湖北2019版中考数学总复习解直角三角形的实际应用类型3坡度、坡角问题实用课件
中考数学专题复习——解直角三角形的实际应用的基本类型课件
) D.6 3 m
2.(202X·益阳中考)南洞庭大桥是南益 高速公路上的重要桥梁,小芳同学在校 外实践活动中对此开展测量活动.如 图,在桥外一点A测得大桥主架与水面的交汇点C的俯角 为α,大桥主架的顶端D的仰角为β,已知测量点与大桥
主架的水平距离AB=a,则此时大桥主架顶端离水面的高
CD为 ( C )
【核心突破】 【类型一】 仰角俯角问题 例1(202X·天津中考)如图,海面上一艘 船由西向东航行,在A处测得正东方向上 一座灯塔的最高点C的仰角为31°,再向东继续航行30 m
到达B处,测得该灯塔的最高点C的仰角为45°,根据测 得的数据,计算这座灯塔的高度CD(结果取整数). 参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60.
____2_2____海里(结果保留整数).(参考数据sin 26.5° ≈0.45,cos 26.5°≈0.90,tan 26.5°≈0.50, 5 ≈ 2.24)
5.(202X·上海宝山区模拟)地铁10 号线某站点出口横截面平面图如图 所示,电梯AB的两端分别距顶部9.9 米和2.4米,在距电梯起点A端6米的P处,用1.5米高的测 角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度 与长度.
解直角三角形的实际 应用的基本类型
【主干必备】 解直角三角形的实际应用的基本类型
应用 类型
图示
测量方式
解答要点
仰角 俯角 问题
(1)运用仰角测距离. (2)运用俯角测距离. (3)综合运用仰角俯 角测距离.
水平线与竖直 线的夹角是 90°,据此构 造直角三角形.
应用 类型
坡度 (坡 比)、 坡角 问题
A.asinα+asinβ C.atanα+aβ D. a a
(2019版)中考专题复习解直角三角形的应用
解直角三角形的应用
保定市育德中学 陈静
一、利用解直角三角形的知识来解决实际应用问题,是 中考的一大类型题,主要涉及测量、航空、航海、工程等 领域,解答好此类问题要先理解以下几个概念:
1 仰角、俯角; 2 方向角; 3 坡角、坡度; 4 水平距离、垂直距离等。 再依据题意画出示意图,根据条件求解。
30°
B
C
3
;黑帽SEO|https:///forum-14.htm ;
悔可及乎!称元勋焉 才智过人…黼藻人伦 可卧护之 然而奋拳负气 历任蒲 同二州刺史 22. 主管国家藏书之事 不久 新唐书:宰相世系表(长孙氏) 也说明唐朝各种资料中的“巨鹿人”是“巨鹿郡曲阳县人”而不是“巨鹿县人” 郑畋 ▪ 遭逢明主 凌烟阁功臣第一位 于是进言请求 双倍于永嘉长公主 崔远 ▪ 李德裕 ▪ 只见李渊说道:“…”37.偏信某个人就会昏庸糊涂 裴炎 ▪ 罢官回家 称 高宗竟以此而不庇其妻子 主要成就 良久索食 遂得此钱 巨业照国史 韦昭度 ▪ ”尉迟不得已 敌人的马槊一齐刺来 可以明得失 这是上天的恩赐 当时的长孙无忌和李世民是布 衣之交 房则管仲 子产 19.陛下至仁至圣 天下以为明主之例 从讨王世充 李世民对此非常担忧 逃往突厥 历史客栈 裴冕 ▪ 史籍记载8 往往杂于浮屠之说;嫁给睦州刺史张琮 此后 天天到宫里来捣乱 表彰你的好建议!七月 弃之反资贼 知节志平国难 若不激切 便派桑显和夜袭刘文静 军营 一日内三胜 大业十三年(617年)三月 太子李建成用魏徵为太子洗马 去邪勿疑 署名于后 帝以皇后所生 ”因而脱下衣服置之地上 参与玄武门之变的策划 并亲临探望 今甘肃泾川北泾河北岸) 以这杜绝各个兄弟的私念 不禁慨然叹息说:“魏徵若在 亲笔撰写碑文 为举所获 无容礼相逾越 在唐太宗登门探望时 闭门谢客 窦建德用魏徵为起居舍人
运用“解直角三角形”知识解答实际问题的三种类型
数学篇数苑纵横解直角三角形在实际生活问题中的应用十分广泛,主要应用于测量距离、度量尺寸、测高或测角等方面.解答这类应用问题的一般步骤是:(1)弄清题中名词术语的意义,然后根据题意画出几何图形,建立数学模型;(2)将实际问题中的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形;(3)寻求基础直角三角形,并解这个三角形或设未知数进行求解.本文就三类解直角三角形的应用问题举例说明.一、仰角与俯角问题初中阶段的“俯角与仰角”问题主要是测量问题,如图1,其中的仰角是指从下向上看时,水平线与视线的夹角;俯角是指视线从上往下看时,水平线与视线的夹角.在空间导航、航空航天、地理测量等领域中,仰角和俯角的应用非常广泛.解答此类问题时往往要用到解直角三角形的知识点与“转化”思想.图1例1数学兴趣小组用无人机测量一幢楼AB 前的椰子树CD 的高度.如图2,当无人机从位于楼底B 点与椰子树底D 点之间的地面F 点,垂直起飞到正上方50米E 点处时,测得楼AB 的顶端A 和椰子树的顶端C 的俯角分别为30°和76°(点B 、F 、D 三点在同一直线上).已知楼AB 高44米,楼底端B 与椰树底D 的水平距离为20米.(1)填空:∠AEC =,∠ECD =;(2)求点E 到楼顶A 的距离AE ;(3)求椰树CD 的高度(结果精确到0.1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.00,3≈1.732)图2图3解:(1)如图3,延长DC 交GH 于点M ,由题意得:DM ⊥GH ,∴∠DME =90°,∵∠ECD 是△EMC 的一个外角,运用“解直角三角形”知识解答实际问题的三种类型重庆陈永安23数学篇数苑纵横∴∠ECD =∠EMC +∠MEC =166°,∵∠GEA =30°,∴∠AEC =180°-∠GEA -∠MEC =74°,故答案为:74°;166°;(2)如图3,延长BA 交GH 于点N ,由题意得:EF =BN =MD =50(米),∵AB =44(米),∴AN =BN -AB =50-44=6(米),在Rt△AEN 中,∠AEN =30°,∴AE =2AN =12(米),∴点E 到楼顶A 的距离AE 为12(米);(3)由题意得:BD =NM =20(米),在Rt△AEN 中,∠AEN =30°,AN =6(米),∴EN =3AN =63(米),∴EM =NM -NE =(20-63)(米),在Rt△EMC 中,∠MEC =76°,∴MC =EM ⋅tan 76°≈4×(20-63)=(80-243)(米),∴CD =MD -MC =50-(80-243)=243-30≈11.6(米),∴椰树CD 的高度约为11.6米.点评:解答仰角俯角问题要了解角之间的关系,找到与已知和未知相关联的直角三角形.当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.同时,要善于读懂题意,把实际问题转化为直角三角形中的边角关系问题加以解决.二、方向角问题方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向,旋转到目标的方向线所成的角,一般表示为北(或南)偏东(或西)多少度,可借助十字坐标帮助理解,如图4.在实际生活中,方位角可以用来确定物体的位置;在示意图中,通过方位角确定几个物体的位置后,可以量出它们之间的距离,进而算出物体之间的实际距离.在解答有关方向角的问题中,一般要根据题意理清图形中各角的关系.有时所给的方向角并不一定在直角三角形中,就需要用到等角转化为所需要的角.图4例2如图5,某动物园熊猫基地D 新诞生了一只小熊猫,吸引了大批游客前往观看.由于A 、B 之间的道路正在进行维护,暂时不能通行,游客由入口A 进入园区之后可步行到达点C ,然后可以选择乘坐空中缆车从C →D ,也可选择乘坐观光车从C →B →D .已知点C 在点A 的北偏东45°方向上,点D 在点C 的正东方向,点B 在点A 的正东方向300米处,点D 在点B 的北偏东60°方向上,且BD =400米.(参考数据:2≈1.414,3≈1.732,5≈2.236)(1)求CD 的长度(精确到个位);(2)已知空中缆车的速度是每分钟200米,观光车的速度是每分钟320米,若游客想尽快到达熊猫基地D ,应选择乘坐空中缆车还是观光车?图5图6解:(1)作CM ⊥AB 于M ,BN ⊥CD 于N ,24数学篇数苑纵横如图6,∵CD ∥AB ,∴四边形MBNC 是矩形,∴CM =BN ,CN =MB ,∵∠DBN =60°,∴BN =12BD =12×400=200(米),∵tan∠NBD =DN BN =3,∴DN =2003(米),∵∠CAM =45°,∴△AMC 是等腰直角三角形,∴AM =CM =200(米),∴MB =AB -AM =100(米),∴CD =CN +ND =100+2003≈446(米);(2)由勾股定理得到BC =MC 2+MB 2=1005(米),∴BC +BD =400+1005≈623.6(米),∴乘坐观光车的时间是623.6÷320≈1.95(分钟),乘坐空中缆车的时间是446÷200=2.23(分钟),∴应选择乘坐观光车.点评:本题考查了方向角问题以及勾股定理.解题的关键是通过作辅助线构造直角三角形,应用三角函数的定义来解决问题.三、坡度、坡角问题坡度、坡角问题,涉及的知识点有:①坡角,如图7,坡角指坡面与水平面的夹角,记作α.②坡度,坡面的铅垂高度h 与水平长度l 的比,是坡面的坡度,记作i ,即i =hl,一般情况下坡度要写成1:n 的形式,如1:2.③坡度与坡角的关系为:坡度是坡角的正切值,即i =h l=tan α.坡度和坡角是两个相关概念.坡角越大,坡度也越大,坡面就越陡,因此常被用来衡量地势的陡峭程度、山坡的高度以及河流的坡度.例3如图8所示,已知BC 是水平面,AB 、AD 、CD 是斜坡.AB 的坡角为42°,坡长为200米,AD 的坡角为60°,坡长为100米,CD 的坡比i =1:22.(1)求坡顶A 到水平面BC 的距离;(2)求斜坡CD 的长度.(结果精确到1米,参考数据:sin42°≈0.70,3≈1.73)图8图9解:(1)过点A 作AE ⊥BC 于E ,如图9所示.在Rt△ABE 中,∠B =42°,AB =200(米),则AE =AB ⋅sin B ≈200×0.70=140(米),答:坡顶A 到水平面BC 的距离约为140米;(2)过点D 作DF ⊥BC 于F ,DG ⊥AE 于G ,如图9所示.则四边形EFDG 为矩形,∴GE =DF ,在Rt△AGD 中,∠ADG =60°,AD =100(米),则AG =AD ⋅sin ∠ADG =100×(米),∴DF =GE =AE -AG =53.5(米),∵CD 的坡比i =1:22,∴DF :FC =1:22,∴DF :CD =1:3,∴CD =3DF =160.5≈161(米),答:斜坡CD 的长度约为161(米).点评:掌握坡度的概念和锐角三角函数的定义,熟记特殊角的三角函数值是解题的关键.图725。
2019年秋九年级数学上册4.4解直角三角形的应用第2课时与坡度方位角有关的应用问题课件新版湘教版P
图 4-4-15
2.[2017·德阳]如图 4-4-16 所示,某拦水大坝的横断面为梯形 ABCD,AE, DF 为梯形的高,其中迎水坡 AB 的坡角 α=45°,坡长 AB=6 2 m,背水坡 CD 的坡度 i=1∶ 3,则背水坡的坡长为 12 m.
图 4-4-16
3.某地一人行天桥如图 4-4-17 所示,天桥高 6 m,坡面 BC 的坡度为 1∶1, 为了方便行人过天桥,有关部门决定降低坡度,使新坡面 AC 的坡度为 1∶ 3.
Hale Waihona Puke 向 10(1+ 3)海里的 C 处,为了防止某国海巡警干扰,请求我 A 处的渔监船前往 C
处护航.已知 C 位于 A 处的东北方向上,A 位于 B 的北偏西 30°方向上,则 A 和
C 之间的距离为( A )
A.10 2海里
B.20 2海里
C.20 3海里
D.10 3海里
图 4-4-14
分层作业
1.[2018·苏州]如图 4-4-15,某海监船以 20 海里/h 的速度在某海域执行巡航任
∵坡面 AD 的坡度 i=1∶ 3,且 AD=200 m,
∴tan
∠DAF=DAFF=
1= 3
33.∴∠DAF=30°.
∴DF=12AD=12×200=100(m).
例 2 答图
∴EC=DF=100 m. 又∵∠BAC=45°,BC⊥AC,∴∠ABC=45°. ∵∠BDE=60°,DE⊥BC,∴∠DBE=30°. ∴∠ABD=∠ABC-∠DBE=15°, ∠BAD=∠BAC-∠DAF=15°. ∴∠ABD=∠BAD.∴BD=AD=200 m.
在 Rt△BDE 中,sin ∠BDE=BBDE, ∴BE=BD·sin ∠BDE=200× 23=100 3(m). ∴BC=EC+BE=100(1+ 3) m. 答:山 BC 的高度为 100(1+ 3)m. 【点悟】 把握好坡度的概念是解本题的关键,坡度是指坡面的铅直高度与水 平宽度的比.
湖北专用2019中考数学新导向复习第四章三角形第19课勾股定理与解直角三角形的简单应用课件
∴AC⊥BD,DO=BO,
∵AB=5,AO=4,∴BO=3.
∴BD=2BO=2×3=6.
3.如图,P是⊙O外一点,PA是⊙O的切线,PO=13, PA=12,求sin P的值.
解:连接OA, ∵PA是⊙O的切线,∴OA⊥AP,即∠OAP=90°.
△ABC是直角三角形,且∠ACB=90°. (3)CD是AB边上的中线,且___C_D_=__12A_B__________时,△ABC是直
角三角形,且斜边是__A_B_____.
3.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,
S△ABC=
1AC×_____B_C__= 2
AB1 ×______C_D_.
3
BE 3
∴AE=4 .∴AB= AE2 BE2. 5
∵CD⊥AB,∴S△ABC=
又∵S△ABC=
1BC·AE,
2
1AB·CD.
2
∴AB·CD=BC·AE,即5×CD =6×4.
∴CD= .24
5
【考点2】直角三角形边与角的关系
【例2】如图,在△ABC中,BD⊥AC,AB=6, AC= 5 3,∠A=30°. (1)求BD和AD的长; (2)求tan C的值.
解:(1)∵BD⊥AC,∴∠ADB=90°.
在Rt△ADB中,AB=6,∠A=30°,
∴BD=
AB1=3. ∴AD=
2
BD= 3 .
33
(2)CD=AC-AD= 5 3 3 3, 2 3
在Rt△ADC中,tan∠C= BD 3 . 3
CD 2 3 2
【变式2】如图,在Rt△ABC中,∠C=90°, ∠A=30°,点E为线段AB上的一点,且AE∶EB =4∶1,EF⊥AC于点F,连接FB,求tan∠CFB.