2017-2018学年九年级数学期末试卷及答案
2017-2018学年第一学期期末检测九年级数学试题及参考答案
2017—2018学年度第一学期期末调研考试九年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号一二三20 21 22 23 24 25 26得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.)题号 1 2 3 4 5 6 7 8 答案题号9 10 11 12 13 14 15 16 答案1.自行车车轮要做成圆形,实际上是根据圆的特征A.圆是轴对称图形B.直径是圆中最长的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形2.下列说法中正确的是A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“概率为0.0001的事件”是不可能事件C.“任意画出一个平行四边形,它是中心对称图形”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.两个相似多边形的面积比是9:16,其中小多边形的周长为36cm,则较大多边形的周长为A.48cm B.54cm C.56cm D.64cm4.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是A.条件不足,无法求B.π C.4πD.π5.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有摩擦,则重物上升了A.5πcm B.3πcm C.2πcm D.πcm6.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2cm B.cm C.2cm D.2cm7.如图,在直角坐标系中,正方形EFOH是正方形ABCD经过位似变换得到的,对角线OE=4,则位似中心的坐标是A.(,)B.(0,0)C.(,)D.(-2,2)8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是A.2秒钟B.3秒钟C.4秒钟D.5秒钟9.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)10.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是A.B.C.D.11.已知关于x的方程kx2+(2k+1)x+(k-1)=0有实数根,则k的取值范围为A.k≥-B.k>-C.k≥-且k≠0D.k<-12.如图,路灯距地面8米,身高1.6米的小明从距离灯底(点O)20米的点A处,沿AO所在直线行走12米到达点B时,小明身影长度A.变长2.5米B.变短2米C.变短2.5米D.变短3米13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是A.B.C. D.14.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是①当c=0时,函数的图象经过原点;②当b=0时,函数的图象关于y轴对称;③函数的图象最高点的纵坐标是;④当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根.A.0个B.1个C.2个D.3个15.如图,在平面直角坐标系中,A(-5,0),B(0,10),C(8,0),⊙A的半径为5.若F是⊙A上的一个动点,线段CF与y轴交于E点,则△CBE面积的最大值是A.B.40 C.20 D.16.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.18.如图,AB是⊙O的直径,AC是弦,D是AC的中点,若∠BAC=30°,则∠DCA=.19.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△AOB连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是;第17个三角形的直角顶点的坐标是.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)小明同学解一元二次方程x2-4x-1=0的过程如下所示问题:(1)小明解方程的方法是,他的求解过程从第步开始出现错误,这一步的运算依据应该是;(2)利用上面的方法正确解这个方程.21.(本题满分9分)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?22.(本题满分9分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.23.(本题满分9分)如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ADB∽△OBC;(2)连结CD,试说明CD是⊙O的切线;(3)若AB=2,,求AD的长.(结果保留根号)24.(本题满分10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移个单位长度得到点B ,判断四边形OABC的形状并证明你的结论.25.(本题满分11分)足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y (m )关于飞行时间x (s )的函数图象(不考虑空气的阻力),已知足球飞出1s 时,足球的飞行高度是2.44m ,足球从飞出到落地共用3s . (1)求y 关于x 的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m (如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m 处的守门员至少要以多大的平均速度到球门的左边框?26.(本题满分12分)如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,OA=1,OC=3. (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,且△QBC 为直角三角形,求点Q 的坐标. (备注:两点()11M x y ,,()22N x y ,之间的距离为()()222121MN x x y y =-+-)参考答案一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)题号 1 2 3 4 5 6 7 8答案 C C A D B D D B题号9 10 11 12 13 14 15 16 答案 B A A D C B A B 二、(本大题有3个小题,共10分.17~18小题每个3分;19小题有2个空,每空2分)17.3;18.30°;19.(24,0),(67,).三、(本大题有7小题,共68分)20. (1)配方法,②,等式的基本性质;解:(2)x2-4x=1,x2-4x+4=1+4,(x-2)2=5,x-2=,x=2±,∴x1=2+,x2=2-.21.(1)不放回(2)(3,2)解:(3)小明获胜的可能性大.理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.22. (1)A、90.(2)等腰直角.解:(3)由题意得:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=25,∴AD=5,又∵∠D=90°,DE=2,∴.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,。
2017-2018学年人教版初三数学第一学期期末试卷含答案
2017-2018学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P 在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2017-2018学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD 的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y 轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。
2017-2018学年度九年级(上)数学期末复习试卷
2017-2018学年度九年级(上)数学练习试卷(A3)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.2017的绝对值是()A.﹣2017 B.2017 C.D.﹣2.下列计算结果正确的是()A.2+=2B.÷=C.(﹣2a2)3=﹣6a6 D.(x+1)2=x2+13.下列英文字母既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交5.如图,下列各数中,数轴上点A表示的数可能是()A.4的算术平方根B.4的立方根C.4的平方根D.8的算术平方根6.下列说法正确的是()A.了解2017年报考飞行员的学生的视力情况应采取抽样调查B.打开电视机,正在播放“神奇的动物去哪里”制作花絮是必然事件C.为了初三1200名学生的体能状况,从中抽取了100名学生的成绩进行分析,1200是样本容量D.7,9,9,4,9,8,8,这组数据的众数是97.在函数y=中,自变量x的取值范围是()A.x>1 B.x≥﹣2 C.x≥﹣2且x≠1 D.x>1且x≠﹣28.如图,⊙O中,弦AB与CD交于点页脚内容1M,∠C=35°,∠AMD=75°,则∠D的度数是()A.25° B.35°C.40°D.75°9.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,则FG:AG是()A.1:4 B.1:3 C.1:2 D.2:310.如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A.32 B.56 C .60 D.6411.有“小蛮腰”之称的广州电视塔为中国第一高电视塔,其主体顶部450~454米处有世界最高摩天轮(即图中AC=4米),与一般竖立的摩天轮不一样,广州塔的摩天轮沿着倾斜的轨道运转,对地倾斜角为∠ABC=15.5°.小明操作无人机观察摩天轮,由于设备限制无法近距离拍摄,无人机在图中P点观察到摩天轮最低点B的仰角为∠BPD=60°,最高点A的仰角为∠APD=36°,请问此时无人机距离电视塔的水平距离PD 为()(参考数据:tan15.5°≈0.4,tan36°≈0.7,≈1.7)A.3 B.2.7 C.3.3 D.3.712.若实数a使函数y=(a+6)x2﹣3x+的图象同时经过四个象限,并且使不等式组无解,则所有符合条件的整数a的积是()A.﹣336 B.56C.0 D.42二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.13.11月30日消息,近日工信部公布了截止10月末通信业的各项数据.数据显示,我国移动电话4G用户持续爆发式增长,总数达到714000000户,其中页脚内容2714000000用科学记数法表示为.14.(π﹣3)0+|﹣1|﹣()﹣2=.15.如图,边长为3的正方形ABCD,以A为圆心,AB 为半径作弧交DA的延长线于E,连接CE,则图中阴影部分面积为.15题17题18题16.现将背面完全相同,正面分别标有数﹣2、﹣1、0、1的4张卡片洗匀后,背面朝上,从中任取两张,将该卡片上的数字分别记为m、n,则使点P(m,n)在平面直角坐标系xOy,落在直线y=﹣x+1上的概率为.17.小明和小强分别从A、B两地出发匀速相向而行,达到对方出发地后均立即以原速返回.已知小明到达B地半小时后,小强到达A 地.如图表示他们出发时间t(单位:小时)与距离A地的路程S(单位:千米)之间的关系图,则出发后小时,小明和小强第2次相遇.18.如图,边长为2的菱形ABCD中,∠BAD=60°,现有∠BFE=30°的三角板△BEF,将△BEF绕B旋转得△BE′F′,BE′,BF′所在直线分别交线段AC于点M,N,若点C关于直线BE′的对称点为C′,当C′N ⊥AC时,AN的长为.三、解答题:(本大题共8个小题,共78分)解答应写出必要的文字说明、证明过程或演算步骤。
初中数学2017-2018第一学期期末九数答案
2017—2018学年度第一学期期末教学质量检测九年级数学答案一、选择题:二、填空题:三、解答题:20.解:(1)∵关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根,∴△=b2﹣4ac=32﹣4(1﹣m)>0,………………………………………2分即5+4m>0,解得:m>﹣.………………………………………4分∴m的取值范围为m>﹣.(2)∵m为负整数,且m>﹣,∴m=﹣1 (6)分将m=﹣1代入原方程得:x2+3x+2=0,解得:x1=﹣1,x2=﹣2.………………………………………………………9分故当m=﹣1时,此方程的根为x1=﹣1和x2=﹣2.21.解:(1)根据题意得:3÷15%=20(人)∴参赛学生共20人……………………………………………………………2分B等级人数5人图略…………………………………………………………3分(2)40,72 ………………………………………………………………………5分……………………………………………………………………………………8分所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生== ………………………………………………………9分 22.解:(1)在Rt△ACE中,cos 22°=ACCE………………………………………………2分 ∴AC = 22cos CE=93.05.22≈24.2m ………………………………………………………4分 答:彩旗的连接线AC 的长是24.2m.(2) 在Rt△ACE 中,tan 22°=CEAE…………………………………………………………………6分 ∴AE =CE ·tan 22° =22.5×0.4 =9m ……………………………………………………………………8分 ∴AB =AE+BE =9+3=12m ………………………………………………………9分23.解:(1)B (3,b ),C (4,b +1) …………………………………………………2分(2)∵双曲线ky x过点B (3,b )和D (2,b +1) ∴3b =2(b+1)…………………………………………………………… 3分解得b=2,…………………………………………………………………4分∴B点坐标为(3,2),D点坐标(2,3)………………………………5分把B点坐标(3,2)代入kyx=,解得k=6;……………………………6分∴当点A(1,b)在双曲线yx=,得到b =4……………………………7分当点C(4,b+1)在双曲线4yx=,得到b=0…………………………8分∴b的取值范围0≤b≤4 ……………………………………………………9分24.证明(1)∵△ABC∽△DEC,CA=CB,∴CE=CD,∠ACB=∠ECD,……………………………………………1分∴∠ACE=∠BCD在△ACE和△BCD中,CA=CB,CE=CD,∠ACE=∠BCD,∴△ACE ≌△BCD .…………………………………………………………3分∴AE =BD . …………………………………………………………………4分 (2)∵△ACE ≌△BCD . ∴∠AEC =∠BDC∵∠DOC =∠EOB ,∴△COD ∽△BOE . ………………………………………………………6分(3)∵△BOE ∽△COD . ∴EOCOBE CD =………………………………………………………………7分 ∵CD =10,BE =5 ∴EOCO =510即12=EO CO …………………………………………………8分 ∵CE =CD=10∴320103232=⨯==CE CO …………………………………………10分25.解:(1)由图像可知,当28≤x ≤188时,V 是x 的一次函数,设函数解析式为V =kx +b ……………………………1分则⎩⎨⎧=+=+01888028b k b k ……………………………………………………………2分 解得⎪⎩⎪⎨⎧=-=9421b k所以3分(3)当V ≥50时,包含V =80,由函数图象可知,当28<x ≤88时,P 随x 的增大而增大,即当x =88时,P 取得最大值,所以当x =88时,P 取得最大为4400.………………………………………10分26.解:(1)24 ………………………………………2分(2)①连接OA 、OF ,由题意得,∠NAD =30°,∠DAM =30°, 故可得∠OAM =30°,则∠OAF =60°, 又∵OA =OF ,∴△OAF 是等边三角形,∵OA =4,∴AF =OA =4;……………………………5分 ②连接B 'F ,此时∠NAD =60°, ∵AB '=8,∠DAM =30°, ∴AF =AB 'cos∠DAM =34238=⨯; ……………………………………………7分此时DM 与⊙O 的位置关系是相离; 过点O 作OE ⊥DM , ∴OE =OM cos∠MOE ∵AM =331623830cos 0==AD 图18-3∴OE =OMcos∠MOE =43282343316>-=⨯⎪⎪⎭⎫⎝⎛- ………………………9分 ∴DM 与⊙O 的位置关系是相离…………………………………………………10分③90° …………………………………………………………………………12分备用图E备用图。
精品解析:人教版2017-2018学年九年级下《期末检测卷》数学试题(解析版)
2018届人教版九年级数学下册(江西专版)检测卷期末检测卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1. 如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )A. 4B. .5C. 6D. 8【答案】C【解析】【分析】【详解】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.2. 已知反比例函数y=kx(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A. a=bB. a=﹣bC. a<bD. a>b 【答案】D【解析】【分析】对于反比例函数kyx=(k≠0)而言,当k>0时,作为该函数图象的双曲线的两支应该在第一和第三象限内. 由点A与点B的横坐标可知,点A与点B应该在第一象限内,然后根据反比例函数增减性分析问题.【详解】解:∵点A的坐标为(1,a),点B的坐标为(3,b),∴与点A对应的自变量x值为1,与点B对应的自变量x值为3,∵当k>0时,在第一象限内y随x的增大而减小,又∵1<3,即点A 对应的x 值小于点B 对应的x 值,∴点A 对应的y 值大于点B 对应的y 值,即a >b故选D【点睛】本题考查反比例函数的图像性质,利用数形结合思想解题是关键.3. 如图所示的几何体的俯视图是()A. AB. BC. CD. D 【答案】C【解析】A 选项:该几何体顶面的正投影与位于其下方的面的正投影并不全等. 在本选项所给出的俯视图中,长方形内部没有画出表示顶面正投影边缘的实线,故A 选项错误.B 选项:该几何体中部截面的正投影被顶面的正投影遮挡. 本选项所给出的俯视图未用虚线将这部分被遮挡的投影画出,故B 选项错误.C 选项:在本选项所给出的俯视图中,外围的长方形表示了该几何体下部截面的正投影,长方形内部的两条平行实线表示了顶面正投影的边缘,中间的两条虚线表示了被顶面遮挡的该几何体中部截面的正投影. 故C 选项正确.D 选项:该几何体中部截面的正投影被顶面的正投影遮挡. 本选项所给出的俯视图中的这部分投影不是用虚线画出的,不符合相关规定,故D 选项错误.故本题应选C.点睛:本题考查了几何体三视图的相关知识. 在画三视图或者解决与三视图相关的题目时,要想象和分析几何体在投影方向上所呈现的形状,特别要注意多个几何尺度不同的投影面在相应视图中的表示方法以及各个投影面之间的遮挡关系. 另外,被遮挡的投影应该用虚线在相应的视图中画出.4. 在△ABC 中,若tanA =1,sinB =,你认为最确切的判断是( ) A. △ABC 等腰三角形B. △ABC 是等腰直角三角形C. △ABC 是直角三角形D. △ABC 是一般锐角三角形【答案】B【解析】【分析】试题分析:由tanA=1,sinB=2结合特殊角的锐角三角函数值可得∠A 、∠B 的度数,即可判断△ABC 的形状.【详解】∵tanA=1,sinB=2∴∠A=45°,∠B=45°∴△ABC 是等腰直角三角形故选B. 考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.5. (2017湖南省岳阳市,第8题,3分)已知点A 在函数11y x=-(x >0)的图象上,点B 在直线y 2=kx +1+k (k 为常数,且k ≥0)上.若A ,B 两点关于原点对称,则称点A ,B 为函数y 1,y 2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )A. 有1对或2对B. 只有1对C. 只有2对D. 有2对或3对 【答案】A【解析】设点A 与点B 为函数y 1,y 2图象上的一对“友好点”,则点A 与点B 关于原点对称.设点A 的坐标为(x 0, y 0),则点B 的坐标应为(-x 0, -y 0).由于点A 在函数11y x=-(x >0)的图象上,所以将点A 的坐标代入函数y 1的解析式,得 001y x =-, 故点B 的坐标可以表示为001,x x ⎛⎫- ⎪⎝⎭. 由于点B 在直线y 2=kx +1+k (k 为常数,且k ≥0)上,所以将点B 的坐标代入y 2=kx +1+k ,得0011kx k x =-++,① 因为点A 在函数11y x=-(x >0)的图象上,所以x 0>0, 方程①两侧同时乘以x 0并整理,得()200110kx k x -++=,②因为k ≥0,所以应该按以下两种情况分别对方程②进行求解.(1) 当k =0时,方程②应为:010x -+=,解之,得 01x =.故当k =0时,“友好点”为:点A (1, -1)与点B (-1, 1).(2) 当k >0时,方程②为关于x 0的一元二次方程,利用因式分解法解该一元二次方程,得()()00110kx x --=,∴010kx -=或010x -=, ∴01x k=或01x = 故当k >0时,“友好点”为:点A (1k , -k )与点B (-1k , k ),或点A (1, -1)与点B (-1, 1). 综上所述,当k =0时,两个图象有1对“友好点”,“友好点”是:点A (1, -1)与点B (-1, 1);当k >0且k ≠1时,两个图象有2对“友好点”,它们分别是:点A (1k , -k )与点B (-1k, k ),点A (1, -1)与点B (-1, 1);当k =1时,两个图象实际上只有1对“友好点”,“友好点”是:点A (1, -1)与点B (-1, 1).因此,这两个图象上的“友好点”应有1对或者2对.故本题应选A.点睛:本题是一道利用代数方法求解几何相关问题的综合题目,也是数形结合思想的应用问题. 本题的关键思想可以总结为:利用关于原点对称的点的坐标特征和函数图象与解析式之间的关系将题目中的几何问题转化为关于某一待定坐标值的方程,通过求解方程获得符合要求的点.6. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则( )A. x–y2=3B. 2x–y2=9C. 3x–y2=15D. 4x–y2=21【答案】B【解析】【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BQ=CQ=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理即可得.【详解】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴EM AQMC CQ=y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=12CQ=3,∴EM=3y,∴DM=12-3-x=9-x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9-x)2,即2x-y2=9,故选B.二、填空题(本大题共6小题,每小题3分,共18分)7. 若反比例函数y=k x 的图象经过点(1,﹣6),则k 的值为 . 【答案】﹣6.【解析】【分析】由待定系数法代入(1,﹣6),即可求得k 的值.【详解】已知反比例函数y=k x的图象经过点(1,﹣6),所以k=1×(﹣6)=﹣6. 故答案为:-6考点:反比例函数图象上点的坐标特征.8. 如图所示的几何体是由一些小正方体组合而成的,若每个小正方体的棱长都是1,则该几何体俯视图的面积是________【答案】5【解析】根据题意画出该几何体的俯视图.因为几何体的三视图采用的是正投影的方法,所以俯视图中的各小正方形的边长应与该几何体中小正方体的棱长相等.因为每个小正方体的棱长都是1,所以俯视图中的各小正方形的边长也均为1.因为俯视图共由5个全等的小正方形组成,所以俯视图的面积为:()2515⨯=.故本题应填写:5.9. 如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么FGAG=________.【答案】1 4【解析】【分析】根据重心的性质得到AG=2DG,BG=2GE,根据平行线分线段成比例定理计算即可.【详解】解:∵△ABC的两条中线AD和BE相交于点G,∴点G是△ABC的重心,∴AG=2DG,BG=2GE,∵EF∥BC,∴FG GD=EG BG=12.故答案为12.【点睛】本题考查的是三角形的重心的概念和性质、平行线分线段成比例定理的应用,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.10. 如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为______米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:2≈1.41,3≈1.73)【答案】137.【解析】【分析】【详解】设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+CD=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB=3ABBD=,即3100xx=+,解得:x=50+503≈137,即建筑物AB的高度约为137米.故答案为137.考点:解直角三角形的应用﹣仰角俯角问题.11. 如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P.若OP=10,则k的值为________.【答案】3 【解析】【分析】已知直线y=x+2与反比例函数y=kx的图象在第一象限交于点P,设点P的坐标为(m,m+2),根据10,列出关于m的等式,即可求出m,得出点P坐标,且点P在反比例函数图象上,所以点P满足反比例函数解析式,即可求出k值.【详解】∵直线y=x+2与反比例函数y=kx的图象在第一象限交于点P∴设点P的坐标为(m,m+2) ∵1022(2)10m m++=解得m1=1,m2=-3∵点P 在第一象限∴m=1∴点P 的坐标为(1,3)∵点P 在反比例函数y=k x 图象上 ∴31k 解得k=3故答案为:3【点睛】本题考查了一次函数与反比例函数交点问题,交点坐标同时满足一次函数和反比例函数解析式,根据直角坐标系中点坐标的性质,可利用勾股定理求解.12. (2016辽宁省沈阳市)如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC =20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM =3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是______.【答案】256或5013. 【解析】 由图可知,在△OMN 中,∠OMN 的度数是一个定值,且∠OMN 不为直角. 故当∠ONM =90°或∠MON =90°时,△OMN 是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当∠ONM =90°时,则DN ⊥BC .过点E 作EF ⊥BC ,垂足为F .(如图)∵在Rt △ABC 中,∠A =90°,AB =AC , ∴∠C =45°, ∵BC =20,∴在Rt△ABC中,2cos cos45201022AC BC C BC=⋅=⋅︒=⨯=,∵DE是△ABC的中位线,∴111025222CE AC==⨯=,∴在Rt△CFE中,2sin sin455252EF CE C BC=⋅=⋅︒=⨯=,5FC EF==.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12. ∵EF=5,MF=12,∴在Rt△MFE中,5 tan12EFEMFMF∠==,∵DE是△ABC的中位线,BC=20,∴11201022DE BC==⨯=,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴5 tan tan12DEO EMF∠=∠=,∴在Rt△ODE中,525tan10126 DO DE DEO=⋅∠=⨯=.(2) 当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,222212513ME MF EF=++=,∴在Rt△MFE中,5 sin13EFEMFME∠==,∵∠DEO=∠EMF,∴5 sin sin13DEO EMF∠=∠=,∵DE=10,∴在Rt△DOE中,550sin101313 DO DE DEO=⋅∠=⨯=.综上所述,DO的长是256或5013.故本题应填写:256或5013.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.三、(本大题共5小题,每小题6分,共30分)13. 如图,以原点O为位似中心,把△OAB放大后得到△OCD,求△OAB与△OCD的相似比.【答案】23.【解析】试题分析:根据相似三角形相似比的定义可知,要求△OAB与△OCD的相似比就是要求△OAB与△OCD某一组对应边的比. 观察图形可知,根据点B与点D的坐标容易确定OB与OD这组对应边的长度,这组对应边的比即为这组相似三角形的相似比.试题解析:∵点B的坐标是(4, 0),点D的坐标是(6, 0),∴OB=4,OD=6,∴4263 OBOD==,∵△OAB与△OCD关于点O位似,∴△OAB∽△OCD,∵相似三角形的对应边的比是相似三角形的相似比,又∵OB与OD为一组对应边,∴△OAB与△OCD的相似比为2 3 .点睛:本题考查了位似图形与相似图形的相关知识. 应当准确理解位似图形与相似图形的联系和区别,分清位似图形中边的对应关系以及熟练掌握相似三角形相似比的定义. 要注意,位似图形一定是相似图形,但是位似图形是对应顶点连线所在直线相交于一点,对应边互相平行的特殊相似图形.14. 如图,反比例函数y=kx的图象在第二象限内,点A是图象上的任意一点,AM⊥x轴于点M,O是原点.若S△AOM=3,求该反比例函数的解析式,并写出自变量的取值范围.【答案】y=-6x(x<0)【解析】试题分析:要求反比例函数的解析式就是要求比例系数k的值. 观察图形可以发现,△AOM恰好是与比例系数k的几何意义密切相关的一个典型图形,易知S△AOM=12k. 据此,结合已知条件不难求得k的绝对值,再根据反比例函数图象所在的象限,容易判定k的符号,进而获得k的值. 根据题目中给出的图象可知,该函数的图象只在第二象限内,故自变量x的取值范围也就确定了.试题解析:根据题目中△AOM的特征以及反比例函数中比例系数k的几何意义可知,S△AOM=12 k.∵S△AOM=3,∴13 2k=,∴6k=.由图可知,该反比例函数的图象在第二象限内,根据反比例函数的图象与性质可知k<0,故k=-6,即该反比例函数解析式为6y x =-. 由于图中函数的图象只有第二象限内的一支,所以自变量x 的取值范围为x <0. 因此,该函数的解析式及自变量取值范围应为:6y x =-(x <0). 点睛:本题考查了反比例函数中比例系数k 的几何意义. 过双曲线上任意一点作x 轴,y 轴的垂线,其与坐标轴围成的矩形的面积为k ;若将该点与原点连接,则连线将上述矩形分割而成的两个三角形的面积均为12k . 熟练掌握和运用这一几何意义可以简化解题过程,同时这一几何意义也是反比例函数中面积相关问题的基础.15. 按要求完成下列各小题:(1)计算:tan 230°+3tan60°-sin 245°;(2)请你画出如图所示的几何体的三视图.【答案】(1)176;(2)详见解析. 【解析】试题分析: (1) 将相应特殊角的三角函数值代入该算式并进行相应的运算即可.(2) 从正面,左面和上面观察该几何体,下部长方体的正投影均为长方形(各边长度随视图不同而不同);上部由小立方体组成的结构的正投影在三个方向上得到的视图中均由三个全等的正方形组成,只不过正方形相互之间的排列关系以及它们与下部长方体的正投影的相对位置有所不同.试题解析:(1) 22tan 30360sin 45︒+︒-︒=22 3233⎛⎫⎛⎫+⨯-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=113 32 +-=17 6.(2) 该几何体的三视图如下图所示.点睛:本题考查了特殊角三角函数值的应用以及几何体三视图的画法. 特殊角三角函数值不仅是解决锐角三角函数相关问题的重要工具,更是很多实际应用问题的解题线索,需要重点记忆. 绘制几何体的三视图重点在于结合对几何体特征的分析从三个方向想象几何体的具体形状,需要加强简单立体图形几何特征的分析能力和空间想象能力.16. 如图,已知AC=4,求AB和BC的长.【答案】AB=2+3 BC=2【解析】试题分析:根据三角形内角和不难求得∠B=45°. 由于∠A和∠B的角度值均为特殊角度值,所以可以利用AB边上的高(设该高为CD)将△ABC分成两个含有特殊角的直角三角形进行求解. 利用已知条件可以求解Rt△ADC,从而求得线段AD与CD的长. 由于线段CD为这两个直角三角形的公共边,并且已经求得∠B的值,所以Rt△CDB也是可解的. 解这个直角三角形,可以求得线段BC与BD的长,进而容易求得线段AB的长.试题解析:如图,过点C 作CD ⊥AB ,垂足为D .∵∠A =30°,AC =4, ∴在Rt △ADC 中, 1sin sin 30422CD AC A AC =⋅=⋅︒=⨯=, 3cos cos304232AD AC A AC =⋅=⋅︒=⨯=, ∵∠ACB =105°,∠A =30°, ∴在△ABC 中,∠B =180°-∠A -∠ACB =180°-30°-105°=45°, ∵CD =2,∴在Rt △CDB 中,22sin sin 45CD CD BC B ===︒, 2tan tan 45CD CD BD B ===︒, ∴AB =AD +BD =232+.综上所述,AB =223+,BC =22.点睛:本题考查了解直角三角形的相关知识. 有两个内角为特殊角度的三角形是解直角三角形及其应用中的典型图形. 解决这类问题时,一般是过非特殊角度的内角的顶点作三角形的高,将这个三角形分割成为两个具有公共边的直角三角形,解这两个直角三角形即可求得原三角形的全部边长和内角的度数.17. 操场上有三根测杆AB ,MN 和XY ,MN =XY ,其中测杆AB 在太阳光下某一时刻的影子为BC(如图中粗线).(1)画出测杆MN在同一时刻的影子NP(用粗线表示),并简述画法;(2)若在同一时刻测杆XY的影子的顶端恰好落在点B处,画出测杆XY所在的位置(用实线表示),并简述画法.【答案】详见解析.【解析】【分析】(1) 连接AC,则线段AC所在直线表示太阳的光线. 因为平行投影的投射线是平行的,所以只要从测杆MN 顶部的点M处作太阳光线AC的平行线,该线与地面的交点以及测杆底部的点N之间的连线即为MN的影子.(2) 根据平行投影的原理,过点B作太阳光线AC的平行线可以得到经过测杆XY顶点X的太阳光线.因为MN=XY,所以过点M作地面的平行线,该线与经过测杆XY顶点X的太阳光线的交点即为测杆XY的顶点X,求得点X后容易得到测杆XY的位置.【详解】(1) 画法:连接AC,过点M作MP∥AC交直线NC于点P,则NP为MN的影子. 具体图形如下.(2) 画法:连接AC,过点B作射线BE∥AC,过点M作射线MF∥NC,MF交BE于点X,过点X作XY⊥NC 交NC于点Y,则XY即为所求. 具体图形如下.【点睛】:本题考查了平行投影的相关知识. 平行投影的投射线是平行的,这是平行投影最重要的特征,也是解决平行投影相关问题的关键. 通过已知的影子和相应的物体画出平行投影的投射线,再利用投射线的平行关系获得其他物体的影子,是平行投影问题的重要解题思路.四、(本大题共3小题,每小题8分,共24分)18. 如图所示为一几何体的三视图.(1)写出这个几何体的名称:____________;(2)在虚线框中画出它的一种表面展开图;(3)若主视图中长方形较长一边的长为5cm ,俯视图中三角形的边长为2cm ,则这个几何体的侧面积是________cm 2.【答案】详见解析.【解析】试题分析:(1) 观察题目中给出的三视图可以发现,该几何体上下底面是全等的等边三角形,侧面为全等的矩形. 根据这些几何特征可以判定该几何体为正三棱柱.(2) 正三棱柱的上下底面为两个全等的等边三角形,侧面为三个全等的矩形. 在表面展开图中,中间部分应该是表示侧面的三个并行排列的矩形,这些矩形较短的边长应该为底面的边长,较长的边长应该为正三棱柱的高;在位于中间的矩形的上方和下方各有一个表示上下底面的等边三角形.(3) 结合题目中给出的条件观察第(2)小题中得到的表面展开图可知,由已知条件可以求得展开图中部的三个矩形的面积. 根据正三棱柱的几何特征可知,其侧面积可以由这三个矩形的面积之和求得.试题解析:(1) 根据题目中给出的三视图的特征可知,该几何体为正三棱柱. 故本小题应填写:正三棱柱.(2) 根据正三棱柱的几何特征,画出如下的表面展开图.(3) 本小题应填写:30. 求解过程如下.利用第(2)小题得到的正三棱柱表面展开图(如图),计算几何体的侧面积.由题意可知,AF =BG =DM =EN =5cm ,BC =BD =CD =2cm.根据正三棱柱的几何特征可知:四边形ABGF ,四边形BDMG ,四边形DENM 为全等的矩形.∵矩形BDMG 的面积为:2510BD BG ⋅=⨯=(cm 2),∴矩形ABGF 与矩形DENM 的面积均为10cm 2.根据正三棱柱的几何特征可知,正三棱柱的侧面积等于四边形AENF的面积,即上述三个矩形面积之和,⨯=(cm2).故该正三棱柱的侧面积应为:31030点睛:本题综合考查了简单立体图形的几何特征以及几何体三视图的相关知识. 利用三视图判断几何体的形状以及计算几何体侧面积需要熟练掌握简单立体图形的几何特征;利用几何体画出其表面展开图不仅需要熟悉几何体的特征还需要根据这些特征进行一定程度的空间想象.19. 王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,(提∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)【答案】.能.【解析】试题分析:由题意可知,手机能不能放入卡槽AB内可以通过线段AB的长与手机的长17cm的比较来判断. 因此,本题就转化为如何求解线段AB的长. 分析已知条件可知,通过作△ABC的边BC上的高AD,可以利用已知条件中∠ACB的度数与边AC的长求解Rt△ADC,进而通过勾股定理得到线段AB的长.试题解析:王浩同学能将手机放入卡槽AB内. 理由如下.如图,过点A作AD⊥BC,垂足为D.∵∠ACB=50°,AC=20cm,∴在Rt△ADC中,sin sin50200.816AD AC ACB AC =⋅∠=⋅︒≈⨯=(cm),cos cos50200.612CD AC ACB AC =⋅∠=⋅︒≈⨯=(cm),∵BC =18cm ,∴BD =BC -CD ≈18-12=6(cm),∴在Rt △ADB 中,2222166292273AB AD DB =+≈+==(cm). ∵273292=,17289=, 又∵292289>,∴AB >17,即卡槽AB 的长度大于手机的长,∴王浩同学能将手机放入卡槽AB 内.点睛:本题考查了解直角三角形的相关知识. 利用解直角三角形求解线段长度问题的关键是寻找或构造合适的直角三角形. 符合条件的直角三角形不仅自身是可解的,而且还要能够通过公共边之类的关系与要求的线段相联系. 一般情况下,相关三角形的某一条边上的高往往是解题的突破口.20. 如图,已知四边形ABCD 内接于⊙O ,A 是BDC 的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F ,E ,且BF AD =.(1)求证:△ADC ∽△EBA ;(2)如果AB =8,CD =5,求tan ∠CAD 的值.【答案】(1)详见解析;(2)58. 【解析】【分析】(1)欲证△ADC ∽△EBA ,只要证明两个角对应相等就可以.可以转化为证明且BF AD =就可以;(2)A是BDC的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.【详解】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵BF AD=,∴∠DCA=∠BAE,∴△ADC∽△EBA;(2)解:∵A是BDC的中点,∴AB AC=,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,DC ACAB AE=,即588AE=,∴AE=645,∴tan∠CAD=tan∠AEC=ACAE=8645=58.考点:相似三角形的判定与性质;圆周角定理.五、(本大题共2小题,每小题9分,共18分)21. 如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【答案】(1)sinB=21313;(2)DE=5.【解析】【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=ADAB计算即可;(2)由EF∥AD,BE=2AE,可得23EF BF BEAD BD BA===,求出EF、DF即可利用勾股定理解决问题;【详解】(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB=222296BD AD++=313,∴sinB=6=313ADAB=21313.(2)∵EF∥AD,BE=2AE,∴23EF BF BEAD BD BA===,∴2693EF BF==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE=2222=43EF DF++=5.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.22. 如图,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数y=kx(k≠0)的图象经过点A,与OB交于点E.(1)求出k的值;(2)求OE∶EB的值.【答案】(1)48;(2)2. 【解析】解:(1)过点B作BF⊥x轴于点F, 由题意可得BF=6,OF=18∵四边形OABC是菱形,∴OC=BC在Rt△OBC中,62+(18-BC)2=BC2解得BC=10所以点A(8,6)将点A(8,6)代入kyx,解得k=48,(2)设E(48,aa),过点E作EG⊥x轴于点G,根据题意可知OG=a,EG=48 a由作图可知EG∥BF∴△OGE∽△BOF∴,解得a=12,∴∴六、(本大题共12分)23. 如图①,点P为∠MON的平分线上一点,以P点为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA·OB=OP2,我们就把∠APB叫作∠MON的智慧角.(1)如图②,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°,求证:∠APB是∠MON的智慧角;(2)如图①,已知∠MON=α(0°<α<90°),OP=2,若∠APB是∠MON的智慧角,连接AB,用含α的式子分别表示∠APB的度数和△AOB的面积.【答案】(1)详见解析;(2)∠APB=180°-12α,S△AOB=2sinα..【解析】试题分析:(1) 在△OAP中利用三角形内角和可以求得∠OAP+∠APO为135°,再根据已知条件容易得到∠OAP=∠OPB. 由“两组内角对应相等”不难证明△AOP∽△POB. 利用相似三角形的性质可以证明OA·OB=OP2. 由于上述证明过程中所用到的几何关系不随旋转而改变,所以可以证明本小题的结论.(2) 利用已知条件不难通过“两组对应边的比相等且夹角相等”证明△AOP∽△POB. 通过∠OAP=∠OPB可以将∠APB转化为△OAP的两个内角之和,从而利用三角形内角和获得∠APB与α的关系. 至于△AOB的面积,可以作出OB边上的高,利用锐角三角函数将这条高的长度用含有OA和α的式子表示出来. 通过三角形面积公式和OA·OB=OP2的关系可以得到△AOB的面积与α的关系.试题解析:(1) 证明:∵∠MON=90°,点P为∠MON平分线上的一点,∴11904522AOP BOP MON∠=∠=∠=⨯︒=︒,∵在△OAP中,∠AOP+∠OAP+∠APO=180°,∴∠OAP+∠APO=180°-∠AOP=180°-45°=135°. ∵∠APB=135°,∴∠APO+∠OPB=135°,∴∠OAP=∠OPB,∵∠OAP=∠OPB,∠AOP=∠POB=45°,∴△AOP∽△POB,∴OA OP OP OB=,∴OP2=OA·OB,∴∠APB是∠MON的智慧角.(2) 下面求解∠APB的度数.∵∠APB 是∠MON 的智慧角,∴OA ·OB =OP 2, ∴OA OP OP OB =, ∵点P 为∠MON 平分线上的一点,∠MON =α (0°<α<90°), ∴12AOP POB α∠=∠=. ∵OA OP OP OB=,∠AOP =∠POB , ∴△AOP ∽△POB ,∴∠OAP =∠OPB , ∵在△OAP 中,∠AOP +∠OAP +∠APO =180°, ∴∠OAP +∠APO =180°-∠AOP =11802α︒-, ∵∠APB =∠OPB +∠APO =∠OAP +∠APO ,∴11802APB α∠=︒-.下面求解△AOB 的面积.如图,过点A 作AH ⊥OB ,垂足为H . (以下用符号S △AOB 代指△AOB 的面积)∵∠MON =α (0°<α<90°),即∠AOH =α, ∴在Rt △OHA 中,sin sin AH OA AOH OA α=⋅∠=⋅,∴11sin 22AOB S OB AH OB OA α=⋅=⋅⋅, ∵∠APB 是∠MON 的智慧角,∴OA ·OB =OP 2, ∴211sin sin 22AOB S OB OA OP αα=⋅⋅=⋅, ∵OP =2, ∴21sin 2sin 2AOBS OP αα=⋅=,即△AOB 的面积为2sin α. 点睛:本题综合考查了相似三角形的判定和性质以及锐角三角函数的相关知识. 正确理解题意,充分利用所谓“智慧角”所包含的条件是解决该题的重要前提;避免对条件中“旋转”之类字眼的过分解读也是在解决本题的过程中需要特别注意的. 另外,利用“两组对应边的比相等且夹角相等”判定三角形相似的方法容易被忽略,从而造成不必要的困难.。
2017-2018学年第一学期九年级数学期末试题参考答案
2017—2018学年第一学期期末学业水平检测九年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。
对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,13. -3 14.-2 15. 516.2:3 17.24 18.(2,1) 19.解:(1)将x=1代入方程得:9-3a+a-1=0, 解得:a=4……………………………………………………………1分所以方程为:03x 4x 2=++,解得:3-x 1-x 21==,,所以方程的另一根为x=-3。
……………………………………3分(用根与系数的关系来解也可以)(2)证明:⊿=a 2-4×(a -1)= (a -2)2,∵(a -2)2≥0,⊿≥0. ∴不论a 取何实数,该方程都有两个不相等的实数根.………………8分20.解∶(1)21;………………………………………………2分 (2)乙家庭没有孩子,准备生两个孩子所有可能出现得结果有(男,男),(男,女),(女,男),(女,女),一共有4种结果,它们出现得可能性相同,所有结果种,满足“至少有一个是女孩”的结果有三种,所以至少有一个孩子是女孩的概率是43.………………7分 21.由题意得, 在直角ADC ∆中,∠APQ=45°,CD=60米,∴tan45°=ADCD ,即 ………2分 在直角BDC ∆中, ∠BPQ=60°,∴tan60°=CD BD ,即60BD =3, ∴BD=360………4分∴AB=BD-AD=60360-(米)。
答:海丰塔AB 的高为60360-米. ………8分22.(1)证明:连结OD .∵EF AC ⊥∴90DFA ∠=︒,∵AB AC =,∴1C ∠=∠……………………2分∵OB OD =,∴12∠=∠,∴2C ∠=∠ ,∴OD ∥AC …………3分∴90EDO DFA ∠=∠=︒,即OD EF ⊥.∴EF 是⊙O 的切线.…………………………5分(其他方法参照本题标准)(2)解: 连结AD .∵AB 是直径,∴AD BC ⊥.又AB AC =,∴CD=BD=5,在Rt CFD ∆中,DF=4, ∴CF=3…………………………………………6分在Rt CFD ∆中,DF AC ⊥∴CFD ∆∽ADC △ ………………………7分 ∴DC CF DA DF =,即534=DA ,∴320=DA ………………………9 根据勾股定理得:∴2222)320(5+=+=BD AD AB =325……………………10分 23. (1)∵ 四边形AMPN 是矩形,∴PN ∥AB ,PN =AM ,∴△DNP ∽△DAB . ∴ABNP DA DN =. ……………………………………………………2分 ∵AB =160,AD =100,AN =x ,AM =y ,∴160100100y x =-. ∴16058+-=x y . ………………………………………………4分 (2)设花坛AMPN 的面积为S ,则()40005058)16058(2+--=+-==x x x xy S …6分 ∵058<-,∴当50=x 时,S 有最大值, 4000=最大值S . ∴当AM =80,AN =50时,花坛AMPN 的最大面积为4000m 2 ………………8分24. 解:(1)∵直线y =ax +1与x 轴交于点A(-2,0),∴-2a +1=0,解得a =12,∴直线的解析式为y =12x +1,……2分 由PC ⊥x 轴,且PC =2,∴y =2=12x +1,解得x =2, ∴点P 的坐标为(2,2),………………………………3分∵点P 在反比例函数y =k x的图象上,∴k =2×2=4, ∴反比例函数解析式为y =4x.…………………………4分 (2)∵直线y =12x +1与y 轴交于点B ,∴点B 的坐标为(0,1),∴AO =2,OB = 1. ) 12如解图,过点Q 作QH ⊥x 轴于点H ,连接CQ ,则∠QHC =∠AOB =90°.∵点Q 在反比例函数y =4x 的图象上,∴设点Q 的坐标为(t ,4t),t >2, 则QH =4t,CH =t -2,……………………6分 若以点Q 、C 、H 为顶点的三角形S △AOB 相似时,则有两种可能,(ⅰ)当△QCH ∽△BAO 时,AO CH =OB QH ,即QH CH =OB AO =12,∴2×4t=t -2,解得t 1=4,t 2=-2(舍去), 则点Q 的坐标为(4,1);……………………………………7分(ⅱ)当△QCH ∽△ABO 时,AO QH =OB CH ,即QH CH =AO OB =2,∴4t=2(t -2),解得t 1=3+1,t 2=1-3(舍去),则点Q 的坐标为(3+1,23-2).……………………………………8分 综上所述,Q 点的坐标为(4,1)或(1+3,23-2).………………9分25.解:(1)设抛物线解析式为y=a (x+4)(x ﹣2),将B (0,﹣4)代入得:﹣4=﹣8a ,即a=,则抛物线解析式为y=(x+4)(x ﹣2)=x 2+x ﹣4;……………………4分(2)过M 作MN ⊥x 轴,将x=m 代入抛物线得:y=m 2+m ﹣4,即M (m , m 2+m ﹣4),∴MN=|m 2+m ﹣4|=﹣m 2﹣m+4,ON=﹣m ,………………………………6分∵A (﹣4,0),B (0,﹣4),∴OA=OB=4,∴△AMB 的面积为S=S △AMN +S 梯形MNOB ﹣S △AOB=×(4+m )×(﹣m 2﹣m+4)+×(﹣m )×(﹣m 2﹣m+4+4)﹣×4×4=2(﹣m 2﹣m+4)﹣2m ﹣8=﹣m 2﹣4m=﹣(m+2)2+4,当m=﹣2时,S 取得最大值,最大值为4.…………………………10分。
(精选4套)2017—2018学年度上学期期末考试九年级数学试题
16题图2017—2018学年度上学期期末考试九年级数学试题一、选择题(每小题4分,共40分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A .B .C .D .2.一元二次方程0182=--x x 配方后可变形为( )A. 17)4(2=+xB. 15)4(2=+xC. 17)4(2=-xD. 15)4(2=-x3.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次必有一次抽到一等奖,B .抽一次不可能抽到一等奖 C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 4.设1x ,2x 是方程2530x x +-=的两个根,则2212x x+的值是()A .19B .25C .31D .305.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ) A .15° B .20° C .25° D .30°6.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则AB ︵的长为( )A .πB .6πC .3πD .1.5π7.如图,平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( )A .1B .1或5C .3D.5(第5题图) (第6题图) (第7题图) (第8题图)8.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )D9.若A (),B (),C ()是二次函数的图象上的三点,则的大小关系是A .B .C .D .10.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,对称轴是直线x =-1,下列结论:①abc <0;②2a +b =0;③a -b +c >0;④4a -2b +c <0,其中正确的是( )A .①②B . 只有①C .③④D . ①④(第10题图) (第14题图)(第15题图)二、填空题(每小题4分,共32分)11.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 . 12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 . 14.如图,二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图象相交于点A (-2,4),B (8,2),则能使y 1>y 2成立的x 的取值范围是 .15.如图,在Rt △ABC 中,∠ACB =90°,AC =5cm ,BC =12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为 cm .16.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是 .17.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为第17题图18.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,…,如此作下去,则△B 2014A 2015B 2015的顶点A 2015的坐标是 .三、解答题(共7小题,78分) 19.(本题满分10分)解下列方程:(1)03)3(=-+-x x x ; (2)0142=+-x x .20.(本题满分8分)如图,在平面直角坐标系中,A (0,1),B (-3,5),C (-3,1).(1)在图中画出△ABC 以A 为旋转中心,沿顺时针方向旋转90° 后的图形△AB 1C 1,并写出B 1、C 1两点的坐标; (2)在图中画出与△ABC 关于原点对称的图形△A 2B 2C 2, 并写出B 2、C 2两点的坐标.21.(本题满分10分)已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b .⑴请你用树形图或列表法列出所有可能的结果;⑵现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.22.(本题满分12分)已知:函数y =ax 2-(3a +1)x +2a +1(a 为常数). (1)若该函数图象与坐标轴只有两个交点,求a 的值;(2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (x 1,0),B (x 2,0)两点,与y 轴相交于点C ,且x 2-x 1=2.求抛物线的解析式23.(本题满分12分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y =-10x +1200.(1)求出利润S (元)与销售单价x (元)之间的关系式(利润=销售额-成本); (2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24.(本题满分12分) 在直角三角形ABC 中,∠C=90°,点O 为AB 上的一点,以点O 为圆心,OA 为半径 的圆弧与BC 相切于点D ,交AC 于点E ,连接AD .证:25.(本题满分14分)如图,抛物线22y ax ax c =-+(a ≠0)与y 轴相交于点C (0,4),与x 轴相交于A 、B两点,点A 的坐标为(4,0). (1)求此抛物线的解析式;(2)抛物线在x 轴上方的部分有一动点Q ,当△QAB 的面积等于12时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2017—2018学年度上学期期末考试21.(本题满分8分)22.(本题满分10分)23.(本题满分10分)2017—2018学年度第一学期期末模拟考试卷九年级数学特别提醒:1、考试时间120分钟,满分150分.2、用黑色签字笔在答题卡...上答题,在试卷上答题无效。
20172018第一学期期末测试九年级数学试题及答案
2017—2018学年第一学期期末学业水平测试九年级数学试题:温馨提示分钟。
考试结束后,只分。
考试用时100本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为1201. 上交答题卡。
毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写答卷前,考生务必用0.52. 铅笔填涂相应位置。
在答题卡规定的位置上,并用2B把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦2B铅笔3.第Ⅰ卷每小题选出答案后,用干净后,再选涂其他答案标号。
答案不能答在试题卷上。
毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能第Ⅱ卷必须用0.54. 写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)分,在每小题给出的四个选项中,只有一项是正确的,请把正确的小题,共36一、选择题:本大题共12. 3分,选错、不选或选出的答案超过一个均记零分选项选出来.每小题选对得22m的值是x+5x+m-3m+2=0的一个根是0,则1.若关于x的一元二次方程(m-1) 2 D.无解.2 C.1或A.1 B206?x?4?x 2.若把方程的左边配成完全平方的形式,则正确的变形是222253)?9??3)(x(((x?3)?5x?3)?13x? B. C.. A. D张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见在63.张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是图形的情况下随机摸出12111 A. D C.. B.623322?3)?2(x?y个单位后,所得图象的函数表达式个单位,再向下平移2二次函数4.6图象向左平移是2212???2x6x?yxy?2?12x A. B.2218?6x?y??12x?y2?x182?x C. D .三通管的立体图如图所示,则这个几何体的主视图是5.B. A.D. C.下列命题中,假命题的是6. 等弧所对的圆周角相等 A.两条弧的长度相等,它们是等弧 B.位似图形一定有位似中心 C.所有的等边三角形都相似 D. 两点恰好B、C的菱形ABCD绕点A旋转,当7.如图,边长为2A的长度等于AEF落在扇形的弧EF上时,弧BC DEF????23 D. A. B. C.B3324C 1=∠2,那么添加下列任何一个条件:8.如图,若果∠(第7题图)BCABABAC =),)=,(21 (DEADAEAD AED ,(,4)∠C=∠(3)∠B=∠DADE的个数为其中能判定△ABC∽△题图)8(第 A.1 B.2 C.3D.4AB=8是△ABC的边BC上一点,,AD=4,9.如图,点D 的面积为30,那么△ACD的面积为∠∠DAC=B.如果△ABD15 .5 A. B.7.5 C10 D.(第9题图)k的值10.k的图象没有交点,=y=与一次函数若反比例函数yx-3则x可以是-3.-2DB.-1C. A.121?6x?2x?y?xx,上,且<<都在抛物线11.若点、0)y)(Bx,A(x,y212211yy的大小关系为则与21yyyyyy A. C.< D. B.≠>不能判定 2 211126?yy?x?bA(m,n),利用图象的对称性可知它们的另一与一次函数的图象交于点12.若反比例函数x个交点是)n?n)(?m,(((n,m)?n,?m)?m, C. B. A. D.第Ⅱ卷(非选择题)6小题,共24分,只要求填写最后结果,每小题填对得4分.二、填空题:本大题共. 的圆中,垂直平分半径的弦长为13.半径等于823x?y?x?2二次函数的图象如图所示,14. . 0 当y<时,自变量x的取值范围是 15.如图,在同一平面内,将△逆时针绕点AABC 14题图)(第 AB,∥°到△旋转40AED的位置,恰好使得DC.则∠CAB的大小为 . = °°cos30-sin30°tan45计算:16. tan60°2?y的图象上,若,17.点都在,)),(xy,(x)y,(xy321321x yyyx?0?x?x 的大小关系(用“<,,则”连接),321312题图)(第15是 .∠AMN?30,B为弧AN的中点, P上,在⊙,点的直径,是⊙如图,18. MNOOM=2AO是直径MN 上一动点,则PA+PB的最小值为 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题5分,本大题满分10分)20?x?93x?12. (1)用配方法解方程:204?x?9x?3. )用公式法解方程:(2 8分)20.(本大题满分据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情ABD处有一探测仪,的上方,在一条笔直公路境中的速度不得超过B点匀速如平面几何图,,第一次探测到一辆轿车从CD得点,测驶,测得秒后到达向点行,结果精确到)求B,C的距离.(1)通过计算,判断此轿车是否超速.(2 (本大题满分12分) 21.24??2x?8xy?已知二次函数,完成下列各题:2+ky=a(x+h)形式,并写出它的顶点坐标、(1)将函数关系式用配方法化为对称轴. ABC的面积.轴交于)若它的图象与xA、B两点,顶点为C,求△(2 分)22.(本大题满分10 ,的直线互相垂直,垂足为D ADCAB如图,为⊙O的直径,为⊙O上一点,和过C点.DAB且AC 平分∠ 1()求证:DC为⊙的切线;O 3O2()若⊙的半径为,CDAD=4,求的长.10分)23.(本大题满分kmx?y??y xA、CBxy(-1 如图,已知直线,与双曲线)分别交于点轴分别交于点(与,轴、<012x D、).,2)1(a 1)分别求出直线及双曲线的解析式;(y?y x.2)利用图象直接写出,当在什么范围内取值时,(21y?ymx?y?. 时的部分用黑色笔描粗一些3)请把直线上(211y k y?x?m?y12x B C D x OA题图)(第2324.(本大题满分10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?学年第一学期期末学业水平测试2017—2018九年级数学试题参考答案分)个小题,每小题3分,满分36一、选择题(本大题1212 11 7 8 9 10 题号 1 2345 6CDD答案 CBBB A BCAD4分,满分24分)二、填空题(本大题共6个小题,每小题38 3; 15.70°;;14.-1<x13.<2y?y?; 18. 17.;16.1312个小题,共60分)三、解答题(本大题6分,满分10分)19.(每小题520?x?4x?3解:(1)两边同除以3分. ,得……………………………123?4?x?x.移项,得2222?3?x?4x?2?…………………………2配方,得分,21?(x?2) 3. ……………………………分1x?2??,…………………………4分∵ 5分,x=1. ………………………………∴原方程的解为x=321cba………………………………2 ()∵ 1=3,,=-9分=4.a c b,3×4=33>0 ……………………2分=∴⊿)22-4 =(-9-4×∴方程有两个不相等的实数根……………………………4分333333333?x??x??.…………………,即 5分, =21262626(本大题满分8分) 20.解:,在中,,,即,在中,,即,,m20 6分;则的距离为…………………………………,根据题意得:分则此轿车没有超速.…………………………………8 分)21.(本大题满分122+8x-4y=-2x1)解:(21分 =-2(x-4x)-4 ……………………………=-2(x-4x+4-4)-4 ……………………………32 4分2分=-2(x-2)+4. …………………………… 6分),对称轴为直线x=2. ………………所以,抛物线的顶点坐标为(2,422分,,(x-2)=2 ………………………7令(2)y=0得-2(x-2)+4=022??2?22=…………………………=9x-2=分,x,所以x. 所以21222?2?,0),分B(……x 所以与轴的交点坐标为A10(0). ,122?22?24分= ∴S. ×[()] ×…………………)4=-(12ABC△2分)(本大题满分1022.OC(1)证明:连接OCA, OAC=∠∵OA=OC,∴∠OAC, DAC=∠∵AC平分∠DAB,∴∠AD, ∥∠DAC=OCA,∴OC∴∠,∵AD⊥,CDCD,⊥∴OC 5分…………………与⊙O相切于点C;∴直线CD °.,则∠2)解:连接BCACB=90(∠ACB=90°,,∠∵∠DAC=∠OACADC= ,∽△∴△ADCACB2 AC∴,∴=ADAB?,,AD=4,∴AB=6O∵⊙的半径为3,62,∴AC=22∴CD= ……………………………………10分23.(本大题满分10分)y?x?my?x?3C .-1,2)坐标代入……2分,所以,得1解:()把点m=3(1k2y??y?C)坐标代入2(,所以-1把点,.……………3分 2,得k= —2xx2??y D)把点(24(a,1)坐标代入………………………分,所以a=—2.xy?y1???2?x.…………………………利用图象可知,当时,7分21(3)略. ……………………10分24.(本大题满分10分)x元,根据题意,得解:设第二个月的降价应是80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000………………5分x-20x+100=0,2整理,得解这个方程得x=x=10,………………8分21当x=10时,80-x=70>50,符合题意.分1070答:第二个月的单价应是元. ………………注意:评分标准仅做参考,只要学生作答正确,均可得分。
2017-2018学年九年级(上)期末数学试卷
2017-2018学年九年级(上)期末数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共6小题,共18.0分)1.平面直角坐标系中,与点,关于原点中心对称的点是A. ,B. ,C. ,D. ,2.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数下列事件是必然事件的是A. 掷一次骰子,朝上的一面的点数大于0B. 掷一次骰子,朝上的一面的点数为7C. 掷一次骰子,朝上的一面的点数为4D. 掷两次骰子,朝上的一面的点数都是33.方程的根是A. 4B.C. 0或4D. 0或4.设,,,,,是抛物线上的三点,则,,的大小关系为A. B. C. D.5.已知圆O是正n边形的外接圆,半径长为18,如果弧的长为,那么边数n为A. 5B. 10C. 36D. 726.二次函数的图象经过,,则方的解A. ,B. ,C. ,D. ,二、填空题(本大题共8小题,共24.0分)7.设、是方程的两个根,且则______ .8.如图,,的圆心O在边BC上,的半径为3,在圆心O向点C运动的过程中,当______ 时,与直线CA相切.9.10.11.12.13.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同小华通过多次试验后发现,从盒子中摸出红球的频率是,摸出白球的频率是,那么可以估计盒子中黄球的个数是______ .14.某种冰箱经两次降价后从原来的每台2500元降为每台1600元,求平均每次降价的百分率为______ .15.一抛物线和另一抛物线的形状和开口方向完全相同,且顶点坐标是,,则该抛物线的解析式为______ .16.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型若圆的半径为r,扇形的半径为R,扇形的圆心角等于,则R与r之间的关系是______ .17.18.19.如图,在平面直角坐标系xOy中,由绕点P旋转得到,则点P的坐标为______ .20.如图,在平面直角坐标系中,将绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去若点,,,,则点的坐标为______ .三、计算题(本大题共1小题,共5.0分)21.解方程:.四、解答题(本大题共2小题,共11.0分)22.如图,中,, ,与相切于点C,求图中阴影部分的面积结果保留23.24.25.26.27.如图,中,, ,,逆时针旋转一定角度后与重合,且点C恰好成为AD的中点.指出旋转中心,并求出旋转的度数;求出的度数和AE的长.28.五、计算题(本大题共1小题,共7.0分)29.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.六、解答题(本大题共6小题,共55.0分)30.某商店将进货价为8元件的商品按10元件售出,每天可售200件,通过调查发现,该商品若每件涨元,其销量就减少10件.请你帮店主设计一种方案,使每天的利润为700元.能否使每天的利润为800元?为什么?31.已知二次函数,完成下列各题:将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴;它的图象与x轴交于,两点,顶点为C,求.32.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、,是圆的切线,过点F作BC的垂线交BC于点G.求证:;若AF的长为2,求FG的长.33.人工浮床又称人工浮岛,自20年前人类开发出第一个人工浮床之后,就将人工浮床应用于地表水体的污染治理和生态修复近年来,我国的人工浮床技术开发及用于正好处于快速发展时期如图所示,是我市在某湖面上为净化水质而搭建的一个水上圆形人工浮床示意图,其中圆和三块边长为16米的正方形是浮岛框架部分,被分割成的7部分将运用无土技术分别栽培7种不同的水生植物,正方形的顶点A、B、C、D都在圆上,且整个浮床成轴对称图形,求这个圆形人工浮床的半径.34.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本单位:元、销售价单位:元与产量单位:之间的函数关系.请解释图中点D的横坐标、纵坐标的实际意义;求线段AB所表示的与x之间的函数表达式;当该产品产量为多少时,获得的利润最大?最大利润是多少?35.如图,抛物线与直线交于点,的两点,点B是点A关于y轴的对称点.求,,两点的坐标.当点P在x轴上运动时,若以,,,为顶点的四边形是平行四边形,求P 点的坐标.点F为线段AC上一动点,过F作轴,轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.将中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC 交于点,所在的直线与AC交于点N,连接DM,是否存在这样的t,使是等腰三角形?若存在,求t的值;若不存在请说明理由.【答案】1. C2. A3. C4. A5. C6. C7. 38.9. 2410.11.12.13. ,14. ,15. 解:移项得:,配方得:,即,开方得:,原方程的解是:,.16. 解:连接OC,与圆O相切,,,, ,在中,,,, ,,,即,.则阴影扇形故图中阴影部分的面积为.17. 解:逆时针旋转一定角度后与重合,A为顶点,旋转中心是点A;根据旋转的性质可知:,旋转角度是;由可知:,由旋转可知: ≌ ,,,又C为AD中点,.18. 解:方法一画树状图得:方法二列表得:2种,恰好选中甲、乙两位同学的概率为:;一共有3种等可能性的结果,其中恰好选中乙同学的有1种,恰好选中乙同学的概率为:.19. 解:设涨价x元,根据题意可得:,解得:,,故此时的售价为或,答:售价为13元或15元时,每天的利润可得到700元;不能,理由:设涨价x元,,此方程无解,故不能使每天的利润为800元.20. 解:.,顶点坐标为,,对称轴为直线.令解得:,.,,,.,,.21. 证明:连结OD,如图,是圆的切线,,,为等边三角形,,,而,,,,;解:在中,,,,而,点O为BC的中点,为的中位线,,即,,,,,在中,,.22. ,这个圆形人工浮床的半径为米23. 解:点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;这个一次函数的表达式为;;,这个一次函数的表达式为,设产量为xkg时,获得的利润为W元,当时,,当时,W的值最大,最大值为2250;当时,,由知,当时,W随x的增大而减小,时,,当时,,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.24. 解:抛物线与直线交于点,的两点,,整理得:,解得:或.将代入得:,点A的坐标为,.点B是点A关于y轴的对称点,点B的坐标为,.将代入得:,点C的坐标为,.点A的坐标为,,点B的坐标为,,.以,,,为顶点的四边形是平行四边形,.又的坐标为,,点P在x轴上,的坐标为,或,;当点F在第一象限时,如图1所示:设正方形OEFG的边长为P,则,.点,在直线上,,解得,点F的坐标为,.当点F在第二象限时,同理可得点F的坐标为,,此时点F不在线段AC上,舍去.综上所述:点F的坐标为,;过点M作于H,如图2,则,.点E和点C重合时停止运动,.当时,,则,,,当时,,则,,,在中,.在中,,,.当时,,解得;当时,,解得;当时,,解得,舍去.综上所述:当是等腰三角形时,t的值为,或1.。
新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷
新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。
若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。
2017-2018学年九年级上学期期末考试数学试题(解析版)
故选 B.
考点:利用频率估计概率.
7. 将抛物线 y=x2-4x-4 向左平移 3 个单位,再向上平移 5 个单位,得到抛物线的函数表达式为(
)
A. y=(x+1)2-13 B. y=(x-5)2-3
C. y=(x-5)2-13 D. y=(x+1)2-3
【答案】D
【解析】先将一般式化为顶点式,根据左加右减,上加下减来平移
∵△=4−4×1×2017<0,
∴原方程无实数根.
故选:D.
3. 已知反比例函数 y=- ,当 x>0 时,它的图象在(
)
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
【答案】D
【解析】∵比例系数 k=−2<0,∴其图象位于二、四象限,
∵x>0,∴反比例函数的图象位于第四象限,
故选:D.
二、填空题:本大题共 8 小题,每小题 3 分,共 24 分.
11. 若 x2-4x+5=(x-2)2+m,则 m=______. 【答案】1 【解析】已知等式变形得:x2−4x+5=x2−4x+4+1=(x−2)2+1=(x−2)2+m, 则 m=1, 故答案为:1 12. 若二次函数 y=-x2-4x+k 的最大值是 9,则 k=______. 【答案】5 【解析】y=−(x−2)2+4+k, ∵二次函数 y=−x2−4x+k 的最大值是 9,
)
A. A B. B C. C D. D 【答案】C 【解析】试题分析:阴影部分的面积=阴影部分的面积=△ EFP 的面积+△ GHP 的面积 ∵AE=x,
学+科+网...学+
科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网... 它的图象为 C. 故选 C. 考点:正方形的性质、二次函数的动点问题
人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案
E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
2017-2018上学期九年级数学期末试卷
2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。
2017-2018学年九年级数学上期末试卷含详细答案解析
2017-2018学年九年级数学上期末试卷含详细答案解析数学试卷一、选择题(每小题3分,满分30分)1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.07.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+49.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.2710.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1二、填空题(每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.5013.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(本大题共9小题,满分102分)17.(9分)解方程:x2﹣6x+8=0.18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.参考答案一、选择题1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、B、C是中心对称图形,D不是中心对称图形,故选:D.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)【分析】由抛物线解析式即可求得答案.解:∵y=﹣2(x﹣3)2+5,∴抛物线顶点坐标为(3,5),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定【分析】先计算出“22选5”和“29选7”获奖的可能性,再进行比较,即可得出答案.解:“22选5”福利彩票中,全部获奖的可能性为:,“29选7”福利彩票中,全部获奖的可能性为:,∵<,∴获一等奖机会大的是“29选7”,故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 【分析】利用待定系数法求出函数值即可判断.解:当x=﹣3时,y1=1,当x=﹣1时,y2=3,当x=1时,y3=﹣3,∴y3<y1<y2故选:C.【点评】本题考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.0【分析】根据判别式的意义得到△=(﹣2)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°【分析】首先连接AC,由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,求得∠A=∠D,继而求得答案.解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠CDB=40°,∴∠CBA=90°﹣∠A=50°.故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.27【分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴,解得S△FCD=27.故选:D.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1【分析】连结MF,如图,先证明MF为△CEA的中位线,则AE=2MF,AE∥MF,利用NE∥MF得到==1,==,即BN=NM,MF =2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,所以AN=3b,然后利用AN∥MF得到===,所以NQ=a,QM=a,再计算BN:NQ:QM的值.解:连结MF,如图,∵M是AC的中点,EF=FC,∴MF为△CEA的中位线,∴AE=2MF,AE∥MF,∵NE∥MF,∴==1,==,∴BN=NM,MF=2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,∴AN=3b,∵AN∥MF,∴===,∴NQ=a,QM=a,∴BN:NQ:QM=a:a:a=5:3:2.故选:C.【点评】本题考查了平行线分线段成比例定理、三角形中位线性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会利用参数解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为(﹣1,2).【分析】直接利用关于原点对称点的性质进而得出答案.解:点A(1,﹣2)关于原点对称的点A′的坐标为:(﹣1,2).故答案为:(﹣1,2).【点评】此题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为0.5(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.13.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.【点评】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是144度.【分析】根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm2,∴扇形面积为90π=,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144【点评】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥侧面积是解决问题的关键.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是10或11.【分析】因式分解法解方程求得x的值,再分两种情况求解可得.解:解方程x2﹣3x=4(x﹣3),即(x﹣3)(x﹣4)=0得x=3或x =4,若腰长为3时,周长为3+3+4=10,若腰长为4时,周长为4+4+3=11,故答案为:10或11.【点评】本题主要考查解一元二次方程和等腰三角形的能力,解题的关键是熟练掌握因式分解法解一元二次方程的能力和等腰三角形的定义.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,),(2,0),(,0).【分析】分类讨论:当PC∥OA时,△BPC∽△BOA,易得P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,易得P点坐标为(2,0);当PC⊥AB时,如图,由于∠CAP=∠OAB,则Rt△APC∽Rt △ABC,得到=,再计算出AB、AC,则可利用比例式计算出AP,于是可得到OP的长,从而得到P点坐标.解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,所以P 为OB的中点,此时P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,所以P为OA的中点,此时P点坐标为(2,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABC,∴=,∵点A(4,0)和点B(0,3),∴AB==5,∵点C是AB的中点,∴AC=,∴=,∴AP=,∴OP=OA﹣AP=4﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,),(2,0),(,0).故答案为:(0,),(2,0),(,0).【点评】本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了坐标与图形性质.注意分类讨论思想解决此题.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(9分)解方程:x2﹣6x+8=0.【分析】把方程左边分解得到(x﹣2)(x﹣4)=0,则原方程可化为x﹣2=0或x﹣4=0,然后解两个一次方程即可.解:x2﹣6x+8=0(x﹣2)(x﹣4)=0,∴x﹣2=0或x﹣4=0,∴x1=2 x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.【分析】首先根据题意画出旋转后的三角形,易得△ACD是等腰直角三角形,然后由勾股定理求得AC的长.解:如图,∵在△ABC中,∠ACB=90°,AB=5,BC=4,∴AC==3,∵将△ABC绕点C顺时针旋转90°,点A,B的对应点分别是点D,E,∴AC=CD=3,∠ACD=90°,∴AD==3.【点评】此题考查了旋转的性质以及勾股定理.注意掌握旋转前后图形的对应关系是解此题的关键.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画出树状图,得出所以等可能的结果数,再找出张辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解即可.解:(1)张辉同学选择清理类岗位的概率为:=;故答案为:;(2)根据题意画树状图如下:共有16种等可能的结果数,张辉和夏明恰好选择同一岗位的结果数为4,所以他们恰好选择同一岗位的概率:=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.【分析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.解:(1)如图所示,CD即为所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴=,∴BC2=BD•AB.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和相似三角形的判定和性质.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.【分析】(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,根据2015年和2017年销售的箱数,列出方程,求解即可.(2)根据(1)中的平均下降率预测该市2018年春节期间的烟花爆竹销售量.解:(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,依题意得:20(1+x)2=9.8,解这个方程,得x1=0.3,x2=1.7,由于x2=1.7不符合题意,即x=0.3=30%.答:该市2015年到2017年烟花爆竹年销售量的平均下降率为30%.(2)由题意,得9.8×(1﹣30%)=6.86(万箱)答:预测该市2018年春节期间的烟花爆竹销售量为6.86万箱.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,∠DBC=∠A=60°,BC⊥OB,∴OC=12,∵△OBC的面积=OC•BE=OB•BC,∴BE=,∴BD=2BE=6,即弦BD的长为6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC ﹣S△OCE﹣S△OAD进行计算.解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.【分析】(1)将抛物线解析式配方成顶点式即可得;(2)①画出函数的大致图象,由图象知直线l经过顶点式时,直线l 与抛物线只有一个交点,据此可得;②画出翻折后函数图象,由直线l与新的图象恰好有三个公共点可得﹣2m+3=﹣7,解之可得;(3)由开口向上及函数值都不小于1可得,解之即可.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.【点评】本题主要考查抛物线与x轴的交点及解不等式组得能力,根据题意画出函数的图象,结合函数图象得出对应方程或不等式组是解题的关键.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.【分析】(1)若使PQ⊥AC,则根据路程=速度×时间表示出CP和CQ的长,再根据30度的直角三角形的性质列方程求解;若使PQ⊥AB,则根据路程=速度×时间表示出BP,BQ的长,再根据30度的直角三角形的性质列方程求解;(2)首先画出符合题意的图形,再根据路程=速度×时间表示出BP,CQ的长,根据等边三角形的三线合一求得PD的长,根据30度的直角三角形的性质求得PD边上的高,再根据面积公式进行求解;(3)根据(1)中求得的值,确定圆与AB、AC相切时的t的值,即可分情况进行讨论.解:(1)当Q在AB上时,显然PQ不垂直于AC,当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴PC=2CQ,∴4﹣x=2×2x,∴x=;当x=(Q在AC上)时,PQ⊥AC;(2)如图②,当0<x<2时,P在BD上,Q在AC上,过点Q作QN⊥BC于N;∵∠C=60°,QC=2x,∴QN=QC×sin60°=x;∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴DP=2﹣x,∴y=PD•QN=(2﹣x)•x=﹣x2+x;(3)显然,不存在x的值,使得以PQ为直径的圆与AC相离,由(1)可知,当x=时,以PQ为直径的圆与AC相切;当点Q在AB上时,8﹣2x=,解得x=,故当x=或时,以PQ为直径的圆与AC相切,当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC相交.【点评】本题考查三角形综合题、等边三角形的性质、直角三角形的性质以及直线和圆的位置关系求解.解题的关键是用动点的时间x和速度表示线段的长度,学会利用参数解决问题,属于中考压轴题.。
2017-2018学年度上学期期末考试九年级数学试卷(含答案)
2017~2018学年度上学期期末考试九年级数学试卷一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( ) A .20ax bx c ++= B .212x x += C .2221x x x +=+ D .220x +=2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( ) A .﹣13B .12C .14D .153.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( ) A .14B .516C .716 D .124.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( )A .4πB .9πC .16πD .25π 5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( ) A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤46.如图,矩形OABC 中,A(1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB,CB 于点E ,F,连接OE ,OF,EF,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43 D .27.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ 的最小值是( ) A .20 cm B .18 cm C .25cm D .32cm8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个第6题图 第7题图 第8题图9.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线3=-+y x 上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.3B.5C.7D.310.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的是()A.①②③④ B.②③C.①②④D.①③④第9题图第10题图二、填空题(每小题3分,共18分)11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是____.12.若抛物线2=-++中不管p取何值时都通过定点,则定点坐标为.241y x px p13.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.14.如图,在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC=.15.如图.在等边△ABC中,AC=8,点D、E、F分别在三边AB、BC、AC上,且AF=2,FD⊥DE,∠DFE=60°,则AD的长为.第13题图第14题图第15题图16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为.三、解答题(17-20题每题8分,21、22题每题9分,23题10分,24题12分)17.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.18.关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转"相当于“袋中摸球"的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案.(3)请直接写出题2的结果.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.21.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如表:产销商品件数(x/件)10 20 30产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x=-(每个周期的产销利润=P•x﹣C)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.24.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c=++经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2017~2018学年度上学期期末考试九年级数学试卷参考答案与试题解析一、选择题(共10小题)1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .212x x+= C .2221x x x +=+ D .220x += 【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A 、当a =0时,边上一元二次方程,不符合题意; B 、为分式方程,不符合题意;C 、不是关于x 的一元二次方程,不符合题意;D 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意; 故选D【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( )A .﹣13B .12C .14D .15【分析】根据一元二次方程解的定义得到22510αα--=,即22=51αα+,则2235ααββ++可表示为531αβαβ+++(),再根据根与系数的关系得到5=2αβ+,1=2αβ-,然后利用整体代入的方法计算.【解答】解:∵α为22510x x --=的实数根, ∴22510αα--=,即22=51αα+,∴2235=5135=531ααββααββαβαβ++++++++(), ∵α、β为方程22510x x --=的两个实数根,∴5=2αβ+,1=2αβ-,∴251235=531=1222ααββ++⨯+⨯-+(). 故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程200ax bx c a ++=≠()的两根时,12=b x x a +-,12=cx x a .也考查了一元二次方程解的定义.3.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .12【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是3的倍数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=516.故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.4.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( ) A .4π B .9π C .16π D .25π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π, 故选:C .【点评】本题考查的是圆的认识、圆的面积的计算,掌握圆的面积公式是解题的关键.5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤4【分析】由于不知道函数是一次函数还是二次函数,需对k 进行讨论.当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当Δ≥0时,二次函数与x 轴都有交点,解Δ≥0,求出k 的范围.【解答】解:当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当△=22﹣4(k ﹣3)≥0,即k ≤4时,函数的图象与x 轴有交点. 综上k 的取值范围是k ≤4. 故选D .【点评】本题考察了二次函数、一次函数的图象与x 轴的交点、一次不等式的解法.解决本题的关键是对k 的值分类讨论.6.如图,矩形OABC 中,A (1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB ,CB于点E ,F,连接OE,OF ,EF ,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43D .2【分析】设E 点坐标为(1,m ),则F 点坐标为(2m,2),根据三角形面积公式得到S △BEF =(1﹣2m )(2﹣m ),根据反比例函数k 的几何意义得到S △OFC =S △OAE =12m ,由于S △OEF =S 矩形ABCO ﹣S △OCF﹣S △OEA ﹣S △BEF ,列方程即可得到结论.【解答】解:∵四边形OABC 是矩形,BA ⊥OA ,A (1,0),∴设E 点坐标为(1,m ),则F 点坐标为(2m,2), 则S △BEF =(1﹣2m)(2﹣m ),S △OFC =S △OAE =m , ∴S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF =2﹣12m ﹣12m ﹣(1﹣2m)(2﹣m ),∵S △OEF =2S △BEF ,∴2﹣12m ﹣12m ﹣(1﹣2m )(2﹣m)=2×(1﹣2m )(2﹣m ),整理得232204m m -+-=(),解得m 1=2(舍去),m 2=23,∴E 点坐标为(1,23),∴k =23. 故选A .【点评】本题考查了反比例函数k 的几何意义和矩形的性质;会利用面积的和差计算不规则图形的面积.7.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20 cmB .18 cmC .25cmD .32cm【分析】根据已知条件得到CP=6﹣t ,得到22222(6)2(3)18PQ PC CQ t t t +-+++于是得到结论.【解答】解:∵AP=CQ=t , ∴CP=6﹣t ,∴22222(6)2(3)18PQ PC CQ t t t =+-+++ ∵0≤t ≤2,∴当t =2时,PQ 的值最小, ∴线段PQ 的最小值是25故选C .【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个【分析】根据抛物线的对称轴可判断①,由抛物线与x 轴的交点及抛物线的对称性可判断②,由1x =-时y >0可判断③,由2x =-时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线2x =-知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线22bx a=-=-,∴40a b -=,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间, ∴抛物线与y 轴的交点在y 轴的负半轴,即c <0,故②正确; ∵由②知,1x =-时y >0,且4b a =,∴430a b c a a c a c -+=-+=-+>,所以③正确; 由函数图象知当2x =-时,函数取得最大值,∴242a b c at bt c -+≥++,即242a b at bt -≥+(t 为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x =﹣2, ∴抛物线上离对称轴水平距离越小,函数值越大, ∴y 1<y 3<y 2,故⑤错误; 故选:B .【点评】本题考查了二次函数与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.9.如图,在平面直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 是直线3y x =-+上的一个动点,点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是( ) A .3 B .5 C .7 D .3【分析】连接AP,PQ,当AP 最小时,PQ 最小,当AP ⊥直线3y x =-+时,PQ 最小,根据相似三角形的性质得到AP ,根据勾股定理即可得到结论.【解答】解:如图,作AP ⊥直线3y x =-+,垂足为P ,作⊙A 的切线PQ ,切点为Q ,当AP ⊥BC 时,此时切线长PQ 最小,∵A 的坐标为(﹣1,0),设直线与x 轴,y 轴分别交于B ,C , ∴B (0,3),C (3,0), ∴OB=3,AC=4,∴BC=32,在△APC 与△BOC 中, ∵∠APC=∠BOC=90°,∠ACP=∠OCB , ∴△APC ∽△OBC , ∴AP AC OB BC =, ∴AP=22,∴227PQ AP AQ =-=,故选C .【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC ,其中正确的是( )A .①②③④B .②③C .①②④D .①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论. 【解答】解:∵△BPC 是等边三角形, ∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°, 在正方形ABCD 中,∵AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, ∴BE=2AE ;故①正确; ∵PC=CD ,∠PCD=30°, ∴∠PDC=75°, ∴∠FDP=15°, ∵∠DBA=45°, ∴∠PBD=15°, ∴∠FDP=∠PBD ,∵∠DFP=∠BPC=60°,∴△DFP ∽△BPH ;故②正确; ∵∠FDP=∠PBD=15°,∠ADB=45°, ∴∠PDB=30°,而∠DFP=60°, ∴∠PFD ≠∠PDB ,∴△PFD 与△PDB 不会相似;故③错误; ∵∠PDH=∠PCD=30°,∠DPH=∠DPC , ∴△DPH ∽△CPD ,∴DP PHPC DP=, ∴DP 2=PH•PC,故④正确; 故选C .【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二.填空题(共6小题) 11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是 50(1﹣x )2=32 .【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x ,可以列出相应的方程即可.【解答】解:由题意可得, 50(1﹣x )2=32,故答案为:50(1﹣x )2=32.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.12.若抛物线2241y x px p =-++中不管p 取何值时都通过定点,则定点坐标为(4,33).【分析】把含p 的项合并,只有当p 的系数为0时,不管p 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【解答】解:2241y x px p =-++可化为22(4)1y x p x =--+, 分析可得:当x =4时,y =33;且与p 的取值无关; 故不管p 取何值时都通过定点(4,33).【点评】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.13.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为4或254.【分析】先根据勾股定理求出AB 的长,再分△ADP ∽△ABC 与△ADP ∽△ACB 两种情况进行讨论即可.【解答】解:∵在△ABC 中,∠C=90°,AC=8,BC=6,∴2286=10AB =+. ∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时,AD AP AB AC =,即5108AP=,解得AP=4; 当△ADP ∽△ACB 时,AD AP AC AB =,即5810AP =,解得AP=254. 故答案为:4或254.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解. 14.如图,在平面直角坐标系中,△OCB 的外接圆与y 轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC= 13+.【分析】连接AB ,由圆周角定理知AB 必过圆心M ,Rt △ABO 中,易知∠BAO=∠OCB=60°,已知OA=2,即可求得OB 的长;过B 作BD ⊥OC ,通过解直角三角形即可求得OD 、BD 、CD 的长,进而由OC=OD+CD 求出OC 的长.【解答】解:连接AB,则AB 为⊙M 的直径. Rt △ABO 中,∠BAO=∠OCB=60°,∴332=6OB OA ==⨯. 过B 作BD ⊥OC 于D . Rt △OBD 中,∠COB=45°, 则2=32OD BD OB ==. Rt △BCD 中,∠OCB=60°,则3=13CD BD =. ∴OC=CD+OD=13+.故答案为:13+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.15.如图.在等边△ABC 中,AC=8,点D 、E 、F 分别在三边AB 、BC 、AC 上,且AF=2,FD ⊥DE ,∠DFE=60°,则AD 的长为 3 .【分析】根据三角形的内角和定理列式求出∠2=∠3,再根据等边三角形的三个角都是60°求出∠A=∠C,然后根据两组角对应相等的两个三角形相似求出△ADF和△CFE相似,根据相似三角形对应边成比例可得AD DFCF EF=,再根据直角三角形30°角所对的直角边等于斜边的一半可得12DF EF=,然后代入数据进行计算即可得解.【解答】解:∵∠DFE=60°,∴∠1+∠2+60°=180°,∴∠2=120°﹣∠1,在等边△ABC中,∠A=∠C=60°,∴∠A+∠1+∠3=180°,∴∠3=180°﹣∠A﹣∠1=120°﹣∠1,∴∠2=∠3,又∵∠A=∠C,∴△ADF∽△CFE,∴AD DF CF EF=,∵FD⊥DE,∠DFE=60°,∴∠DEF=90°﹣60°=30°,∴12DF EF=,又∵AF=2,AC=8,∴CF=8﹣2=6,∴1 62 AD=,解得AD=3.故答案为:3.【点评】本题考查了相似三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,根据平角等于180°和三角形的内角和定理求出∠2=∠3是解题的关键,也是本题的难点.16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为52.【分析】在平面直角坐标系中,在y轴上取点P(0,1),过P作直线l∥x轴,作CM⊥OA于M,作CN⊥l于N,构造Rt△BCN≌Rt△ACM,得出CN=CM,若连接CP,则点C在∠BPO的平分线上,进而得出动点C在直线CP上运动;再分两种情况讨论C的路径端点坐标:①当m=﹣5时,②当m=5时,分别求得C(﹣1,0)和C1(4,5),而C的运动路径长就是CC1的长,最后由勾股定理可得CC1的长度.【解答】解:如图1所示,在y 轴上取点P (0,1),过P 作直线l ∥x 轴, ∵B (m ,1), ∴B 在直线l 上,∵C 为旋转中心,旋转角为90°, ∴BC=AC ,∠ACB=90°, ∵∠APB=90°,∴∠1=∠2,作CM ⊥OA 于M ,作CN ⊥l 于N,则Rt △BCN ≌Rt △ACM ,∴CN=CM ,若连接CP ,则点C 在∠BPO 的平分线上, ∴动点C 在直线CP 上运动;如图2所示,∵B(m ,1)且﹣5≤m ≤5, ∴分两种情况讨论C 的路径端点坐标, ①当m=﹣5时,B (﹣5,1),PB=5, 作CM ⊥y 轴于M ,作CN ⊥l 于N , 同理可得△BCN ≌△ACM , ∴CM=CN,BN=AM , 可设PN=PM=CN=CM=a , ∵P (0,1),A (0,4), ∴AP=3,AM=BN=3+a , ∴PB=a +3+a =5,∴a =1, ∴C (﹣1,0);②当m =5时,B (5,1),如图2中的B 1,此时的动点C 是图2中的C 1, 同理可得C 1(4,5),∴C 的运动路径长就是CC 1的长,由勾股定理可得,221[4(1)]55052CC =--+==.【点评】本题主要考查了旋转图形的坐标、全等三角形的判定与性质以及轨迹的运用,解题时注意:图形或点旋转之后要结合旋转的角度和图形的特殊性质,求出旋转后的点的坐标.三、解答题(共8小题) 17.解方程:(1)5x (x +1)=2(x +1);(2)x 2﹣3x ﹣1=0. 【分析】(1)先移项得到5x (x +1)﹣2(x +1)=0,然后利用因式分解法解方程; (2)利用求根公式法解方程. 【解答】解:(1)5x (x +1)﹣2(x +1)=0, (x +1)(5x ﹣2)=0 x +1=0或5x ﹣2=0,所以x 1=﹣1,x 2=25;(2)△=(﹣3)2﹣4×(﹣1)=13,31321x ±=⨯, 所以13132x +=,23132x -=.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.18.关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k ,使得12x x -=?若存在,求出这样的k 值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k 的不等式求解可得;(2)由韦达定理知1221x x k +=-,221223(1)20x x k k k =-+=-+>,将原式两边平方后把12x x +,12x x 代入得到关于k 的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根, ∴22=[(21)]4(23)4110k k k k ∆----+=->,解得:114k >;(2)存在,1221x x k +=-,221223(1)20x x k k k =-+=-+>∴将12x x -=两边平方可得22112225x x x x -+=,即21212()45x x x x +-=, 代入得:22(21)4(23)5k k k ---+=,4k ﹣11=5, 解得:k =4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件? (2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案. (3)请直接写出题2的结果.【分析】题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球; (2)写出方案;(3)直接写结果即可.【解答】解:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:727.题2:列表得:锁1 锁2钥匙1 (锁1,钥匙1)(锁2,钥匙1)钥匙2 (锁1,钥匙2) (锁2,钥匙2)钥匙3 (锁1,钥匙3)(锁2,钥匙3)所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则2163P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)13.【点评】此题考查了树状图法或列表法求概率以及利用类比法解决问题,解题的关键是根据题意画出树状图或表格,再由概率=所求情况数与总情况数之比求解.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【分析】先根据相似三角形的判定得出△ABC∽△ANM,再利用相似三角形的性质解答即可.【解答】解:在△ABC与△AMN中,305549AC AB ==,1000518009AM AN ==,∴AC AMAB AN =,又∵∠A=∠A , ∴△ABC ∽△ANM ,∴BC AC MN AM =,即45301000MN =, 解得:MN=1500米,答:M 、N 两点之间的直线距离是1500米;【点评】此题考查了相似三角形的判定与性质;熟记相似三角形的判定方法是解决问题的关键.21.如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC=∠A,连接OE 延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC=8,求弦BD 的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE ⊥BD ,=12,由圆周角定理得出∠BOE=∠A ,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC ,由△OBC 的面积求出BE,即可得出弦BD 的长. 【解答】(1)证明:连接OB,如图所示: ∵E 是弦BD 的中点,∴BE=DE,OE ⊥BD,=12,∴∠BOE=∠A ,∠OBE+∠BOE=90°, ∵∠DBC=∠A , ∴∠BOE=∠DBC, ∴∠OBE+∠DBC=90°, ∴∠OBC=90°, 即BC ⊥OB ,∴BC 是⊙O 的切线;(2)解:∵OB=6,BC=8,BC ⊥OB ,∴2210OC OB BC =+=,∵△OBC 的面积=12OC•BE=12OB•BC , ∴684.810OB BC BE OC ⨯===,∴BD=2BE=9.6,即弦BD 的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的矩形CDEF 面积最大,点E 应选在何处?【分析】首先在Rt △ABC 中利用∠A=30°、AB=12,求得BC=6、AC 的长,然后根据四边形CDEF 是矩形得到EF ∥AC 从而得到△BEF ∽△BAC ,设AE=x ,则BE=12﹣x .利用相似三角形成比例表示出EF 、DE ,然后表示出有关x 的二次函数,然后求二次函数的最值即可.【解答】解:在Rt △ABC 中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=31263= ∵四边形CDEF 是矩形, ∴EF ∥AC .∴△BEF ∽△BAC .∴EF BEAC BA=. 设AE=x ,则BE=12﹣x . ∴63(12)3)x EF x --.在Rt △ADE 中,1122DE AE x ==.矩形CDEF 的面积S=DE•EF=2133(12)=33(012)22x x x x -+<<.当336232()bx a=-==⨯-时,S 有最大值.∴点E 应选在AB 的中点处.【点评】本题考查了相似三角形的应用及二次函数的应用,解题的关键是从几何问题中整理出二次函数模型,并利用二次函数的知识求最值.23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C 是商品件数x 的二次函数,调查数据如表:产销商品件数(x /件) 10 20 30 产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x =-(每个周期的产销利润=P•x ﹣C ) (1)直接写出产销成本C 与商品件数x 的函数关系式(不要求写出自变量的取值范围) (2)该公司每个周期产销多少件商品时,利润达到220元? (3)求该公司每个周期的产销利润的最大值.【分析】(1)根据题意设出C 与x 的函数关系式,然后根据表格中的数据即可解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以得到利润与销售价格的关系式,然后化为顶点式即可解答本题. 【解答】解:(1)设2C ax bx c =++,则 2221010=1202020=1803030=260a b c a b c a b c ⎧⨯+⨯+⎪⨯+⨯+⎨⎪⨯+⨯+⎩,解得,=0.1=3=80a b c ⎧⎪⎨⎪⎩,即产销成本C 与商品件数x 的函数关系式是:2138010C x x =++; (2)依题意,得211(35)(380)2201010x x x x --++=; 解得,x 1=10,x 2=150,∵每个周期产销商品件数控制在100以内, ∴x =10.即该公司每个周期产销10件商品时,利润达到220元; (3)设每个周期的产销利润为y 元,∵2221111(35)(380)3280(80)1200101055y x x x x x x x =--++=-+-=--+, ∴当x =80时,函数有最大值,此时y =1200,即当每个周期产销80件商品时,产销利润最大,最大值为1200 元.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点.(1)求抛物线的解析式;(2)点E 是直角△ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 、F 的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.【分析】(1)根据AC=BC ,求出BC 的长,进而得到点A ,B 的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB 的解析式,用含m 的式表示出E,F 的坐标,求出EF 的长度最大时m 的值,即可求得E ,F 的坐标;(3)分两种情况:∠E=90°和∠F=90°,分别得到点P 的纵坐标,将纵坐标代入抛物线解析式,即可求得点P 的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,。
2017-2018学年第一学期期末考试-初三数学-解析
-5-
-5-
18. (本题 4 分)
花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们
影子的规律.图 1,图 2 中的点 A,B,C 均为这三根木杆的俯视图(点 A,B,
C 在同一直线上).
(1) 图 1 中线段 AD 是点 A 处的木杆在阳光下的影子,请在图 1 中画出
表示另外两根木杆同一时刻阳光下的影子的线段;
x
x
B 恰好在 y 轴上,则点 B 的坐标为
.
【考点】反比例函数与矩形综合题
【难度星级】★★★
【答案】
0
,13 6
3
【解析】作 AD⊥x 轴,CE⊥x 轴,BF⊥AD 与点 F
三垂直模型知:
ABF≌COE ,∴OE=BF,AF=CE
设 OD=6x(方便计算),∴OE=BF=OD=6x
AOD∽OEC
(2) 图 2 中线段 AD,BE 分别是点 A,B 处的木杆在路灯照射下的影子,其中 DE∥AB,点 O 是路
灯的俯视图.请在图 2 中画出表示点 C 处木杆在同一灯光下影子的线段;
(3) 在(2)中,若 O,A 的距离为 2m,AD=2.4m,OB=1.5m,则点 B 处木杆的影子线段 BE 的长
SAOD
2 , SCOE
9 ,∴ 2
SAOD SCOE
2 9
4 , AOD 与 OEC 9
相似比为 2:3
2
∴ AD OD 2 ,解得 AD=4x,CE=9x,∴AF=9x OE EC 3
-4-
-4-
SAOD
1 2
AD OD
2 1 4x 6x ,解得: x 6
2
6
OB
FD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年第二学期初三年级质量检测
数学(2018年2月)
本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)
一、单项选择题(本部分共12小题,每小题3分,共36分)
1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )
A.3和8
B.3和10
C.3和-10
D.3和-8
2.如图所示的工件,其俯视图是( )
3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.1
4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )
A.28
B.24
C.16
D.6
5.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )
第5题 第6题 第7题
A.当AC=BD 时,四边形ABCD 是矩形
B.当AB=BC 时,四边形ABCD 是菱形
C.当AC ⊥BD 时,四边形ABCD 是菱形
D.当∠DAB=90°时,四边形ABCD 是正方形
6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )
A.2:3
B.3:2
C.4:5
D.4:9
7.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )
A.6
B.8
C.10
D.12
8.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )
A.2000(1+x)2=2880
B.200(1-x)2=2880
C.2000(1+2x)=2880
D.2000x 2=2880
9.二次函数y=x 2-3x+2的图像不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得
顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )
A.326+
B.36+
C.310-
D.38+
11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )
第11题 第12题
A.10
B.12
C.24
D.16
12.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;
④BG=2DG ;⑤2
13+=
BGC BEC S S △△:。
其中正确的结论是( ) A.①②⑤ B.①②④ C.①② D.②③④
第Ⅱ卷非选择题
二、填空题(本题共4小题,每小题3分,共12分)
13.若25b a =,则b
b -a 的值是_________。
14.如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为_________.
15.菱形ABCD 的一条对角线长为6,边AB 的长是方程x 2-7x+12=0的一个根,则菱形ABCD 的
周长为__________。
16.如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON 于A,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP,将CP 绕点C 顺时针方向旋转90°得CE,连结BE,若AB=4,则BE 的最小值为____________.
三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题6分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)
17.(1)解方程:3x(x-2)=2(2-x) (2)计算:()()20
3--2-360cos 2-4-+︒
18.初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图。
根据以上信息解决下列问题: (1)m=_________;
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为_________;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率。
19.如图,正比例函数y 1=-3x 的图象与反比例函数x
k y 2=
的图象交于A 、B 两点,点C 在x 轴负半轴上,AC=AO,△ACO 的面积为12.
(1)求k 的值;
(2)当21y y >时,求自变量x 的取值范围。
20.我省某工艺厂为全运会设计了一款成本为每件20元的工艺品,投放市场试销后发现每天的销售量y(件)是售价x(元/件)的一次函数。
当售价为22元/件时,每天销售量为780件:当售价为25元/件时,每天销售量为750件。
(1)求y与x的函数关系式;
(2)如果该工艺品售价最高不超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?
21.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE
(1)求证:四边形EFGH为平行四边形;
(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长。
22.△ABC中,AB=AC=1,∠BAC=45°,将△ABC绕点A按顺时针旋转α(0°<α<135°)得到△AEF,连接BE、CF,它们交于D点,
(1)求证:BE=CF;
(2)当 =120°,求∠FCB的度数;
(3)当四边形ACDE是菱形时,求BD的长。
23.如图,抛物线y=-x2-2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的点。
(1)求点A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,
2DQ,求点F的坐标。
与直线AC交于点G(点G在点F的上方)。
若FG=2。