀小试]1.计算cos 28°cos 17°-sin 28°sin 17°的结果等于( ) A.12 B.22 C.32D.33解析:选B 原式=cos(28°+17°)=cos 45°=22. 2.已知tan ⎝ ⎛⎭⎪⎫α-π6=37,tan ⎝ ⎛⎭⎪⎫π6+β=25,则tan(α+β)的值为( )A.2941 B.129C.141D .1解析:选D tan(α+β)=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+⎝ ⎛⎭⎪⎫π6+β =tan ⎝ ⎛⎭⎪⎫α-π6+tan ⎝ ⎛⎭⎪⎫π6+β1-tan ⎝ ⎛⎭⎪⎫α-π6·tan ⎝ ⎛⎭⎪⎫π6+β=37+251-37×25=1.3.(教材习题改编)下列各式中,值为12的是( )A .2sin 15°cos 15°B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°解析:选A 2sin15°cos 15°=sin 30°=12;cos 215°-sin 215°=cos 30°=32; 2sin 215°-1=-cos 30°=-32;sin 215°+cos 215°=1.4.(教材习题改编)已知cos α=35,0<α<π,则cos ⎝ ⎛⎭⎪⎫α-π6=________. 解析:∵cos α=35,0<α<π,∴sin α=45,∴cos ⎝ ⎛⎭⎪⎫α-π6=cos αcos π6+sin αsin π6 =32cos α+12sin α=32×35+12×45 =4+3310. 答案:4+33105.(教材习题改编)在△ABC 中,cos A =45,tan B =2,则tan(2A +2B )=________.解析:在△ABC 中,∵cos A =45,0<A <π,得sin A =35.∴tan A =sin A cos A =34.∴tan 2A =2tan A 1-tan 2A =247, tan 2B =2tan B 1-tan 2B =-43,∴tan(2A +2B )=tan 2A +tan 2B 1-tan 2A ·tan 2B =44117.答案:44117[例1] (1)化简:+sin θ+cos θ⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π);(2)求值:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°.[自主解答] (1)原式=⎝ ⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ24cos2θ2=cos θ2⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2·cos θ⎪⎪⎪⎪⎪⎪cos θ2.因为0<θ<π,所以0<θ2<π2,所以cos θ2>0,所以原式=-cos θ.(2)原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°--2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.———————————————————1.三角函数式化简的原则三角函数式的化简要遵循“三看”原则,即一看角,二看名,三看式子结构与特征. 2.解决给角求值问题的基本思路对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有:化为特殊角的三角函数值; 化为正、负相消的项,消去求值;化分子、分母出现公约数进行约分求值.1.化简下列各式: (1)α+cos α-α-cos α+sin 2α;(2)+3-cos 20°cos 80°1-cos 20°.解:(1)原式=⎝ ⎛⎭⎪⎫2sin α2cos α2-2sin 2α2⎝ ⎛⎭⎪⎫2sin α2cos α2+2sin 2α24sin α2cos α2cos α=⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2sin α2cos α2cos α=⎝⎛⎭⎪⎫cos 2α2-sin 2α2sin α2cos α2cos α=cos αsinα2cos α2cos α=tan α2.(2)∵sin 50°(1+3tan 10°) =sin 50°·cos 10°+3sin 10°cos 10°=s in 50°·2sin 40°cos 10°=1,cos 80°1-cos 20°=sin 10°2sin 210°=2sin 210°. ∴+3-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2.[例2] (2012·广东高考)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫5α+53π=-65,f ⎝ ⎛⎭⎪⎫5β-56π=1617,求cos(α+β)的值.[自主解答] (1)∵f (x )=2cos ⎝⎛⎭⎪⎫ωx +π6,ω>0的最小正周期T =10π=2πω,∴ω=15. (2)由(1)知f (x )=2cos ⎝ ⎛⎭⎪⎫15x +π6,而α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝⎛⎭⎪⎫5α+5π3=-65,f ⎝⎛⎭⎪⎫5β-5π6=1617, 即2cos ⎣⎢⎡⎦⎥⎤15⎝ ⎛⎭⎪⎫5α+5π3+π6=-65, 2cos ⎣⎢⎡⎦⎥⎤15⎝ ⎛⎭⎪⎫5β-5π6+π6=1617, 即cos ⎝ ⎛⎭⎪⎫α+π2=-35,cos β=817, 于是sin α=35,cos α=45,sin β=1517,故cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385.———————————————————解决给值求值问题的方法三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”的关系.2.已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.解:∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝⎛⎭⎪⎫α2-β=53, sin ⎝⎛⎭⎪⎫α-β2=1-cos 2⎝⎛⎭⎪⎫α-β2=459, ∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=c os ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.[例3] 若sin A =55,sin B =1010,且A ,B 均为钝角,求A +B 的值. [自主解答] ∵A 、B 均为钝角且sin A =55,sin B =1010,∴cos A =-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010,∴cos(A +B )=cos A cos B -sin A si n B =-255×⎝ ⎛⎭⎪⎫-31010-55×1010=22,① 又∵π2<A <π,π2<B <π,∴π<A +B <2π,② 由①②知,A +B =7π4.若将“A ,B 均为钝角”改为“A ,B 均为锐角”,如何求解? 解:∵A ,B 均为锐角,且sin A =55,sin B =1010, ∴cos A =1-sin 2A =255,cos B =1-sin 2B =31010,∴A +B =cos A c os B -sin A sin B=255×31010-55×1010=22.又∵A ,B ∈(0, π2),∴A +B ∈,π,∴A +B =π4.———————————————————1.解决给值求角问题的一般步骤 (1)求角的某一个三角函数值; (2)确定角的范围;(3)根据角的范围写出要求的角.2.在求角的某个三角函数值时,应注意根据条件选择恰当的函数 (1)已知正切函数值,选正切函数;(2)已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.3.已知cos α=17,cos(α-β)=1314,且0<β<α<π2.(1)求tan 2α的值;(2)求β. 解:(1)由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫172=437.故tan α=sin αcos α=437×71=4 3.于是tan 2α=2tan α1-tan 2α=2×431-32=-8347.(2)由0<β<α<π2,得0<α-β<π2.又∵cos(α-β)=1314,∴sin(α-β)=1-cos2α-β=1-⎝ ⎛⎭⎪⎫13142=3314. 由β=α-(α-β),得cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12. ∴β=π3.组关系——两角和与差的正弦、余弦、正切公式与倍角公式的关系个技巧——拼角、凑角的技巧 (1)用已知角表示未知角2α=(α+β)+(α-β);2β=(α+β)-(α-β); α=(α+β)-β=(α-β)+β;α=α+β2+α-β2,β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.(2)互余与互补关系⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2;⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2;⎝ ⎛⎭⎪⎫3π4-α+⎝ ⎛⎭⎪⎫π4+α=π;⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π; …个变化——应用公式解决问题的三个变化角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.易误警示——三角函数求角中的易误点[典例] (2011·天津高考)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4. (1)求f (x )的定义域与最小正周期;(2)设α∈⎝ ⎛⎭⎪⎫0,π4,若f ⎝ ⎛⎭⎪⎫α2=2cos 2α,求α的大小.[解] (1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z ,所以f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R |x ≠π8+k π2,k ∈Z .f (x )的最小正周期为π2. (2)法一:由f ⎝ ⎛⎭⎪⎫α2=2cos 2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α,sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).∵α∈⎝⎛⎭⎪⎫0,π4,所以sin α+cos α≠0.∴(co s α-sin α)2=12,即sin 2α=12.由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝⎛⎭⎪⎫0,π2,∴2α=π6,即α=π12.法二:∵由f ⎝ ⎛⎭⎪⎫α2=2cos 2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α,即tan ⎝ ⎛⎭⎪⎫α+π4=2sin ⎝ ⎛⎭⎪⎫π2+2α=2sin2⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=4sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α. 又∵α∈⎝ ⎛⎭⎪⎫0,π4,∴sin ⎝⎛⎭⎪⎫α+π4≠0.∴1cos ⎝⎛⎭⎪⎫α+π4=4cos ⎝⎛⎭⎪⎫π4+α. ∴cos 2⎝⎛⎭⎪⎫π4+α=14.∵α∈⎝ ⎛⎭⎪⎫0,π4,∴π4+α∈⎝ ⎛⎭⎪⎫π4,π2.∴cos ⎝ ⎛⎭⎪⎫π4+α=12,π4+α=π3.即α=π3-π4=π12.[易误辨析]1.解决本题易忽视“α∈⎝ ⎛⎭⎪⎫0,π4”,由sin 2α=12得出2α=π6或2α=56π,即α=π12或α=512π的错误结论或由cos 2⎝ ⎛⎭⎪⎫π4+α=14得出cos ⎝ ⎛⎭⎪⎫π4+α=12或cos ⎝⎛⎭⎪⎫π4+α=-12,从而造成结论错误. 2.在解决三角函数中的问题时,要牢记:当求出某角的三角函数值,如果要求这角的取值时,一定要考虑角的范围,只有同时满足三角函数值及角的范围的角才是正确的.[变式训练]1.已知tan α,tan β是方程x 2+33x +4=0的两根,若α、β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β=( )A.π3B.π3或-23π C .-π3或23πD .-23π解析:选D 由题意得tan α+tan β=-33,tan αtan β=4.所以tan α<0,tan β<0.又α,β∈⎝ ⎛⎭⎪⎫-π2,π2, 故α,β∈⎝ ⎛⎭⎪⎫-π2,0,所以-π<α+β<0. 又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3.故α+β=-2π3.2.如图所示,点B 在以PA 为直径的圆周上,点C 在线段AB 上,已知PA =5,PB =3,PC =1527,设∠APB =α,∠APC =β,α,β均为锐角,则角β的值为________.解析:因为点B 在以PA 为直径的圆周上,所以∠ABP =90°,所以cos α=PB PA =35,sinα=45,所以tan α=43.因为cos ∠CPB =cos(α-β)=PB PC =31527=7210,所以sin(α-β)=210,所以tan(α-β)=17,tan β=tan[α-(α-β)]=tan α-α-β1+tan αα-β=1.又β∈⎝⎛⎭⎪⎫0,π2,所以β=π4.答案:π4一、选择题(本大题共6小题,每小题5分,共30分)1.(2012·辽宁高考)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22C.22D .1解析:选A 由sin α-cos α=2sin ⎝ ⎛⎭⎪⎫α-π4=2,α∈(0,π),解得α=3π4,所以tan α=tan 3π4=-1.2.(2012·江西高考)若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:选D 法一:∵tan θ+1tan θ=1+tan 2θtan θ=4,∴4tan θ=1+tan 2θ, ∴sin 2θ=2sin θcos θ=2sin θcos θsin 2 θ+cos 2 θ=2tan θ1+tan 2θ=2tan θ4tan θ=12.法二:∵tan θ+1tan θ=sin θcos θ+cos θsin θ=1cos θsin θ=2sin 2θ,∴4=2sin 2θ,故sin 2θ=12.3.已知α为第二象限角,s in α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53. 4.在△ABC 中,tan B =-2,tan C =13,则A 等于( )A.π4B.3π4C.π3D.π6解析:选A tan A =tan[π-(B +C )]=-tan(B +C )=-tan B +tan C1-tan B tan C =--2+131--2×13=1.故A =π4.5.已知α+β=π4,则(1+tan α)(1+tan β)的值是( )A .-1B .1C .2D .4 解析:选C ∵α+β=π4,tan(α+β)=tan α+tan β1-tan αtan β=1,∴tan α+tan β=1-tan αtan β.∴(1+tan α)(1+tan β)=1+tan α+tan β+tan αtan β =1+1-tan αtan β+tan αtan β=2.6.若cos 2αsin α+7π4=-22,则sin α+cos α的值为( )A .-22B .-12C.12D.72解析:选C由已知三角等式得cos 2α-sin 2α22α-cos α=-22,整理得sin α+cos α=12. 二、填空题(本大题共3小题,每小题5分,共15分) 7.3-sin 70°2-cos 210°=________. 解析:3-sin 70°2-cos 210°=3-cos 20°2-cos 210°=3-210°-2-cos 210°=2.答案:28.已知cos(α+β)=16,cos(α-β)=13,则tan αtan β的值为________.解析:因为cos(α+β)=16,所以cos αcos β-sin αsin β=16.①因为cos(α-β)=13,所以cos αcos β+sin αsin β=13.②①+②得cos αcos β=14.②-①得sin αsin β=112.所以tan αtan β=sin αsin βcos αcos β=13.答案:139.(2013·南通模拟)设f (x )=1+cos 2x 2sin ⎝ ⎛⎭⎪⎫π2-x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4的最大值为2+3,则常数a =________.解析:f (x )=1+2cos 2x -12cos x +sin x +a 2sin ⎝⎛⎭⎪⎫x +π4=cos x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4=2sin ⎝ ⎛⎭⎪⎫x +π4+a 2sin ⎝ ⎛⎭⎪⎫x +π4=(2+a 2)sin ⎝⎛⎭⎪⎫x +π4.依题意有2+a 2=2+3,故a =± 3. 答案:± 3三、解答题(本大题共3小题,每小题12分,共36分) 10.已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域.(2)若α为第二象限角,且f ⎝⎛⎭⎪⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. 解:(1)因为f (x )=1+cos x -3sin x =1+2cos ⎝⎛⎭⎪⎫x +π3,所以函数f (x )的最小正周期为2π,值域为[-1,3]. (2)因为f ⎝⎛⎭⎪⎫α-π3=13,所以1+2cos α=13,即cos α=-13.又因为α为第二象限角, 所以sin α=223.因为cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =α+sin αα-sin α2cos αα-sin α=cos α+sin α2cos α,所以原式=cos α+sin α2cos α=-13+223-23=1-222.11.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解:(1)∵由题意得(sin α+cos α)2=95,即1+sin 2α=95,∴sin 2α=45.又2α∈⎝ ⎛⎭⎪⎫0,π2,∴cos 2α=1-sin 22α=35,∴tan 2α=sin 2αcos 2α=43.(2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,∴cos ⎝⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β,∴cos 2β=-2425. 又2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin 2β=725.又cos 2α=1+cos 2α2=45⎝ ⎛⎭⎪⎫α∈⎝ ⎛⎭⎪⎫0,π4,∴cos α=255,sin α=55.∴cos(α+2β)=cos αcos 2β-sin αsin 2β =255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525. 12.(2013·岳阳模拟)已知向量a =(sin ωx ,cos ωx ),b =(cos φ,sin φ),函数f (x )=a·b ⎝ ⎛⎭⎪⎫ω>0,π3<φ<π的最小正周期为2π,其图象经过点M ⎝ ⎛⎭⎪⎫π6,32.(1)求函数f (x )的解析式;(2)已知α,β∈⎝ ⎛⎭⎪⎫0,π2,且f (α)=35,f (β)=1213, 求f (2α-β)的值.解:(1)依题意有f (x )=a·b =sin ωx cos φ+cos ωx sin φ=sin(ωx +φ).∵函数f (x )的最小正周期为2π,∴2π=T =2πω,解得ω=1. 将点M ⎝ ⎛⎭⎪⎫π6,32代入函数f (x )的解析式, 得sin ⎝⎛⎭⎪⎫π6+φ=32.∵π3<φ<π,∴π6+φ=2π3,∴φ=π2. 故f (x )=sin ⎝⎛⎭⎪⎫x +π2=cos x .(2)依题意有cos α=35,cos β=1213,而α,β∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=1-⎝ ⎛⎭⎪⎫352=45,sin β= 1-⎝ ⎛⎭⎪⎫12132=513,∴sin 2α=2425,cos 2α=cos 2α-sin 2α=925-1625=-725,∴f (2α-β)=cos(2α-β)=cos 2αcos β+sin 2αsin β =-725×1213+2425×513=36325.1.化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .解:原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=12-sin 22x 2sin ⎝ ⎛⎭⎪⎫π4-x π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x =12cos 2x .2.已知sin ⎝ ⎛⎭⎪⎫α-π4=7210,cos 2α=725,求sin α及tan ⎝ ⎛⎭⎪⎫α+π3的值. 解:由题设条件,应用两角差的正弦公式,得sin ⎝⎛⎭⎪⎫α-π4=22(sin α-cos α). 又sin ⎝ ⎛⎭⎪⎫α-π4=7210,所以sin α-cos α=75.① 由题设条件,应用二倍角的余弦公式,得cos 2α=cos 2α-sin 2α=(cos α-sin α)(cos α+sin α) =-75(cos α+sin α).又cos 2α=725,故cos α+sin α=-15.②联立①②,解得sin α=35,cos α=-45,因此tan α=-34.由两角和的正切公式,得tan ⎝⎛⎭⎪⎫α+π3=tan α+31-3tan α=48-25311. 3.已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值; (2)若sin(θ-φ)=1010,0<φ<π2,求cos φ的值. 解:(1)∵a⊥b ,∴sin θ-2cos θ=0, 又∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin θ=255,c os θ=55.(2)∵sin(θ-φ)=1010, ∴cos(θ-φ)=31010或-31010.当cos(θ-φ)=31010时,cos φ=cos[θ-(θ-φ)]=cos θ·cos(θ-φ)+sin θ·sin(θ-φ)=55×31010+255×1010=22. 当cos(θ-φ)=-31010时,cos φ=cos[θ-(θ-φ)]=cos θ·cos(θ-φ)+sinθ·sin(θ-φ)=-55×31010+255×1010=-210<0.∵φ∈⎝⎛⎭⎪⎫0,π2,∴cos φ<0不合题意,舍去.∴cos φ的值等于22. 4.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13>0,∴0<α<π2.又tan 2α=2tan α1-tan 2α=2×131-19=34>0, ∴0<2α<π2.此时tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π.则-π<2α-β<0.∴2α-β=-3π4.。
高考大一轮总复习4.3两角和与差的正弦、余弦和正切公式、二倍角公式
§4.3两角和与差的正弦、余弦和正切公式、二倍角公式考纲展示►1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.考点1三角函数公式的基本应用1.两角和与差的正弦、余弦和正切公式sin(α±β)=________________;cos(α∓β)=________________;tan(α±β)=tan α±tan β1∓tan αtan β.答案:sin αcos β±cos αsin βcos αcos β±sin αsin β2.二倍角的正弦、余弦、正切公式sin 2α=________________;cos 2α=______________=______________=______________;tan 2α=2tan α1-tan2α.答案:2sin αcos αcos2α-sin2α2cos2α-1 1-2sin2α(1)[教材习题改编]计算:sin 108°cos 42°-cos 72°sin 42°=________.答案:12(2)[教材习题改编]已知cos α=-35,α∈⎝⎛⎭⎫π2,π,则sin⎝⎛⎭⎫α+π3的值是________.答案:4-3310解析:因为cos α=-35,α∈⎝⎛⎭⎫π2,π,所以sin α=45,所以sin⎝⎛⎭⎫α+π3=sin αcosπ3+cos αsinπ3=45×12+⎝⎛⎭⎫-35×32=4-3310.公式使用中的误区:角的范围;公式的结构.(1)若函数f(α)=tan α+21-2tan α,则α满足2tan α≠1,且α≠________.答案:kπ+π2(k∈Z)解析:要使函数f(α)=tan α+21-2tan α有意义,则1-2tan α≠0,tan α有意义,所以2tan α≠1,则α≠kπ+π2(k∈Z).(2)化简:12sin x-32cos x=________.答案:sin⎝⎛⎭⎫x-π3解析:12sin x-32cos x=cosπ3sin x-sinπ3cos x=sin⎝⎛⎭⎫x-π3.[典题1](1)[2017·江西新余三校联考]已知cos⎝⎛⎭⎫π3-2x=-78,则sin⎝⎛⎭⎫x+π3的值为()A.14B.78 C .±14 D .±78 [答案] C[解析] 因为cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2x =cos ⎝⎛⎭⎫2x +2π3=78, 所以有sin 2⎝⎛⎭⎫x +π3=12×⎝⎛⎭⎫1-78=116, 从而求得sin ⎝⎛⎭⎫x +π3的值为±14,故选C. (2)已知cos θ=-513,θ∈⎝⎛⎭⎫π,3π2,则sin ⎝⎛⎭⎫θ-π6的值为________. [答案]5-12326[解析] 由cos θ=-513,θ∈⎝⎛⎭⎫π,3π2得 sin θ=-1-cos 2θ=-1213,故sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6 =-1213×32-⎝⎛⎭⎫-513×12 =5-12326. (3)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. [答案]3[解析] ∵sin 2α=2sin αcos α=-sin α, ∴cos α=-12.又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. [点石成金]三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.考点2 三角函数公式的逆用与变形应用公式的常用变形(1)tan α±tan β=tan(α±β)(________);(2)________=1+cos 2α2,________=1-cos 2α2;(3)1+sin 2α=(________)2,1-sin 2α=(________)2,________=2sin ⎝⎛⎭⎫α±π4.答案:(1)1∓tan αtan β (2)cos 2α sin 2α (3)sin α+cosα sin α-cos α sin α±cos α(1)[教材习题改编]计算:sin 43°cos 13°-sin 13°cos 43°=________. 答案:12解析:原式=sin(43°-13°)=sin 30°=12.(2)[教材习题改编]已知sin θ=35,θ为第二象限角,则sin 2θ的值为________.答案:-2425解析:∵sin θ=35,θ为第二象限角,∴cos θ=-45,∴sin 2θ=2sin θcos θ=2×35×⎝⎛⎭⎫-45=-2425.辅助角公式.(1)函数f (x )=sin x +cos x 的最大值为________. 答案: 2解析:sin x +cos x =2⎝⎛⎭⎫sin x cos π4+cos x sin π4 =2sin ⎝⎛⎭⎫x +π4≤ 2. (2)一般地,函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=________⎝⎛⎭⎫其中tan φ=b a 或f (α)=________⎝⎛⎭⎫其中tan φ=a b . 答案:a 2+b 2sin(α+φ)a 2+b 2cos(α-φ)解析:一般地,函数f (x )=a sin α+b cos α(a ,b 为常数)可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝⎛⎭⎫其中tan φ=ab.[典题2] (1)[2017·贵州贵阳监测]已知sin ⎝⎛⎭⎫π3+α+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235C.45 D .-45 [答案] D[解析] ∵sin ⎝⎛⎭⎫π3+α+sin α=435, ∴sin π3cos α+cos π3sin α+sin α=435,∴32sin α+32cos α=435, 即32sin α+12cos α=45. 故sin ⎝⎛⎭⎫α+7π6=sin αcos 7π6+cos αsin 7π6 =-⎝⎛⎭⎫32sin α+12cos α=-45.(2)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B.22C.12 D .-12[答案] B[解析] 由tan A tan B =tan A +tan B +1, 可得tan A +tan B 1-tan A tan B =-1,即tan(A +B )=-1, 又A +B ∈(0,π), 所以A +B =3π4,则C =π4,cos C =22.(3)[2017·陕西西安模拟]计算:1+cos 20°2sin 20°-sin 10°·⎝⎛⎭⎫1tan 5°-tan 5°=________. [答案]32 [解析] 原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32. [点石成金] 三角函数公式活用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(3)注意切化弦思想的运用.1.已知sin ⎝⎛⎭⎫π6-α=13,则cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α的值是( ) A.79 B.13 C .-13D .-79答案:D解析:∵sin ⎝⎛⎭⎫π6-α=13, ∴cos ⎝⎛⎭⎫π3-2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6-α =1-2sin 2⎝⎛⎭⎫π6-α=79,∴cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α=cos ⎝⎛⎭⎫2π3+2α =cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2α =-cos ⎝⎛⎭⎫π3-2α=-79. 2.化简:(1+sin α+cos α)·⎝⎛⎭⎫cos α2-sin α22+2cos α(0<α<π)=________.答案:cos α 解析:原式=⎝⎛⎭⎫2cos 2α2+2sin α2cos α2⎝⎛⎭⎫cos α2-sin α24cos2α2=cos α2⎝⎛⎭⎫cos 2α2-sin 2α2⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪cos α2. 因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α.考点3 角的变换角的变换技巧2α=(α+β)+(α-________); α=(α+________)-β;β=α+β2________α-β2; α-β2=⎝⎛⎭⎫α+β2________⎝⎛⎭⎫α2+β.[典题3] 已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值. [解] (1)∵α,β∈⎝⎛⎭⎫0,π2, ∴-π2<α-β<π2.又tan(α-β)=-13<0,∴-π2<α-β <0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010 =91050. [题点发散1] 在本例条件下,求sin(α-2β)的值. 解:∵sin(α-β)=-1010,cos(α-β)=31010,cos β=91050,sin β=131050.∴sin(α-2β)=sin [(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β =-2425.[题点发散2] 若本例中“sin α=35”变为“tan α=35”,其他条件不变,求tan(2α-β)的值.解:∵tan α=35,tan(α-β)=-13,∴tan(2α-β)=tan []α+(α-β) = tan α+tan (α-β)1-tan αtan (α-β)=35-131+35×13=29.[点石成金] 利用角的变换求三角函数值的策略(1)当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值. 解:∵0<β <π2<α<π,∴π4<α-β2<π, -π4<α2-β<π2, ∴sin ⎝⎛⎭⎫α-β2=1-cos 2⎝⎛⎭⎫α-β2=459,cos ⎝⎛⎭⎫2-β=1-sin 2⎝⎛⎭⎫2-β=53, ∴cosα+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, 则由二倍角公式,可得cos(α+β)=2cos 2α+β2-1=-239729.真题演练集训1.[2015·新课标全国卷Ⅰ]sin 20°cos 10°-cos 160°·sin 10°=( ) A .-32 B.32 C .-12 D.12答案:D解析:sin 20°cos 10°-cos 160°sin 10°=sin 20°·cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.[2016·四川卷]cos 2π8-sin 2π8=________.答案:22解析:由二倍角公式,得 cos 2 π8-sin 2 π8=cos ⎝⎛⎭⎫2×π8=22. 3.[2015·四川卷]sin 15°+sin 75°的值是________.答案:62解析:sin 15°+sin 75°=sin 15°+cos 15° =2⎝⎛⎭⎫22sin 15°+22cos 15°=2sin 60°=2×32=62. 4.[2015·江苏卷]已知tan α=-2,tan(α+β)=17,则tan β的值为________.答案:3解析:tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.课外拓展阅读 三角恒等变换的综合问题1.三角恒等变换与三角函数性质的综合应用利用三角恒等变换先将三角函数式转化为y =A sin(ωx +φ)的形式,再求其周期、单调区间、最值等,一直是高考的热点.[典例1] [改编题]已知函数f (x )=2sin ωx -4sin 2ωx2+2+a (其中ω>0,α∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为2.(1)求函数f (x )的最小正周期;(2)若f (x )在区间[6,16]上的最大值为4,求a 的值. [解] (1)f (x )=2sin ωx -4sin 2ωx2+2+a =22sin ⎝⎛⎭⎫ωx +π4+a , 由题意,知2ω+π4=π2,得ω=π8.所以最小正周期T =2πω=16.(2)f (x )=22sin ⎝⎛⎭⎫π8x +π4+a , 因为x ∈[6,16],所以π8x +π4∈⎣⎡⎦⎤π,9π4.由图象可知(图略),当π8x +π4=9π4,即当x =16时, f (x )的最大值, 由22sin9π4+a =4,得a =2. 2.三角恒等变换与三角形的综合三角恒等变换经常出现在解三角形中,与正弦定理、余弦定理相结合,综合考查三角形中的边与角、三角形形状的判断等,是高考热点内容.根据所给条件解三角形时,主要有两种途径:(1)利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解;(2)利用正弦、余弦定理把边的关系化成角的关系,再用三角恒等变换化简求解. [典例2] 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2. (1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值. [解] (1)因为a 2+b 2+2ab =c 2,由余弦定理,得cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.故C =3π4.(2)由题意,得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2α=25, 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,A +B =π4,所以sin(A +B )=22. 因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22, 解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0, 解得tan α=1或tan α=4. 3.三角恒等变换与向量的综合三角恒等变换与向量的综合问题是高考中经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,往往是两向量平行或垂直的计算,即令a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,a ∥b ⇔x 1y 2=x 2y 1,a ⊥b ⇔x 1x 2+y 1y 2=0,把向量形式化为坐标运算后,接下来的运算仍然是三角函数的恒等变换以及三角函数、解三角形等知识的运用.[典例3] 已知△ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A,1+sin A ),是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cosC -3B2的最大值. [思路分析] (1)向量共线→三角函数式――→化简得sin 2A 的值→得锐角A(2)化函数为A sin (ωx +φ) +b 的形式→根据B 的范 围求最值[解] (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A -cos A ), 则sin 2A =34.又A 为锐角,所以sin A =32,则A =π3. (2)y =2sin 2B +cosC -3B2=2sin 2B +cos⎝⎛⎭⎫π-π3-B -3B 2=2sin 2B +cos ⎝⎛⎭⎫π3-2B=1-cos 2B +12cos 2B +32sin 2B=32sin 2B -12cos 2B +1 =sin ⎝⎛⎫2B -π6+1. 因为B ∈⎝⎛⎭⎫0,π2,所以2B -π6∈⎝⎛⎭⎫-π6,5π6, 所以当2B -π6=π2时,函数y 取得最大值,解得B =π3,y max =2.课时跟踪检测(二十) [高考基础题型得分练]1.(1+tan 17°)(1+tan 28°)的值是( ) A .-1 B .0 C .1 D .2答案:D解析:原式=1+tan 17°+tan 28°+tan 17°·tan 28° =1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28° =1+1=2.2.已知sin ⎝⎛⎭⎫π2+α=12,-π2<α<0,则cos ⎝⎛⎭⎫α-π3的值是( ) A.12 B .23C .-12D .1 答案:C解析:由已知得cos α=12,sin α=-32,∴cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 3.[2017·河南六市联考]设a =12cos 2°-32sin 2°,b =2tan 14°1-tan 214°,c =1-cos 50°2,则有( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案:D解析:由题意可知,a =sin 28°,b =tan 28°,c =sin 25°, ∴c <a <b .4.[2017·安徽师大附中学高三上学期期中]设当x =θ时,函数y =sin x -2cos x 取得最大值,则cos θ=( )A .-55B .55 C .-255D .255答案:C解析:f (x )=sin x -2cos x =5⎝⎛⎭⎫55sin x -255cos x =5sin(x -α),其中sin α=255,cos α=55,因为当x =θ时,函数y =sin x -2cos x 取得最大值,所以sin(θ-α)=1, 即sin θ-2cos θ=5,又sin 2θ+cos 2θ=1,联立方程组可得cos θ=-255,故选C.5.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .13C .-23D .23答案:D解析:依题意,得cos 2⎝⎛⎭⎫α-π4=12(cos α+sin α)2 =12(1+sin 2α)=23. 6.[2017·广西柳州、北海、钦州三市模拟]若sin ⎝⎛⎭⎫α-π4=-cos 2α,则sin 2α的值可以为( )A .-12或1B .12C .34D .-34答案:A解析:解法一:由已知得22(sin α-cos α)=sin 2α-cos 2α,∴sin α+cos α=22或sin α-cos α=0,解得sin 2α=-12或1.解法二:由已知得sin ⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫2α-π2 =2sin ⎝⎛⎫α-π4cos ⎝⎛⎫α-π4, ∴cos ⎝⎛⎭⎫α-π4=12或sin ⎝⎛⎭⎫α-π4=0, 则sin 2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫α-π4=2cos 2⎝⎛⎭⎫α-π4-1=2×14-1=-12或sin 2α=1. 7.[2017·四川成都一诊]若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( )A.7π4 B .9π4C .5π4或7π4D .5π4或9π4答案:A解析:因为α∈⎣⎡⎦⎤π4,π,所以2α∈⎣⎡⎦⎤π2,2π, 又sin 2α=55,所以2α∈⎣⎡⎦⎤π2,π,α∈⎣⎡⎦⎤π4,π2, 故cos 2α=-255.又β∈⎣⎡⎦⎤π,3π2,所以β-α∈⎣⎡⎦⎤π2,5π4, 故cos(β-α)=-31010.所以cos(α+β)=cos [2α+(β-α)] =cos 2αcos(β-α)-sin 2αsin(β-α) =-255×⎝⎛⎭⎫-31010-55×1010=22,且α+β∈⎣⎡⎦⎤5π4,2π,故α+β=7π4. 8.计算2cos 10°-sin 20°sin 70°=________.答案: 3解析:原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.9.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 答案:17250解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. 10.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 答案:12解析:解法一:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.解法二:令α=0,则原式=14+14=12.11.已知cos(α+β)=16,cos(α-β)=13,则tan αtan β的值为________.答案:13解析:因为cos(α+β)=16,所以cos αcos β-sin αsin β=16.①因为cos(α-β)=13,所以cos αcos β +sin αsin β=13.②①+②得cos αcos β=14.②-①得sin αsin β=112.所以tan αtan β=sin αsin βcos αcos β=13.[冲刺名校能力提升练]1.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A.45 B .-45C .35D .-35答案:C解析:由sin ⎝⎛⎭⎫α-π4=7210得, sin α-cos α=75,①由cos 2α=725得,cos 2α-sin 2α=725,所以(cos α-sin α)(cos α+sin α)=725,② 由①②可得,cos α+sin α=-15,③由①③可得,sin α=35.2.[2017·江西九校联考]已知锐角α,β满足sin α-cos α=16,tan α+tan β+3tan αtan β=3,则α,β的大小关系是( ) A .α<π4<βB .β<π4<αC .π4<α<βD .π4<β<α答案:B解析:∵α为锐角,sin α-cos α=16>0,∴α>π4.又tan α+tan β+3tan αtan β=3, ∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α.3.[2017·河北衡水中学二调]3cos 10°-1sin 170°=( )A .4B .2C .-2D .-4答案:D解析:3cos 10°-1sin 170°=3cos 10°-1sin 10°=3sin 10°-cos 10°sin 10°cos 10°=2sin (10°-30°)12sin 20°=-2sin 20°12sin 20°=-4.4.[2017·山东菏泽二模]已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β=________.答案:-3π4解析:因为tan α=tan [(α-β)+β] =tan (α-β)+tan β1-tan (α-β)tan β=12-171-12×⎝⎛⎭⎫-17=13<1,所以0<α<π4.又因为tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34<1, 所以0<2α<π4,所以tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34-⎝⎛⎭⎫-171+34×⎝⎛⎭⎫-17=1.因为0<β<π,所以-π<2α-β<π4,所以2α-β=-3π4.5.已知cos α=17,cos(α-β)=1314⎝⎛⎭⎫0<β<α<π2. (1)求tan 2α的值; (2)求β的值.解:(1)∵cos α=17,0<α<π2,∴sin α=437,∴tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. (2)∵0<β<α<π2,∴0<α-β<π2,∴sin(α-β)=3314,∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.6.[2017·安徽合肥质检]已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
【一轮效果监测】高考数学一轮复习检测:《两角和与差的正弦、余弦和正切公式》
两角和与差的正弦、余弦和正切公式【选题明细表】知识点、方法题号三角公式的简单应用2、3、6、7、9、11 三角公式的逆用与变形用1、4、8综合问题5、10一、选择题1.化简cos 15°cos 45°-cos 75°sin 45°的值为( A )(A) (B)(C)- (D)-解析:cos 15°cos 45°-cos 75°sin 45°=cos 15°cos 45°-sin 15°sin 45°=cos(15°+45°)=cos 60°=.故选A.2.(2013青岛模拟)已知tan=3,则tan α的值为( A )(A) (B)- (C) (D)-解析:法一∵tan==3,∴tan α=.法二tan α=tan===.故选A.3.(2013龙岩质检)已知cos+sin α=,则sin的值是( C )(A)-(B)(C)- (D)解析: cos+sin α=sin α+cos α=?sin =,所以sin=-sin=-.故选 C.4.已知cos α=,cos(α+β)=-,且α、β∈,则cos(α-β)的值等于( D )(A)- (B) (C)- (D)解析:∵α、β∈,∴α+β∈(0,π),∴sin α===,sin(α+β)===.∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=×+×=,∴sin β===,∴cos(α-β)=cos αcos β+sin αsin β=×+×=.故选D.5.已知向量a=,b=(4,4cos α-),若a⊥b,则sin等于( B )(A)-(B)- (C)(D)解析:由a⊥b得a·b=0,即4sin+4cos α-=0,于是sin+cos α=,因此sin α+cos α+cos α=,即sin α+cos α=,故sin=,所以sin=,于是sin=-sin=-.故选B.6.在△ABC中,C=120°,tan A+tan B=,则tan Atan B的值为( B )(A) (B) (C) (D)解析:由C=120°得A+B=60°,于是tan(A+B)==,即=,所以tan Atan B=.故选B.二、填空题7. (2013福州质检)如图所示,点B在以PA为直径的圆周上,点C在线段AB上,已知PA=5,PB=3,PC=,设∠APB=α,∠APC=β,α、β均为锐角,则角β的值为.解析:因为点B在以PA为直径的圆周上,所以∠ABP=90°,所以cos α==,sin α=,即tan α=,因为cos∠CPB=cos(α-β)===,所以sin(α-β)=,即tan (α-β)=,所以tan β=tan [α-(α-β)]==1,又β∈,所以β=.答案:8.(2013烟台模拟)已知角α、β的顶点在坐标原点,始边与x轴的正半轴重合,α、β∈(0,π),角β的终边与单位圆交点的横坐标是-,角α+β的终边与单位圆交点的纵坐标是,则cos α= .解析:依题设得,cos β=-,∵0<β<π,∴<β<π,sin β=,又∵sin(α+β)= >0,0<α<π,∴<α+β<π,cos(α+β)=-.∴cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β=-×+×=.答案:9.已知sin=,则cos= .解析:cos=2cos2-1,又cos=sin=,所以cos=-.答案:-三、解答题10.(2013宜宾市高三一诊考试)已知函数f(x)=sin cos x-sin x·cos(π+x).(1)求函数f(x)的单调区间;(2)在△ABC中,若A为锐角,且f(A)=1,BC=2,B=,求AC边的长.解:(1)f(x)=sin cos x-sin x·cos(π+x)=cos2x+sin xcos x=cos2x+sin 2x= (sin 2x+cos 2x+1)=sin+.令-+2kπ<2x+<+2kπ,k∈Z,得-+kπ≤x≤kπ+,k∈Z,所以函数f(x)的单调增区间为(-+kπ, +kπ),k∈Z,同理可得函数f(x)的单调减区间为(+kπ,+kπ),k∈Z.(2)因为f(A)=1,所以sin+=1,所以sin=.因为A为锐角,所以<2A+<,所以2A+=,所以A=.在△ABC中,由正弦定理得,=,即=,解得AC=.11.(2013洛阳模拟)已知cos α=,cos(α-β)=,且0<β<α<.(1)求tan 2α的值;(2)求β.解:(1)由cos α=,0<α<,得sin α===.∴tan α==×=4,于是tan 2α===-.(2)由0<β<α<,得0<α-β<,∵cos(α-β)=,∴sin(α-β)===.由β=α-(α-β),得cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=,所以β=.。
高考数学一轮两角和与差的正弦、余弦和正切公式
第23课两角和与差的正弦、余弦和正切公式[最新考纲]1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin_αcos_β±cos_αsin_β; (2)cos(α±β)=cos_αcos_β∓sin_αsin_β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.有关公式的变形和逆用 (1)公式T (α±β)的变形:①tan α+tan β=tan(α+β)(1-tan_αtan_β); ②tan α-tan β=tan(α-β)(1+tan_αtan_β). 3.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a .1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( )(4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( ) [答案] (1)√ (2)× (3)× (4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=________.12 [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12.]3.(2017·苏州模拟)若α∈(0,π),cos α=-45,则tan ⎝ ⎛⎭⎪⎫α+π4=________.17[∵α∈(0,π),cos α=-45,∴sin α=1-cos 2α=35,∴tan α=-34.∴tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=-34+11+34=17.] 4.若sin α+3cos α=1,且α∈⎝ ⎛⎭⎪⎫0,π2,则α=________.π2 [∵sin α+3cos α=2sin ⎝ ⎛⎭⎪⎫α+π3=1,∴sin ⎝ ⎛⎭⎪⎫α+π3=12,又α∈⎝ ⎛⎭⎪⎫0,π2, ∴α+π3=5π6,∴α=π2.]5.若tan α=13,tan(α+β )=12,则tan β=________.17 [tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.](2014·江苏高考)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值.[解] (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310. [规律方法] 1.使用两角和与差的三角函数公式,首先要记住公式的结构特征.2.使用公式求值,应先求出相关角的函数值,再代入公式求值. [变式训练1] (1)若α∈⎝ ⎛⎭⎪⎫π2,π,tan ⎝ ⎛⎭⎪⎫α+π4=17,则sin α=________.(2)已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3的值是________. (1)35 (2)-1 [(1)∵tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=17, ∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α=35.(2)cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x=3cos ⎝ ⎛⎭⎪⎫x -π6=-1.]β=________.【导学号:62172128】(2)sin 50°(1+3tan 10°)=________.(1)π3 (2)1 [(1)∵tan(α+β)=tan α+tan β1-tan αtan β=3-3tan αtan β1-tan αtan β= 3.又α,β∈⎝ ⎛⎭⎪⎫0,π2,∴α+β∈(0,π),∴α+β=π3.(2)sin 50°(1+3tan 10°) =sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10° =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.][规律方法] 1.逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.2.tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.[变式训练2](1)sin(65°-x)cos(x-20°)+cos(65°-x)·cos(110°-x)的值为________.(2)在斜三角形ABC中,sin A=-2cos B·cos C,且tan B·tan C=1-2,则角A的值为________.(1)22(2)π4[(1)原式=sin(65°-x)·cos(x-20°)+cos(65°-x)cos[90°-(x-20°)]=sin(65°-x)cos(x-20°)+cos(65°-x)·sin(x-20°)=sin[(65°-x)+(x-20°)]=sin 45°=2 2.(2)由题意知:sin A=-2cos B·cos C=sin(B+C)=sin B·cos C+cos B·sin C,在等式两边同除以cos B·cos C得tan B+tan C=-2,又tan(B+C)=tan B+tan C1-tan B tan C=-1=-tan A,所以A=π4.](1)设αcos β=________.【导学号:62172129】(2)若0<α<π2,-π2<β<0,cos⎝⎛⎭⎪⎫π4+α=13,cos⎝⎛⎭⎪⎫π4-β2=33,则cos⎝⎛⎭⎪⎫α+β2等于________.(1)2525 (2)539 [(1)依题意得 sin α=1-cos 2 α=255,cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π, cos α>cos(α+β). 因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [](α+β)-α =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525. (2)∵0<α<π2,∴π4<π4+α<34π, 所以由cos ⎝ ⎛⎭⎪⎫π4+α=13,得sin ⎝ ⎛⎭⎪⎫π4+α=223,又-π2<β<0,∴π4<π4-β2<π2,且cos ⎝ ⎛⎭⎪⎫π4-β2=33,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63,故cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=539.][规律方法] 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎪⎫α+β2-⎝⎛⎭⎪⎫α2+β等.[变式训练3]定义运算⎪⎪⎪⎪⎪⎪a bc d=ad-bc.若cos α=17,⎪⎪⎪⎪⎪⎪sin αsin βcos αcos β=3314,0<β<α<π2,则β等于________.π3[依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin2(α-β)=13 14,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32.故β=π3.][思想与方法]1.三角恒等变换的变“角”与变“名”问题的解题思路(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.2.三角恒等变换的变“形”问题的求解思路根据三角恒等式子的“结构特征”进行变“形”,使得变换后的式子更接近已知的三角函数式,常用技巧有:(1)常值代换:1=sin2α+cos2α=cos 2α+2sin2α=tan π4,32=sin π3=cosπ6,12=sinπ6=cosπ3等.(2)逆用、变用公式:sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,tan α+tan β=tan(α+β)(1-tan αtan β)等.(3)通分、约分:如:1+3tan α=2cos⎝⎛⎭⎪⎫α-π3cos α.(4)分解、组合:如:(sin α+cos α)2+(sin α-cos α)2=2.(5)平方、开方:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,1+cos 2α=2cos2α,1-cos 2α=2sin2α等.[易错与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.课时分层训练(二十三)A组基础达标(建议用时:30分钟)一、填空题1.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为________. -3 [由题意可知⎩⎪⎨⎪⎧tan α+tan β=3,tan αtan β=2,∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.]2.(2017·盐城模拟)tan 70°+tan 50°-3tan 70°tan 50°的值等于________. -3 [∵tan 120°=tan(50°+70°)=tan 50°+tan 70°1-tan 50°tan 70°=-3,∴tan 50°+tan70°=-3+3tan 50°tan 70°,即tan 70°+tan 50°-3tan 70°tan 50°=- 3.]3.在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,若角α终边经过点P (2,4),则tan ⎝ ⎛⎭⎪⎫π4+α=________. 【导学号:62172130】-3 [由题意可知tan α=42=2. ∴tan ⎝ ⎛⎭⎪⎫π4+α=1+tan α1-tan α=1+21-2=-3.] 4.若sin(α-β)sin β-cos(α-β)cos β=45,且α是第二象限角,则tan ⎝ ⎛⎭⎪⎫π4+α等于________.17[∵sin(α-β)sin β-cos(α-β)cos β=45, ∴cos α=-45.又α是第二象限角,∴sin α=35,则tan α=-34. ∴tan ⎝ ⎛⎭⎪⎫π4+α=tan π4+tan α1-tan π4tan α=1-341+34=17.]5.已知sin α+sin β=3(cos β-cos α),α,β∈⎝ ⎛⎭⎪⎫0,π2,则sin 3α+sin 3β=________.0 [由已知得:sin α+3cos α=3cos β-sin β, 即cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫β+π6,又α-π6∈⎝ ⎛⎭⎪⎫-π6,π3,β+π6∈⎝ ⎛⎭⎪⎫π6,2π3. 故α-π6=β+π6,即α=β+π3.∴sin 3α+sin 3β=sin(3β+π)+sin 3β=0.]6.若cos ⎝ ⎛⎭⎪⎫α+π6-sin α=335,则cos ⎝ ⎛⎭⎪⎫α+π3=________.35 [cos ⎝ ⎛⎭⎪⎫α+π6-sin α=335,32cos α-32sin α=335,12cos α-32sin α=cos ⎝ ⎛⎭⎪⎫α+π3=35.] 7.若sin ()α+β=12,sin(α-β)=13,则tan αtan β的值为________.【导学号:62172131】5 [由sin(α+β)=12,sin(α-β)=13得 ⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12, ①sin αcos β-cos αsin β=13, ②∴⎩⎪⎨⎪⎧sin αcos β=512,cos αsin β=112.∴tan αtan β=sin αcos βcos αsin β=5.]8.(2017·苏锡常镇调研二)若tan α=12,tan(α-β)=-13,则tan(β-2α)=________.-17[∵tan α=12,tan(α-β)=-13, ∴tan(β-2α)=-tan(2α-β)=-tan [α+(α-β)]=-tan α+tan (α-β)1-tan αtan (α-β)=-12-131+16=-17.] 9.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π2,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是________. 【导学号:62172132】7π4 [∵sin 2α=55,α∈⎣⎢⎡⎦⎥⎤π4,π2, ∴cos 2α=-255且α∈⎣⎢⎡⎦⎥⎤π4,π2,又∵sin(β-α)=1010,β∈⎣⎢⎡⎦⎥⎤π,3π2. ∴cos(β-α)=-31010.因此sin(α+β)=sin [(β-α)+2α]=sin(β-α)cos 2α+cos(β-α)sin 2α=1010×⎝⎛⎭⎪⎫-255+⎝ ⎛⎭⎪⎫-31010×55=-22,cos(α+β)=cos [(β-α)+2α]=cos(β-α)·cos2α-sin(β-α)sin 2α=⎝ ⎛⎭⎪⎫-31010×⎝ ⎛⎭⎪⎫-255-1010×55=22,又α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,所以α+β=7π4.]10.(2017·如皋市高三调研一)若sin β=3sin(2α-β),则tan(α-β)+12tan α=________.0 [由sin β=3sin(2α-β)得-sin [(α-β)-α]=3sin [α+(α-β)],∴cos(α-β)sin α-sin(α-β)cos α=3[sin αcos(α-β)+cos αsin(α-β)], ∴-4cos αsin(α-β)=2sin αcos(α-β), ∴tan(α-β)=-12tan α.∴tan(α-β)+12tan α=-12tan α+12tan α=0.] 二、解答题11.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.[解] (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32.(2)因为π2<α<π,π2<β<π,所以-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.12.(2017·启东中学高三第一次月考)在△ABC 中,三个内角分别为A ,B ,C ,已知sin ⎝ ⎛⎭⎪⎫A +π6=2cos A .(1)求角A 的值;(2)若B ∈⎝ ⎛⎭⎪⎫0,π3,且cos(A -B )=45,求sin B .[解] 由sin ⎝ ⎛⎭⎪⎫A +π6=2cos A ,得32sin A +12cos A =2cos A ,即sin A =3cosA .因为A ∈(0,π),且cos A ≠0,所以tan A =3,所以A =π3.(2)因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以A -B =π3-B ∈⎝ ⎛⎭⎪⎫0,π3.因为sin 2(A -B )+cos 2(A -B )=1,所以sin(A -B )=35,所以sin B =sin(A -(A-B ))=sin A cos(A -B )-cos A sin(A -B )=43-310.B 组 能力提升 (建议用时:15分钟)1.已知0<θ<π,tan ⎝ ⎛⎭⎪⎫θ+π4=17,那么sin θ+cos θ=________.-15 [由tan ⎝ ⎛⎭⎪⎫θ+π4=tan θ+11-tan θ=17,解得tan θ=-34,即sin θcos θ=-34,∴cos θ=-43sin θ,∴sin 2θ+cos 2θ=sin 2θ+169sin 2θ=259sin 2θ=1.∵0<θ<π,∴sin θ=35,∴cos θ=-45,∴sin θ+cos θ=-15.] 2.若tan α=2tan π5,则cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=________. 3 [∵cos ⎝ ⎛⎭⎪⎫α-3π10=cos ⎝ ⎛⎭⎪⎫α+π5-π2=sin ⎝ ⎛⎭⎪⎫α+π5, ∴原式=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan α+tan π5tan α-tan π5.又∵tan α=2tan π5,∴原式=2tan π5+tan π52tan π5-tan π5=3.] 3.已知函数f (x )=A cos ⎝ ⎛⎭⎪⎫x 4+π6,x ∈R ,且f ⎝ ⎛⎭⎪⎫π3= 2.(1)求A 的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫4α+4π3=-3017,f ⎝ ⎛⎭⎪⎫4β-2π3=85,求cos(α+β)的值.[解] (1)因为f ⎝ ⎛⎭⎪⎫π3=A cos ⎝ ⎛⎭⎪⎫π12+π6=A cos π4=22A =2,所以A =2.(2)由f ⎝ ⎛⎭⎪⎫4α+4π3=2cos ⎝ ⎛⎭⎪⎫α+π3+π6=2cos ⎝ ⎛⎭⎪⎫α+π2=-2sin α=-3017,得sin α=1517,又α∈⎣⎢⎡⎦⎥⎤0,π2,所以cos α=817.由f ⎝ ⎛⎭⎪⎫4β-2π3=2cos ⎝ ⎛⎭⎪⎫β-π6+π6=2cos β=85,得cos β=45, 又β∈⎣⎢⎡⎦⎥⎤0,π2,所以sin β=35,所以cos(α+β)=cos αcos β-sin αsin β=817×45-1517×35=-1385.4.(2017·泰州中学高三摸底考试)已知0<α<π2<β<π,且sin(α+β)=513,tan α2=12.(1)求cos α的值; (2)证明:sin β>513.[解] (1)将tan α2=12代入tan α=2tan α21-tan 2α2,得tan α=43,∴⎩⎨⎧sinαcos α=43,sin 2α+cos 2α=1,又α∈⎝ ⎛⎭⎪⎫0,π2,解得cos α=35.(2)证明:由题意易得π2<α+β<3π2,又sin(α+β)=513, ∴cos(α+β)=-1213, 由(1)可得sin α=45,∴sin β=sin [(α+β)-α]=513×35-⎝ ⎛⎭⎪⎫-1213×45=6365>513.。
2014高考数学最新一轮复习必考题型巩固提升4.5《两角和与差的正弦、余弦和正切》学案
4.5两角和与差的正弦、余弦和正切考情分析运用两角和与差的三角公式进行化简变形、求值,二倍角公式的正用、逆用和变形使用是高考的常考内容,面对如:的化简是高考每年的必考内容。
基础知识1、两角和与差的正弦、余弦和正切公式2、二倍角的正弦、余弦、正切公式.sin α=, cos α= 3、形如asin α+bcos α的化简asin α+bcos α=sin(α+β).其中cos β=,sin β= 注意事项1.(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β.(2)化简技巧:切化弦、“1”的代换等.2.(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.题型一 三角函数式的化简【例1】cos85°+sin25°cos30°cos25°=( )A. -32B.22C. 12 D. 1答案:C解析:cos85°+sin25°cos30°cos25°=++sin25°cos30°cos25°=cos60°cos25°-sin60°sin25°+sin25°cos30°cos25°=cos60°cos25°cos25°=cos60°=12,选C.【变式1】 化简:α+cos α-α-cos α+sin 2α.解 原式=⎝ ⎛⎭⎪⎫2sin α2cos α2-2sin 2α2⎝ ⎛⎭⎪⎫2sin α2cos α2+2sin 2α24sin α2cos α2cos α=⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2sin α2cos α2cos α=⎝⎛⎭⎪⎫cos 2α2-sin 2α2sin α2cos α2cos α=cos αsinα2cos α2cos α=tan α2.题型二 三角函数式的求值【例2】已知tan(α-β)=12,tan β=13,且α∈(0,π),则α=________.答案:π4解析:∵α=(α-β)+β,∴tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ,∵tan(α-β)=12,tan β=13,tan α=12+131-12×13=1,又∵α∈(0,π),∴α=π4.【变式2】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值.解 ∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴-π2<α-β<π2,又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴1cos2α-β=1+tan 2(α-β)=109.cos(α-β)=31010,sin(α-β)=-1010.又∵sin α=45,∴cos α=35.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =35×31010+45×⎝ ⎛⎭⎪⎫-1010=1010. 题型三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.解 ∵0<β<α<π2,∴0<α-β<π2.又∵cos(α-β)=1314,∵cos α=17,β<α<π2,∴sin α=1-cos 2α=437∴sin(α-β)=1-cos2α-β=3314, ∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∵0<β<π2.∴β=π3.【变式3】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.解 由根与系数的关系得:tan α+tan β=-33,tan αtan β=4, ∴tan α<0,tan β<0,-π<α+β<0.又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3.∴α+β=-2π3.题型四 三角函数的综合应用【例4】设函数f (x )=2cos 2(π4-x )+sin(2x +π3)-1,x ∈R .(1)求函数f (x )的最小正周期;(2)当x ∈[0,π2]时,求函数f (x )的值域.解:(1)因为f (x )=12sin2x +32cos2x +cos(π2-2x )=32sin2x +32cos2x =3sin(2x +π6), 所以函数f (x )的最小正周期是T =2π2=π.(2)因为x ∈[0,π2],所以2x +π6∈[π6,7π6],于是3sin(2x +π6)∈[-32,3],所以当x ∈[0,π2]时,函数f (x )的值域是[-32,3].【变式4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值. 解:f (x )=2sin x cos x =sin 2x (1)f (x )的最小正周期T =2π2=π.(2)∵-π6≤x ≤π2,∴-π3≤2x ≤π.∴-32≤sin 2x ≤1.∴f (x )的最大值为1,最小值为-32. 巩固提高一、选择题1.若sin α+cos αsin α-cos α=12,则tan2α=( )A. -34B. 34C. -43D. 43答案:B解析:由tan α+1tan α-1=12,得tan α=-3,∴tan2α=2tan α1-tan 2α=34,选B 项. 2. 若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A. 103B. 53C. 23 D. -2答案:A解析:由3sin α+cos α=0得cos α=-3sin α,则1cos 2α+sin2α=sin 2α+cos 2αcos 2α+2sin αcos α=9sin 2α+sin 2α9sin 2α-6sin 2α=103,故选A. 3.若函数f (x )=sin 2(x +π4)+cos 2(x -π4)-1,则函数f (x )是( )A. 周期为π的偶函数B. 周期为2π的偶函数C. 周期为2π的奇函数D. 周期为π的奇函数答案:D解析:f (x )=sin 2(π4+x )+sin 2(π4+x )-1=2sin 2(π4+x )-1=-cos(π2+2x )=sin2x∴故D 正确.4.把函数y =sin x -3cos x 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A. π6B. π3C. 2π3D. 5π6答案:D解析:y =sin x -3cos x =2sin(x -π3),图象向左平移m (m >0)个单位长度后,得y =2sin(x +m -π3),由于图象关于y 轴对称,∴m -π3=k π+π2,m =k π+5π6(k ∈Z ),∴m 的最小正数为5π6,故选D.5.若sin(π6-α)=13,则cos(2π3+2α)的值为( )A. 13 B. -13C. 79 D. -79答案:D解析:因为sin(π6-α)=13,所以cos(π3+α)=13,即cos(2π3+2α)=2cos 2(π3+α)-1=2×19-1=-79.6.已知cos(α+π4)=13,α∈(0,π2),则cos α=________.答案:2+46解析:∵α∈(0,π2),cos(α+π4)=13>0,∴α∈(0,π4),α+π4∈ (π4,π2),∴sin(α+π4)=223,cos α=cos(α+π4-π4)=cos(α+π4)cos π4+sin(α+π4)·sin π4=2+46.。
两角和与差的正弦、余弦和正切(二倍角公式)
两角和与差的正弦、余弦和正切(二倍角公式)一.【学习目标】1、掌握并熟练使用两角和与差的余弦、正弦、正切进行证明、化简和求值;2、能针对不同情况进行寻找已知角之间的关系,灵活使用两角和与差的余弦、正弦、正切公式,二倍角公式进行证明、化简和求值.二.重点、难点、易错(混)点、常考点灵活使用两角和与差的余弦、正弦、正切进行证明、化简和求值三.【知识梳理】1.两角和与差的正弦、余弦、正切公式: C (),cos()αβαβ--= ; C (),cos()αβαβ++= S (),sin()αβαβ--= ; S (),sin()αβαβ++= . T (),tan()αβαβ++= 由T ()αβ+可得公式变形tan tan αβ+= T (),tan()αβαβ--=由T ()αβ-可得公式变形得:tan tan αβ-= 2. 二倍角的正弦、余弦、正切公式2:sin 2S ________________;2:tan 2T ________________。
2:cos 2C ________________=________________=________________;四.【基础题达标】 1.12cos312sinππ-=2.sin15°sin30°sin75°=__________.3.cos20°cos40°cos60°cos80° =4.),0(πθ∈,θθsin 1sin 1--+=5.313sin 253sin 223sin 163sin +的值等于 6.12cos312sinππ-=7.化简:x x sin 6cos 2-= 8.若51cos sin =+θθ,则θ2sin 的值 9.81cos sin =x x 且24ππ<<x ,则=-x x sin cos 10.),0(πθ∈,θθsin 1sin 1--+=11.函数)(2cos 21cos )(R x x x x f ∈-=的最大值为 12..若223tan 1tan 1+=-+αα,则=-αα2cos 2sin 113.50tan 10tan 350tan 10tan ++=14.化简:15tan 115tan 1-+=15.已知cos (6πα-)+sin α76)πα+的值是考点一: 运用公式求值、求角问题【例1】 (1)已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,求cos(α-β)的值. (2)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (3)已知π2<β<α<34π,sin(α-β)=1213,cos(α+β) =-35,求sin2α的值(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【训练1】已知βα,是锐角且1010sin ,55sin ==βα,求βα+【训练2】(2012·江苏卷)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________.考点二: 公式的变形应用【例2】已知:)tan(βα+=βtan 2。
高三数学两角和与差的正弦、余弦、正切 试题
卜人入州八九几市潮王学校高三数学两角和与差的正弦、余弦、正切苏【本讲教育信息】 一.教学内容:两角和与差的正弦、余弦、正切 二、教学目的:1.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式2.能正确运用三角公式,进展简单三角函数式的化简、求值和恒等式证明 三、知识要点: 1、和、差角公式βαβαβαsin cos cos sin )sin(±=±; βαβα=β±αsin sin cos cos )cos( ;tan tan tan()1tan tan αβαβαβ±±=。
2、二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。
3、降幂公式22cos 1sin 2αα-=;22cos 1cos2αα+=。
4、半角公式2cos 12cosαα+±=;sin 1cos tan21cos sin ααααα-===+。
*5、积化和差公式)]sin()[sin(21cos sin βαβαβα-++=;)]sin()[sin(21sin cos βαβαβα--+=;)]cos()[cos(21cos cos βαβαβα-++=;)]cos()[cos(21sin sin βαβαβα--+-=。
*6、和差化积公式2cos2sin2sin sin βαβαβα-+=+;2sin2cos2sin sin βαβαβα-+=-;2cos2cos2cos cos βαβαβα-+=+;2sin2sin2cos cos βαβαβα-+-=-。
ⅠⅢ比较高的;而且在2021年全国高考卷〔Ⅱ〕文科卷第〔17〕题以大题形式出现。
这些都足以说明和、差、倍角的三角函数的重要地位。
两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式、在学习时应注意以下几点:〔1〕不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;〔2〕擅长拆角、拼角,如()ββαα-+=,()()()αβαβαβαβαα++=+-++=22,等;〔3〕注意倍角的相对性;〔4〕要时时注意角的范围;〔5〕化简要求;〔6〕熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等。
高三数学人教版A版数学(理)高考一轮复习试题:3.5两角和与差的正弦、余弦和正切公式Word版含答案
三角函数的求值与化简 (1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式导出两角差的正弦、正切公式. (2)二倍角的三角函数公式①能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.②利用两角和的公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.知识点一 两角和与差的正弦、余弦、正切公式 1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin_αcos_β±cos_αsin_β. (2)cos(α±β)=cos_αcos_β∓sin_αsin_β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.公式的变形 公式T (α±β)的变形:(1)tan α+tan β=tan(α+β)(1-tan_αtan_β). (2)tan α-tan β=tan(α-β)(1+tan_αtan_β). 易误提醒1.在使用两角和与差的余弦或正切公式时运算符号易错. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. [自测练习]1.化简cos 15°cos 45°-cos 75°sin 45°的值为( ) A.12 B.32C .-12D .-32解析:cos 15°cos 45°-cos 75°sin 45°=cos 15°cos 45°-sin 15°sin 45°=cos(15°+45°)=cos 60°=12. 答案:A2.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ) A .-233B .±233C .-1D .±1解析:cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=-1. 答案:C3.(2015·浙江金华十校联考)已知tan ⎝⎛⎭⎫α+π4=17,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π4=tan ⎝⎛⎭⎫α+π4-11+tan ⎝⎛⎭⎫α+π4=-34. 答案:-34知识点二 二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin_αcos_α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α.2.公式C 2α的变形 (1)sin 2α=12(1-cos 2α).(2)cos 2α=12(1+cos 2α).3.公式的逆用(1)1±sin 2α=(sin α±cos α)2. (2)sin α±cos α=2sin ⎝⎛⎭⎫α±π4.必备方法 二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2 α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.[自测练习]4.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13 B .-23 C.13 D.23解析:∵cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22 =1+sin 2α2,∴cos 2⎝⎛⎭⎫α-π4=23. 答案:D5.已知α为第二象限角,cos α=-35,则tan 2α的值为( )A.2425B.247 C .-247 D .-2425 解析:因为α为第二象限角, 所以sin α=1-cos 2α=1-⎝⎛⎭⎫-352=45, 所以tan α=sin αcos α=-43,tan 2α=2tan α1-tan 2α=2·⎝⎛⎭⎫-431-⎝⎛⎭⎫-432=247.答案:B考点一 给角求值|1.(2015·高考全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32 C .-12 D.12解析:原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=12.答案:D2.2cos 10°sin 70°-tan 20°=( ) A. 3 B.3-12 C .1 D.32解析:利用三角函数公式求解.2cos 10°sin 70°-tan 20°=2cos 10°cos 20°-sin 20°cos 20°=2cos (30°-20°)-sin 20°cos 20°=2⎝⎛⎭⎫32cos 20°+12sin 20°-sin 20°cos 20°=3,故选A.答案:A求解给角求值问题的三个注意点(1)观察角,分析角之间的差异,巧用诱导公式或拆分. (2)观察名,尽可能使函数统一名称. (3)观察结构,利用公式,整体化简.考点二 给值求值问题|(1)(2015·高考重庆卷)若tan α=13,tan(α+β)=12,则tan β=( )A.17B.16C.57D.56[解析] tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17.[答案] A(2)(2016·贵阳一模)已知sin ⎝⎛⎭⎫π6-α=13,则cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α的值是( ) A.79 B.13 C .-13 D .-79[解析] 法一:∵sin ⎝⎛⎭⎫π6-α=13,∴cos ⎝⎛⎭⎫π3-2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6-α=1-2sin 2⎝⎛⎭⎫π6-α=79, ∴cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α=cos ⎝⎛⎭⎫2π3+2α =cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2α=-cos ⎝⎛⎭⎫π3-2α=-79.法二:∵sin ⎝⎛⎭⎫π6-α=13,∴cos ⎝⎛⎭⎫π3+α=13, ∴cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α=2cos 2⎝⎛⎭⎫π3+α-1=29-1=-79. [答案] D三角函数的给值求值,问题中把待求角用已知角表示的三个策略: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系. (3)在求值的过程中“拼凑角”对求值往往起到“峰回路转”的效果.通过适当地拆角、凑角来利用所给条件.常见的变角技巧有α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β,α=(α-β)+β,π4+α=π2-⎝⎛⎭⎫π4-α,15°=45°-30°等.1.若锐角α满足2sin α+23cos α=3,则tan ⎝⎛⎭⎫2α+2π3的值是( ) A .-37 B .-377C .37D.377解析:本题考查三角恒等变换.由2sin α+23cos α=3化简得4⎝⎛⎭⎫12sin α+32cos α=3,即sin ⎝⎛⎭⎫α+π3=34. 由22<34<32且α是锐角得2π3<α+π3<3π4, 所以cos ⎝⎛⎭⎫α+π3=-1-⎝⎛⎭⎫342=-74, 从而tan ⎝⎛⎭⎫α+π3=-37, 由二倍角公式得tan 2⎝⎛⎭⎫α+π3=2×⎝⎛⎭⎫-371-⎝⎛⎭⎫-372=37,故选C. 答案:C考点三 给值求角|(2015·成都一诊)若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( )A.7π4B.9π4C.5π4或7π4D.5π4或9π4[解析] 因为α∈⎣⎡⎦⎤π4,π,所以2α∈⎣⎡⎦⎤π2,2π,又sin 2α=55,所以2α∈⎣⎡⎦⎤π2,π,α∈⎣⎡⎦⎤π4,π2,故cos 2α=-255.又β∈⎣⎡⎦⎤π,3π2,所以β-α∈⎣⎡⎦⎤π2,5π4,故cos(β-α)=-31010. 所以cos(α+β)=cos[2α+(β-α)]=cos 2α·cos(β-α)-sin 2αsin(β-α)=-255×⎝⎛⎭⎫-31010-55×1010=22,且α+β∈⎣⎡⎦⎤5π4,2π,故α+β=7π4. [答案] A“给值求角”求解的三个步骤(1)求角的某一三角函数值. (2)讨论角的范围.(3)根据角的范围写出要求的角.2.(2015·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,又tan B ·tan C =1-2,则角A 的值为( )A.π4 B.π3 C.π2D.3π4解析:由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C1-tan B tan C=-1=-tan A ,即tan A =1,所以A =π4.答案:A6.忽视角的范围导致三角函数求值失误【典例】 已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为______. [解析] ∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2=1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β=⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.[答案] -239729[易误点评] (1)由0<β<π2<α<π易错求出α-β2,α2-β的范围导致失误.(2)不会将α+β2表示为⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β导致不会. [防范措施] (1)对于给值求值问题变角后一定要注意结合已知角的范围压缩为新求问题中角的范围,否则会多解.(2)牢记变角求值在给值求值中的应用这一方法.[跟踪练习] 已知cos α=17,cos(α-β)=1314,且0<β<α<π2,试求角β的值.解:由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝⎛⎭⎫172=437.由0<β<α<π2,得0<α-β<π2.又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2(α-β)=3314, 由β=α-(α-β),得cos β=cos[α-(α-β)]=cos αcos(α-β)+ sin αsin(α-β)=17×1314+437×3314=12.又0<β<π2,所以β=π3.A 组 考点能力演练1.已知sin ⎝⎛⎭⎫x +π4=-513,则sin 2x 的值为( ) A.50169 B.119169 C .-50169D .-119169解析:法一:由sin ⎝⎛⎭⎫x +π4=-513,可得sin x +cos x =-5213,所以(sin x +cos x )2=1+sin 2x =50169,所以sin 2x =-119169. 法二:sin 2x =-cos ⎝⎛⎭⎫2x +π2=2sin 2⎝⎛⎭⎫x +π4-1=-119169,故选D. 答案:D2.若点P (cos θ,sin θ)在直线x +2y =0上,则cos 2θ+sin 2θ=( ) A .-15B .-12C.15D.12解析:由已知条件可得cos θ+2sin θ=0,解得tan θ=-12,∴cos 2θ+sin 2θ=cos 2θ-sin 2θ+2sin θcos θsin 2θ+cos 2θ=1-tan 2θ+2tan θtan 2θ+1=-15,故选A.答案:A3.(2015·云南一检)cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9=( ) A .-18B .-116C.116D.18解析:cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9=cos 20°·cos 40°·cos 100°=-cos 20°·cos 40°·cos 80°=-sin 20°·cos 20°·cos 40°·cos 80°sin 20°=-12sin 40°·cos 40°·cos 80°sin 20°=-14sin 80°·cos 80°sin 20°=-18sin 160°sin 20°=-18sin 20°sin 20°=-18.答案:A4.(2015·青岛一模)设a =cos 50°cos 127°+cos 40° cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,d =12(cos 80°-2cos 250°+1),则a ,b ,c ,d 的大小关系是( ) A .a >b >d >c B .b >a >d >c C .a >c >b >dD .c >a >b >d解析:a =cos 50°cos 127°+cos 40°cos 37°=sin 40°×cos 127°+cos 40°sin 127°=sin(40°+127°)=sin 167°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=cos 239°-sin 239°cos 239°cos 239°+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°,d =12(cos 80°-2cos 250°+1)=12cos 80°-12cos 100°=cos 80°=sin 10°,故a >c >b >d ,选C.答案:C5.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3tan αtan β=3,则α,β的大小关系是( )A .α<π4<βB .β<π4<αC.π4<α<β D.π4<β<α 解析:∵α为锐角,sin α-cos α=16,∴α>π4.又tan α+tan β+3tan αtan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α.答案:B6.若cos(α+β)=15,cos(α-β)=35,则tan αtan β=________.解析:∵cos(α+β)=cos αcos β-sin αsin β=15,cos(α-β)=cos αcos β+sin αsin β=35,∴cos αcosβ=cos (α-β)+cos (α+β)2=25,sin αsin β=cos (α-β)-cos (α+β)2=15,∴tan αtan β=sin αsin βcos αcos β=12.答案:127.已知sin α+cos α=12,则cos 4α=________.解析:由sin α+cos α=12,得(sin α+cos α)2=1+2sin αcos α=14,∴sin 2α=-34,∴cos 4α=1-2sin 22α=1-2×⎝⎛⎭⎫-342=-18. 答案:-188.(2015·珠海一模)已知tan(α+β)=25,tan β=13,则tan(α-β)的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)·tan β=25-131+25×13=117,tan(α-β)=tan α-tan β1+tan αtan β=117-131+117×13=-726.答案:-7269.已知α∈⎝⎛⎭⎫0,π2,tan α=12,求tan 2α和sin ⎝⎛⎭⎫2α+π3的值. 解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43,且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1,∴5sin 2α=1,而α∈⎝⎛⎭⎫0,π2, ∴sin α=55,cos α=255. ∴sin 2α=2sin αcos α=2×55×255=45,cos 2α=cos 2α-sin 2α=45-15=35, ∴sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310. 10.已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π,cos 2β=-79,sin(α+β)=79. (1)求cos β的值;(2)求sin α的值.解:(1)cos 2β=1+cos 2β2=1+⎝⎛⎭⎫-792=19, 又∵β∈⎝⎛⎭⎫π2,π,∴cos β=-13. (2)由(1)知sin β=1-cos 2β= 1-⎝⎛⎭⎫-132=223. 由α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π,得(α+β)∈⎝⎛⎭⎫π2,3π2. cos(α+β)=-1-sin 2(α+β)=-1-⎝⎛⎭⎫792=-429. sin α=sin(α+β-β)=sin(α+β)cos β-cos(α+β)sin β=79×⎝⎛⎭⎫-13-⎝⎛⎭⎫-429×223=13. B 组 高考题型专练1.(2015·高考重庆卷)若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=( ) A .1B .2C .3D .4解析:cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫α-3π10+π2sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sin π5cos π5cos π5+sin π52·sin π5cos π5cos π5-sin π5=3sin π5sin π5=3,故选C. 答案:C2.(2015·高考四川卷)sin 15°+sin 75°的值是________.解析:sin 15°+sin 75°=sin(45°-30°)+sin(45°+30°)=2sin 45°cos 30°=62. 答案:62 3.(2015·高考江苏卷)已知tan α=-2,tan(α+β)=17,则tan β的值为________. 解析:tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17+21-27=3. 答案:34.(2014·高考江苏卷)已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值;(2)求cos ⎝⎛⎭⎫5π6-2α的值. 解:(1)由题意cos α=-1-⎝⎛⎭⎫552=-255, 所以sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎫-255+22×55=-1010. (2)由(1)得sin 2α=2sin αcos α=-45,cos 2α=2cos 2α-1=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=-32×35+12×⎝⎛⎭⎫-45=-33+410. 5.(2014·高考广东卷)已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322.(1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ. 解:(1)f ⎝⎛⎭⎫5π12=A sin ⎝⎛⎭⎫5π12+π3=A sin 3π4=322, ∴A =322·2=3. (2)f (θ)-f (-θ)=3sin ⎝⎛⎭⎫θ+π3-3sin ⎝⎛⎭⎫-θ+π3 =3⎣⎡ ⎝⎛⎭⎫sin θcos π3+cos θsin π3-⎝⎛ -sin θcos π3+ ⎦⎤ ⎭⎫cos θsin π3=6sin θcos π3=3sin θ=3,所以sin θ=33.又因为θ∈⎝⎛⎭⎫0,π2, 所以cos θ=1-sin 2θ=1-⎝⎛⎭⎫332=63, 所以f ⎝⎛⎭⎫π6-θ=3sin ⎝⎛⎭⎫π6-θ+π3=3sin ⎝⎛⎭⎫π2-θ =3cos θ= 6.。
高三复习:两角和与差的正弦、余弦、正切公式含解析参考答案(教师版+学生版)
§4.5 两角和与差的正弦、余弦、正切公式知识梳理:1.两角和与差的余弦、正弦、正切公式cos(α-β)= (C (α-β));cos(α+β)= (C (α+β)); sin(α-β)= (S (α-β));sin(α+β)= (S (α+β)); tan(α-β)= (T (α-β));tan(α+β)= (T (α+β)). 2.二倍角公式sin2α= cos2α= = = ;tan2α= .3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β= 试一试1.已知α∈R ,sin α+2cos α=102,则tan2α= .2.若sin α+cos αsin α-cos α=12,则tan2α= .3.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为 .考点一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为. (2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)=.变式 (1)若α∈(π2,π),tan(α+π4)=17,则sin α=.(2)计算:1+cos20°2sin20°-sin10°(1tan5°-tan5°)=.题型二 三角函数公式的灵活应用例2 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为.题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=,cos β=.课堂练习:1.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= .2.已知tan α=4,则1+cos2α+8sin 2αsin2α的值为 .3.(2013·重庆)4cos50°-tan40°= .4.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 .5.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.两角和与差的正弦、余弦、正切公式作业1. 已知α∈⎝⎛⎭⎫-π2,0,cos α=35,则tan ⎝⎛⎭⎫α+π4=________.2.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=_______.3.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=_______.4.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值为_______.5.函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB =θ,则sin2θ的值是_______.6. .(2013·浙江高考改编)已知α∈R ,sin α+2cos α=102,则tan 2α=________. 7. 3tan12°-3(4cos 212°-2)sin12°=________.8. (1)若tan2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=.(2)(2014·课标全国Ⅰ改编)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则2α-β=.9.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.10. 已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4).(1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围.§4.5 两角和与差的正弦、余弦、正切公式知识梳理:1.两角和与差的余弦、正弦、正切公式cos(α-β)= (C (α-β));cos(α+β)= (C (α+β)); sin(α-β)= (S (α-β));sin(α+β)= (S (α+β)); tan(α-β)= (T (α-β));tan(α+β)= (T (α+β)). 2.二倍角公式sin2α= cos2α= = = ;tan2α= .3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为 tan α±tan β=试一试1.已知α∈R ,sin α+2cos α=102,则tan2α=. 答案 -34解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简得:4sin2α=-3cos2α, ∴tan2α=sin2αcos2α=-34. 2.若sin α+cos αsin α-cos α=12,则tan2α=.答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan2α=2tan α1-tan 2α=34.3.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin [(x +φ)-φ]=sin x , ∴f (x )的最大值为1.考点一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为. (2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)=.答案 (1)-3 (2)539解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.(2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2).∵0<α<π2,则π4<π4+α<3π4, ∴sin(π4+α)=223.又-π2<β<0,则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.变式 (1)若α∈(π2,π),tan(α+π4)=17,则sin α=.(2)计算:1+cos20°2sin20°-sin10°(1tan5°-tan5°)=.答案 (1)35 (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin10°cos10°-sin10°·cos 25°-sin 25°sin5°cos5°=cos10°2sin10°-sin20°sin10°=cos10°-2sin20°2sin10°=cos10°-2sin (30°-10°)2sin10°=cos10°-2sin30°cos10°+2cos30°sin10°2sin10°=32. 题型二 三角函数公式的灵活应用例2 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为.答案 (1)cos α (2) 3 解析 (1)原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)4cos 2α2.因为α∈(0,π),所以cos α2>0,所以原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)2cosα2=(cos α2+sin α2)·(cos α2-sin α2)=cos 2α2-sin 2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tan A +C 2=3,所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. 题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=,cos β=.(2)(2013·课标全国Ⅱ改编)已知sin2α=23,则cos 2⎝⎛⎭⎫α+π4=. 答案 (1)-1010 95010 (2)16解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010. ∵α为锐角,sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝⎛⎭⎫α+π4=1+cos2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin2α2=1-232=16.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.变式 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β=. (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是.答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,7ππ4方法与技巧 1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos2α2,sin 2α=1-cos2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.在三角求值时,往往要估计角的范围后再求值.课堂练习:1.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4=. 答案322解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以 tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.2.已知tan α=4,则1+cos2α+8sin 2αsin2α的值为.答案654解析 1+cos2α+8sin 2αsin2α=2cos 2α+8sin 2α2sin αcos α,∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654.3.(2013·重庆)4cos50°-tan40°=. 答案3解析 4cos50°-tan40°=4sin40°cos40°-sin40°cos40°=2sin80°-sin40°cos40°=2sin (50°+30°)-sin40°cos40°=3sin50°+cos50°-sin40°cos40°=3sin50°cos40°= 3.4.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是.答案 -1解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.两角和与差的正弦、余弦、正切公式作业1. 已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos α=35,则tan ⎝⎛⎭⎪⎫α+π4=________. [解析] 由α∈⎝⎛⎭⎪⎫-π2,0,cos α=35,得sin α=-1-cos 2α=-45,tan α=sin αcos α=-43,tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=tan α+11-tan α =-43+11+43=-17. [答案] -172.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=. 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β, cos β(cos α-sin α)+sin β(cos α-sin α)=0, 即(cos β+sin β)(cos α-sin α)=0. 又α、β为锐角,则sin β+cos β>0, ∴cos α-sin α=0,∴tan α=1.3.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=.答案7210解析 因为sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2),所以cos2θ=1-sin 22θ=35,所以sin(2θ+π4)=sin2θcos π4+cos2θsin π4=45×22+35×22=7210.4.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值为. 答案3解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14, ∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.5.函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB =θ,则sin2θ的值是.答案1665PD =1,根据函数的图象,可得AD =12,BD =32.在Rt △APD 和Rt △BPD 中,sin ∠APD =15,cos ∠APD =25,sin ∠BPD =313,cos ∠BPD =213.所以sin θ=sin(∠APD +∠BPD )=865,cos θ=cos(∠APD +∠BPD )=165,故sin2θ=2sin θcos θ=2×865×165=1665.6. .(2013·浙江高考改编)已知α∈R ,sin α+2cos α=102,则tan 2α=________.[解析] 把条件中的式子两边平方,得sin 2α+4sin αcos α+4cos 2α=52,即3cos 2α+4sin αcos α=32,所以3cos 2α+4sin αcos αcos 2α+sin 2α=32,所以3+4tan α1+tan 2α=32,即3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,所以tan 2α=2tan α1-tan 2α=-34. [答案] -347.3tan12°-3(4cos 212°-2)sin12°=.答案 -4 3解析 原式=3sin12°cos12°-32(2cos 212°-1)sin12°23⎝⎛⎭⎫12sin12°-32cos12°cos12°=23sin (-48°)2cos24°sin12°cos12°=-23sin48°sin24°cos24° =-23sin48°12sin48°=-4 3.8. (1)若tan2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=.(2)(2014·课标全国Ⅰ改编)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则2α-β=.解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0,解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π-α),得α-β=π-α,∴2α-β=π2.9.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.(1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2,∴[f (β)]2-2=4sin 2π4-2=0.10. 已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4).(1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围.解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4· cos ⎝⎛⎭⎫x +π4 =1-cos2x 2+12sin2x +sin ⎝⎛⎭⎫2x +π2 11=12(sin2x +cos2x )+12. 由tan α=2,得sin2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45.cos2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin2α+cos2α)+12=35.(2)由(1)得f (x )=12(sin2x +cos2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12. 11. 10.已知f (x )=-3sin 2x +sin x cos x ,(1)求f ⎝ ⎛⎭⎪⎫25π6的值;(2)设α∈(0,π),f ⎝ ⎛⎭⎪⎫α2=14-32,求sin α的值. [解] f (x )=-3sin 2x +sin x cos x =-3×1-cos 2x 2+12sin 2x =-32+12sin 2x +32cos 2x =-32+sin ⎝ ⎛⎭⎪⎫2x +π3,(1)f ⎝ ⎛⎭⎪⎫25π6=-32+sin ⎝ ⎛⎭⎪⎫25π3+π3=-32+sin ⎝ ⎛⎭⎪⎫8π+2π3=-32+sin 2π3=-32+32=0.(2)f ⎝ ⎛⎭⎪⎫α2=-32+sin ⎝ ⎛⎭⎪⎫α+π3=14-32, ∴sin ⎝ ⎛⎭⎪⎫α+π3=14. ∵α∈(0,π),∴α+π3∈⎝ ⎛⎭⎪⎫π3,4π3,又0<sin ⎝ ⎛⎭⎪⎫α+π3=14<12, ∴α+π3∈⎝ ⎛⎭⎪⎫5π6,4π3. ∴cos ⎝ ⎛⎭⎪⎫α+π3=-1-sin 2⎝ ⎛⎭⎪⎫α+π3=-1-⎝ ⎛⎭⎪⎫142=-154, ∴sin α=sin ⎝ ⎛⎭⎪⎫α+π3-π3=sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3 =14×12+154×32=1+358.。
高考专题练习: 第1课时 两角和与差的正弦、余弦和正切公式
1.两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β. C (α+β):cos(α+β)=cos αcos β-sin αsin β. S (α+β):sin(α+β)=sin αcos β+cos αsin β. S (α-β):sin(α-β)=sin αcos β-cos αsin β. T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎪⎫α,β,α+β≠π2+k π,k ∈Z .T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎪⎫α,β,α-β≠π2+k π,k ∈Z .2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎪⎫α≠π4+k π2,且α≠k π+π2,k ∈Z . 常用结论记准4个必备结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ) ⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=aa 2+b 2.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)对任意角α都有1+sin α=⎝ ⎛⎭⎪⎫sin α2+cos α22.( )(3)y =3sin x +4cos x 的最大值是7.( ) (4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立. ( )答案:(1)√ (2)√ (3)× (4)× 二、易错纠偏常见误区| (1)不会逆用公式,找不到思路; (2)不会合理配角出错.1.tan 20°+tan 40°+3tan 20°·tan 40°=________. 解析:因为tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,所以tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,所以原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3. 答案: 32.sin 15°+sin 75°的值是________.解析:sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62. 答案:62第1课时 两角和与差的正弦、余弦和正切公式三角函数公式的直接应用(师生共研)(1)(2020·高考全国卷Ⅲ)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6=( )A .12 B .33 C .23D .22(2)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.【解析】 (1)因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=32sin θ+32cos θ=3sin ⎝ ⎛⎭⎪⎫θ+π6=1, 所以sin ⎝ ⎛⎭⎪⎫θ+π6=33,故选B .(2)由cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3⎝ ⎛⎭⎪⎫12cos α-32sin α=3cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫π6-α=435,得sin ⎝ ⎛⎭⎪⎫π6-α=45.sin ⎝ ⎛⎭⎪⎫α+11π6=-sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫α+11π6=-sin ⎝ ⎛⎭⎪⎫π6-α=-45. 【答案】 (1)B (2)-45利用三角函数公式时应注意的问题(1)首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号相反”.(2)应注意与同角三角函数基本关系、诱导公式的综合应用. (3)应注意配方法、因式分解和整体代换思想的应用.1.(2021·湖北八校第一次联考)若sin ⎝ ⎛⎭⎪⎫π6-θ=35,则sin ⎝ ⎛⎭⎪⎫π6+2θ=( ) A .-2425 B .2425 C .-725D .725解析:选D .方法一:因为sin ⎝ ⎛⎭⎪⎫π6-θ=35,所以sin ⎝ ⎛⎭⎪⎫π6+2θ=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π6-θ =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-θ=1-2sin 2⎝ ⎛⎭⎪⎫π6-θ=1-2×⎝ ⎛⎭⎪⎫352=725,故选D .方法二:因为sin ⎝ ⎛⎭⎪⎫π6-θ=cos ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π6-θ =cos ⎝ ⎛⎭⎪⎫π3+θ=35,所以cos ⎝ ⎛⎭⎪⎫2π3+2θ=2×⎝ ⎛⎭⎪⎫352-1=-725.因为cos ⎝ ⎛⎭⎪⎫π2+π6+2θ=-sin ⎝ ⎛⎭⎪⎫π6+2θ,所以sin ⎝ ⎛⎭⎪⎫π6+2θ=725,故选D . 2.(2021·六校联盟第二次联考)若tan ⎝ ⎛⎭⎪⎫π4-α=-2,则tan 2α=________.解析:由tan ⎝ ⎛⎭⎪⎫π4-α=-2可得tan π4-tan α1+tan π4tan α=-2,即1-tan α1+tan α=-2,化简得tan α=-3,所以tan 2α= 2 tan α1-tan 2 α=2×(-3)1-(-3)2=34. 答案:34三角函数公式的逆用与变形应用(师生共研)(1)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B .22 C .12D .-12(2)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 【解析】 (1)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又(A +B )∈(0,π),所以A+B=3π4,所以C=π4,cos C=2 2.(2)因为sin α+cos β=1,cos α+sin β=0,所以sin2α+cos2β+2sin αcos β=1①,cos2α+sin2β+2cos αsin β=0②,①②两式相加可得sin2α+cos2α+sin2β+cos2β+2(sin α·cos β+cos αsin β)=1,所以sin(α+β)=-12.【答案】(1)B(2)-1 2(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系;②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.1.(1-tan215°)cos215°=()A.1-32B.1C.32D.12解析:选C.(1-tan215°)cos215°=cos215°-sin215°=cos 30°=3 2.2.已知sin 2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( )A .-13 B .13 C .-23D .23解析:选D .cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=12+12sin 2α=12+12×13=23. 3.cos 15°+sin 15°cos 15°-sin 15°=( ) A .33 B . 3 C .-33D .- 3解析:选B .原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.两角和、差及倍角公式的灵活应用(多维探究) 角度一 三角函数公式中变“角”已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=2425,则cos ⎝ ⎛⎭⎪⎫α+π4=________.,【解析】 由题意知,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,sin(α+β)=-35<0,所以cos(α+β)=45,因为β-π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos ⎝ ⎛⎭⎪⎫β-π4=-725,cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4=cos(α+β)cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-45.【答案】 -45角度二 三角函数公式中变“名”求值:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°. 【解】 原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.三角函数公式应用的解题思路(1)角的转换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[提醒] 转化思想是实施三角恒等变换的主导思想,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.1.若tan(α+2β)=2,tan β=-3,则tan(α+β)=________,tan α=________. 解析:因为tan(α+2β)=2,tan β=-3,所以tan(α+β)=tan(α+2β-β)=tan(α+2β)-tan β1+tan(α+2β)tan β=2-(-3)1+2×(-3)=-1.tan α=tan(α+β-β)=-1-(-3)1+(-1)×(-3)=1 2.答案:-11 22.4sin 20°+tan 20°=________.解:原式=4sin 20°+sin 20°cos 20°=2sin 40°+sin 20°cos 20°=2sin (60°-20°)+sin 20°cos 20°=3cos 20°-sin 20°+sin 20°cos 20°= 3.答案: 3[A级基础练]1.计算-sin 133°cos 197°-cos 47°cos 73°的结果为()A.12B.33C.22D.32解析:选A.-sin 133°cos 197°-cos 47°cos 73°=-sin 47°(-cos 17°)-cos 47°sin 17°=sin(47°-17°)=sin 30°=12.2.(2021·开封市模拟考试)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则cos(α-β)=()A.-1 B.-7 9C .429D .79解析:选B .因为角α与角β均以Ox 为始边,且它们的终边关于y 轴对称,所以β=π-α+2k π,k ∈Z ,则cos(α-β)=cos(α-π+α-2k π)=cos(2α-π)=cos (π-2α)=-cos 2α,又sin α=13,所以cos 2α=1-2sin 2α=79,所以cos(α-β)=-79,故选B .3.(2020·福州市质量检测)若2cos 2x =1+sin 2x ,则tan x =( ) A .-1 B .13C .-1或13D .-1或13或3解析:选C .方法一:由题设得,2(cos 2x -sin 2x )=1+2sin x cos x ,所以2(cos x +sin x )(cos x -sin x )=(sin x +cos x )2,所以sin x +cos x =0或sin x +cos x =2cos x -2sin x ,所以tan x =-1或tan x =13.方法二:由2cos 2x =1+sin 2x ,得2(cos 2x -sin 2x )=sin 2x +cos 2x +2sin x cos x ,化简得cos 2 x -2sin x cos x -3sin 2x =0,所以(cos x -3sin x )(cos x +sin x )=0,所以cos x =3 sin x 或cos x =-sin x ,所以tan x =13或tan x =-1.方法三:由⎩⎪⎨⎪⎧2cos 2x =1+sin 2x sin 22x +cos 22x =1,得5sin 22x +2sin 2x -3=0,所以sin 2x =35,或sin 2x =-1.当sin 2x =35时, sin 2x =2sin x cos x sin 2x +cos 2x =2tan x tan 2x +1=35,所以3tan 2x-10tan x +3=0,解得tan x =13或tan x =3,但tan x =3时,cos 2x <0,1+sin 2x >0,不合题意舍去,经检验,tan x =13符合题意;当sin 2x =-1时,tan x =-1,经检验,tan x =-1符合题意.综上,tan x =13或tan x =-1.4.已知cos ⎝ ⎛⎭⎪⎫x -π6=14,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3=( )A .34 B .-34 C .14D .±34解析:选A .因为cos ⎝ ⎛⎭⎪⎫x -π6=14,所以cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x=3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×14=34.故选A .5.已知sin(α+β)=12,sin(α-β)=13,则log 5⎝ ⎛⎭⎪⎫tan αtan β2=( ) A .2 B .3 C .4D .5解析:选C .因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=5,所以log 5⎝ ⎛⎭⎪⎫tan αtan β2=log552=4.故选C .6.(2020·高考浙江卷)已知tan θ=2,则cos 2θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析:方法一:因为tan θ=2,所以sin θ=2cos θ,由sin 2θ+cos 2θ=1可知,sin 2θ=45,cos 2θ=15,所以cos 2θ=cos 2θ-sin 2θ=15-45=-35,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=2-11+2=13. 方法二:因为tan θ=2,所以cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=2-11+2=13.答案:-35 137.sin 10°sin 50°sin 70°=________.解析:sin 10°sin 50°sin 70°=sin 10°cos 40°cos 20° =sin 10°cos 10°cos 20°cos 40°cos 10°=18sin 80°cos 10°=18. 答案:188.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin ⎝ ⎛⎭⎪⎫β+5π4=________.解析:依题意可将已知条件变形为sin[(α-β)-α]=-sin β=35,所以sin β=-35. 又β是第三象限角,因此有cos β=-45,所以sin ⎝ ⎛⎭⎪⎫β+5π4=-sin ⎝ ⎛⎭⎪⎫β+π4=-sin βcos π4-cos βsin π4=7210.答案:72109.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45.(1)求sin ()α+π的值;(2)若角β满足sin(α+β)=513,求cos β的值.解:(1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45,所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35,由sin(α+β)=513,得cos(α+β)=±1213. 由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.10.已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值; (2)求tan(α-β)的值.解:(1)因为tan α=43,tan α=sin αcos α, 所以sin α=43cos α.因为sin 2 α+cos 2 α=1,所以cos 2 α=925, 所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2 α=-247, 所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[B 级 综合练]11.若α,β都是锐角,且cos α=55,sin(α-β)=1010, 则cos β=( ) A .22 B .210 C .22或-210D .22或210解析:选A .因为α,β都是锐角,且cos α=55,sin(α-β)=1010,所以sin α=255,cos(α-β)=31010,从而cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=22,故选A .12.已知α为第二象限角,且tan α+tan π12=2tan αtan π12-2,则sin ⎝ ⎛⎭⎪⎫α+5π6=( )A .-1010 B .1010 C .-31010D .31010解析:选C .tan α+tan π12=2tan αtan π12-2⇒tan α+tan π121-tan αtan π12=-2⇒tan ⎝ ⎛⎭⎪⎫α+π12=-2,因为α为第二象限角,所以sin ⎝ ⎛⎭⎪⎫α+π12=255,cos ⎝ ⎛⎭⎪⎫α+π12=-55,则sin ⎝ ⎛⎭⎪⎫α+5π6=-sin ⎝ ⎛⎭⎪⎫α-π6=-sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12-π4=cos ⎝ ⎛⎭⎪⎫α+π12sin π4-sin ⎝ ⎛⎭⎪⎫α+π12cos π4=-31010.13.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6=________.解析:由cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, 所以3sin ⎝ ⎛⎭⎪⎫α+π6=435,即sin ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45.答案:-4514.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,所以sin 2α=45. 又2α∈⎝ ⎛⎭⎪⎫0,π2,所以cos 2α=1-sin 22α=35,所以tan 2α=sin 2αcos 2α=43.(2)因为β∈⎝ ⎛⎭⎪⎫π4,π2,所以β-π4∈⎝ ⎛⎭⎪⎫0,π4,又sin ⎝ ⎛⎭⎪⎫β-π4=35, 所以cos ⎝ ⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4·cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β,所以cos 2β=-2425,又2β∈⎝ ⎛⎭⎪⎫π2,π,所以sin 2β=725,又cos 2α=1+cos 2α2=45,α∈⎝ ⎛⎭⎪⎫0,π4, 所以cos α=255,sin α=55.所以cos(α+2β)=cos αcos 2β-sin αsin 2β =255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525.[C 级 提升练]15.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n 2cos 227°-1=( )A .8B .4C .2D .1解析:选C .因为m =2sin 18°,m 2+n =4,所以n =4-m 2=4-4sin 218°=4cos 218°.所以m n 2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=4sin 18°cos 18°2cos 227°-1=2sin 36°cos 54°=2sin 36°sin 36°=2.故选C .16.设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.解析:由sin αcos β-cos αsin β=1,得sin(α-β)=1, 又α,β∈[0,π],所以α-β=π2,所以⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, 所以sin(2α-β)+sin(α-2β)=sin ⎝ ⎛⎭⎪⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝ ⎛⎭⎪⎫α+π4.因为π2≤α≤π, 所以3π4≤α+π4≤5π4, 所以-1≤2sin ⎝ ⎛⎭⎪⎫α+π4≤1,即取值范围为[-1,1]. 答案:[-1,1]。
两角和与差的正弦、余弦和正切专题及答案
两角和与差的正弦、余弦和正切专题一、选择题1. 已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于( ) A.12 B .-12 C.22 D .-22 2.若1+cos 2αsin 2α=12,则tan 2α等于 ( ).A.54 B .-54 C.43 D .-43 3.已知α,β都是锐角,若sin α=55,sin β=1010,则α+β= ( ).A.π4B.3π4C.π4和3π4 D .-π4和-3π4 4.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( ).A.23 B .-23 C.13 D .-135.若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为 ( ). A .1 B.110 C .1或110D .1或10 6.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ). A .-235 B.236 C .-45 D.45二、填空题7.已知cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝ ⎛⎭⎪⎫0,π2,则cos α=________.8.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则 sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.9.函数f (x )=2cos 2x +sin 2x 的最小值是________.10.方程x 2+3ax +3a +1=0(a >2)的两根为tan A ,tan B ,且A ,B ∈⎝ ⎛⎭⎪⎫-π2,π2,则A +B =________.三、解答题11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+sin ⎝ ⎛⎭⎪⎫2x -π3+2cos 2x -1,x ∈R. (1)求函数f (x )的最小正周期;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值.12.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2. (1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.13.函数f (x )=6cos 2ωx2+3sin ωx -3(ω>0)在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且△ABC 为正三角形. (1)求ω的值及函数f (x )的值域;(2)若f (x 0)=8 35,且x 0∈⎝ ⎛⎭⎪⎫-103,23,求f (x 0+1)的值.14.(1)①证明两角和的余弦公式C(α+β):cos(α+β)=cos αcos β-sin αsin β;②由C(α+β)推导两角和的正弦公式S(α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知cos α=-45,α∈⎝⎛⎭⎪⎫π,32π,tan β=-13,β∈⎝⎛⎭⎪⎫π2,π,求cos(α+β).两角和与差的正弦、余弦和正切专题及答案一、选择题1. 已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于( )A.12 B .-12 C.22 D .-22 解析由cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α得(cos α-sin α)(cos α+sin α)=22(cos α+sin α) 由α为锐角知cos α+sin α≠0.∴cos α-sin α=22,平方得1-sin 2α=12.∴sin 2α=12.答案A 2.若1+cos 2αsin 2α=12,则tan 2α等于 ( ).A.54 B .-54 C.43 D .-43 解析 1+cos 2αsin 2α=2cos 2α2sin αcos α=cos αsin α=12,∴tan α=2,∴tan 2α=2tan α1-tan 2α=41-4=-43,故选D. 答案 D3.已知α,β都是锐角,若sin α=55,sin β=1010,则α+β= ( ). A.π4 B.3π4 C.π4和3π4 D .-π4和-3π4 解析 由α,β都为锐角,所以cos α=1-sin 2α=255,cos β=1-sin 2β=31010.所以cos(α+β)=cos α·cos β-sin α·sin β=22,所以α+β=π4.答案 A4.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( ). A.23 B .-23 C.13 D .-13解析 ∵sin θ+cos θ=43,∴(sin θ+cos θ)2=1+sin 2θ=169,∴sin 2θ=79,又0<θ<π4,∴sin θ<cos θ.∴sin θ-cos θ=-(sin θ-cos θ)2=-1-sin 2θ=-23. 答案 B5.若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为 ( ).A .1 B.110 C .1或110D .1或10 解析 tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝ ⎛⎭⎪⎫1a 1-lg (10a )·lg ⎝ ⎛⎭⎪⎫1a =1⇒lg 2a +lg a =0,所以lg a =0或lg a =-1,即a =1或110. 答案 C6.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin⎝ ⎛⎭⎪⎫α+7π6的值是( ). A .-235 B.236 C .-45 D.45解析 cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45. 答案 C 二、填空题7.已知cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝⎛⎭⎪⎫0,π2,则cos α=________.解析∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, ∴sin ⎝ ⎛⎭⎪⎫α+π4=223.故cos α=cos [⎝⎛⎭⎪⎫α+π4-π4]=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=13×22+223×22=4+26. 答案4+268.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则 sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析 ∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin ⎝ ⎛⎭⎪⎫α+π6=35.∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4 =sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos 2⎝ ⎛⎭⎪⎫α+π6sin π4=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6-22⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π6-1=2×35×45-22⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫452-1=12225-7250=17250.答案172509.函数f (x )=2cos 2x +sin 2x 的最小值是________.解析 ∵f (x )=2cos 2x +sin 2x =1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f (x )min =1-2. 答案 1- 210.方程x 2+3ax +3a +1=0(a >2)的两根为tan A ,tan B ,且A ,B ∈⎝ ⎛⎭⎪⎫-π2,π2,则A +B =________.解析 由题意知tan A +tan B =-3a <-6,tan A ·tan B =3a +1>7,∴tan A <0,tan B <0, tan(A +B )=tan A +tan B 1-tan A tan B =-3a1-(3a +1)=1.∵A ,B ∈⎝ ⎛⎭⎪⎫-π2,π2,∴A ,B ∈⎝ ⎛⎭⎪⎫-π2,0,∴A +B ∈(-π,0),∴A +B =-3π4. 答案 -3π4三、解答题11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+sin ⎝ ⎛⎭⎪⎫2x -π3+2cos 2x -1,x ∈R.(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值.解 (1)f (x )=sin 2x ·cos π3+cos 2x ·sin π3+sin 2x ·cos π3-cos 2x ·sin π3+cos 2x =sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4. 所以,f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π8上是增函数,在区间⎣⎢⎡⎦⎥⎤π8,π4上是减函数.又f ⎝ ⎛⎭⎪⎫-π4=-1,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π4=1,故函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为2,最小值为-1. 12.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2. (1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解 (1)由题意得(sin α+cos α)2=95,即1+sin 2α=95,∴sin 2α=45.又2α∈⎝ ⎛⎭⎪⎫0,π2,∴cos 2α=1-sin 22α=35,∴tan 2α=sin 2αcos 2α=43. (2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,∴cos ⎝ ⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β,∴cos 2β=-2425,又2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin 2β=725,又cos 2α=1+cos 2α2=45,α∈⎝ ⎛⎭⎪⎫0,π4, ∴cos α=255,sin α=55.∴cos(α+2β)=cos αcos 2β-sin αsin 2β =255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525. 13.函数f (x )=6cos 2ωx2+3sin ωx -3(ω>0)在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且△ABC 为正三角形. (1)求ω的值及函数f (x )的值域; (2)若f (x 0)=8 35,且x 0∈⎝ ⎛⎭⎪⎫-103,23,求f (x 0+1)的值. 解 (1)由已知可得,f (x )=3cos ωx +3sin ωx =23sin ⎝ ⎛⎭⎪⎫ωx +π3,又正三角形ABC 的高为23,从而BC =4, 所以函数f (x )的周期T =4×2=8,即2πω=8,ω=π4.函数f (x )的值域为[-23,23]. (2)因为f (x 0)=835, 由(1)有f (x 0)=23sin ⎝ ⎛⎭⎪⎫πx 04+π3=835,即sin ⎝ ⎛⎭⎪⎫πx 04+π3=45.由x 0∈⎝ ⎛⎭⎪⎫-103,23,知πx 04+π3∈⎝ ⎛⎭⎪⎫-π2,π2, 所以cos ⎝ ⎛⎭⎪⎫πx 04+π3=1-⎝ ⎛⎭⎪⎫452=35.故f (x 0+1)=23sin ⎝ ⎛⎭⎪⎫πx 04+π4+π3=23sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫πx 04+π3+π4 =23⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫πx 04+π3cos π4+cos ⎝ ⎛⎭⎪⎫πx 04+π3sin π4 =23×⎝ ⎛⎭⎪⎫45×22+35×22=765.14.(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,32π,tan β=-13,β∈⎝ ⎛⎭⎪⎫π2,π,求cos(α+β).解(1)证明 ①如图,在直角坐标系xOy 内作单位圆O ,并作出角α,β与-β,使角α的始边为Ox 轴非负半轴,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3,角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)).由P 1P 3=P 2P 4及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2,展开并整理,得2-2cos(α+β)=2-2(cos αcos β-sin αsin β). ∴cos(α+β)=cos αcos β-sin αsin β.②由①易得,cos ⎝ ⎛⎭⎪⎫π2-α=sin α,11sin ⎝ ⎛⎭⎪⎫π2-α=cos α. sin(α+β)=cos ⎣⎢⎡⎦⎥⎤π2- α+β =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-α+ -β =cos ⎝ ⎛⎭⎪⎫π2-αcos(-β)-sin ⎝ ⎛⎭⎪⎫π2-αsin(-β) =sin αcos β+cos αsin β.∴sin(α+β)=sin αcos β+cos αsin β.(2)∵α∈⎝⎛⎭⎪⎫π,32π,cos α=-45,∴sin α=-35. ∵β∈⎝ ⎛⎭⎪⎫π2,π,tan β=-13, ∴cos β=-31010,sin β=1010. cos(α+β)=cos αcos β-sin αsin β=⎝ ⎛⎭⎪⎫-45×⎝⎛⎭⎪⎫-31010-⎝ ⎛⎭⎪⎫-35×1010=31010.。
2014届高三数学一轮复习 两角和与差的正弦、余弦、正切提分训练题
两角和与差的正弦、余弦、正切一、选择题1.cos13计算sin43cos 43-sin13的值等于( )A.12解析 原式=1sin (43-13)=sin 30=2,故选A. 答案 A2.已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于( ) A.12 B .-12 C.22 D .-22解析:由cos 2α=cos ⎝⎛⎭⎪⎫π4-α得(cos α-sin α)(cos α+sin α)=22(cos α+sin α) 由α为锐角知cos α+sin α≠0. ∴cos α-sin α=22,平方得1-sin 2α=12. ∴sin 2α=12.答案:A3.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan 2x 等于( ).A.724 B .-724 C.247 D .-247 解析 ∵x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45.∴sin x =-35,∴tan x =-34.∴tan 2x =2tan x 1-tan 2x =2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247. 答案 D4.已知α,β都是锐角,若sin α=55,sin β=1010,则α+β= ( ).A.π4B.3π4C.π4和3π4D .-π4和-3π4解析 由α,β都为锐角,所以cos α=1-sin 2α=255,cos β=1-sin 2β=31010.所以cos(α+β)=cos α·cos β-sin α·sin β=22,所以α+β=π4. 答案 A5.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( ). A.33B .-33C.539D .-69解析 对于cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,而π4+α∈⎝ ⎛⎭⎪⎫π4,3π4,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,因此sin ⎝ ⎛⎭⎪⎫π4+α=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63,则cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539.答案 C6.已知α是第二象限角,且sin(π+α)=-35,则tan2α的值为( )A.45 B .-237 C .-247 D .-83解析 由sin (π+α)=-35,得sin α=35,又α是第二象限角,故cos α=-1-sin 2α=-45,∴tan α=-34,tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247. 答案 C7.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝⎛⎭⎪⎫α+7π6的值是( ).A .-235 B.236 C .-45 D.45解析 cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45. 答案 C 二、填空题8.已知cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝ ⎛⎭⎪⎫0,π2,则cos α=________.解析:∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, ∴sin ⎝ ⎛⎭⎪⎫α+π4=223. 故cos α=cos [⎝⎛⎭⎪⎫α+π4-π4]=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=13×22+223×22=4+26. 答案:4+269.化简[2sin50°+sin10°(1+3tan10°)]·2sin 280°的结果是________.解析 原式=2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=⎣⎢⎢⎡⎦⎥⎥⎤2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°·2cos 10° =⎣⎢⎡⎦⎥⎤2sin 50°+2sin 10°·cos -cos 10°·2cos 10°=22(sin 50°cos 10°+sin 10°cos 50°)=22sin 60°= 6. 答案 610.已知tan ⎝ ⎛⎭⎪⎫π4+θ=3,则sin 2θ-2cos 2θ的值为________.解析 法一 ∵tan ⎝ ⎛⎭⎪⎫π4+θ=3,∴1+tan θ1-tan θ=3,解得tan θ=12.∵sin 2θ-2cos 2θ=sin 2θ-cos 2θ-1 =2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1 =2tan θ1+tan 2 θ-1-tan 2 θ1+tan 2θ-1 =45-35-1=-45. 法二 sin 2θ-2cos 2 θ=sin 2θ-cos 2θ-1=-cos ⎝ ⎛⎭⎪⎫π2+2 θ-sin ⎝⎛⎭⎪⎫π2+2θ-1=-1-tan 2⎝ ⎛⎭⎪⎫π4+θ1+tan 2⎝ ⎛⎭⎪⎫π4+θ-2tan ⎝ ⎛⎭⎪⎫π4+θ1+tan 2⎝ ⎛⎭⎪⎫π4+θ-1 =-1-91+9-2×31+9-1=-45.答案 -4511.函数f (x )=2cos 2x +sin 2x 的最小值是________.解析 ∵f (x )=2cos 2x +sin 2x =1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f (x )min =1-2. 答案 1- 212.若cos(α+β)=15,cos(α-β)=35,则tan αtan β=________.解析 由已知,得cos αcos β-sin αsin β=15,cos αcos β+sin αsin β=35,则有cos αcos β=25,sin αsin β=15,sin αsin βcos αcos β=12,即tan αtan β=12.答案 12三、解答题13.已知sin ⎝ ⎛⎭⎪⎫π4+x =513,且x ∈⎝ ⎛⎭⎪⎫π4,3π4,求1-tan x 1+tan x .解析 ∵x ∈⎝ ⎛⎭⎪⎫π4,3π4,∴π4+x ∈⎝ ⎛⎭⎪⎫π2,π,∴cos ⎝ ⎛⎭⎪⎫π4+x =-1213, ∴tan ⎝ ⎛⎭⎪⎫π4+x =-512, ∴1-tan x 1+tan x =1tan ⎝⎛⎭⎪⎫x +π4=-125. 14.设函数f (x )=sin ωx +sin ⎝⎛⎭⎪⎫ωx -π2,x ∈R.(1)若ω=12,求f (x )的最大值及相应的x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.解析 (1)f(x)=sin ωx +sin ⎝⎛⎭⎪⎫ωx -π2=sin ωx -cos ωx , 当ω=12时,f(x)=sin x 2-cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2-π4, 而-1≤sin ⎝ ⎛⎭⎪⎫x 2-π4≤1,所以f(x)的最大值为2, 此时,x 2-π4=π2+2k π,k ∈Z ,即x =3π2+4k π,k ∈Z ,相应的x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =3π2+4k π,k ∈Z .(2)因为f (x )=2sin ⎝⎛⎭⎪⎫ωx -π4,所以,x =π8是f (x )的一个零点⇔f ⎝ ⎛⎭⎪⎫π8=sin ⎝ ⎛⎭⎪⎫ωπ8-π4=0,即ωπ8-π4=k π,k ∈Z ,整理,得ω=8k +2,又0<ω<10,所以0<8k +2<10,-14<k <1,而k ∈Z ,所以k =0,ω=2,f (x )=2sin ⎝⎛⎭⎪⎫2x -π4,f (x )的最小正周期为π. 15.在△ABC 中,A 、B 、C 为三个内角,f (B )=4cos B ·sin 2⎝ ⎛⎭⎪⎫π4+B 2+3cos 2B -2c os B .(1)若f (B )=2,求角B ;(2)若f (B )-m >2恒成立,求实数m 的取值范围.解析 (1)f (B )=4cos B ×1-cos ⎝ ⎛⎭⎪⎫π2+B 2+3cos 2B -2c os B=2cos B (1+sin B )+3cos 2B -2cos B =2cos B sin B +3cos 2B=sin 2B +3cos 2B =2sin ⎝ ⎛⎭⎪⎫2B +π3. ∵f (B )=2,∴2sin ⎝ ⎛⎭⎪⎫2B +π3=2,π3<2B +π3<73π,∴2B +π3=π2.∴B =π12.(2)f (B )-m >2恒成立,即2sin ⎝ ⎛⎭⎪⎫2B +π3>2+m 恒成立.∵0<B <π,∴2sin ⎝ ⎛⎭⎪⎫2B +π3∈[-2,2],∴2+m <-2.∴m <-4.16. (1)①证明两角和的余弦公式C (α+β):cos(α+β)=c os αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,32π,tan β=-13,β∈⎝ ⎛⎭⎪⎫π2,π,求cos(α+β).解析 (1)证明 ①如图,在直角坐标系xOy 内作单位圆O ,并作出角α,β与-β,使角α的始边为Ox 轴非负半轴,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3,角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)).由P 1P 3=P 2P 4及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2,展开并整理,得2-2cos(α+β)=2-2(cos αcos β-sin αsin β). ∴cos(α+β)=cos αcos β-sin αsin β.②由①易得,cos⎝ ⎛⎭⎪⎫π2-α=sin α,sin ⎝ ⎛⎭⎪⎫π2-α=cos α.sin(α+β)=cos ⎣⎢⎡⎦⎥⎤π2-α+β=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-α+-β=cos ⎝ ⎛⎭⎪⎫π2-αcos(-β)-sin ⎝ ⎛⎭⎪⎫π2-αsin(-β)=sin αcos β+cos αsin β.∴sin(α+β)=sin αcos β+cos αsin β. (2)∵α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,∴sin α=-35. ∵β∈⎝⎛⎭⎪⎫π2,π,tan β=-13, ∴cos β=-31010,sin β=1010.cos(α+β)=cos αcos β-sin αsin β=⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-31010-⎝ ⎛⎭⎪⎫-35×1010=31010.。
高考数学试题大冲关 两角和与差的正弦、余弦和正切公
2014届高考数学理科试题大冲关:两角和与差的正弦、余弦和正切公式一、选择题 1.已知cos 2θ=23,则sin 4θ+cos 4θ的值为( ) A.1318 B.1118C.79D .-12.若α∈(0,π2),且sin 2α+cos 2α=14,则tan α的值等于( )A.22B.33C. 2D. 33.已知α+β=π4,则(1+tan α)(1+tan β)的值是( )A .-1B .1C .2D .44.若sin α-π4cos 2α=-2,则sin α+cos α的值为( )A .-72B .-12C.12D.725.已知tan α=14,tan(α-β)=13,则tan β=( )A.711B .-117C .-113D.1136. sin -250°cos 70°cos 2155°-sin 225°的值为( ) A .-32B .-12C.12 D.32二、填空题7.已知sin α=12+cos α,且α∈(0,π2),则cos 2αsin α-π4的值为____.8.已知tan(x +π4)=2,则tan xtan2x的值为________.9.已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-513,角α+β的终边与单位圆交点的纵坐标是35,则cos α=________.三、解答题10.已知-π2<x <0,sin x +cos x =15.(1)求sin x -cos x 的值;(2)求3sin 2x 2-2sin x 2cos x2+cos 2x2tan x +1tan x 的值.11.已知tan α=-13,cos β=55,α,β∈(0,π).(1)求tan(α+β)的值;(2)求函数f (x )=2sin(x -α)+cos(x +β)的最大值.12.已知函数f (x )=2sin(13x -π6),x ∈R.(1)求f (5π4)的值;(2)设α,β∈[0,π2],f (3α+π2)=1013,f (3β+2π)=65,求cos(α+β)的值.详解答案:1.解析:∵cos 2θ=23,∴sin 22θ=79. ∴sin 4θ+cos 4θ=1-2sin 2θcos 2θ=1-12(sin 2θ)2=1118.答案:B2.解析:因为sin 2α+cos 2α=sin 2α+1-2sin 2α=1-sin 2α=cos 2α,∴cos 2α=14,sin 2α=1-cos 2α=34,∵α∈(0,π2),∴cos α=12,sin α=32,tan α=sin αcos α= 3.答案:D3.解析:∵α+β=π4,tan(α+β)=tan α+tan β1-tan αtan β=1,∴tan α+tan β=1-tan αtan β.∴(1+tan α)(1+tan β)=1+tan α+tan β+tan αtan β =1+1-tan αtan β+tan αtan β=2. 答案:C 4.解析:∵22(sin α-cos α)=-2(cos 2α-sin 2α)∴sin α+cos α=12.答案:C5.解析:tan β=tan[α-(α-β)] =tan α-tan α-β1+tan αtan α-β=14-131+112=-113. 答案:C6.解析:-sin 270°-20°cos 90°-20°cos 225°-sin 225°=cos 20°sin 20°cos 50°=sin 40°2cos 50°=sin 90°-50°2cos 50°=12.答案:C7.解析:依题意得sin α-cos α=12,又(sin α+cos α)2+(sin α-cos α)2=2,即(sin α+cos α)2+(12)2=2,故(sin α+cos α)2=74;又α∈(0,π2),因此有sin α+cos α=72,所以cos 2αsin α-π4=cos 2α-sin 2α22sin α-cos α=-2(sin α+cos α)=-142. 答案:-1428.解析:因为tan(x +π4)=2,所以tan x =13,tan2x =2×131-19=2389=34,即tan x tan 2x =49.答案:499.解析:由题意知,cos β=-513,sin(α+β)=35,又∵α,β∈(0,π),∴sin β=1213, cos(α+β)=-45.∴cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β =-45×(-513)+1213×35=2065+3665 =5665. 答案:566510.解:(1)由sin x +cos x =15两边平方得1+2sin x cos x =125,所以2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925.又∵-π2<x <0,∴sin x <0,cos x >0,∴sin x -cos x <0. 故sin x -cos x =-75.(2)3sin 2x 2-2sin x 2cos x2+cos2x2tan x +1tan x=2sin 2x2-sin x +1sin x cos x +cos xsin x=cos x (2-cos x -sin x )=(-1225)×(2-15)=-108125.11.解:(1)由cos β=55,β∈(0,π),得sin β=255,即tan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.(2)∵tan α=-13,α∈(0,π),∴sin α=110,cos α=-310. ∴f (x )=-355sin x -55cos x +55cos x -255sin x=-5sin x . ∴f (x )的最大值为 5.12.解:(1)f (5π4)=2sin(13×54π-π6)=2sin π4= 2.(2)∵1013=f (3α+π2)=2sin ⎣⎢⎡⎦⎥⎤13×3α+π2-π6=2sin α, 65=f (3β+2π)=2sin[13×(3β+2π)-π6] =2sin(β+π2)=2cos β,∴sin α=513,cos β=35,又∵α,β∈[0,π2],∴cos α=1-sin 2α= 1-5132=1213, sin β= 1-cos 2β=1-352=45, 故cos(α+β)=cos αcos β-sin αsin β=35×1213-513×45=1665.。
2014《步步高》高考数学第一轮复习04-两角和与差的正弦、余弦、正切
§4.5 两角和与差的正弦、余弦、正切2014高考会这样考 1.利用两角和与差的正弦、余弦、正切公式进行三角变换;2.利用三角变换讨论三角函数的图象和性质.复习备考要这样做 1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 1. 两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β1+tan αtan β (T α-β)tan(α+β)=tan α+tan β1-tan αtan β (T α+β)2. 二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. [难点正本 疑点清源] 三角变换中的“三变”(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 1. 已知sin(α+β)=23,sin(α-β)=-15,则tan αtan β的值为_______.答案713解析 由sin(α+β)=sin αcos β+cos αsin β=23,sin(α-β)=sin αcos β-cos αsin β=-15,得sin αcos β=730,cos αsin β=1330,所以sin αcos βcos αsin β=tan αtan β=713.2. 函数f (x )=2sin x (sin x +cos x )的单调增区间为______________________.答案 ⎣⎡⎦⎤-π8+k π,3π8+k π (k ∈Z ) 解析 f (x )=2sin 2x +2sin x cos x=2×1-cos 2x2+sin 2x =sin 2x -cos 2x +1=2sin ⎝⎛⎭⎫2x -π4+1, 由-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,得-π8+k π≤x ≤3π8+k π,k ∈Z .所以所求区间为⎣⎡⎦⎤-π8+k π,3π8+k π (k ∈Z ). 3. (2012·江苏)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则 sin ⎝⎛⎭⎫2α+π12的值为________. 答案17250解析 ∵α为锐角且cos ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+π6=35. ∴sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =sin 2⎝⎛⎭⎫α+π6cos π4-cos 2⎝⎛⎭⎫α+π6sin π4 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6-22⎣⎡⎦⎤2cos 2⎝⎛⎭⎫α+π6-1 =2×35×45-22⎣⎡⎦⎤2×⎝⎛⎭⎫452-1 =12225-7250=17250.4. (2012·江西)若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34B.34C .-43D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34. 5. (2011·辽宁)设sin(π4+θ)=13,则sin 2θ等于( )A .-79B .-19C.19D.79答案 A解析 sin(π4+θ)=22(sin θ+cos θ)=13,将上式两边平方,得12(1+sin 2θ)=19,∴sin 2θ=-79.题型一 三角函数式的化简、求值问题 例1 (1)化简:⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2; (2)求值:[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°. 思维启迪:切化弦;注意角之间的联系及转化.解 (1)⎝ ⎛⎭⎪⎫1tanα2-tan α2·⎝⎛⎭⎫1+tan α·tan α2 =⎝⎛⎭⎪⎫cosα2sin α2-sin α2cos α2·⎝ ⎛⎭⎪⎫1+sin αcos α·sin α2cosα2=cos 2α2-sin 2α2sin α2cos α2·cos αcos α2+sin αsinα2cos αcosα2=2cos αsin α·cosα2cos αcosα2=2sin α. (2)原式=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°×cos 10°+3sin 10°cos 10°·2sin 80°=⎝ ⎛⎭⎪⎪⎫2sin 50°+2sin 10°×12cos 10°+32sin 10°cos 10°×2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)] =22sin(50°+10°)=22×32= 6. 探究提高 (1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征. (2)对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有 ①化为特殊角的三角函数值; ②化为正、负相消的项,消去求值;③化分子、分母出现公约数进行约分求值.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________. 答案3解析 因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tan A +C 2=3,所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. 题型二 三角函数的给角求值与给值求角问题例2 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.思维启迪:(1)拆分角:α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β,利用平方关系分别求各角的正弦、余弦. (2)2α-β=α+(α-β);α=(α-β)+β. 解 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2=1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729. (2)∵tan α=tan [(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4. 探究提高 (1)注意变角⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β=α+β2,可先求cos α+β2或sin α+β2的值.(2)先由tan α=tan [(α-β)+β],求tan α的值,再求tan 2α的值,这种方法的优点是可确定2α的取值范围.(3)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. (4)解这类问题的一般步骤: ①求角的某一个三角函数值;②确定角的范围;③根据角的范围写出所求的角.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.解 ∵0<β<α<π2,∴0<α-β<π2.又∵cos(α-β)=1314,cos α=17,0<β<α<π2,∴sin α=1-cos 2α=437,∴sin(α-β)=1-cos 2(α-β)=3314, ∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∵0<β<π2,∴β=π3.题型三 三角变换的简单应用例3 已知f (x )=⎝⎛⎭⎫1+1tan x sin 2x -2sin ⎝⎛⎭⎫x +π4·sin ⎝⎛⎭⎫x -π4. (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.思维启迪:(1)化简f (x ),由tan α=2代入求f (α);(2)化成f (x )=A sin(ωx +φ)+b 的形式,求f (x )的取值范围. 解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4· cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45.cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. ∴-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12. 探究提高 (1)将f (x )化简是解题的关键,本题中巧妙运用“1”的代换技巧,将sin 2α,cos 2α化为正切tan α,为第(1)问铺平道路.(2)把形如y =a sin x +b cos x 化为y =a 2+b 2sin(x +φ),可进一步研究函数的周期、单调性、最值与对称性.已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+ 2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值时x 的集合. 解 (1)因为f (x )=3sin ⎝⎛⎭⎫2x -π6+1-cos 2⎝⎛⎭⎫x -π12 =2[32sin ⎝⎛⎭⎫2x -π6-12cos ⎝⎛⎭⎫2x -π6]+1 =2sin ⎣⎡⎦⎤⎝⎛⎭⎫2x -π6-π6+1=2sin ⎝⎛⎭⎫2x -π3+1, 所以f (x )的最小正周期T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 此时2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12 (k ∈Z ),所以所求x 的集合为{x |x =k π+5π12,k ∈Z }. 利用三角变换研究三角函数的性质典例:(12分)(2011·北京)已知函数f (x )=4cos x ·sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 审题视角 (1)问首先化为形如y =A sin(ωx +φ)的形式,由T =2πω求得;(2)问由x ∈⎣⎡⎦⎤-π6,π4求得ωx +φ的范围,从而求得最值.规范解答解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6,[4分] 所以f (x )的最小正周期为π.[6分] (2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.[8分]于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;[10分]当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.[12分]答题模板第一步:将f (x )化为a sin x +b cos x 的形式. 第二步:构造f (x )=a 2+b 2(sin x ·aa 2+b 2+ cos x ·b a 2+b2). 第三步:和角公式逆用f (x )=a 2+b 2sin(x +φ) (其中 φ为辅助角).第四步:利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. 第五步:反思回顾,查看关键点、易错点和答题规范.温馨提醒 (1)在本题的解法中,运用了二倍角的正、余弦公式,还引入了辅助角,技巧性较强.值得强调的是辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ),或a sin α+b cos α=a 2+b 2 cos(α-φ) (其中tan φ=ab ),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(2)本题的易错点是想不到引入辅助角或引入错误. 方法与技巧 1. 巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2. 利用辅助角公式求最值、单调区间、周期.由y =a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba)有a 2+b 2≥|y |.3. 重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4. 已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化.5. 熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.在三角求值时,往往要估计角的范围后再求值.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15B.14C.13D.12答案 D解析 由tan θ+1tan θ=sin θcos θ+cos θsin θ=1sin θcos θ=4,得sin θcos θ=14,则sin 2θ=2sin θcos θ=2×14=12.2. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于 ( )A .-53B .-59C.59D.53答案 A解析 方法一 ∵sin α+cos α=33,∴(sin α+cos α)2=13,∴2sin αcos α=-23,即sin 2α=-23. 又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角, ∴cos 2α=-1-sin 22α=-53. 方法二 由sin α+cos α=33, 两边平方得1+2sin αcos α=13,∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=(sin α-cos α)2=1-2sin αcos α=153. 由⎩⎨⎧ sin α+cos α=33,sin α-cos α=153,得⎩⎪⎨⎪⎧sin α=3+156,cos α=3-156.∴cos 2α=2cos 2α-1=-53. 3. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( )A.π4B.3π4C.π4和3π4D .-π4和-3π4答案 A解析 由于α,β都为锐角,所以cos α=1-sin 2α=255, cos β=1-sin 2β=31010. 所以cos(α+β)=cos α·cos β-sin α·sin β=22, 所以α+β=π4. 4. (2011·福建)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于 ( ) A.22 B.33 C. 2D. 3答案 D解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14, ∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值为________.答案 54解析 由诱导公式及倍角公式,得cos 275°+cos 215°+cos 75°cos 15°=sin 215°+cos 215°+sin 15°cos 15°=1+12sin 30°=54.6. 3tan 12°-3(4cos 212°-2)sin 12°=________.答案 -4 3解析 原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12° =23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin (-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3. 7. sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎫0,π2,则α+β=____________. 答案 π2解析 ∵α、β∈⎝⎛⎭⎫0,π2,∴α+β∈(0,π), ∴cos α=45,sin β=45, ∴cos(α+β)=45×35-35×45=0,∴α+β=π2. 三、解答题(共22分)8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合. 解 因为1+sin α1-sin α-1-sin α1+sin α =(1+sin α)2cos 2α-(1-sin α)2cos 2α=|1+sin α||cos α|-|1-sin α||cos α|=1+sin α-1+sin α|cos α|=2sin α|cos α|, 所以2sin α|cos α|=-2tan α=-2sin αcos α. 所以sin α=0或|cos α|=-cos α>0.故α的取值集合为{α|α=k π或2k π+π2<α<2k π+π或2k π+π<α<2k π+3π2,k ∈Z }. 9. (12分)已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·山东)若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34答案 D解析 ∵θ∈⎣⎡⎦⎤π4,π2,∴2θ∈⎣⎡⎦⎤π2,π.∴cos 2θ=-1-sin 22θ=-18,∴sin θ=1-cos 2θ2=34.2. 已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( ) A.1318 B.1322 C.322 D.16答案 C解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 3. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的 ( ) A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1答案 D解析 f (x )=sin x +3cos x=2⎝⎛⎭⎫12sin x +32cos x =2sin ⎝⎛⎭⎫x +π3, 由-π2≤x ≤π2,得-π6≤x +π3≤5π6. 所以当x +π3=π2时,f (x )有最大值2, 当x +π3=-π6时,f (x )有最小值-1. 二、填空题(每小题5分,共15分)4. 已知锐角α满足cos 2α=cos ⎝⎛⎭⎫π4-α,则sin 2α=________.答案 12解析 ∵α∈⎝⎛⎭⎫0,π2,∴2α∈(0,π),π4-α∈⎝⎛⎭⎫-π4,π4. 又cos 2α=cos ⎝⎛⎭⎫π4-α,∴2α=π4-α或2α+π4-α=0, ∴α=π12或α=-π4(舍),∴sin 2α=sin π6=12. 5. 已知cos ⎝⎛⎭⎫π4-α=1213,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫π4+α=________. 答案 1013解析 ∵cos ⎝⎛⎭⎫π4-α=22(cos α+sin α)=1213, ∴sin α+cos α=12213,1+2sin αcos α=288169,2sin αcos α=119169, 1-2sin αcos α=50169,cos α-sin α=5213, cos 2αsin ⎝⎛⎭⎫π4+α=cos 2α-sin 2α22sin α+22cos α=2(cos α-sin α)=1013. 6. 设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________. 答案 3解析 因为y =2sin 2x +1sin 2x =2-cos 2x sin 2x, 所以令k =2-cos 2x sin 2x.又x ∈⎝⎛⎭⎫0,π2, 所以k 就是单位圆x 2+y 2=1的左半圆上的动点P (-sin 2x ,cos 2x )与定点Q (0,2)所成直线的斜率.又k min =tan 60°=3,所以函数y =2sin 2x +1sin 2x的最小值为 3. 三、解答题 7. (13分)(2012·广东)已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π =1617,求cos(α+β)的值. 解 (1)由T =2πω=10π得ω=15. (2)由⎩⎨⎧f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617得⎩⎨⎧ 2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5α+53π+π6=-65,2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5β-56π+π6=1617, 整理得⎩⎨⎧ sin α=35,cos β=817. ∵α,β∈⎣⎡⎦⎤0,π2, ∴cos α=1-sin 2α=45,sin β=1-cos 2β=1517. ∴cos(α+β)=cos αcos β -sin αsin β4 5×817-35×1517=-1385.=。
专题4.5 两角和与差的正弦、余弦和正切(预测)-2014年高考数学(理)一轮复习精品资料(解析版)
名师预测1. sin15°cos75°+cos15°sin105°等于( ) A .0 B.12C.32D .1 答案:D解析:sin15°cos75°+cos15°sin105°=sin15°cos75°+cos15°sin75°=sin90°=1. 2.sin47°-sin17°cos30°cos17°=( )A .-32B .-12 C.12D.323.已知sin α=35,α为第二象限角,且tan(α+β)=1,则tan β的值是( )A .-7B .7C .-34D.34答案:B解析:由sin α=35,α为第二象限角,得cos α=-45,则tan α=-34.∴tan β=tan[(α+β)-α]=tan α+β-tanα1+tan α+βtanα=1+341+⎝⎛⎭⎫-34=7.4.已知-π4<α<3π4,sin ⎝⎛⎭⎫π4-α=55,则sin α=( ) A.1010 B.255 C.55 D.335.如果α∈⎝⎛⎭⎫π2,π,且sin α=45,那么sin ⎝⎛⎭⎫α+π4+cos ⎝⎛⎭⎫α+π4等于( ) A.425 B .-425C.325 D .-3256.已知cos ⎝⎛⎭⎫α-π4=14,则sin2α的值为( ) A.3132 B .-3132 C .-78 D.78答案:C7.在直角坐标系xOy 中,直线y =2x -25与圆x 2+y 2=1交于A ,B 两点,记∠xOA =α(0<α<π2),∠xOB =β(π<β<3π2),则sin(α+β)的值为( )A.35B.45C .-35D .-458.若sin2θ=14,则tan θ+cosθsinθ的值是( )A .-8B .8C .±8D .29.已知sin α=23,则cos(π-2α)=( )A .-53B .-19 C.19 D.53答案:B10.已知α为第二象限角,sin α=35,则sin2α=( )A .-2425B .-1225C.1225D.242511.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-35B .-15C.15D.35答案:A解析:sin 4α-cos 4α=sin 2α-cos 2α=2sin 2α-1 =2×15-1=-35,故选A.12.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a2B.1-a2C .-1+a2D .-1-a2答案:D解析:∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4<0,∵a =cos θ2=1-2sin 2θ4,∴sin θ4=-1-a2.13.2+2cos8+21-sin8的化简结果是( ) A .4cos4-2sin4 B .2sin4 C .2sin4-4cos4D .-2sin414.函数f (x )=sin 2x +3sin x cos x 在区间[π4,π2]上的最大值是( )A .1 B.1+32C.32D .1+ 315.已知sin α-cos α=2,α∈(0,π),则sin2α=( ) A .-1 B .-22C.22D .116.在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( )A.14B.13C.12D.5317.设α,β都是锐角,那么下列各式中成立的是( ) A .sin(α+β)>sin α+sin β B .cos(α+β)>cos αcos β C .sin(α+β)>sin(α-β) D .cos(α+β)>cos(α-β)18.若θ∈[π4,π2],sin2θ=378,则sin θ=( )A.35 B.45C.74 D.34答案:D解析:本题考查了三角的恒等变形以及倍半角公式. 由θ∈[π4,π2]可得2θ∈[π2,π],cos2θ=-1-sin22θ=-18,sin θ=1-cos2θ2=34.19.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-220已知tan2α=-22,且满足π4<α<π2,则2cos2α2-sinα-12sin ⎝⎛⎭⎫π4+α 的值为( )A. 2 B .- 2C .-3+2 2D .3-2 2 答案:C解析:2cos2α2-sinα-12sin π4+α=cosα-sinαsinα+cosα=1-tanαtanα+1.21.已知cos α=17,cos(α+β)=-1114,α、β∈⎝⎛⎭⎫0,π2,则β=________.22.已知sin α=12+cos α,且α∈(0,π2),则cos2αsin α-π4的值为________.∴原式=-142. 23.设a =12cos6°-32sin6°,b =2tan13°1+tan213°,c =1-cos50°2,则a 、b 、c 的大小关系为______(由小到大排列).答案:a <c <b解析:a =sin24°,b =sin26°,c =sin25°, ∵y =sin x 在(0°,90°)上单增,∴a <c <b .24.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是________.25.若sin(π-α)=45,α∈(0,π2),则sin2α-cos 2α2的值等于________.26.已知π2<α<π,化简12-1212-12cos2α=______.27.当函数y =sin x -3cos x (0≤x ≤2π)取得最大值时,x =________.28.若cos(α+β)=15,cos(α-β)=35,则tan α·tan β=________.29.已知函数f (x )=tan(2x +π4).(1)求f (x )的定义域与最小正周期;(2)设α∈(0,π4),若f (α2)=2cos2α,求α的大小.【解析】(1)由2x +π4≠π2+kπ,k ∈Z ,得30.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A、B两点.已知A、B的横坐标分别为210、255.(1)求tan(α+β)的值;(2)求α+2β的值.【解析】由已知得cosα=210,cosβ=255.∵α、β为锐角,∴sinα=1-cos2α=72 10,sinβ=1-cos2β=55,∴tanα=7,tanβ=12.(1)tan(α+β)=tanα+tanβ1-tanαtanβ=7+121-7×12=-3.31.已知tan α=2.求:(1)tan ⎝⎛⎭⎫α+π4的值; (2)sin2α+cos2π-α1+cos2α的值.32.已知α∈(π2,π),且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈(π2,π),求cos β的值.所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×(-35)=-43+310. 33.在平面直角坐标系xOy 中,点P (12,cos 2θ)在角α的终边上,点Q (sin 2θ,-1)在角β的终边上,且OP →·OQ →=-12. (1)求cos2θ的值;(2)求sin(α+β)的值.34.设函数f (x )=(sin ωx +cos ωx )2+2cos 2ωx (ω>0)的最小正周期为2π3. (1)求ω的值;(2)若函数y =g (x )的图像是由y =f (x )的图像向右平移π2个单位长度得到的,求y =g (x )的单调增区间.【解析】(1)f (x )=(sin ωx +cos ωx )2+2cos 2ωx=sin 2ωx +cos 2ωx +2sin ωx cos ωx +1+cos2ωx35.已知34π<α<π,tan α+1tanα=-103. 求5sin2α2+8sin α2cos α2+11cos2α2-82sin α-π2的值.36.已知函数f (x )=a sin x ·cos x -3a cos 2x +32a +b ,(a >0). (1)x ∈R ,写出函数的单调递减区间; (2)设x ∈[0,π2],f (x )的最小值是-2,最大值是3,求实数a ,b 的值.37.已知向量a =(cos x +2sin x ,sin x ),b =(cos x -sin x,2cos x ).设函数f (x )=a ·b +12. (1)求函数f (x )的单调递减区间;(2)若函数y =f (x +φ)为偶函数,试求符合题意的φ的值.(2)由(1)知y =f (x +φ)=322sin ⎝⎛⎭⎫2x +2φ+π4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效测试17:两角和与差的正弦、余弦和正切公式
一、选择题
1.⎝ ⎛⎭⎪⎫cos π12
-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12等于( ) A .-32 B .-12 C.12 D.32
解析:⎝ ⎛⎭⎪⎫cos π12
-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=cos2π12-sin2π12=cos π6=32. 答案:D
2.已知cos2α=12(其中α∈⎝ ⎛⎭
⎪⎫-π4,0),则sin α的值为( ) A.12 B .-12 C.32 D .-32
解析:∵12=cos2α=1-2sin2α,∴sin2α=14
, 又∵α∈⎝ ⎛⎭
⎪⎫-π4,0,∴sin α=-12. 答案:B
3.已知sin α=55
,则sin4α-cos4α的值为( ) A .-15 B .-35 C.15 D.35
解析:原式=(sin2α+cos2α)( sin2α-cos2α)=sin2α-cos2α=2sin2α-1=-35
,故选B.
答案:B
4.sin(65°-x)cos(x -20°)+cos(65°-x)cos(110°-x)的值为( )
A. 2
B.22
C.12
D.32
解析:原式=sin(65°-x)cos(x -20°)+cos(65°-x)cos[90°-(x -20°)]
=sin(65°-x)cos(x -20°)+cos(65°-x)sin(x -20°)
=sin[(65°-x)+(x -20°)] =sin45°=22
. 答案:B
5.在△ABC 中,3sinA +4cosB =6,4sinB +3cosA =1,则C 的大小为( ) A.π6 B.5π6 C.π6或56π D.π3或23
π 解析:两式平方相加可得9+16+24sin(A +B)=37,sin(A +B)=sinC =12,所以C =π6或56
π.如果C =56π,则0<A <π6,从而cosA >32
,3cosA >1与4sinB +3cosA =1矛盾(因为
4sinB >0恒成立),故C =π6
. 答案:A
6.若f(x)=2tanx -2sin2x 2-1sin x 2cos x 2
,则f ⎝ ⎛⎭⎪⎫π12的值为( ) A .-43
3 B .8 C .
4 3 D .-4 3 解析:f(x)=2tanx +1-2sin2x 212
sinx =2tanx +2cosx sinx =2sinxcosx =4sin2x , ∴f ⎝ ⎛⎭⎪⎫π12=4sin π6=8. 答案:B
二、填空题
7.若sin ⎝ ⎛⎭⎪⎫π4-x =35
,则sin2x =__________. 解析:∵sin ⎝ ⎛⎭⎪⎫π4-x =35
, ∴22cosx -22sinx =22(cosx -s inx)=35
. ∴cosx -sinx =325
. ∴(cosx -sinx)2=1-sin2x =1825,∴sin2x =725
. 答案:725 8.求值:cos4π8+cos43π8+cos45π8+cos47π8
=__________. 解析:原式=2⎝ ⎛⎭⎪⎫cos4π8+cos43π8=2⎝ ⎛⎭⎪⎫cos4π8+sin4π8=2⎝
⎛⎭⎪⎫1-2sin2π8cos2π8=2⎝ ⎛⎭⎪⎫1-12
sin2π4=32. 答案:32
9.若1+tanx 1-tanx =2010,则1cos2x
+tan2x 的值为__________. 解析:1cos2x +tan2x =1+sin2x cos2x
=sinx +cosx 2cos2x -sin2x
=cosx +sinx cosx -sinx
=1+tanx 1-tanx
=2010.
答案:2010
三、解答题
10.已知tan α=17,tan β=13
,并且α,β均为锐角,求α+2β的值. 解析:∵tan α=17<1,tan β=13
<1, 且α、β均为锐角,
∴0<α<π4,0<β<π4
. ∴0<α+2β<34
π. 又tan2β=2tan β1-tan2β=34
, ∴tan(α+2β)=tan α+tan2β1-tan α·tan2β=17+341-17×34
=1. ∴α+2β=π4
. 11.已知α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭
⎪⎫π2,π且sin(α+β)=3365,cos β=-513.求sin α. 解析:∵β∈⎝ ⎛⎭
⎪⎫π2,π,cos β=-513, ∴sin β=1213
. 又∵0<α<π2,π2
<β<π,[z&zs&] ∴π2<α+β<3π2,又sin(α+β)=3365
, ∴π2
<α+β<π, cos(α+β)=-1-sin2α+β=-1-⎝ ⎛⎭⎪⎫33652=-5665, ∴sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β=
3365·⎝ ⎛⎭⎪⎫-513-⎝ ⎛⎭
⎪⎫-5665·1213=35. 12.已知tan(π+α)=-13,tan(α+β)=sin π-2α+4cos2α10cos2α-sin2α
.
(1)求tan(α+β)的值;
(2)求tan β的值.
解析:(1)∵tan(π+α)=-13,∴tan α=-13, ∵tan (α+β)=sin π-2α+4cos2α10cos2α-sin2α=sin2α+4cos2α
10cos2α-sin2α
=2sin αcos α+4cos2α
10cos2α-2sin αcos α
=2cos αsin α+2cos α
2cos α5cos α-sin α
=sin α+2cos α
5cos α-sin α
=tan α+2
5-tan α,
∴tan(α+β)=-13+2
5+13
=516
.
(2)∵tan β=tan[(α+β)-α]=tan α+β-tan α
1+tan α+βtan α,
∴tan β=516+131-516×13
=3143.。