初中几何图形的定义性质判定
初中几何图形的定义、性质、判定
等腰三角形定义1 有两条边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰性质2 等腰三角形的两个底角相等(简称“等边对等角”)3 等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简称“三线合一”)4 等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴判定5 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)等边三角形定义1 三边都相等的三角形是等边三角形。
性质2 等边三角形是特殊的等腰三角形,具有等腰三角形的一切性质3 等边三角形的每个内角都等于60º4 等边三角形是锐角三角形5 等边三角形是轴对称图形,它有3条对称轴判定6 有一个角是60º的等腰三角形是等边三角形7 有两个角是60º的三角形是等边三角形直角三角形定义1 有一个角为90°的三角形,叫做直角三角形(Rt三角形)。
性质2 在直角三角形中,两个锐角互余。
3 直角三角形斜边上的中线等于斜边的一半4 直角三角形两直角边的平方和等于斜边的平方。
(勾股定理)5 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半6 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
判定7 斜边和一条直角边对应相等的两个直角三角形全等(简写为“HL”)平行四边形定义1 在同一平面内,两组对边分别平行的四边形叫做平行四边形性质2 平行四边形是中心对称图形,对角线的交点是它的对称中心3 平行四边形的对边相等、对角相等、对角线互相平分判定4 一组对边平行且相等的四边形是平行四边形5 两条对角线互相平分的四边形是平行四边形6 两组对边分别相等的四边形是平行四边形7 两组对角分别相等的四边形是平行四边形8 一组对边平行,一组对角相等的四边形是平行四边形矩形定义1 有一个角是直角的平行四边形叫做矩形,通常叫长方形性质2 矩形是特殊的平行四边形,它具有平行四边形的一切性质3 矩形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 矩形的对角线相等,四个角都是直角判定5 对角线相等的平行四边形是矩形6 有一个角是直角的平行四边形是矩形7 有3个角是直角的四边形是矩形菱形定义1 一组邻边相等的平行四边形叫做菱形性质2 菱形是特殊的平行四边形,它具有平行四边形的一切性质3 菱形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 菱形的四条边相等5 菱形的对角线互相垂直并且每一条对角线平分一组对角6 S菱形=½×对角线的积判定7 四边都相等的四边形是菱形8 对角线互相垂直的平行四边形是菱形9 有一组邻边相等的平行四边形是菱形10 有一条对角线平分一组对角的平行四边形是菱形正方形定义1 有一组邻边相等并且有一个角是直角的平行四边形是正方形性质2 正方形具有矩形和菱形的性质3 正方形既是抽对称图形也是中心对称图形,对称轴有4条,对称中心是对角线中点判定4 有一组邻边相等的矩形是正方形5 有一个角是直角的菱形是正方形梯形1 一组对边平行而另一组对边不平行的四边形是梯形2 梯形的中位线平行于两底,并且等于两底和得一半3 S梯形=(上底+下底)×高÷2=½(a+b)h=中位线×高等腰梯形定义1 两腰相等的梯形是等腰梯形性质2 等腰梯形是轴对称图形3 两条对角线相等4 等腰梯形的同一底上的两角相等判定5 同一底上的两个角相等的梯形是等腰梯形直角梯形1 有一个角是直角的梯形叫做直角梯形三角形全等1 有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
初中几何图形概念、公式和性质等知识,父母为孩子收藏起来吧
初中几何图形概念、公式和性质等知识,父母为孩子收藏起来吧展开全文三角形知识点、概念总结1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形的分类3. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7. 高线、中线、角平分线的意义和做法8. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9. 三角形内角和定理:三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角和推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11. 三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。
四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1. 两组对边平行的四边形是平行四边形。
2. 性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3. 判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4. 对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1. 定义:有一个角是直角的平行四边形叫做矩形2. 性质:矩形的四个角都是直角,矩形的对角线相等3. 判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4. 对称性:矩形是轴对称图形也是中心对称图形。
初中数学几何图形的性质与判定方法总结
初中数学几何图形的性质与判定方法总结初中数学中,几何图形是重要的学习内容之一,它们具有各种性质和特点,也有相应的方法来判定它们。
本文将对初中数学中常见的几何图形的性质和判定方法进行总结和讨论。
一、三角形的性质与判定方法三角形是初中数学中最基本的几何图形之一,它具有以下性质:1. 三角形的内角和为180度:对于任意三角形ABC,有∠A+∠B+∠C=180°。
2. 三角形的外角和为360度:三角形的三个外角和等于360度。
3. 三角形的边长关系:在△ABC中,任意两边之和大于第三边,任意两边之差小于第三边。
4. 等边三角形:三条边的边长相等的三角形。
5. 等腰三角形:两边的长度相等的三角形。
6. 直角三角形:其中一个角为90度的三角形。
三角形的判定方法主要有以下几种:1. 三边判定法:如果三条边的边长满足任意两边之和大于第三边的关系则可构成三角形。
2. 两边夹角大于第三边判定法:如果两边之间的夹角大于第三边的夹角则可构成三角形。
3. 两角和大于直角判定法:如果两个角之和大于90度则可构成三角形。
4. 两角差小于直角判定法:如果两个角之差小于90度则可构成三角形。
二、四边形的性质与判定方法四边形是由四条线段构成的几何图形,它具有以下性质:1. 四边形的内角和为360度:对于任意四边形ABCD,有∠A+∠B+∠C+∠D=360°。
2. 平行四边形:具有两组对边平行的四边形。
3. 矩形:具有四个内角都是90度的平行四边形。
4. 菱形:具有四条边都相等的平行四边形。
5. 正方形:具有四个内角都是90度且四条边都相等的矩形。
对于四边形的判定方法主要有以下几种:1. 两组对边平行判定法:如果四边形的两组对边都平行,则可判定为平行四边形。
2. 具有相等邻边且对角线互相平分判定法:如果四边形的相对边相等且对角线互相平分,则可判定为菱形。
3. 具有相等邻边且相对边垂直判定法:如果四边形的相对边相等且相对边垂直,则可判定为矩形。
初二数学几何概念知识点总结
初二数学几何概念知识点总结(要求理解、会讲、会用,主要用于填空和选择题)一、基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数。
二、常识:1、三角形中,第三边长的判断: 另两边之差<第三边<另两边之和2、三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外。
注意:三角形的角平分线、中线、高线都是线段。
3、三角形能否成立的条件是:最长边<另两边之和。
4、直角三角形能否成立的条件是:最长边的平方等于另两边的平方和。
5、分别含30°、45°、60°的直角三角形是特殊的直角三角形。
6、三角形中,最多有一个内角是钝角,但最少有两个外角是钝角。
7、全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边。
8、等边三角形是特殊的等腰三角形。
9、几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明。
10、符合“AAA”“SSA”条件的三角形不能判定全等。
11、几何习题经常用四种方法进行分析: (1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法 12、几何基本作图分为: (1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线; (4)过已知点作已知直线的垂线;(5)作线段中垂线;(6)过已知点作已知直线的平行线 13、会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图。
14、作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图。
15、几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图1、二次根式:一般地,式子)0(≥a a 叫做二次根式。
初中几何图形的定义、性质、判定精编版
等腰三角形定义1 有两条边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰性质2 等腰三角形的两个底角相等(简称“等边对等角”)3 等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简称“三线合一”)4 等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴判定5 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)等边三角形定义1 三边都相等的三角形是等边三角形。
性质2 等边三角形是特殊的等腰三角形,具有等腰三角形的一切性质3 等边三角形的每个内角都等于60º4 等边三角形是锐角三角形5 等边三角形是轴对称图形,它有3条对称轴判定6 有一个角是60º的等腰三角形是等边三角形7 有两个角是60º的三角形是等边三角形直角三角形定义1 有一个角为90°的三角形,叫做直角三角形(Rt三角形)。
性质2 在直角三角形中,两个锐角互余。
3 直角三角形斜边上的中线等于斜边的一半4 直角三角形两直角边的平方和等于斜边的平方。
(勾股定理)5 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半6 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
判定7 斜边和一条直角边对应相等的两个直角三角形全等(简写为“HL”)平行四边形定义1 在同一平面内,两组对边分别平行的四边形叫做平行四边形性质2 平行四边形是中心对称图形,对角线的交点是它的对称中心3 平行四边形的对边相等、对角相等、对角线互相平分判定4 一组对边平行且相等的四边形是平行四边形5 两条对角线互相平分的四边形是平行四边形6 两组对边分别相等的四边形是平行四边形7 两组对角分别相等的四边形是平行四边形8 一组对边平行,一组对角相等的四边形是平行四边形矩形定义1 有一个角是直角的平行四边形叫做矩形,通常叫长方形性质2 矩形是特殊的平行四边形,它具有平行四边形的一切性质3 矩形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 矩形的对角线相等,四个角都是直角判定5 对角线相等的平行四边形是矩形6 有一个角是直角的平行四边形是矩形7 有3个角是直角的四边形是矩形菱形定义1 一组邻边相等的平行四边形叫做菱形性质2 菱形是特殊的平行四边形,它具有平行四边形的一切性质3 菱形既是抽对称图形也是中心对称图形,对称中心是对角线中点4 菱形的四条边相等5 菱形的对角线互相垂直并且每一条对角线平分一组对角6 S菱形=½×对角线的积判定7 四边都相等的四边形是菱形8 对角线互相垂直的平行四边形是菱形9 有一组邻边相等的平行四边形是菱形10 有一条对角线平分一组对角的平行四边形是菱形正方形定义1 有一组邻边相等并且有一个角是直角的平行四边形是正方形性质2 正方形具有矩形和菱形的性质3 正方形既是抽对称图形也是中心对称图形,对称轴有4条,对称中心是对角线中点判定4 有一组邻边相等的矩形是正方形5 有一个角是直角的菱形是正方形梯形1 一组对边平行而另一组对边不平行的四边形是梯形2 梯形的中位线平行于两底,并且等于两底和得一半3 S梯形=(上底+下底)×高÷2=½(a+b)h=中位线×高等腰梯形定义1 两腰相等的梯形是等腰梯形性质2 等腰梯形是轴对称图形3 两条对角线相等4 等腰梯形的同一底上的两角相等判定5 同一底上的两个角相等的梯形是等腰梯形直角梯形1 有一个角是直角的梯形叫做直角梯形三角形全等1 有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
初中数学 什么是相似图形和全等图形
初中数学什么是相似图形和全等图形初中数学中,相似图形和全等图形是几何学中重要的概念。
它们描述了图形之间的形状关系和对应关系。
本文将详细介绍相似图形和全等图形的定义、性质和判定方法。
一、相似图形相似图形是指具有相同形状但不一定相等大小的图形。
在相似图形中,对应边的比例相等,对应角度相等,但图形的大小可以不同。
相似图形的性质:1. 边长比例:相似图形的对应边之间的比例相等。
2. 角度相等:相似图形的对应角度相等。
3. 全等图形是相似图形的一种特殊情况,其比例因子为1。
相似图形的判定:1. SSS判定法:如果两个图形的相应边长之比相等,则它们是相似的。
2. SAS判定法:如果两个图形的一个角相等,并且相应边长之比相等,则它们是相似的。
3. AA判定法:如果两个图形的对应角度相等,则它们是相似的。
二、全等图形全等图形是指形状、大小和内部结构都完全相等的图形。
全等图形之间的对应边长和对应角度都相等。
全等图形的性质:1. 边长相等:全等图形的对应边长相等。
2. 角度相等:全等图形的对应角度相等。
3. 全等图形之间可以进行平移、旋转、翻转等变换。
全等图形的判定:1. SSS判定法:如果两个图形的相应边长相等,则它们是全等的。
2. SAS判定法:如果两个图形的一个角相等,并且相应边长相等,则它们是全等的。
3. ASA判定法:如果两个图形的两个角和一个边相等,则它们是全等的。
总结:本文详细介绍了初中数学中的相似图形和全等图形的定义、性质和判定方法。
相似图形是指具有相同形状但不一定相等大小的图形,其边长比例相等,角度相等。
全等图形是指形状、大小和内部结构都完全相等的图形,其对应边长和对应角度都相等。
相似图形可以通过SSS、SAS和AA判定法进行判定,而全等图形可以通过SSS、SAS和ASA判定法进行判定。
通过深入理解和应用这些概念和判定方法,学生可以更好地判断、证明和应用相似图形和全等图形的性质和关系,并在实际生活中应用它们解决几何问题。
几何图形的性质与判定
正方形开放分类:科学、数学、几何、四边形(1)定义:各边相等且有四个角是直角的平行四边形叫做正方形。
(2)特征:边:两组对边分别平行;四条边都相等;相邻边互相垂直内角:四个角都是90°;对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角。
(3)主要识别方法:1:对角线相等的菱形是正方形2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形3:四边相等,有一个角是直角的四边形是正方形4:一组邻边相等的矩形是正方形5:一组邻边相等且有一个角是直角的平行四边形是正方形6:四边均相等,对角线互相垂直平分且相等的平面四边形依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
正方形的中点四边形是正方形。
平行四边形开放分类:数学、几何、图形、多边形平行四边形是有两组对边分别平行的四边形。
平行四边形有以下性质:1.平行四边形的对边平行且相等2.平行四边形的对角相等3.平行四边形的两条对角线互相平分4.平行四边形是空间图形5.平行四边形的对角相等,两邻角互补6.平行四边形是中心对称图形,对称中心是两对角线的交点7.过平行四边形对角线交点的直线将平行四边形分成全等的两部分图形8.设P是平行四边形ABCD对角线外一点,则2PA^2+2PC^2-AC^2=2PB^2+2PD^2-BD^2 另外,由上列定义可知:平行四边行的两组对边分别平行平行四边形的判定方法:1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形3.一组对边平行且相等的四边形是平行四边形4.两组对角分别相等的四边形是平行四边形依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
四边形的中点四边形是平行四边形。
平行四边形不具有稳定性。
平行四边形是中心对称图形。
特殊的平行四边形:矩形(长方形),菱形,正方形。
初中数学教案:几何图形的性质与判定
初中数学教案:几何图形的性质与判定I. 引言几何学是数学中的重要分支,它研究形状、大小、位置和相互关系等几何图形的性质与判定。
在初中数学教学中,几何图形的性质与判定是一个基础且重要的内容,掌握它们对于学生理解数学概念和解题能力的培养具有重要意义。
本教案将围绕几何图形的性质与判定展开,帮助学生深入理解几何图形的特点,并通过实际操作、讨论和解答问题的练习来提高他们的思维能力和解决问题的能力。
II. 理论与概念讲解A. 直线与曲线的性质1. 直线的特点和性质直线是由若干个点按照同一方向无限延伸而成的图形,没有弯曲或起伏。
直线具有连续性、无宽度、无端点等特点,并且可以与其他直线相交于一点或平行于其他直线。
2. 曲线的种类与特点曲线可以是平滑的,不同的曲线具有不同的形状和特点。
曲线可分为折线、圆、椭圆等,每种曲线都有其独特的性质和判定方法。
B. 平面图形的性质与判定1. 三角形的性质与分类三角形是由三条线段所构成的多边形,在初中数学教学中是最常见的几何图形之一。
三角形可根据边长、角的大小和角的性质来分类,并且每种分类都有相应的判定方法。
2. 四边形的性质与分类四边形是由四条线段所构成的多边形。
根据四边形的边长、角的性质和对角线的关系,可以将四边形分为矩形、正方形、菱形、平行四边形等,每种四边形都具有特定的性质与判定方法。
C. 圆的性质与判定圆是由与某一固定点的距离相等的所有点组成的集合。
圆具有半径、直径、弦、弧、切线等概念,学生需要掌握圆的性质与判定方法,以便正确解答与圆相关的问题。
III. 案例研究与讨论A. 实际问题解析1. 计算几何图形的周长和面积通过给定几何图形的边长和角度,学生需要运用所掌握的性质和判定方法来计算几何图形的周长和面积。
例如,给定一个三角形的底边和高,学生可以使用三角形的面积公式进行计算。
2. 几何图形的相似关系与比例相似图形是指形状相同但大小不同的图形,学生需要掌握相似图形的判定方法和相似比例的计算。
几何图形的概念与性质
了解几何图形的性质 对于解决几何问题和 实际应用非常重要。
大小性质
长度:几何图形边长的度量 面积:几何图形内部的度量 体积:三维几何图形的空间度量 角度:几何图形内角或外角的度量
位置性质
对称性质:几何图形中的对 称关系及其性质
平行性质:几何图形中的平 行关系及其性质
相切性质:几何图形中的相 切关系及其性质
定义与分类:几 何图形可以根据 其维度、形状、 位置等特征进行 分类。
性质:不同类型 的几何图形具有 不同的性质,如 对称性、面积、 体积等。
02
几何图形的性质
形状性质
几何图形的性质包括 对称性、平行性、垂
直性等。
几何图形的性质决定 了它们在空间中的位
置和关系。
不同几何图形具有不 同的性质,例如圆形 具有中心对称性和旋
20XX
几何图形的概念与性质
汇报人:XX
目录
01
几何图形的 定义与分类
02
几何图形的 性质
03
几何图形的 周长、面积 和体积
04
几何图形的 对称性
05
几何图形的 应用
01
几何图形的定义与分类
定义几何图形
几何图形是由点、线、面等基本元素构成的图形。 几何图形可以分为平面图形和立体图形两大类。 平面图形是指存在于二维平面上的图形,如三角形、矩形、圆形等。 立体图形是指存在于三维空间中的图形,如长方体、球体、圆锥体等。
几何图形的分类
根据曲直分类:分为直线图 形和曲线图形
根据边数分类:分为多边形 和多面体
根据封闭性分类:分为封闭 图形和开放图形
根据维数分类:分为二维图 形和三维图形
平面几何图形与立体几何图形
初中数学中的几何图形性质
初中数学中的几何图形性质几何学是数学的一个重要分支,研究的是空间和形状之间的关系。
而对于初中学生来说,学习几何图形的性质是必不可少的一部分。
通过对几何图形性质的学习,学生能够提高空间思维能力,培养逻辑思维和观察能力。
本文将介绍一些初中数学中常见的几何图形性质,帮助学生加深对这些性质的理解。
1. 直线和角度的性质在几何学中,直线是一个基本概念。
直线没有起点和终点,它由无数个点组成,且任意两点之间都可以连成一条直线。
而角是由两条射线共享一个端点组成的,可以用度数来度量。
在学习几何图形的性质时,直线的平行性质和角的性质是重要的基础。
2. 三角形的性质三角形是最简单的多边形之一,由三条边和三个角组成。
对于三角形的性质,有很多重要的定理需要掌握。
例如,三角形的内角和等于180度,这是三角形的基本定理之一;三角形的边长之间也存在着一些特殊的关系,比如勾股定理和正弦定理。
通过学习三角形的性质,我们可以解决一些实际问题,比如测量不规则形状的土地面积。
3. 四边形的性质四边形是指由四条线段组成的图形,其中一个特殊的四边形是矩形。
矩形的性质是四边形中最为重要的之一,它具有四个直角和四条相等的边。
学习矩形的性质可以帮助我们理解平行四边形和菱形的性质,并能够应用到实际中,比如计算长方形的面积和周长。
4. 圆的性质圆是具有无限个同心圆的一组点的集合。
圆的性质主要包括圆心、半径、弧长以及圆心角等。
其中,圆心角是指圆上的两条射线所夹的角,它的度数等于所对的弧的一半。
利用圆的性质,我们可以解决一些与圆有关的问题,例如求解圆的面积、推导圆的弧长公式等。
5. 多边形的性质多边形是由一系列连续的线段组成的封闭图形,其中最常见的多边形是正多边形。
正多边形具有相等的边长和相等的内角,而任意多边形的内角和等于180度乘以多边形的边数减去2。
通过研究多边形的性质,学生可以解决一些与多边形有关的问题,比如寻找规律、计算不规则多边形的面积等。
通过对初中数学中几何图形性质的学习,学生不仅可以提高空间思维和观察能力,还能够培养逻辑思维和解决问题的能力。
初中数学几何所有性质和定理
初中数学几何所有性质和定理1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕??84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆.110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r ?122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r ②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公*弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n—2)(k—2)=4144弧长扑愎剑篖=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长= d-(R—r) 外公切线长= d-(R+r)(还有一些,大家帮补充吧)实用工具:常用数学公式公式分类公式表达式乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3—b^3=(a—b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b| |a|≤b〈=>—b≤a≤b |a—b|≥|a|-|b|—|a|≤a≤|a|一元二次方程的解—b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系X1+X2=—b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac<0 注:方程没有实根,有*轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB—1)/(cotB+cotA)cot(A—B)=(cotAcotB+1)/(cotB—cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 —1=1—2(sina)^2半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=—√((1—cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=—√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1—cosA))cot(A/2)=—√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)—sin(A—B) )2cosAcosB=cos(A+B)—sin(A-B)—2sinAsinB=cos(A+B)-cos(A—B)sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2 ?2+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b^2=a^2+c^2—2accosB 注:角B是边a和边c的夹角圆的标准方程(x—a)^2+(y—b)^2=^r2 注:(a,b)是圆心坐标圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2—4F〉0抛物线标准方程y^2=2px y^2=—2px x^2=2py x^2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c’*h正棱锥侧面积S=1/2c*h’ 正棱台侧面积S=1/2(c+c')h’圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r 〉0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S’L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h初中常用的几何辅助线做法辅助线,如何添?把握定理和概念。
初中数学几何性质和定理
1、两点之间线段最短。
2、同角或等角的补角相等。
3、同角或等角的余角相等。
4、直线外一点与直线上各点连接的所有线段中,垂线段最短。
5、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行的判定 (1)如果两条直线都和第三条直线平行,这两条直线也互相平行。
(2)因为同位角相等,所以两直线平行 (3)因为内错角相等,所以两直线平行 (4)因为同旁内角互补,所以两直线平行。
平行的性质 1、因为两直线平行,所以同位角相等; 2、因为两直线平行,所以内错角相等; 3、因为两直线平行,所以同旁内角互补。
定理:三角形两边的和大于第三边。
(推论:三角形两边的差小于第三边。
) 三角形内角和定理:三角形三个内角的和等于180℃。
推论1:直角三角形的两个锐角互余。
推论2:三角形的一个外角等于和它不相邻的两个内角的和。
推论3:三角形的一个外角大于任何一个和它不相邻的内角。
全等三角形的性质:全等三角形的对应边、对应角相等。
全等三角形的判定:(SSS ): (SAS ): (ASA ): (AAS ); 斜边、直角边公理(HL ): 角平分线 定理1(性质)在角的平分线上的点到这个角的两边的距离相等。
定理2(判定)到一个角的两边的距离相同的点,在这个角的平分线上。
等腰三角形的性质定理:等腰三角表的两个底角相等(即等边对等角) 等腰三角形的判定定理: 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)。
等边三角形推论1三个角都相等的三角形是等边三角形。
推论2有一个角等于60度的等腰三角形是等边三角形。
推论3等边三角形的各角都相等,并且每个角都等于60度。
推论4在直角三角形中,一个锐角等于30度那么它所对的直角边等于斜边的一半。
推论5直角三角形斜边上的中线等于斜边上的一半。
线段的垂直平分线:定理:线段垂直平分线的点和这条线段两个端点的距离相等。
几何图形的性质
几何图形的性质几何图形是数学中的重要概念之一,它们具有独特的性质和特征。
在学习几何图形的性质之前,我们需要了解几何图形的定义以及一些基本概念。
一、点、线、面的定义在几何学中,点、线和面是最基本的几何图形。
点是几何学中最简单的对象,没有长度、形状和大小。
线由点组成,具有长度但没有宽度,可以无限延伸。
面是由线段或曲线封闭而成的,具有长度和宽度,但没有厚度。
例如,圆是一个平面图形,由一条曲线封闭,其中每个点到圆心的距离相等。
二、1. 直线的性质直线是由无数个点组成的,它没有起点和终点,可以无限延伸。
直线上的任意两点可以确定一条直线。
2. 线段的性质线段是两个端点之间的一段部分,有起点和终点。
线段的长度可以用数值表示,也可以用比较长短的方式进行比较。
3. 角的性质角是由两条射线共同端点组成的图形。
角的大小可以用度数或弧度表示,它们可以通过角的顶点和两条射线上的一点来定义。
在几何学中,有一些常见的角,如锐角、直角和钝角。
锐角小于90度,直角等于90度,钝角大于90度。
4. 三角形的性质三角形是由三条线段组成的图形,它们互相连接形成一个闭合的形状。
三角形的内角和为180度,可以分为锐角三角形、直角三角形和钝角三角形。
三角形的性质还包括边长和角度之间的关系,例如,等腰三角形有两条边相等,等边三角形的三条边都相等。
5. 四边形的性质四边形是由四条线段组成的图形,它们形成一个闭合的形状。
四边形的内角和为360度,可以分为矩形、正方形、菱形和平行四边形等不同类型。
矩形的特点是四个角都为直角,相对边长相等;正方形是特殊的矩形,四边都相等;菱形的特点是四个边都相等,且对角线相互垂直。
6. 圆的性质圆是由一条封闭的曲线组成的,其中每个点到圆心的距离相等。
圆心是圆的中心,半径是从圆心到任意点的距离。
圆的性质包括弧、弦、切线等。
弧是圆上两点之间的部分,弦是连接圆上任意两点的线段,切线是与圆相切的直线。
三、几何图形的应用几何图形的性质在日常生活和工作中有广泛的应用。
七年级立体图形知识点总结
七年级立体图形知识点总结立体图形是初中数学中的重要内容,其知识点涵盖了定义、特征、性质、计算及应用等方面。
下面对七年级立体图形的主要知识点进行总结。
一、立体图形的定义立体图形是三维几何图形,具有长度、宽度和高度三个方向的尺寸,并且占有一定的体积。
常见的立体图形有正方体、长方体、棱锥、棱台、圆柱和圆锥等。
二、立体图形的特征与性质1.正方体正方体的六个面都是正方形,每个顶点有三个面相邻。
正方体的特点是长宽高相等,并且对称性好。
2.长方体长方体的六个面都是矩形,每个顶点有三个面相邻。
长方体的特点是长宽高不相等,但相邻面互相垂直。
3.棱锥棱锥的底面是任意多边形,顶点到底面所在平面的距离叫做棱锥的高。
棱锥的特点是只有一个顶点,其余面都是三角形。
4.棱台棱台的底面和顶面都是任意多边形,且底面的每一边都与顶面的对应边在同一平面上。
棱台的特点是有两个底面,两个底面之间沿着高线平移得到的截面为平行四边形。
5.圆柱圆柱的底面是圆形,且底面中心点到柱轴线的距离称为圆柱的半径,底面与顶面之间的距离称为圆柱的高。
圆柱的特点是侧面为矩形,两底面平行且大小相等。
6.圆锥圆锥的底面为圆形,底面圆心到锥顶的距离为圆锥的高,底面半径为圆锥的半径。
圆锥的特点是侧面为三角形,其中锥顶角为锥的顶角。
三、立体图形的计算对于立体图形的计算,主要涉及到它们的面积和体积。
1.正方体正方体的面积等于6倍它的一个面的面积,体积等于边长的立方。
2.长方体长方体的面积等于2个底面积之和再加上4个侧面积,其中侧面积为长*高或宽*高,体积等于长*宽*高。
3.棱锥棱锥的侧面积等于底面积乘以棱锥的斜高,斜高可以用勾股定理求得,棱锥的体积等于1/3乘以底面积乘以棱锥的高。
4.棱台棱台的侧面积等于上底的周长与下底的周长之和乘以棱台的高的一半,棱台的体积等于1/3乘以棱台的高乘以上底面积加下底面积加上底面积与下底面积的平方根乘以1/2。
5.圆柱圆柱的侧面积等于圆周长乘以高,底面积等于圆面积,圆柱的体积等于底面积乘以高。
初中数学图形的性质知识点汇总
初中数学图形的性质知识点汇总初中数学中,图形的性质是学习几何的重要内容之一。
通过研究图形的性质,可以帮助学生更好地理解空间关系,培养空间想象能力和分析推理能力。
下面将综合介绍一些常见的初中数学图形的性质知识点,帮助同学们加深对图形的了解。
一、线段与直线的性质知识点1. 两点确定一条直线:任意两点可以确定一条直线。
2. 线段的长度:线段的长度可以通过坐标计算或利用勾股定理求解。
3. 垂直平分线:垂直平分线将线段分为两个相等的部分,并且垂直于线段。
4. 平行线的性质:平行线具有等间距性质,不相交且永远不相交。
5. 锐角、直角、钝角:两条直线的夹角分为锐角、直角、钝角三种,分别小于90度、等于90度、大于90度。
二、三角形的性质知识点1. 三角形的分类:根据边的长度和角的大小,可以将三角形分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形。
2. 三角形的内角和:三角形的三个内角之和为180度。
3. 直角三角形的性质:直角三角形的斜边是其他两条边的长度和,斜边是最长的边,勾股定理成立。
4. 等边三角形的性质:等边三角形的三边相等,任意两个角相等且为60度。
5. 等腰三角形的性质:等腰三角形的两边相等,两个底角相等。
6. 过顶点的角平分线:过三角形顶点的角平分线将相邻两个角分成两个相等的部分,交点在三角形的外接圆上。
三、四边形的性质知识点1. 平行四边形的性质:平行四边形的对边平行且相等,对角线互相平分。
2. 矩形的性质:矩形的四个角都是直角,对边互相平行且相等。
3. 正方形的性质:正方形是特殊的矩形,四个角都是直角,四条边相等。
4. 菱形的性质:菱形的对角线互相垂直且平分,对边相等。
5. 梯形的性质:梯形的两边平行,底边不平行,底角和顶角互补。
四、圆的性质知识点1. 圆的直径和半径:圆的直径是通过圆心的两个点,且等于半径的两倍。
2. 圆心角和弧度:圆心角是指以圆心为顶点的角,弧度是弧长占据的圆周角的比例。
几何图形的基本性质
几何图形的基本性质几何图形是研究空间形态和结构的一种数学工具,它能够描述和解释我们周围的环境。
在几何学中,每个几何图形都有其独特的性质和特征。
本文将介绍一些常见几何图形的基本性质,让我们一起来探索吧!一、点、线、面的基本性质1. 点:点是几何图形的最基本元素,它没有长度、宽度和高度,只有位置。
点通常用大写字母表示,如点A、点B等。
2. 线:线是由点按照一定顺序排列形成的,它是一维的、无厚度的几何图形。
线可以延伸到无穷远,常用小写字母表示,如线段AB、直线l等。
3. 面:面是由多个线相交而形成的,它是二维的、有面积的几何图形。
面用大写字母表示,如平面P、三角形ABC等。
二、线段、直线和射线的特性1. 线段:线段是由两个端点确定的有限部分,它具有长度,可以用尺子测量。
线段的长度用双竖线表示,如|AB|表示线段AB的长度。
2. 直线:直线是无限延伸的线段,它没有端点和长度。
直线是最基本的几何要素之一,可以用箭头表示,如直线l。
3. 射线:射线是由一个端点和一个指向无穷远的方向所确定的线段。
射线也是无限延伸的,但只有一个端点。
射线可以用一个起点和一个箭头表示,如射线AB。
三、角的性质和分类1. 角的概念:角是由两条射线公共起点所组成的图形。
公共起点叫做角的顶点,两条射线叫做角的边。
2. 角的度量:角的度量是用度来表示的,一个圆周分成360等份,每份称为1度。
我们可以用量角器或直尺来测量角的度数。
3. 角的分类:角根据其大小可分为三种类型:锐角(小于90度)、直角(等于90度)和钝角(大于90度)。
四、多边形的基本性质1. 多边形的定义:多边形是由多个线段相连而成的封闭图形。
多边形有边、角和顶点。
2. 多边形的分类:根据边的个数,多边形可以分为三角形、四边形、五边形等。
其中三角形又可分为直角三角形、等腰三角形、等边三角形等。
3. 多边形的内角和外角:多边形的内角是由多边形的两条边所确定的角,外角是由一条边和相邻内角的补角所确定的角。
初中数学教案:几何图形的性质与判断
初中数学教案:几何图形的性质与判断一、引言几何图形的性质与判断是初中数学中重要的知识点之一,它不仅是学习几何形状的基础,也是进一步探索几何知识的起点。
通过了解各种几何图形的性质和判断方法,学生可以更好地认识形状之间的关系,拓展几何思维,培养逻辑推理能力。
本教案将以初中数学教学大纲为依据,结合学生的实际情况,设计一堂关于几何图形性质与判断的教学活动。
二、教学目标1. 知识与技能目标:- 了解各种几何图形的基本性质及定义;- 掌握几何图形的判断方法,能够准确判断几何图形的性质;- 运用所学知识解决与几何图形性质相关的问题。
2. 过程与方法目标:- 通过小组合作学习,培养学生合作意识和团队精神;- 引导学生利用课外资源拓展几何图形的知识,培养自主学习能力;- 培养学生观察、分析和解决问题的能力。
三、教学重点与难点1. 教学重点:- 掌握各种几何图形的基本性质;- 能够灵活运用几何图形的判断方法。
2. 教学难点:- 判断几何图形性质时的思维转换;- 解决实际问题时的应用能力。
四、教学过程1. 导入环节(10分钟)- 示范展示一个几何图形,引出对几何图形性质的思考;- 提问:你能列举一些常见的几何图形吗?你知道它们的性质吗?2. 学习与讨论(30分钟)- 分小组给学生发放几何图形卡片,让学生挑选一个几何图形,找出它的性质,并展示给全班;- 全班讨论,总结出各种几何图形的基本性质;- 引导学生思考几何图形性质之间的联系,如何用性质判断一个几何图形的类型。
3. 知识讲解与演示(30分钟)- 逐一介绍各种几何图形的定义和基本性质;- 以示例和图示形式展示几何图形的判断方法,引导学生理解和掌握;- 学生跟随教师一起完成几个判断练习,巩固所学知识。
4. 合作探究与巩固(40分钟)- 学生分小组进行合作探究活动,根据给定的问题使用所学知识进行解答;- 教师提供辅助材料和指导,引导学生运用所学知识解决问题;- 带领全班共同讨论解决方案,并点评各组成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何图形的定义性
质判定
GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-
等腰三角形定义
1 有两条边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰
性质
2 等腰三角形的两个底角相等(简称“等边对等角”)
3 等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简称“三线合一”)
4 等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴
判定
5 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)
等边三角形
定义
1 三边都相等的三角形是等边三角形。
性质
2 等边三角形是特殊的等腰三角形,具有等腰三角形的一切性质
3 等边三角形的每个内角都等于60º
4 等边三角形是锐角三角形
5 等边三角形是轴对称图形,它有3条对称轴
判定
6 有一个角是60º的等腰三角形是等边三角形
7 有两个角是60º的三角形是等边三角形
直角三角形
定义
1 有一个角为90°的三角形,叫做直角三角形(Rt三角形)。
性质
2 在直角三角形中,两个锐角互余。
3 直角三角形斜边上的中线等于斜边的一半
4 直角三角形两直角边的平方和等于斜边的平方。
(勾股定理)
5 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
6 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
判定
7 斜边和一条直角边对应相等的两个直角三角形全等(简写为“HL”)
平行四边形
定义
1 在同一平面内,两组对边分别平行的四边形叫做平行四边形
性质
2 平行四边形是中心对称图形,对角线的交点是它的对称中心
3 平行四边形的对边相等、对角相等、对角线互相平分
判定
4 一组对边平行且相等的四边形是平行四边形
5 两条对角线互相平分的四边形是平行四边形
6 两组对边分别相等的四边形是平行四边形
7 两组对角分别相等的四边形是平行四边形
8 一组对边平行,一组对角相等的四边形是平行四边形
矩形
定义
1 有一个角是直角的平行四边形叫做矩形,通常叫长方形
性质
2 矩形是特殊的平行四边形,它具有平行四边形的一切性质
3 矩形既是抽对称图形也是中心对称图形,对称中心是对角线中点
4 矩形的对角线相等,四个角都是直角
判定
5 对角线相等的平行四边形是矩形
6 有一个角是直角的平行四边形是矩形
7 有3个角是直角的四边形是矩形
菱形
定义
1 一组邻边相等的平行四边形叫做菱形
性质
2 菱形是特殊的平行四边形,它具有平行四边形的一切性质
3 菱形既是抽对称图形也是中心对称图形,对称中心是对角线中点
4 菱形的四条边相等
5 菱形的对角线互相垂直并且每一条对角线平分一组对角
6 S菱形=½×对角线的积
判定
7 四边都相等的四边形是菱形
8 对角线互相垂直的平行四边形是菱形
9 有一组邻边相等的平行四边形是菱形
10 有一条对角线平分一组对角的平行四边形是菱形
正方形
定义
1 有一组邻边相等并且有一个角是直角的平行四边形是正方形
性质
2 正方形具有矩形和菱形的性质
3 正方形既是抽对称图形也是中心对称图形,对称轴有4条,对称中心是对角线中点
判定
4 有一组邻边相等的矩形是正方形
5 有一个角是直角的菱形是正方形
梯形
1 一组对边平行而另一组对边不平行的四边形是梯形
2 梯形的中位线平行于两底,并且等于两底和得一半
3 S梯形=(上底+下底)×高÷2=½(a+b)h=中位线×高
等腰梯形
定义
1 两腰相等的梯形是等腰梯形
性质
2 等腰梯形是轴对称图形
3 两条对角线相等
4 等腰梯形的同一底上的两角相等
判定
5 同一底上的两个角相等的梯形是等腰梯形
直角梯形
1 有一个角是直角的梯形叫做直角梯形
三角形全等
1 有两边及其夹角对应相等的两个三角形全等(或“边角边”)。
2 有两角及其夹边对应相等的两个三角形全等(或“角边角”)。
3 有两角及其一角的对边对应相等的两个三角形全等(或“角角边”)
4 三组对应边分别相等的两个三角形全等(简称或“边边边”)
5 全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
三角形相似
1 如果两个三角形的两个角对应相等,那么这两个三角形相似
2 对应角相等,对应边成比例的两个三角形叫做相似三角形
3 如果两个三角形的两条边对应成比例,且夹角相等,那么这两个三角形相似
4 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
5 如果两个三角形的三组对应边的比相等,那么这两个三角形相似
顺次连接
1 顺次连接任意四边形四边中点所得四边形是平行四边形
2 顺次连接矩形四边中点所得四边形是菱形
3 顺次连接菱形四边中点所得四边形是矩形
1 如果顺次连接四边形四边中点所得四边形是菱形,那么原四边形两条对角线相等
2 如果顺次连接四边形四边中点所得四边形是矩形,那么原四边形两条对角线互相垂直
3 如果顺次连接四边形四边中点所得四边形是正方形,那么原四边形两条对角线互相垂直且平分。