【期中试卷】江苏省镇江市2016_2017学年七年级数学上学期期中试题含答案

合集下载

江苏省常州市七年级数学上学期期中试卷(含解析) 苏科版-苏科版初中七年级全册数学试题

江苏省常州市七年级数学上学期期中试卷(含解析) 苏科版-苏科版初中七年级全册数学试题

2016-2017学年某某省某某市七年级(上)期中数学试卷一、选择题1.﹣2的相反数是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.﹣3+2=﹣5 B.3×(﹣2)=﹣1 C.﹣1﹣1=﹣2 D.﹣32=93.淹城遗址距今已有2500年的历史,总面积约为650000平方米,650000用科学记数法可以表示为()×106×105×104×1044.下列五个数中:①3.14;②;③3.33333…;④π;⑤3.030030003…如果|a|>0,则a()A.一定是正数B.一定是负数C.一定不是负数 D.不等于06.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A.a2﹣b>0 B.a+|b|>0 C.a+b2>0 D.2a+b>07.某超市8月份营业额为m万元,9月份比8月份增长了20%,则该超市9月份的营业额为()A.(1+20%m)万元B.(m+20%)万元C.m万元D.20% m 万元8.如图是一个计算程序,当输出值y=16时,输入值x为()A.±4 B.5 C.﹣3 D.﹣3或5二、填空题9.﹣3的倒数等于;﹣的绝对值等于.10.单项式﹣的系数与次数的乘积为.11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示.12.比较大小:﹣π﹣.(填“>”、“<”或“=”).14.若x3y a与﹣2x b y2的和仍为单项式,则a﹣b的值为.15.将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是.16.当x=1时,代数式ax2+bx﹣4=0,则当x=﹣1时,代数式﹣ax2+bx+7的值为.17.一个两位数,十位数字是x,个位数字比十位数字的3倍少5,则该两位数的最大值是.18.甲乙两人分别从A、B两地同时出发.相向而行,甲的速度是每分钟60米,乙的速度是每分钟90米,出发x分钟后,两人恰好相距100米,则A、B两地之间的距离是米.三、计算题19.计算(1)2+(﹣3)+(﹣6)+8(2)1﹣(﹣4)÷22×(3)(﹣+)÷(﹣)(4)﹣12×8﹣8×()3+4÷.四、计算与化简(20、21每小题5分,22题6分,共16分)20.计算:﹣x+y﹣2x﹣3y.21.计算:﹣(3xy﹣2x2)﹣2(3x2﹣xy)22.先化简,再求值:5(3a2b﹣ab2)﹣4(ab2+3a2b),其中a=,b=.五、解答题(第23题5分,第24题7分,第25、26各8分,共28分)23.将﹣4,﹣(﹣3.5),﹣1,|﹣2|这些数在数轴上表示出来,并用“<”将它们连接起来.24.某高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):﹣8,+18,+2,﹣16,+11,﹣5.(1)该养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为/km,则这次养护共耗油多少升?25.现有20筐葡萄,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示,与标准质量的差值记录如下:单位(千克)﹣3 ﹣2 0 1筐数 1 5 2 2 4(1)这20筐葡萄中,最重的一筐比最轻的一筐重千克.(2)与标准重量比较,这20筐葡萄总计超过或不足多少千克?(3)若葡萄每千克售价8元,则出售这20筐葡萄可卖多少元?26.如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=,S②=.(2)S①与S②之间有怎样的大小关系?请你解释其中的道理.(3)请你利用上述发现的结论计算式子:20162﹣20142.2016-2017学年某某省某某市七年级(上)期中数学试卷参考答案与试题解析一、选择题1.﹣2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.下列运算正确的是()A.﹣3+2=﹣5 B.3×(﹣2)=﹣1 C.﹣1﹣1=﹣2 D.﹣32=9【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣1,错误;B、原式=﹣6,错误;C、原式=﹣2,正确;D、原式=﹣9,错误,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.淹城遗址距今已有2500年的历史,总面积约为650000平方米,650000用科学记数法可以表示为()×106×105×104×104【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法,可得答案.×105,故选:B.【点评】本题考查了科学记数法,确定n的値是解题关键,n是整数数位减1.4.下列五个数中:①3.14;②;③3.33333…;④π;⑤3.030030003…(2016秋•天宁区期中)如果|a|>0,则a()A.一定是正数B.一定是负数C.一定不是负数 D.不等于0【考点】绝对值.【分析】根据绝对值的定义回答即可【解答】解:∵|a|>0,∴a≠0,故选D.【点评】本题主要考查了绝对值的定义,注意①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)是解答此题的关键.6.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A.a2﹣b>0 B.a+|b|>0 C.a+b2>0 D.2a+b>0【考点】数轴.【分析】根据数轴可得出a<﹣1,0<b<1,再判断a2,b2的X围,进行选择即可.【解答】解:根据数轴得a<﹣1,0<b<1,∴a2>1,b2<1,∴a2﹣b>0,故A正确;∴a+|b|<0,故B错误;∴a+b2<0,故C错误;∴2a+b<0,故D错误,故选A.【点评】本题考查了数轴,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.7.某超市8月份营业额为m万元,9月份比8月份增长了20%,则该超市9月份的营业额为()A.(1+20%m)万元B.(m+20%)万元C.m万元D.20% m 万元【考点】列代数式.【分析】根据题意可知9月份增长了20%m.【解答】解:由题意可知:9月份的营业额为m+20%m=m+m=m,故选(C)【点评】本题考查列代数式,涉及合并同类项.8.如图是一个计算程序,当输出值y=16时,输入值x为()A.±4 B.5 C.﹣3 D.﹣3或5【考点】有理数的混合运算.【专题】推理填空题.【分析】当输出值y=16时,小括号内的数是4或﹣4,据此求出输入值x为多少即可.【解答】解:当输出值y=16时,小括号内的数是4或﹣4,4+1=5,﹣4+1=﹣3,∴输入值x为﹣3或5.故选:D.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.二、填空题9.﹣3的倒数等于﹣;﹣的绝对值等于.【考点】倒数;绝对值.【分析】根据倒数的定义,互为倒数的两数积为1;正数的绝对值是其本身,负数的绝对值是它的相反数.【解答】解:﹣3×(﹣)=1,因此﹣3的倒数等于﹣;﹣的绝对值是它的相反数,即.【点评】本题考查倒数的定义和绝对值的概念.10.单项式﹣的系数与次数的乘积为﹣2 .【考点】单项式.【分析】直接利用单项式的次数与系数的定义分析得出答案.【解答】解:∵单项式﹣的系数为:﹣,次数为:5,∴单项式﹣的系数与次数的乘积为:﹣×5=﹣2.故答案为:﹣2.【点评】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.11.跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个,故答案为:少跳了8个.【点评】本题考查了正数和负数,确定相反意义的量是解题关键.12.比较大小:﹣π<﹣.(填“>”、“<”或“=”)【考点】实数大小比较.【分析】首先将﹣化为小数,然后依据两个负数绝对值大的反而小进行比较即可.【解答】解:﹣=﹣3.1.∵π>3.1,∴﹣π<﹣3.1.故答案为:<.【点评】本题主要考查的是比较实数的大小,熟练掌握相关法则是解题的关键.24 .【考点】有理数的乘法;绝对值.【专题】计算题;实数.【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【解答】解:绝对值小于4.5的所有负整数为:﹣4,﹣3,﹣2,﹣1,之积为24,故答案为:24【点评】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.14.若x3y a与﹣2x b y2的和仍为单项式,则a﹣b的值为﹣1 .【考点】合并同类项.【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:由题意,得b=3,a=2.a﹣b=2﹣3=﹣1,故答案为:﹣1.【点评】本题考查了合并同类项,利用同类项的定义得出a,b的值是解题关键.15.将数轴上一点P先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P表示的数是 6 .【考点】数轴.【专题】推理填空题.【分析】设开始点P表示的数为x,由于在数轴上的点向左移时点表示的数要减小,向右移动时,点表示的数要增大,于是得到x+3﹣5=4,然后解一次方程即可.【解答】解:设点P原来表示的数为x,根据题意,得:x+3﹣5=4,解得:x=6,即原来点P表示的数是6,故答案为:6.【点评】本题考查了数轴:规定了原点、正方向、单位长度的直线叫做数轴;所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数;一般来说,当数轴方向朝右时,右边的数总比左边的数大.16.当x=1时,代数式ax2+bx﹣4=0,则当x=﹣1时,代数式﹣ax2+bx+7的值为 3 .【考点】代数式求值.【分析】由题意可知x=1时,a+b﹣4=0,即a+b=4,然后将a+b=4和x=﹣1代入所求的式子即可求出答案.【解答】解:令x=1代入ax2+bx﹣4=0,∴a+b﹣4=0,∴令x=﹣1代入﹣ax2+bx+7,∴原式=﹣a﹣b+7=﹣(a+b)+7=3,故答案为:3【点评】本题考查代数式求值,涉及整体的思想.17.一个两位数,十位数字是x,个位数字比十位数字的3倍少5,则该两位数的最大值是47 .【考点】列代数式.【分析】根据题意个位数字为3x﹣5,则有0<3x﹣5<10,解不等式,求出x的最大值即可解决问题.【解答】解:由题意个位数字为3x﹣5,则有0<3x﹣5<10,∴<x<5,∴x的最大值为4,∴这个两位数为47,故答案为47【点评】本题考查列代数式、一元一次不等式等知识,解题的关键是把问题转化为不等式解决,属于基础题,中考常考题型.18.甲乙两人分别从A、B两地同时出发.相向而行,甲的速度是每分钟60米,乙的速度是每分钟90米,出发x分钟后,两人恰好相距100米,则A、B两地之间的距离是(150x+100)米.【考点】一元一次方程的应用.【专题】计算题;应用题;一次方程(组)及应用.【分析】根据速度与时间的乘积表示出甲乙两人走的路程,加上100即可得到结果.【解答】解:根据题意得:(60+90)x+100=(150x+100)米,故答案为:(150x+100)【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.三、计算题19.(20分)(2016秋•天宁区期中)计算(1)2+(﹣3)+(﹣6)+8(2)1﹣(﹣4)÷22×(3)(﹣+)÷(﹣)(4)﹣12×8﹣8×()3+4÷.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2+8﹣3﹣6=10﹣9=1;(2)原式=1+4××=1;(3)原式=(﹣+)×(﹣12)=﹣3+10﹣4=3;(4)原式=﹣8﹣1+16=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、计算与化简(20、21每小题5分,22题6分,共16分)20.计算:﹣x+y﹣2x﹣3y.【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣x﹣2x)+(y﹣3y)=﹣3x﹣2y.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.21.计算:﹣(3xy﹣2x2)﹣2(3x2﹣xy)【考点】整式的加减.【分析】去括号、合并同类项可得.【解答】解:原式=﹣3xy+2x2﹣6x2+2xy=﹣4x2﹣xy.【点评】本题主要考查整式的运算,熟练掌握整式的运算法则是解题的关键.22.先化简,再求值:5(3a2b﹣ab2)﹣4(ab2+3a2b),其中a=,b=.【考点】整式的加减—化简求值.【分析】根据去括号,合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:原式=15a2b﹣5ab2﹣4ab2﹣12a2b=3a2b﹣9ab2,当a=,b=时,原式=3×()2×﹣9××()2=﹣=﹣.【点评】本题考查了整式的化简求值,先化简再求值,注意去括号易出错.五、解答题(第23题5分,第24题7分,第25、26各8分,共28分)23.将﹣4,﹣(﹣3.5),﹣1,|﹣2|这些数在数轴上表示出来,并用“<”将它们连接起来.【考点】有理数大小比较;数轴;绝对值.【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【解答】解:如图所示,,故﹣4<﹣1<|﹣2|<﹣(﹣3.5).【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.24.某高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):﹣8,+18,+2,﹣16,+11,﹣5.(1)该养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为/km,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程等于总耗油量,可得答案.【解答】(1)解:﹣8+18+2﹣16+11﹣5=2 km,答:该养护小组最后到达的地方在出发点的东边,距出发点2 km.(2)|﹣8|+18+2|﹣16|+11+|﹣5|=60km,60×0.5=30l,答:这次养护共耗油30升.【点评】本题考查了正数和负数,利用有理数的加法是解题关键.25.现有20筐葡萄,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示,与标准质量的差值记录如下:单位(千克)﹣3 ﹣2 0 1筐数 1 5 2 2 4(1)这20筐葡萄中,最重的一筐比最轻的一筐重 5.5 千克.(2)与标准重量比较,这20筐葡萄总计超过或不足多少千克?(3)若葡萄每千克售价8元,则出售这20筐葡萄可卖多少元?【考点】正数和负数.【分析】(1)根据正负数的意义列式计算即可得解;(2)根据图表数据列出算式,然后计算即可得解;(3)求出20筐葡萄的质量乘以单价,计算即可得解.【解答】解:(1)最轻的是﹣3,最重的是2.5;+3=5.5 (千克),故答案为:5.5;(2)20﹣(1+4+2+2+5)=6 (筐)﹣3×1+1×4+(﹣1.5)×2+(﹣2)×5+×6=3(千克);答:与标准重量比较,这20筐葡萄总计超过了3千克.(3)15×20+3=303(千克);303×8=2424(元),答:出售这20筐葡萄可卖2424元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①= a2﹣b2,S②=(a+b)(a﹣b).(2)S①与S②之间有怎样的大小关系?请你解释其中的道理.(3)请你利用上述发现的结论计算式子:20162﹣20142.【考点】列代数式.【分析】(1)根据长方形和正方形的面积公式列代数式即可;(2)根据(1)得出的结果即可直接得出答案;(3)根据(2)的公式进行计算即可.【解答】解:(1)图①的面积是a2﹣b2;图②的面积是(a+b)(a﹣b);故答案为:a2﹣b2;(a+b)(a﹣b),(2)根据(1)可得:(a+b)(a﹣b)=a2﹣b2;相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和;(3)20162﹣20142=(2016+2014)(2016﹣2014)=4030×2=8060【点评】此题考查了列代数式,用到的知识点是正方形的面积公式,多项式的乘法,关键是根据所给出的图形列出相应的代数式,找出它们之间的规律.。

2016-2017学年第一学期七年级数学期中试卷(附答案)

2016-2017学年第一学期七年级数学期中试卷(附答案)

2016-2017学年第一学期七年级数学期中试卷(附答案)2016-2017学年度第一学期期中教学质量测试七年级数学试卷题号一二三四总分得分一.选择题(每小题3分,共30分) 1. 下列各数中,为负数的是() A、-1 B、0 C、2 D、3.14 2. 如图所示的图形为四位同学画的数轴,其中正确的是()3. 九台全区7年级学生大约有10200人,10200这个数用科学记数法表示为() A、 B、 C、 D、 4.下列各数与相等的()A. B. C. D. 5.将式子3-5-7写成和的形式,正确的是() A.3+5+7 B.-3+(-5)+(-7) C.3-(+5)-(+7) D.3+(-5)+(-7) 6.如果,且m+n<0,则下列选项正确的是() A、m<0, n< 0 B、m>0, n< 0 C、m,n异号,且负数的绝对值大 D、m,n异号,且正数的绝对值大 7.一个数的偶数次幂是正数,这个数是() A.正数 B.负数 C.正数或负数 D.有理数 8.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“ 是最小的正整数,是最大的负整数,是绝对值最小的有理数.”请问:,,三数之和是() A.-1 B.0 C.1 D.2 9. 下列代数式符合书写要求的是() A、 B、 C、 5 D、10.一个两位数,十位数字是,个位数字是,则这个两位数用式子表示为() A、 B、 C、 D、二、填空题(每小题3分,共18分)11. 某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差_________kg。

12. 九台区中小学生大约有8.9万人,近似数8.9万精确到_________位 13. 比较大小(填“>”或“<” )_____ 14. 在数-5,-3,-2,2,6中,任意两个数相乘,所得的积中最小的数是________. 15. 观察下面一列数:-,,-,,…,按照这个规律,第2016个数是_________ 16.小明身上带着元钱去商店里买学习用品,付给售货员(<)元,找回元,则小明身上还有_________元(用含有、、来表示)三、计算题(本大题共6小题,共32分) 17.(5分)�D3+(-4)�D(-5)四、解答题(本大题共6小题,共40分) 23.(7分)请将数轴补全,然后把数-4,1,0,,-(-5)表示在数轴上,并按从小到大的顺序,从左到右串个糖葫芦,把数填在“○”内24.(7分)已知:与互为相反数求的值 25.(8分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶纪录如下(单位:千米):+10,-9,+7,-15,+6,-14,+4,-2 (1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶10千米耗油0.5升,且最后返回岗亭,这时摩托车共耗油多少升?26.(8分)人在运动时每分钟心跳的次数通常和人的年龄有关,如果用表示一个人的年龄,用表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么 (1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少? (2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?27.(10分)如图,已知数轴上点A表示的数为-7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为(>0)秒(1)点C表示的数是_________ (2)求当等于多少秒时,点P到达点B 处(3)点P表示的数是_________(用含有的代数式表示)(4)求当t等于多少秒时,PC之间的距离为2个单位长度七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D B B D A C B A C 二、填空题(每小题3分,共18分) 11、 0.6;12、千;13、>;14、-30;15、;16、- + 。

苏科版七年级上册数学期中试卷带答案

苏科版七年级上册数学期中试卷带答案

苏科版七年级上册数学期中试题一、单选题1.下列各组数中,互为相反数的是()A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2|2.下列说法不正确的是()A .任何一个有理数的绝对值都是正数B .0既不是正数也不是负数C .有理数可以分为正有理数,负有理数和零D .0的绝对值等于它的相反数3.下列运用等式性质进行的变形,正确的是()A .如果a =b ,那么a +c =b ﹣cB .如果a 2=3a ,那么a =3C .如果a =b ,那么a b c c =D .如果a bc c=,那么a =b 4.有理数a 、b 在数轴上的对应的位置如图所示,则正确的是()A .a ﹣b >0B .a ﹣b <0C .a ﹣b=0D .a+b <05.代数式y 2-2y+7的值是-3,则3y 2-6y-5的值是()A .35B .-25C .-35D .76.有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是()A .3B .12-C .23D .-3二、填空题7.-2.5的倒数是______,(2)--的相反数是_______;53-的倒数的绝对值是_____.8.单项式23x y-的系数是______,次数______,多项式2xy 2-3x 2y 3-8是____次____项式.9.点A 在数轴上距离原点3个单位长度,将A 向左移动2个单位长度,再向右移动4个单位长度,此时A 点所表示的数是_____________.10.绝对值大于2而小于6的所有整数的和是__________.11.﹣38040000000用科学记数表示为_____.12.用火柴棍象如图这样搭图形,搭第n 个图形需要根火柴棍.三、解答题13.计算:(1)—7.5×(—42)—(—3)3÷(—1)2017;(2)()271112669126⎛⎫--+⨯- ⎪⎝⎭14.化简下列各式:(1)()()2232157a a a a --++-+(2)()()()()4567a b a b a b a b +----++15.解方程:4 1.50.59x x x -=--16.如果关于m 的方程21m b m +=-的解是4-,求b 的值?17.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.18.已知2(x 3)+与y 2-互为相反数,z 是绝对值最小的有理数,求y (x y)xyz ++的值.19.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,则()a ba b cd m m m++++-的值?20.化简计算:求当输入x =0.5,y =7时输出结果.21.某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?22.如果两个关于x 、y 的单项式2mx a y 3与﹣4nx 3a ﹣6y 3是同类项(其中xy ≠0).(1)求a 的值;(2)如果他们的和为零,求(m ﹣2n ﹣1)2016的值.23.观察下列等式:111111111111,,,13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭请解答下列问题:(1)按以上规律列出第5个算式:(2)由此计算:11111 (1335572013201520152017)+++++⨯⨯⨯⨯⨯()()(3)用含n 的代式表示第n 个等式:a n =(n 为正整数);参考答案1.A【解析】【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1互为相反数,正确;B、(﹣1)2=1,故错误;C、2与12互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.2.A【解析】A、任何一个有理数的绝对值都是非负数.错误;B、C、D都正确.故选A.3.D【解析】【分析】根据等式的基本性质逐一判断即可.【详解】A.当a=b时,a+c=b+c,故A错误;B.当a=0时,此时a≠3,故B错误;C.当c=0时,此时ac与bc无意义,故C错误;D.当a bc c 时,等式两边同时乘c,那么a=b,故D正确.故选:D.【点睛】此题考查的是等式的基本性质,利用等式的基本性质将等式变形是解决此题的关键. 4.A【解析】【分析】根据题意和图形可知a,b取值范围,a>1,﹣1<b<0,由此即可得到结论.【详解】∵﹣1<b<0.又∵a>1,∴a﹣b>0,a+b>0.故选A.【点睛】注意原点左边的为负数,右边的为正数.且绝对值越大到原点的距离就越大.5.C【解析】【分析】先求出y2﹣2y=﹣10,变形后代入,即可求出答案.【详解】根据题意得:y2﹣2y+7=﹣3,y2﹣2y=﹣10,所以3y2﹣6y﹣5=3(y2﹣2y)﹣5=3×(﹣10)﹣5=﹣35.故选C.【点睛】本题考查了求代数式的值,能够整体代入是解答此题的关键.6.C【解析】【分析】直接利用已知得出第一次与第二次输出的结果即可.【详解】由题意可得:1﹣3=﹣2,则输出﹣12,故第二次输入﹣12,得到:1﹣(﹣12)=32,输出23.故选C.【点睛】本题主要考查了倒数以及有理数的减法运算,正确理解题意是解题的关键.7.25--235【解析】【分析】根据倒数的意义,相反数的意义,绝对值的性质,可得答案.【详解】﹣2.5的倒数是﹣25,﹣(﹣2)的相反数是﹣2;﹣53的倒数的绝对值是35.故答案为﹣25,﹣2,35.【点睛】本题考查了倒数、相反数、绝对值,理解倒数的意义、相反数的意义是解题的关键.8.13-,3,五,三.【解析】【分析】根据单项式系数、次数的定义,多项式次数、项数的定义,进行解答即可.【详解】单项式﹣23x y的系数是﹣13,次数是3次,多项式2xy2﹣3x2y3﹣8是五次三项式.故答案为﹣13、3、五、三.【点睛】本题考查了单项式及多项式的知识,掌握多项式次数的定义及单项式系数、次数的定义是解题的关键.9.-1或5.【解析】【分析】由于点A与原点0的距离为3,那么A应有两个点,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是﹣3和3.A向左移动2个单位长度,再向右移动4个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】∵点A在数轴上距原点3个单位长度,∴点A表示的数为3或﹣3;当点A表示的数是﹣3时,移动后的点A所表示的数为:﹣3﹣2+4=﹣1;当点A表示的数是3时,移动后的点A所表示的数为:3﹣2+4=5;综上所述:移动后点A所表示的数是:﹣1或5.故答案为:﹣1或5.【点睛】本题考查了数轴.根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.10.0.【解析】【分析】根据题意画出图形,由绝对值的几何意义可知:绝对值大于2小于6的所有整数即为到原点的距离大于2小于6,观察数轴即可得到满足题意的所有整数,求出这些整数之和即可.【详解】根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.故答案为0.【点睛】本题考查了绝对值的几何意义,即一个数的绝对值就是在数轴上表示这个数的点到原点的距离,离原点越近,绝对值越小;离原点越远,绝对值越大.另外在求和时利用加法的运算律可以简化运算,同时注意数形结合思想的灵活运用.11.-3.804×1010【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】-38040000000用科学记数表示为-3.804×1010.故答案为-3.804×1010.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.2n+1.【解析】试题分析:搭第一个图形需要3根火柴棒,结合图形,发现:后边每多一个三角形,则多用2根火柴.解:结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+1.考点:规律型:图形的变化类.13.(1)93(2)25【解析】【分析】(1)根据有理数混合运算法则计算可得出结果;(2)利用乘法分配律给括号中每一项都乘以36,然后根据有理数加减法混合运算法则计算即可.【详解】(1)原式=7.5×16-27÷1=120-27=93;(2)原式=7111 26369126⎛⎫--+⨯⎪⎝⎭=26-(28-33+6)=26-1=25.【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解答本题的关键.14.(1)-2a2-3a+6(2)22b【解析】【分析】(1)首先利用去括号法则化简,进而合并同类项得出答案;(2)首先将(a+b),(a﹣b)看作整体合并同类项,进而利用去括号法则求出即可.【详解】(1)原式=﹣3a2+2a﹣1+a2﹣5a+7=﹣2a2﹣3a+6;(2)原式=11(a+b)﹣11(a﹣b)=11a+11b-11a+11b=22b.【点睛】本题主要考查了去括号法则以及合并同类项,正确掌握去括号法则是解题的关键.15.x=-3【解析】【分析】先移项得到4x﹣1.5x+0.5x=﹣9,然后合并同类项,再把x的系数化为1即可.【详解】移项得:4x﹣1.5x+0.5x=﹣9合并得:3x=﹣9系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.16.b=3【解析】【分析】将m =﹣4代入可得关于b 的方程,解出即可.【详解】把m =﹣4代入方程2m +b =m ﹣1中,得:2×(﹣4)+b =(﹣4)﹣1,解得:b =3.【点睛】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.17.正确【解析】【分析】设此整数是a ,再根据题意列出式子进行计算即可.【详解】正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a=a+20-2=18,所以说小张说的对.【点睛】本题考查了整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18.1.【解析】试题分析:由题意可得2(3)200x y z ++-==,,由此可求出x y 、的值,再代值计算即可.试题解析:由题意可得2(3)200x y z ++-==,,∴3020x y +=-=,,解得32x y =-=,.∴()y x y xyz ++=2(32)(3)201-++-⨯⨯=.点睛:(1)互为相反数的两个式子的和为0;(2)两个非负数的和为0,则这两个数都为0;(3)绝对值最小的数是0.19.0或-2.【解析】【分析】利用相反数,倒数,以及绝对值的定义求出a +b ,cd ,及m 的值,代入计算即可求出值.【详解】根据题意得:a +b =0,cd =1,m =±1.①当m =1时,原式=1﹣1=0;②当m =﹣1时,原式=﹣1﹣1=﹣2.【点睛】本题考查了有理数的混合运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解答本题的关键.20.618.【解析】【分析】根据流程图可得输出结果为2(21)2x y ++÷,代入求值即可.【详解】根据流程图可得输出结果为2(21)2x y ++÷.当输入x =0.5,y =7时,原式=2(0.5271)2+⨯+÷=618.【点睛】本题考查了有理数的混合运算.读懂流程图是解答本题的关键.21.(1)170米;(2)128升.【解析】【分析】(1)根据有理数的加法,可得到达的地点,再根据有理数的减法,可得他们距顶峰的距离;(2)根据路程乘以5个人的单位耗氧量,可得答案.【详解】(1)+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.04)=640×0.2=128(升).答:他们共耗氧气128升.【点睛】本题考查了正数和负数,利用有理数的加法是解题的关键,注意路程乘以5个人的单位耗氧量是总耗氧量.22.(1)a=3;(2)1.【解析】【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得答案;(2)根据单项式的和为零,可得单项式的系数互为相反数,根据互为相反数的和为零,可得m,n的关系,根据负数的偶数次幂是正数,可得答案.【详解】解:(1)依题意,得a=3a﹣6,解得a=3;(2)∵2mx3y3+(﹣4nx3y3)=0,故m﹣2n=0,∴(m﹣2n﹣1)2016=(﹣1)2016=1.【点睛】本题考查了同类项的定义及合并同类项,利用同类项是字母相同且相同字母的指数也相同得出关于a的方程是解题关键.23.(1)1111;9112911⎛⎫=⨯-⎪⨯⎝⎭(2)10082017;(3)()()1111212122121n n n n⎛⎫=-⎪-+-+⎝⎭.【解析】【分析】(1)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可;(2)利用发现的规律代入计算即可;(3)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可.【详解】(1)第5个等式:a 5=1911⨯=12×(19﹣111);(2)原式=12×(1﹣13)+12×(13﹣15)+12×(15﹣17)+…+12×(12015﹣12017)=12×(1﹣13+13﹣15+15﹣17+…+12015﹣12017)=12×(1﹣12017)=12×20162017=10082017;(3)()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭.【点睛】本题考查了数字的变化规律,找出数字之间的运算规律,利用运算规律解决问题.。

2016--2017学年度上期中七年级数学试卷

2016--2017学年度上期中七年级数学试卷

第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。

【最新】2016-2017学年人教版初一数学七年级上册期中测试卷及答案

【最新】2016-2017学年人教版初一数学七年级上册期中测试卷及答案

2016-2017学年七年级(上)期中数学试卷一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在答题卡上的指定位置.每小题3分,共30分)1.相反数是2的数是()A.﹣2 B.C.2 D.2.下列计算正确的是()A.23=6 B.﹣42=﹣16 C.﹣8﹣8=0 D.﹣5﹣2=﹣33.在有理数0,(﹣1)2,,﹣|﹣2|,(﹣2)3中正数有()个.A.4 B.3 C.2 D.14.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×1056.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是 67.下列各式中与多项式2x﹣3y+4z相等的是()A.2x+(3y﹣4z)B.2x﹣(3y﹣4z)C.2x+(3y+4z) D.2x﹣(3y+4z)8.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0 B.1 C.﹣1 D.﹣29.已知a,b两数在数轴上对应的点如下图所示,下列结论正确的是()A.a+b>0 B.ab<0 C.b﹣a>0 D.a>b10.解为x=﹣3的方程是()A.3x﹣2=﹣7 B.3x+2=﹣11 C.2x+6=0 D.x﹣3=0二.填空题(请将答案填写在答题卡指定的位置.每小题3分,共15分)11.如果水位升高3m时,水位变化记作+3m,那么水位下降5m时,水位变化记作: m.12.5与x的差的比x的2倍大1的方程是:.13.一个单项式加上﹣y2+x2后等于x2+y2,则这个单项式为.14.如果m、n互为相反数,a,b互为倒数,则|m+n﹣ab|等于.15.观察一列数:,,,,,…根据规律,请你写出第10个数是.三.解答题16.计算:(1)﹣15﹣(﹣8)+(﹣11)﹣12(2)﹣23+[(﹣4)2﹣(1﹣32)×3].17.化简(1)﹣3x2y+3xy2+2x2y﹣2xy2;(2).18. 5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=,b=.19.已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4(1)若A点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?20.已知(a﹣2)x2+ax+1=0是关于x的一元一次方程(即x是未知数),求这个方程的解.21.定义一种运算: =ad﹣bc,如,那么当时,求的值.22.已知多项式(2mx2﹣x2+3x+1)﹣(5x2﹣4y2+3x)化简后不含x2项.求多项式2m3﹣[3m3﹣(4m ﹣5)+m]的值.23.某织布厂有工人200名,为改善经营,增设制衣项目,已知每人每天能织布30米,或利用所织布制衣4件,制衣一件用布 1.5米,将布直接出售,每米布可获利2元;将布制成衣后出售,每件可获利25元,若每名工人一天只能做一项工作,且不计其他因素,设安排x名工人制衣,则:(1)一天中制衣所获得的利润为P= (用含的代数式表示);(2)一天中剩余布出售所获利润为Q= (用含的代数式表示);(3)当安排166名工人制衣时,所获总利润W(元)是多少?能否安排167名工人制衣以提高利润?试说明理由.24.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a= ,b= ,c=(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在答题卡上的指定位置.每小题3分,共30分)1.相反数是2的数是()A.﹣2 B.C.2 D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列计算正确的是()A.23=6 B.﹣42=﹣16 C.﹣8﹣8=0 D.﹣5﹣2=﹣3【考点】有理数的乘方;有理数的减法.【专题】计算题.【分析】根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较.【解答】解:A、23=8≠6,错误;B、﹣42=﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误;故选B.【点评】本题主要考查学生的运算能力,掌握运算法则是关键.3.在有理数0,(﹣1)2,,﹣|﹣2|,(﹣2)3中正数有()个.A.4 B.3 C.2 D.1【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)【分析】首先把每个数进行化简,然后再判断正负.【解答】解:(﹣1)2=1, =,﹣|﹣2|=﹣2,(﹣2)3=﹣8,正数有:(﹣1)2=1, =,共2个,故选:C.【点评】此题主要考查了绝对值、乘方、正负数,关键是掌握正数比0大.4.下列说法中正确的是()A.没有最小的有理数 B.0既是正数也是负数C.整数只包括正整数和负整数 D.﹣1是最大的负有理数【考点】有理数.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.2011年,国家统计局公布了第六次全国人口普查结果,总人口约为1339700000人,将1339700000用科学记数法表示正确的是()A.0.13397×1010 B.1.3397×109C.13.397×108D.13397×105【考点】科学记数法—表示较大的数.第5页(共17页)。

江苏省镇江市丹徒区2016-2017学年七年级(上)期中数学试卷(解析版)

江苏省镇江市丹徒区2016-2017学年七年级(上)期中数学试卷(解析版)

2016-2017学年江苏省镇江市丹徒区七年级(上)期中数学试卷一、填空(本大题共12小题,每小题2分,共24分.)1.﹣2016的相反数是,倒数是.2.单项式﹣3xy3的系数是,次数是.3.江苏省的面积约为102 600km2,这个数据用科学记数法可表示为km2.4.化简(x+y)﹣(x﹣y)的结果是.5.若2x3y n+1与﹣5x m﹣2y2是同类项,则m+n=.6.比较两个数的大小:﹣﹣.7.如图是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2,则输出结果为.8.若a﹣2b=3,则9﹣2a+4b的值为.9.若x2=9,则x=.10.下列一组是按规律排列的数:1,2,4,8,16,…,第2016个数是.11.定义一种关于“⊙”的新运算,观察下列式子:1⊙3=1×4+3=7;3⊙(﹣1)=3×4+(﹣1)=11;5⊙4=5×4+4=24;4⊙(﹣3)=4×4+(﹣3)=13.请你想一想:5⊙(﹣6)=.12.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)二、选择题(本大题共8小题,每小题2分,共16分.)13.某天的温度上升了5℃记作+5℃,则﹣2℃的意义是()A.上升了2℃B.没有变化 C.下降了﹣2℃D.下降了2℃14.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个15.如图,在数轴上表示到原点的距离为3个单位的点有()A.D点 B.A点 C.A点和D点D.B点和C点16.下面各组数中,相等的一组是()A.﹣22与(﹣2)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣3317.下列说法中正确的是()A.如果两个数的绝对值相等,那么这两个数相等B.有理数分为正数和负数C.互为相反数的两个数的绝对值相等D.最小的整数是018.下列代数式:a,﹣ab,m+n,x2+y2,﹣1,ab2c,其中单项式共有()A.6个B.5个C.4个D.3个19.下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b20.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd三、计算或化简(共34分)21.计算(1)2﹣(﹣18)+(﹣7)﹣15(2)(﹣48)÷8﹣(﹣25)×(﹣6)(3)﹣14﹣|2﹣5|+6×(﹣)(4)﹣36×(﹣﹣)÷(﹣2)22.化简:(1)x2y﹣3x2y﹣6xy+5xy+2x2y(2)(2x﹣7y)﹣(4x﹣10y)(3)5a2+3ab+2(a﹣ab)﹣(5a2+ab﹣b2)23.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.四、解答题(共26分)24.如图,在边长为a cm的正方形内,截去两个以正方形的边长a cm为直径的半圆,(结果保留π)(1)图中阴影部分的周长为cm.(2)图中阴影部分的面积为cm2.(3)当a=4时,求出阴影部分的面积.25.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,x(x ≥20)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.(1)在A超市购买羽毛球拍和羽毛球的费用为,在B超市购买羽毛球拍和羽毛球的费用为.(用含x的代数式表示)(2)该活动中心决定只在一家超市购买10副球拍和100个羽毛球,你认为在哪家超市购买划算?为什么?26.记M(1)=﹣2,M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…,M(n)=(1)填空:M(5)=,M(50)是一个数(填“正”或“负”)(2)计算:①2M(6)+M(7);②4M(7)+2M(8);(3)直接写出2016M(n)+1008M(n+1)的值为.27.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N 点也恰好重合,则M,N两点表示的数分别是:M,N;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P,Q(用含m,n的式子表示这两个数).2016-2017学年江苏省镇江市丹徒区七年级(上)期中数学试卷参考答案与试题解析一、填空(本大题共12小题,每小题2分,共24分.)1.﹣2016的相反数是2016,倒数是﹣.【考点】倒数;相反数.【分析】根据相反数、倒数的定义进行填空即可.【解答】解:﹣2016的相反数是2016,倒数是﹣,故答案为2016,﹣.2.单项式﹣3xy3的系数是﹣3,次数是4.【考点】单项式.【分析】根据单项式系数和次数的概念求解.【解答】解:单项式﹣3xy3的系数为﹣3,次数为4.故答案为:﹣3,4.3.江苏省的面积约为102 600km2,这个数据用科学记数法可表示为 1.026×105km2.【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:102 600=1.026×105km2.4.化简(x+y)﹣(x﹣y)的结果是2y.【考点】整式的加减.【分析】直接运用去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣,进行计算.【解答】解:(x+y)﹣(x﹣y)=x+y﹣x+y=2y.5.若2x3y n+1与﹣5x m﹣2y2是同类项,则m+n=6.【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【解答】解:由题意,得m﹣2=3,n+1=2.解得m=5,n=1.m+n=5+1=6,故答案为:6.6.比较两个数的大小:﹣<﹣.【考点】有理数大小比较.【分析】根据有理数大小比较的方法,两个负数,绝对值大的其值反而小,判断出两个数的大小关系即可.【解答】解:|﹣|=,|﹣|=,∵,∴﹣.故答案为:<.7.如图是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2,则输出结果为 6.5.【考点】代数式求值.【分析】把x与y的值代入数值转换机中计算即可确定出输出结果.【解答】解:把x=3,y=﹣2代入数值转换机中得:[32+(﹣2)2]÷2=(9+4)÷2=13÷2=6.5.故答案为:6.5.8.若a﹣2b=3,则9﹣2a+4b的值为3.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.9.若x2=9,则x=±3.【考点】平方根.【分析】由于左边为一个平方式,所以可用直接开平方法进行求解.【解答】解:∵x2=9∴x=±3.10.下列一组是按规律排列的数:1,2,4,8,16,…,第2016个数是22015.【考点】规律型:数字的变化类.【分析】根据第1个数1=20,第2个数2=21,第3个数4=22可知第n个数为2n﹣1,据此可得.【解答】解:第1个数1=20,第2个数2=21,第3个数4=22,…∴第2016个数是22015,故答案为:22015.11.定义一种关于“⊙”的新运算,观察下列式子:1⊙3=1×4+3=7;3⊙(﹣1)=3×4+(﹣1)=11;5⊙4=5×4+4=24;4⊙(﹣3)=4×4+(﹣3)=13.请你想一想:5⊙(﹣6)=14.【考点】有理数的混合运算.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=5×4﹣6=20﹣6=14,故答案为:1412.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有3n+1个三角形(用含n的代数式表示)【考点】规律型:图形的变化类.【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有(3n+1)个三角形.【解答】解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.故答案为:3n+1.二、选择题(本大题共8小题,每小题2分,共16分.)13.某天的温度上升了5℃记作+5℃,则﹣2℃的意义是()A.上升了2℃B.没有变化 C.下降了﹣2℃D.下降了2℃【考点】正数和负数.【分析】根据温度上升记为正,即可得出温度下降记为负,此题得解.【解答】解:∵温度上升了5℃记作+5℃,∴﹣2℃表示温度下降了2℃.故选D.14.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的定义得到无理数有,共1个.【解答】解:无理数有,共1个,故选A.15.如图,在数轴上表示到原点的距离为3个单位的点有()A.D点 B.A点 C.A点和D点D.B点和C点【考点】数轴.【分析】距离原点3个单位的点可能在原点的右边(3,即D点),也可能在原点的左边(﹣3,即A点).【解答】解:由数轴与题意可得,在数轴上表示到原点的距离为3个单位的点有A点和D 点.故选C.16.下面各组数中,相等的一组是()A.﹣22与(﹣2)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方,以及绝对值的含义和求法,求出每个选项中的两个数各是多少,判断出各组数中,相等的一组是哪个即可.【解答】解:∵﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2,∴选项A不正确;∵=,()3=,∴≠()3,∴选项B不正确;∵﹣|﹣2|=﹣2,﹣(﹣2)=2,∴﹣|﹣2|≠﹣(﹣2),∴选项C不正确;∵(﹣3)3=﹣27,﹣33=﹣27,∴(﹣3)3=﹣33,∴选项D正确.故选:D.17.下列说法中正确的是()A.如果两个数的绝对值相等,那么这两个数相等B.有理数分为正数和负数C.互为相反数的两个数的绝对值相等D.最小的整数是0【考点】绝对值;相反数.【分析】利用绝对值的代数意义,相反数定义,以及有理数的分类判断即可.【解答】解:A、如果两个数的绝对值相等,那么这两个数相等或互为相反数,错误;B、有理数分为正数、负数和0,错误;C、互为相反数的两个数的绝对值相等,正确;D、没有最小的整数,错误,故选C18.下列代数式:a,﹣ab,m+n,x2+y2,﹣1,ab2c,其中单项式共有()A.6个B.5个C.4个D.3个【考点】单项式.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以确定单项式的个数.【解答】解:a,﹣ab,m+n,x2+y2,﹣1,ab2c,其中单项式共有a,﹣ab,﹣1,ab2c共4个,故选C.19.下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【考点】去括号与添括号;合并同类项.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.20.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd【考点】整式的加减.【分析】把图形补成一个大矩形,则很容易表达出阴影部分面积.【解答】解:把图形补成一个大矩形,则阴影部分面积=ab﹣(a﹣c)(b﹣d)=ab﹣[ab﹣ad ﹣c(b﹣d)]=ab﹣ab+ad+c(b﹣d)=ad+c(b﹣d).故选C.三、计算或化简(共34分)21.计算(1)2﹣(﹣18)+(﹣7)﹣15(2)(﹣48)÷8﹣(﹣25)×(﹣6)(3)﹣14﹣|2﹣5|+6×(﹣)(4)﹣36×(﹣﹣)÷(﹣2)【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数加法法则计算即可;(2)先算乘除,再算减法即可;(3)先算乘方与绝对值,再算乘法,最后算加减;(4)先利用分配律计算,再计算除法即可.【解答】解:(1)原式=2+18﹣7﹣15=﹣2;(2)原式=﹣6﹣150=﹣156;(3)原式=﹣1﹣3﹣2=﹣6;(4)原式=(﹣9+4+3)÷(﹣2)=(﹣2)÷(﹣2)=1.22.化简:(1)x2y﹣3x2y﹣6xy+5xy+2x2y(2)(2x﹣7y)﹣(4x﹣10y)(3)5a2+3ab+2(a﹣ab)﹣(5a2+ab﹣b2)【考点】整式的加减.【分析】(1)直接合并同类项即可;(2)、(3)先去括号,再合并同类项即可.【解答】解:(1)原式=(1﹣3+2)x2y﹣(6﹣5)xy=﹣xy;(2)原式=2x﹣7y﹣4x+10y=3y﹣2x;(3)原式=5a2+3ab+2a﹣2ab﹣5a2﹣ab+b2=2a+b2.23.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=ab2﹣1+7a2b﹣2+2ab2+2﹣2a2b=ab2+5a2b﹣1,∵(a+2)2+|b﹣3|=0,∴a+2=0,b﹣3=0,即a=﹣2,b=3,则原式=﹣42+60﹣1=17.四、解答题(共26分)24.如图,在边长为a cm的正方形内,截去两个以正方形的边长a cm为直径的半圆,(结果保留π)(1)图中阴影部分的周长为πa+2a cm.(2)图中阴影部分的面积为a2﹣a2cm2.(3)当a=4时,求出阴影部分的面积.【考点】代数式求值;列代数式.【分析】(1)根据阴影部分的周长=正方形两条边的长度+一个圆的周长.(2)阴影部分的面积=正方形的面积﹣圆的面积;(3)当a=4时,代入(2)中代数式计算即可.【解答】解:(1)由图可知,阴影部分的周长为一个圆的周长与正方形两条边长的和,则阴影部分的周长=πa+2a(cm);故答案为:πa+2a;(2)由图可知,阴影部分的面积=正方形的面积﹣圆的面积,即阴影部分的面积=a2﹣π()2=a2﹣a2.故答案为:a 2﹣a 2;(3)当a=4时,阴影部分的面积=42﹣×42=16﹣4π(cm 2).25.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,x (x ≥20)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的90%)销售;B 超市:买一副羽毛球拍送2个羽毛球.(1)在A 超市购买羽毛球拍和羽毛球的费用为 270+2.7x ,在B 超市购买羽毛球拍和羽毛球的费用为 30x +240 .(用含x 的代数式表示)(2)该活动中心决定只在一家超市购买10副球拍和 100个羽毛球,你认为在哪家超市购买划算?为什么?【考点】一元一次方程的应用.【分析】(1)根据购买费用=单价×数量建立关系就可以表示出在两个超市购买羽毛球拍和羽毛球的费用;(2)把x=10分别代入两个代数式可得答案.【解答】解:(1)在A 超市购买羽毛球拍和羽毛球的费用为:10×30×0.9+3×0.9×x=270+2.7x ,在B 超市购买羽毛球拍和羽毛球的费用:10×30+3(10x ﹣20)=30x +240,故答案为:270+2.7x ;30x +240;(2)当x=10时,270+2.7×10=540,30x +240=30×10+240=540,答:A 、B 花费一样多.26.记M (1)=﹣2,M (2)=(﹣2)×(﹣2),M (3)=(﹣2)×(﹣2)×(﹣2),…,M (n )=(1)填空:M (5)= ﹣32 ,M (50) 是一个 正 数(填“正”或“负”)(2)计算:①2M (6)+M (7);②4M (7)+2M (8);(3)直接写出2016M (n )+1008M (n +1)的值为 0 .【考点】规律型:数字的变化类.【分析】(1)根据M (n )=代入n=5、50,即可求出M (5)、M (50) 的值;(2)根据M (n )=代入数值即可得出2M (6)+M (7)和4M (7)+2M (8)的值;(3)根据2016÷1008=2结合M (n )=即可求出2016M (n )+1008M (n +1)的值.【解答】解:(1)∵M (n )=,∴M (5)=(﹣2)5=﹣32;M (50)=(﹣2)50=(﹣1)50×250=250.故答案为:﹣32;正.(2)①2M (6)+M (7)=2×(﹣2)6+(﹣2)7=27﹣27=0;②4M (7)+2M (8)=4×(﹣2)7+2×(﹣2)8=﹣29+29=0.(3)∵2016÷1008=2,∴2016M (n )+1008M (n +1)=1008×(2M (n )+M (n +1))=1008×[﹣(﹣2)n +1+(﹣2)n +1]=0.故答案为:0.27.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,﹣,﹣3观察数轴,与点A 的距离为3的点表示的数是 4或﹣2 ,B ,C 两点之间的距离为 ;(2)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是 ;若此数轴上M ,N 两点之间的距离为2015(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则M ,N 两点表示的数分别是:M ﹣1008.5 ,N 1006.5 ;(3)若数轴上P ,Q 两点间的距离为m (P 在Q 左侧),表示数n 的点到P ,Q 两点的距离相等,则将数轴折叠,使得P 点与Q 点重合时,P ,Q 两点表示的数分别为:P n ﹣ ,Q n + (用含m ,n 的式子表示这两个数).【考点】一元一次方程的应用;数轴.【分析】(1)分点在A 的左边和右边两种情况解答;利用两点之间的距离计算方法直接计算得出答案即可;(2)A 点与C 点重合,得出对称点位﹣1,然后根据两点之间的距离列式计算即可得解; (3)根据(2)的计算方法,然后分别列式计算即可得解.【解答】解:(1)点A 的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B ,C 两点之间的距离为﹣﹣(﹣3)=;(2)B 点重合的点表示的数是:﹣1+[﹣1﹣(﹣)]=;M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;(3)P=n ﹣,Q=n +.故答案为:4或﹣2,;,﹣1008.5,1006.5;n ﹣,n +.2017年1月5日。

2016-2017学年人教版数学七年级上期中试卷含答案

2016-2017学年人教版数学七年级上期中试卷含答案

期中测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.下列各题中计算正确的个数是( )(1)=-3 (-24)÷(-8)(2)=-4 (+32)÷(-8)(3)=1 (-45)÷(-45)(4)=-3 (-334)÷(-1.25)A.1 B.2 C.3 D.4 2.太阳的半径约为696 000 km,把696 000这个数用科学记数法表示为( )A .6.96×103B .69.6×105C .6.96×105D .6.96×1063.下列各对单项式是同类项的是( ) A.-x 3y 2与3x 3y 2 12B.-x 与y C.3与3a D.3ab 2与a 2b4.在数轴上有两个点A ,B ,点A 表示-3,点B 与点A 相距5.5个单位长度,则点B 表示的数为( ) A.-2.5或8.5 B.2.5或-8.5 C.2.5 D.-8.5 5.一个数的平方和它的倒数相等,则这个数是( )A.1B.-1C.±1D.±1和06.下列各式计算正确的是( )A.6a+a=6a 2B.-2a+5b=3abC.4m 2n-2mn 2=2mnD.3ab 2-5b 2a=-2ab 27.某市出租车收费标准(燃油费计入起步价中)调整为:起步价7元(不超过3 km 收费7元).3 km 后每千米1.4元(不足1 km 按1 km 算).小明坐车x (x>3)km,应付车费( ) A.6元B.6x 元C.(1.4x+2.8)元D.1.4x 元8.下列各数:0.01,10,-6.67,-,0,-(-3),-|-2|,-(-42),其中属于非负整数的个数为 ( )13A.1 B.2 C.3 D.49.一个多项式加上3x 2y-3xy 2得x 3+3x 2y ,则这个多项式是( )A.x 3+3xy 2B.x 3-3xy 2C.x 3-6x 2y+3xy 2D.x 3-6x 2y-3x 2y10.设a=-2×32,b=(-2×3)2,c=-(2×3)2,则a ,b ,c 的大小关系是( ) A.a<c<b B.a<b<c C.c<a<b D.c<b<a 11.已知x 2+3x+5的值是7,则多项式3x 2+9x-2的值是( )A.6B.4C.2D.012.将正偶数按下表排成5列若干行,第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 第4行 32 30 28 26 ………………根据上述规律,2 016应为( ) A.第251行 第1列 B.第251行 第5列 C.第252行 第1列 D.第252行 第4列二、填空题(每小题4分,共20分)13.已知a ,b 互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b= . 14.在式子,3,m ,xy 2+1中,单项式有 个.xy 2,3x ,a +3215.多项式x 3y+2xy 2-y 5-12x 3是 次多项式,它的最高次项是 . 16.若有理数a ,b 满足|a+3|+(b-2)2=0,则a b 的值为 .17.规定一种新的运算:a △b=a×b-a+b+1.如,3△4=3×4-3+4+1=12-3+4+1=14,比较大小:(-3)△4 4△(-3).三、解答题(共64分)18.计算(每小题4分,共24分) (1)-4÷×(-30); 23―(-23)(2)-20+(-14)-(-18)-13; (3)-22+|5-8|+24÷(-3)×; 13(4)÷(-5)-2.5÷; (-12557)58×(-14)(5)-5m 2n+4mn 2-2mn+6m 2n+3mn ; (6)2(2a-3b )-3(2b-3a ).19.(8分)先化简,再求值:3x 2y-,其中x=-1,y=2. [2xy -2(xy -32x 2y +2xy )]20.(8分)下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的时间数)城市东京巴黎纽约芝加哥时差/时+1-7-13-14(1)如果现在时间是北京时间7:00,那么现在的纽约时间是多少?(2)如果现在的北京时间是7:00,小轩现在想给巴黎的姑姑打电话,你认为合适吗?21.(8分)某休闲广场是老百姓休闲娱乐的大型场所,其形状为长方形(如图),现要在广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆的半径为r m,广场长为a m,宽为b m.(1)请列式表示广场空地的面积.(2)若休闲广场的长为800 m,宽为300 m,圆形花坛的半径为30 m,求广场空地的面积.(计算结果保留π)22.(8分)观察下列式子: -a+b=-(a-b ), 2-3x=-(3x-2), 5x+30=5(x+6), -x-6=-(x+6).由以上四个式子中括号的变化情况,说明它和去括号法则有什么不同?根据你的探索规律解决下列问题:已知a 2+b 2=5,1-b=-2,求-1+a 2+b+b 2的值.23.(8分)我们把符号“n !”读作“n 的阶乘”,规定“其中n 为自然数,当n ≠0时,n !=n ·(n-1)·(n-2)·…·2·1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算: (1)4!; (2); 0!2!(3)(3+2)!-4!;(4)用具体数试验一下,看看等式(m+n )!=m !+n !是否恒成立.参考答案一、选择题 1.B2.C 696000=6.96×105.3.A 根据所含字母相同且相同字母的指数也相同的项是同类项进行判断.4.B 当点B 在点A 的左侧时,点B 表示的数为-8.5;当点B 在点A 的右侧时,点B 表示的数为2.5.所以点B 表示的数为2.5或-8.5.5.A 0的平方为0但0没有倒数;-1的平方为1,倒数为-1;1的平方和它的倒数相等,都是1.6.D7.C 小明坐车x (x>3)km,应付车费=起步价7元+超过3km 的收费=7+1.4(x-3)=(1.4x+2.8)元. 8.D 非负整数即正整数和0,所以10,0,-(-3)=3,-(-42)=16属于非负整数. 9.A 这个多项式=(x 3+3x 2y )-(3x 2y-3xy 2)=x 3+3x 2y-3x 2y+3xy 2=x 3+3xy 2. 10.C a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,因为-36<-18<36,所以c<a<b. 11.B 因为x 2+3x+5=7,所以x 2+3x=2.所以3x 2+9x-2=3(x 2+3x )-2=6-2=4. 12.C 二、填空题 13.014.3 单项式有,3,m 共3个. xy215.五 -y 516.9 因为|a+3|≥0,(b-2)2≥0,|a+3|+(b-2)2=0,所以a+3=0,b-2=0,即a=-3,b=2,所以a b =(-3)2=9.17.> (-3)△4=(-3)×4-(-3)+4+1=-12+3+4+1=-4,4△(-3)=4×(-3)-4+(-3)+1=-12-4-3+1=-18,-4>-18,所以(-3)△4>4△(-3). 三、解答题18.解:(1)-4÷×(-30)23―(-23)=-4××30=-6-20=-26. 32―23(2)-20+(-14)-(-18)-13 =-20-14+18-13 =(-20-14-13)+18 =-47+18=-29. (3)-22+|5-8|+24÷(-3)× 13=-4+3+24× (-13)×13=-1-=-.83113(4)÷(-5)-2.5÷ (-12557)58×(-14)=125× 15+57×15+52×85×14=25++1=26.1717(5)-5m 2n+4mn 2-2mn+6m 2n+3mn =(-5m 2n+6m 2n )+(-2mn+3mn )+4mn 2 =m 2n+mn+4mn 2. (6)2(2a-3b )-3(2b-3a ) =4a-6b-6b+9a=(4a+9a )+(-6b-6b )=13a-12b.19.解:原式=3x 2y-(2xy-2xy+3x 2y-4xy )=3x 2y-2xy+2xy-3x 2y+4xy=4xy.当x=-1,y=2时, 原式=4×(-1)×2=-8. 20.解:(1)纽约时间是18:00.(2)北京是7:00,北京与巴黎的时差是-7,即巴黎要晚7小时,此时巴黎恰好是0:00,正好是深夜,小轩不宜给姑姑打电话.21.解:(1)(ab-πr 2)m 2.(2)(240000-900π)m 2.22.解:四个式子中括号的变化规律其实就是去括号的逆运算.-1+a 2+b+b 2=a 2+b 2-1+b=(a 2+b 2)-(1-b ). 因为a 2+b 2=5,1-b=-2, 所以原式=5-(-2)=7. 23.解:(1)4!=4×3×2×1=24;(2);0!2!=12×1=12(3)(3+2)!-4!=5×4×3×2×1-4×3×2×1=120-24=96; (4)如当m=3,n=2时, (m+n )!=(3+2)!=120, m !+n !=3!+2!=8,所以(m+n )!≠m !+n !,等式(m+n )!=m !+n !不恒成立.。

江苏省镇江市句容市2016-2017学年七年级上学期期中数学试卷及参考答案

江苏省镇江市句容市2016-2017学年七年级上学期期中数学试卷及参考答案
江苏省镇江市句容市2016-2017学年七年级上学期期中数学试卷
一、填空题
1. ﹣2016的相反数是________,倒数是________ 2. 单项式﹣3xy3的系数是________,次数是________. 3. 江苏省的面积约为102 600km2 , 这个数据用科学记数法可表示为________ km2 . 4. 化简(x+y)﹣(x﹣y)的结果是________. 5. 若2x3yn+1与﹣5xm﹣2y2是同类项,则m+n=________. 6. 比较两个数的大小:﹣ ________﹣ . 7. 如图是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2,则输出结果为________.
示)
二、选择题
13. 某天的温度上升了5℃记作+5℃,则﹣2℃的意义是( ) A . 上升了2℃ B . 没有变化 C . 下降了﹣2℃ D . 下降了2℃ 14. 下列各数:﹣5, ,4.11212121212…,0, ,3.14,其中无理数有( ) A . 1个 B . 2个 C . 3个 D . 4个 15. 如图,在数轴上表示到原点的距离为3个单位的点有( )
A . D点 B . A点 C . A点和D点 D . B点和C点
16. 下面各组数中,相等的一组是( )
2
2
3
3
3
A . ﹣22与(﹣2)2 B . 与( )3 C . ﹣|﹣2|与﹣(﹣2) D . (﹣3)3与﹣33
17. 下列说法中正确的是( ) A . 如果两个数的绝对值相等,那么这两个数相等 B . 有理数分为正数和负数 C . 互为相反数的两个数的绝对值相等 D . 最小的 整数是0 18. 下列代数式:a,﹣ab,m+n,x2+y2 , ﹣1, ab2c,其中单项式共有( ) A . 6个 B . 5个 C . 4个 D . 3个 19. 下面的计算正确的是( )

2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。

江苏省镇江市2016-2017学年七年级(上)期中数学试卷(解析版)

江苏省镇江市2016-2017学年七年级(上)期中数学试卷(解析版)

2016-2017学年江苏省镇江市七年级(上)期中数学试卷一、填空题:(本大题共12小题,第1~5题每空1分,第6~12题每空2分,共24分)1.﹣的倒数为;﹣2的相反数是.2.若|a|=4,则a=;若a2=9,则a=.3.比较大小:﹣52,﹣﹣.4.单项式的系数是,次数是.5.﹣3x m y2与5x3y n是同类项,则m=,n=.6.10月19日凌晨神州十一号与天宫二号进行交会对接,此次成功对接被媒体称为393000米的“太空之吻”,其中“393000米”用科学记数法可表示为米.7.小红为奶奶冲杯热牛奶,她需要做下列事情:烧开水(4.5分钟),洗杯子(2分钟),冲奶粉(1.5分钟).她至少要用分钟才能让奶奶喝上热牛奶.8.按照图所示的操作步骤,若输入x的值为3,则输出y的值为.9.已知x+2y=3,则代数式2x+4y﹣5的值为.10.已知有理数a、b满足(a﹣2)2+|b+3|=0,那么代数式b a的值是.11.如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是.12.如图图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是.二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内)13.向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km14.下列一组数:﹣8,2.7,3,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数有()个.A.0 B.1 C.2 D.315.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1是多项式C.﹣πxy2的系数是﹣πD.x与π是同类项16.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)217.现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.18.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±419.已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣120.若x为有理数,x﹣|x|表示的数是()A.正数B.非正数C.负数D.非负数三、解答题(本大题共7小题,共72分,解答时应写出必要的计算过程或文字说明)21.计算:(1)23﹣17﹣(﹣7)+(﹣16)(2)﹣5+6÷(﹣2)×(3)(﹣36)×(﹣+)(4)﹣12﹣(﹣10)×2+(﹣4)2.22.化简(1)3x2+2x﹣5x2+3x(2)4(m2+n)+2(n﹣2m2)23.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=1.24.画一条数轴,将下列各数在此数轴上表示出来,并把这些数用“<”连接起来.﹣(﹣1),﹣|﹣2|,﹣3,(﹣2)2.25.某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+3表示该袋食品超过标准质量3克,现记录如下:﹣4﹣20+1+2+3与标准质量的误差(单位:克)袋数533423(1)在抽取的样品中,任意挑选两袋,它们的质量相差最大多少克?(2)食品包装袋中标有“净重500±2克”,这批样品中有几袋质量不合格?并请你计算出这20袋食品的合格率是多少?【产品的合格率=(一批产品中的合格产品数量÷这批产品总量)×100%】(3)若标准质量为500克/袋,则这次抽样检测的总质量是多少克?26.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:(1)如果小红家每月用水8吨,则水费是元;如果小红家每月用水20吨,则水费是元.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?27.一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A 记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→C(,),C→(+1,);(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去P处的行走路线依次为(+2,+1),(+3,+2),(﹣2,﹣1),(﹣2,﹣2),请在图中标出P的位置.(4)在(3)中甲虫若每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多少焦耳的能量?2016-2017学年江苏省镇江市七年级(上)期中数学试卷参考答案与试题解析一、填空题:(本大题共12小题,第1~5题每空1分,第6~12题每空2分,共24分)1.﹣的倒数为﹣2;﹣2的相反数是2.【考点】倒数;相反数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的倒数为﹣2;﹣2的相反数是2.故答案为:﹣2;2.2.若|a|=4,则a=±4;若a2=9,则a=±3.【考点】有理数的乘方;绝对值.【分析】利用绝对值的代数意义,以及平方根定义计算即可得到结果.【解答】解:若|a|=4,则a=±4;若a2=9,则a=±3,故答案为:±4,±33.比较大小:﹣5<2,﹣>﹣.【考点】有理数大小比较.【分析】根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.【解答】解:﹣5<2,∵<,∴﹣>﹣.故答案为:<,>.4.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.5.﹣3x m y2与5x3y n是同类项,则m=3,n=2.【考点】同类项.【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求解.【解答】解:根据题意得:m=3,n=2.故答案是:3,2.6.10月19日凌晨神州十一号与天宫二号进行交会对接,此次成功对接被媒体称为393000米的“太空之吻”,其中“393000米”用科学记数法可表示为 3.93×105米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将393000米用科学记数法表示为:3.93×105米.故答案为:3.93×105.7.小红为奶奶冲杯热牛奶,她需要做下列事情:烧开水(4.5分钟),洗杯子(2分钟),冲奶粉(1.5分钟).她至少要用6分钟才能让奶奶喝上热牛奶.【考点】推理与论证.【分析】烧开水需要4.5分钟,在烧水的同时可以洗杯子,这样可以节约2分钟,再冲奶粉即可.【解答】解:∵烧开水需要4.5分钟,在烧水的同时可以洗杯子,这样可以节约2分钟,∴让奶奶喝上热牛奶的时间=4.5+1.5=6(分钟).故答案为:6.8.按照图所示的操作步骤,若输入x的值为3,则输出y的值为18.【考点】有理数的混合运算.【分析】首先用输入x的值减去6,再求出所得的差的平方是多少;然后用所得的结果乘2,求出输出y的值为多少即可.【解答】解:(3﹣6)2×2=9×2=18故答案为:18.9.已知x+2y=3,则代数式2x+4y﹣5的值为1.【考点】代数式求值.【分析】观察所求代数式可知,可以将已知整体代入求代数式的值.【解答】解:∵x+2y=3,∴2x+4y﹣5=2(x+2y)﹣5,=2×3﹣5,=1.故本题答案为:1.10.已知有理数a、b满足(a﹣2)2+|b+3|=0,那么代数式b a的值是9.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由题意可知:a=2,b=﹣3,然后代入求值即可.【解答】解:由题意可知:a=2,b=﹣3,∴b a=(﹣3)2=9故答案为911.如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A所在位置表示的数是±π.【考点】数轴.【分析】根据直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,得出AA′之间的距离,即可求出答案.【解答】解:∵直径为1个单位长度的圆形纸片上的点A放在数轴的原点上,纸片沿着数轴滚动一周,∴AA′之间的距离为圆的周长=π,∴A点对应的数是±π.故答案是:±π.12.如图图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是32.【考点】规律型:图形的变化类.【分析】仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式,即可求解.【解答】解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2﹣1)=5个黑色正方形,图③中有2+3(3﹣1)=8个黑色正方形,图④中有2+3(4﹣1)=11个黑色正方形,…,图n中有2+3(n﹣1)=3n﹣1个黑色的正方形,∴当n=11时,3n﹣1=32.故答案为:32二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内)13.向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,向东记为正,可得答案.【解答】解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.14.下列一组数:﹣8,2.7,3,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数有()个.A.0 B.1 C.2 D.3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:无理数是,0.080080008…(相邻两个8之间依次增加一个0),故选C15.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1是多项式C.﹣πxy2的系数是﹣πD.x与π是同类项【考点】同类项;多项式.【分析】根据多项式的次数、项,单项式的系数,同类项,可得答案.【解答】解:A、2x2﹣3xy﹣1是二次三项式,故A正确;B、﹣x+1是多项式,故B正确;C、﹣πxy2的系数是﹣π,故C正确;D、x与π不是同类项,故D错误;故选:D.16.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【考点】列代数式.【分析】因为a的3倍为3a,与b的差是3a﹣b,所以再把它们的差平方即可.【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选B.17.现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.【考点】有理数的乘方.【分析】根据新运算,结合有理数的乘方,即可解答.【解答】解:※3==,故选:A.18.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±8 D.±4【考点】数轴.【分析】根据绝对值的意义得:到原点的距离为4的点有4或﹣4,即可得到A表示的数.【解答】解:∵|4|=4,|﹣4|=4,则点A所表示的数是±4.故选D.19.已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣1【考点】绝对值;有理数的加法.【分析】先根据绝对值的性质,求出x、y的值,然后根据x•y<0,进一步确定x、y的值,再代值求解即可.【解答】解:∵|x|=3,|y|=2,x•y<0,∴x=3时,y=﹣2,则x+y=3﹣2=1;x=﹣3时,y=2,则x+y=﹣3+2=﹣1.故选B.20.若x为有理数,x﹣|x|表示的数是()A.正数B.非正数C.负数D.非负数【考点】绝对值.【分析】先根据绝对值的定义化简丨x丨,再合并同类项.【解答】解:(1)若x≥0时,x﹣丨x丨=x﹣x=0;(2)若x<0时,x﹣丨x丨=x+x=2x<0;由(1)(2)可得x﹣丨x丨表示的数是非正数.故选B.三、解答题(本大题共7小题,共72分,解答时应写出必要的计算过程或文字说明)21.计算:(1)23﹣17﹣(﹣7)+(﹣16)(2)﹣5+6÷(﹣2)×(3)(﹣36)×(﹣+)(4)﹣12﹣(﹣10)×2+(﹣4)2.【考点】有理数的混合运算.【分析】(1)(2)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(3)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=6+7﹣16=13﹣16=﹣3(2)﹣5+6÷(﹣2)×=﹣5﹣3×=﹣5﹣1=﹣6(3)(﹣36)×(﹣+)=(﹣36)×﹣(﹣36)×+(﹣36)×=﹣18+20﹣21=﹣19(4)﹣12﹣(﹣10)×2+(﹣4)2=﹣1+40+16=5522.化简(1)3x2+2x﹣5x2+3x(2)4(m2+n)+2(n﹣2m2)【考点】整式的加减.【分析】(1)利用合并同类项法则即可求解;(2)首先利用分配律计算,然后去括号、合并同类项即可.【解答】解:(1)原式=3x2﹣5x2+2x+3x=﹣2x2+5x;(2)原式=(4m2+4n)+(2n﹣4m2)=4m2+4n+2n﹣4m2=6n.23.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=1时,原式=44+22﹣1=65.24.画一条数轴,将下列各数在此数轴上表示出来,并把这些数用“<”连接起来.﹣(﹣1),﹣|﹣2|,﹣3,(﹣2)2.【考点】有理数大小比较;数轴;绝对值.【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:如图,由数轴上的点表示的数右边的总比左边的大,得﹣3<﹣|﹣2|<﹣(﹣1)<(﹣2)2.25.某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+3表示该袋食品超过标准质量3克,现记录如下:﹣4﹣20+1+2+3与标准质量的误差(单位:克)袋数533423(1)在抽取的样品中,任意挑选两袋,它们的质量相差最大多少克?(2)食品包装袋中标有“净重500±2克”,这批样品中有几袋质量不合格?并请你计算出这20袋食品的合格率是多少?【产品的合格率=(一批产品中的合格产品数量÷这批产品总量)×100%】(3)若标准质量为500克/袋,则这次抽样检测的总质量是多少克?【考点】正数和负数.【分析】(1)找到最大和最小值相减即可求解;(2)找到所给数值中,绝对值小于或等于2的食品的袋数占总袋数的多少即可;(3)总质量=标准质量×抽取的袋数+超过(或短缺的)质量,把相关数值代入计算即可.【解答】解:(1)3﹣(﹣4)=7(克).答:它们的质量相差最大7克.(2)5+3=8(袋),(20﹣8)÷20×100%=12÷20×100%=60%.答:这批样品中有8袋质量不合格,这20袋食品的合格率是60%.(3)500×20+(﹣4×5﹣2×3+0×3+1×4+2×2+3×3)=10000﹣9=9991(克).答:这次抽样检测的总质量是9991克.26.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:(1)如果小红家每月用水8吨,则水费是16元;如果小红家每月用水20吨,则水费是45元.(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?【考点】列代数式.【分析】(1)每月用水8吨时,水费为:16元;超过10吨,超过部分每吨水收费2.5元,于是可得:每月用水20吨时,水费为:2.5(20﹣10)+20=45元,(2)分类讨论:①如果每月用水x≤10吨,水费为:(2x)元,②如果每月用水x>10吨,水费为:2.5(x﹣10)+20元;【解答】解:(1)每月用水8吨时,水费为:8×2=16元,每月用水20吨时,水费为:2.5(20﹣10)+20=45元;(2)①如果每月用水x≤10吨,水费为:(2x)元②如果每月用水x>10吨,水费为:2.5(x﹣10)+20=2.5x﹣5元;故答案为:(1)16,45.27.一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动.它从A 处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A 记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(3,4),B→C(2,0),C→D(+1,﹣2);(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去P处的行走路线依次为(+2,+1),(+3,+2),(﹣2,﹣1),(﹣2,﹣2),请在图中标出P的位置.(4)在(3)中甲虫若每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多少焦耳的能量?【考点】正数和负数.【分析】(1)根据规定:第一个数表示左右方向,第二个数表示上下方向,结合图形解答;(2)根据网格图形列式计算即可得解;(3)根据点的坐标的规定在图形中找出所到达的位置即可得解;(4)先根据路线求出所走过的路程,然后乘以1.5计算即可得解.【解答】解:(1)A→C(3,4),B→C(2,0),C→D(+1,﹣2).故答案为3,4,2,0,D,﹣2;(2)(4+2)+(1+2)+2=6+3+2=11;(3)如图,P在A往右1个单位的格点上;(4)(2+1)+(3+2)+(2+1)+(2+2)=3+5+3+4=15,15×1.5=22.5焦耳.2017年5月3日。

2016-2017学年七年级数学上册期中试卷及答案

2016-2017学年七年级数学上册期中试卷及答案

2016-2017学年七年级数学上册期中试卷及答案下面是小编整理的关于2016-2017学年七年级数学上册期中试卷及答案,希望帮助到同学们。

一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内)1.在-212 、+710 、-3、2、0、4、5、-1中,负数有 ( )A、 1个B、2个C、3个D、4个2.如下图所示,在数轴上表示到原点的距离为3个单位的点有( )A.D点B.A点C.A点和D点D.B点和C点3. 2008年5月26 日下午,奥运圣火扬州站的传递在一路“中国加油” 中进行着,全程11800米,用科学计数法,结果为 ( )米A. 11.8 103B.1.2 104C.1.18 104D.1.2 1034.下列各项中,是同类项的是( )A.x与yB.C.-3pq与2pqD.abc与ac5.已知两数在数轴上对应的点如下图所示,下列结论正确的是 ( )A. B. C. D.6.去括号后等于a-b+c的是( )A. a-(b+c)B.a-(b-c)C.a+(b-c)D.a+(b+c)7.一件商品的进价是a 元,提价20%后出售,则这件商品的售价是 ( )A.0.8a元B.a 元C.1.2a元D.2a元8.若,则x-y等于( )A.1B.-1C.3D.-39.下列说法错误的是( )A、是二次三项式B、不是单项式C、的系数是D、的次数是610.如果|a|=-a, 下列各式一定成立的是 ( )A. a>0B. a>0或a=0C. a<0或a=0D. 无法确定二、填空题:(本大题共8小题,每小题3分,共24分.把答案写在题中的横线上)11.水位上升30cm 记作+30cm,那么-16cm表示。

12.用“<” “=”或“>”填空:(1)-(- 1) - | - 1 |;(2)- 0.1 -0.01; (3) _____13.计算: =___________14.若a与b互为相反数,c与 d互为倒数,则 ___________15.单项式的系数是,次数是。

初中数学七年级上期中经典复习题(含答案解析)(3)

初中数学七年级上期中经典复习题(含答案解析)(3)

一、选择题1.下列各数中,比-4小的数是()A. 2.5-B.5-C.0D.2 2.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x23.2019的倒数的相反数是()A.-2019B.12019-C.12019D.20194.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=52b B.a=3b C.a=72b D.a=4b5.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元6.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个7.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1 B.0 C.1 D.28.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .1909.如图,将一三角板按不同位置摆放,其中1∠与2∠互余的是( )A .B .C .D .10.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40 11.将方程247236x x ---= 去分母得 ( ) A .2﹣2(2x-4)= - (x-7) B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣4x ﹣8= - (x-7)D .12﹣2(2x ﹣4)= x ﹣7 12.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是( )A .B .C .D .13.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤14.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++15.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯二、填空题16.数轴上点A 、B 的位置如下图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为___17.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).18.商店运来120台洗衣机,每台售价是440元,每售出一台可以得到售价15%的利润,其中两台有些破损,按售价打八折出售。

2016-2017年第一学期七年级数学期中试题(有答案)

2016-2017年第一学期七年级数学期中试题(有答案)

2016-2017年第一学期七年级数学期中试题(有答案)【范文大全】时至深秋,美丽的金明校园霜浓露重,景色宜人,如期而至的期中考试却在秋韵中平添了一丝紧张的气氛。

下面是小编整理的期中考试试卷及答案,欢迎参考!一、选择题(每小题3分,共18分)1.-2 的绝对值是( ▲ )A.-B.±2C.2D.-22.下列各组算式中,结果为负数的是( ▲ )A. B. C. D.3.下列计算正确的是( ▲ )A.7a+a=7a2B.3x2y-2yx2=x2yC.5y-3y=2D.3a+2b=5ab4.用代数式表示“a的3倍与b的差的平方”,正确的是( ▲ )[A.(3a-b)2B.3(a-b)2C.3a-b2D.(a-3 b)25.已知a+b=4,c-d=-3,则(b+c)-(d-a)的值为( ▲ )A.7B.-7C.1D.-16.下列说法中正确的个数有( ▲ )①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤ 是关于x,y的三次三项式,常数项是 1.A.2个B.3个C.4个D.5个二、填空题(每题3分,共30分)7. 太阳半径大约是696000千米,将696000用科学记数法表示为▲ .8.一个数的绝对值是4,那么这个数是▲ .9. 多项式的最高次项系数为▲ .10. 的相反数是▲ .11.用“>”或“<”填空:▲ .12. 若代数式3xmy2与-2x3yn是同类项,则m-n= ▲ .13. 比大而比小的所有整数的和为▲ .14.如图所示是计算机程序计算,若开始输入,则最后输出的结果是 .15.校园足球联赛规则规定:赢一场得3分,平一场得1分,负一场得0分。

某队比赛8场保持不败,得18分,求该队共胜几场?若设该队胜了x场,则可列方程:▲ .16.下列图形是由一些小正方形和实心圆按一定规律排列而成的,按此规律排列下去,第n个图形中有▲ 个实心圆.三、解答题17. (本题满分6分)把下列各数填在相应的大括号里:,,-0.101001,,― , ,0,负整数集合:( ▲ …);负分数集合:( ▲ …);无理数集合:( ▲ …);18.(本题共4小题,每小题4分,满分16分)计算:(1) -3-(-4)+7 (2)1+(3) (4)(-8)÷(-4)-(-3)3×12319.(本题满分8分)化简:(1) (2)20 .(本题满分10分)解方程:(1) (2)21.(本题满分10分)先化简,再求值:(1) —,其中 =4.(2)已知m、n互为倒数,求:-2(mn-3m2)-m2+5 (mn-m2)的值.22.(本题满分10分)王先生到区行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3 m,电梯每向上或下1 m需要耗电0.2度,根据王先生现在所处位置,请你算算他办事时,所乘电梯共耗电多少度?23.(本题满分10分)某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x-4,试求A-2B”.这位同学把“A-2B”误看成“A+2B”,结果求出的答案为5x2+8x-10.请你替这位同学求出“A-2B”的正确答案.24.(本题满分10分)某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费。

2016-2017学年第二学期期中试题 初一数学

2016-2017学年第二学期期中试题 初一数学

2016-2017学年第二学期期中测试试卷初 一 数 学一、选择题(本大题共8小题,每小题2分,共16分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上.) 1.下列运算正确的是A .x 3·x 3=2x 6B .(-2x 2)2=-4x 4C .(x 3)2=x 6D .x 5÷x =x 52.如图,AB ∥CD ,则根据图中标注的角,下列关系中成立的是 A .∠1=∠3 B .∠2+∠3=180° C .∠2+∠4<180° D .∠3+∠5=180° 3.下列各式能用平方差公式计算的是A .(2a +b )(2b -a )B .11(1)(1)22x x -+--C .(a +b )(a -2b )D .(2x -1)(-2x +1) 4.下列各组线段能组成一个三角形的是A .4cm ,6cm ,11cmB .4cm ,5cm ,1cmC .3cm ,4cm ,5cmD .2cm ,3cm ,6cm 5.若a =-(0.2)-2,b =-2,c =(-2)2,则a 、b 、c 大小为A .a<b<cB .a<c<bC .b<c<aD .c<b<a 6.(3a +2)(4a 2-a -1)的结果中二次项系数是A .-3B .8C .5D .-5 7.轮船在B 处测得小岛A 在其北偏东32°方向,从小岛A 观测B 处的方向为 A .北偏东32°B .南偏西32°C .南偏东32°D .南偏西58°8.如图,宽为50 cm 的长方形图案由10个一样的小长方形拼成, 其中一个小长方形的面积为 A .400 cm 2B .500 cm 2C .600 cm 2D .4000 cm 2二、填空题 (本大题共10小题,每小题2分,共20分,把答案填在答题卡相应横线上.) 9.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是 ▲ 克.10.如图,AB ∥CD ,EG ⊥AB 于G ,∠1=50°,则∠E = ▲ . 11.若二次三项式x 2-kx +25是完全平方式,则k 的值为 ▲ . 12.已知方程组2425x y x y +=⎧⎨+=⎩,则x+y= ▲ .13.如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是 ▲ .14.若a x =2,a y =3,则a 3x-y = ▲ .15.己知ABC ∆中,B ∠是A ∠的2倍,C ∠比A ∠大20°,则A ∠等于 ▲ °. 16.若一个多边形的每一个内角都是144°,则这个多边形的是边数为 ▲ . 17.己知s + t =4,则s 2-t 2+8t 的值为 ▲ .18.如图, ,,,ABC ACB AD BD CD ∠=∠分别平分ABC ∆的外角EAC ∠、内角ABC ∠、外角ACF ∠.以下结论: ①//AD BC ;②2ACB ADB ∠=∠;③BD 平分ADC ∠;④90ADC ABD ∠=︒-∠;⑤12BDC BAC ∠=∠其中正确的结论是 ▲ .三、解答题(本大题共10题,共64分,请写出必要的计算过程或推演步骤) 19.(共3分)计算:-12-(-3)3÷(3.14-π)0-(120)-1.20.(每小题3分,共6分)计算(1) (2a 3b -4ab 3)·(-0. 5ab )2.(2)已知x 2+4x -1=0,求代数式(x +2)2-(x +2)(x -2)+x 2的值.21.分解因式 (每小题3分,共9分) (1) 4a 2-36 (2) x 3-6x 2+9x (3) ( x 2 + y 2 )2-4x 2y 222.(本题6分)解方程组(1) ⎩⎨⎧x +2y =15,4x +3y -30=0.. (2)26293418x y z x y z x y z +-=⎧⎪++=⎨⎪++=⎩23.(本题满分4分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′. (1)在给定方格纸中画出平移后的△A′B′C′; 利用网格点和三角板画图或计算: (2)画出AB 边上的中线CD ; (3)画出BC 边上的高线AE ; (4)△A′B′C′的面积为______.24.(本题5分)已知,如图,∠1=∠ACB ,∠2=∠3,求证:∠BDC +∠DHF =180°证明:∵∠1=∠ACB (已知)∴DE ∥BC ( ▲ ) ∴∠2=∠DCF ( ▲ ) ∵∠2=∠3(已知) ∴∠3=∠DCF ( ▲ ) ∴CD ∥FH ( ▲ )∴∠BDC +∠DHF =180° ( ▲ )25.(本题7分) 已知:如图,AB ∥CD ,∠A =∠D .求证:AF ∥ED .26.(本题7分)已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC=x °.(1)如图1,若AB//ON ,则①∠ABO 的度数是______;②当∠BAD=∠ABD 时,x =______;③当∠BAD=∠BDA 时,x =______.(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.27.(本题8分) 记M(1)=-2,M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),……(1) 计算:M(5)+M(6);(2) 求2M(2015)+M(2016)的值:(3) 说明2M(n)与M(n+1)互为相反数.28.(本题9分)如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC= ▲;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.。

2017年江苏省镇江市扬中市七年级上学期数学期中试卷带解析答案

2017年江苏省镇江市扬中市七年级上学期数学期中试卷带解析答案

2016-2017学年江苏省镇江市扬中市七年级(上)期中数学试卷一、填空题:(本题共12小题,每小题2分,共24分)1.(2分)﹣2.5的相反数是,倒数是.2.(2分)太阳半径大约是696 000千米,用科学记数法表示为米.3.(2分)比较两个数的大小:﹣﹣.4.(2分)在数轴上,点A表示数﹣1,距A点2.5个单位长度的点表示的数是.5.(2分)单项式﹣3xy2z的系数为,次数为.6.(2分)多项式﹣xy2+﹣2xy的次数是.7.(2分)若m、n满足|m﹣2|+(n+3)2=0,则n+m=.8.(2分)已知2x﹣3y=3,则代数式6x﹣9y+5的值为.9.(2分)若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.10.(2分)有理数a、b、c在数轴上的位置如图所示,则|a﹣b|﹣|2a﹣c|=.11.(2分)已知正方形边长为6,黑色部分是以正方形边长为直径的两个半圆,则图中白色部分的面积为.(结果保留π)12.(2分)如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2016的点与圆周上表示数字的点重合.二、选择题:(本题共5小题,每小题3分,共15分)13.(3分)下列各数中,一定互为相反数的是()A.﹣(﹣5)和﹣|﹣5|B.|﹣5|和|+5|C.﹣(﹣5)和|﹣5|D.|a|和|﹣a|14.(3分)x表示一个两位数,y也表示一个两位数,君君想用x,y组成一个四位数,且把x放在y的右边,则这个四位数用代数式表示为()A.yx B.x+y C.100x+y D.100y+x15.(3分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2 C.3m﹣n2D.(m﹣3n)216.(3分)已知单项式0.5x a﹣1y3与3xy4+b是同类项,那么a,b的值分别是()A.2,1 B.2,﹣1 C.﹣2,﹣1 D.﹣2,117.(3分)下列一组是按一定规律排列的数:1,2,4,8,16,…,则第2016个数是()A.22014B.22015C.22016 D.4032三、解答题:(本大题共10小题,共61分)18.(4分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0.﹣|25|,﹣3.5按照从小到大的顺序排列为.19.(12分)计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6);(2)24×(﹣+﹣);(3)﹣22+[12﹣(﹣3)×2]÷(﹣3);(4)1×﹣(﹣)×2+(﹣)÷1.20.(8分)化简:(1)3(2x﹣7y)﹣(4x﹣10y)(2)(2a2﹣ab)﹣2(3a2﹣2ab).21.(5分)先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=3,b=﹣2.22.(4分)已知:|a|=3,b2=4,ab<0,求a﹣b的值.23.(6分)已知:A=2a2+2ab﹣2a﹣1,B=﹣a2+ab﹣1(1)求A﹣(A﹣2B)的值;(2)若A+2B的值与a的取值无关,求b的值.24.(4分)已知a,b互为倒数,c、d互为相反数,|x|=3.试求:x2﹣(ab+c+d)x+|ab+3|的值.25.(5分)日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?26.(6分)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①.方法②;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.27.(7分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和﹣10的两点之间的距离是.(2)数轴上表示x和﹣2的两点之间的距离表示为.(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x 表示一个有理数,求|x ﹣1|+|x ﹣2|+|x ﹣3|+|x ﹣4|+|x ﹣5|.2016-2017学年江苏省镇江市扬中市七年级(上)期中数学试卷参考答案与试题解析一、填空题:(本题共12小题,每小题2分,共24分)1.(2分)﹣2.5的相反数是 2.5,倒数是﹣.【解答】解:﹣2.5的相反数是2.5,﹣2.5的倒数是,故答案为:2.5,﹣.2.(2分)太阳半径大约是696 000千米,用科学记数法表示为 6.96×108米.【解答】解:696 000千米=696 000 000米=6.96×108米.3.(2分)比较两个数的大小:﹣<﹣.【解答】解:|﹣|=,|﹣|=,∵,∴﹣.故答案为:<.4.(2分)在数轴上,点A表示数﹣1,距A点2.5个单位长度的点表示的数是﹣3.5或1.5.【解答】解:如图:距离点A点2.5个单位长度的数为﹣3.5或1.5.故答案为﹣3.5或1.5.5.(2分)单项式﹣3xy2z的系数为﹣3,次数为4.【解答】解:﹣3xy2z的系数为﹣3,次数为4.故答案为:﹣3,4.6.(2分)多项式﹣xy2+﹣2xy的次数是3.【解答】解:多项式的次数是次数最高项的次数,故答案为:37.(2分)若m、n满足|m﹣2|+(n+3)2=0,则n+m=﹣1.【解答】解:∵|m﹣2|+(n+3)2=0,∴m=2,n=﹣3;原式=n+m=﹣3+2=﹣1.故答案为﹣1.8.(2分)已知2x﹣3y=3,则代数式6x﹣9y+5的值为14.【解答】解:∵2x﹣3y=3,∴6x﹣9y+5=3(2x﹣3y)+5=3×3+5=14.故答案为:14.9.(2分)若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=﹣6.【解答】解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.10.(2分)有理数a、b、c在数轴上的位置如图所示,则|a﹣b|﹣|2a﹣c|=a+b ﹣c.【解答】解:|a﹣b|﹣|2a﹣c|=b﹣a﹣(c﹣2a)=b﹣a﹣c+2a=a+b﹣c,故答案为:a+b﹣c.11.(2分)已知正方形边长为6,黑色部分是以正方形边长为直径的两个半圆,则图中白色部分的面积为36﹣9π.(结果保留π)【解答】解:正方形的面积是:36,两个半圆的面积是:π()2=9π,则图中白色部分的面积为:36﹣9π.12.(2分)如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2016的点与圆周上表示数字1的点重合.【解答】解:由题意知﹣1对应0、﹣2对应3、﹣3对应2、﹣4对应1、﹣5对应0、﹣6对应3、…∴数轴上从﹣1开始每四个数为一周期循环,∵2016÷4=504,∴表示﹣2016的点是第504组的第四个数,即是1,故答案为:1.二、选择题:(本题共5小题,每小题3分,共15分)13.(3分)下列各数中,一定互为相反数的是()A.﹣(﹣5)和﹣|﹣5|B.|﹣5|和|+5|C.﹣(﹣5)和|﹣5|D.|a|和|﹣a|【解答】解:﹣(﹣5)=5,﹣|﹣5|=﹣5,故A正确;故选:A.14.(3分)x表示一个两位数,y也表示一个两位数,君君想用x,y组成一个四位数,且把x放在y的右边,则这个四位数用代数式表示为()A.yx B.x+y C.100x+y D.100y+x【解答】解:由题意可得,这个四位数用代数式表示:100y+x,故选:D.15.(3分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2 C.3m﹣n2D.(m﹣3n)2【解答】解:∵m的3倍与n的差为3m﹣n,∴m的3倍与n的差的平方为(3m﹣n)2.故选:A.16.(3分)已知单项式0.5x a﹣1y3与3xy4+b是同类项,那么a,b的值分别是()A.2,1 B.2,﹣1 C.﹣2,﹣1 D.﹣2,1【解答】解:∵单项式0.5x a﹣1y3与3xy4+b是同类项,∴a﹣1=1,4+b=3,∴a=2,b=﹣1,故选:B.17.(3分)下列一组是按一定规律排列的数:1,2,4,8,16,…,则第2016个数是()A.22014B.22015C.22016 D.4032【解答】解:第2016个数是22015.故选:B.三、解答题:(本大题共10小题,共61分)18.(4分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0.﹣|25|,﹣3.5按照从小到大的顺序排列为﹣3.5<﹣|﹣2.5|<﹣1.5<0<﹣(﹣1)<3.【解答】解:﹣3.5<﹣|﹣2.5|<﹣1.5<0<﹣(﹣1)<3,故答案为:﹣3.5<﹣|﹣2.5|<﹣1.5<0<﹣(﹣1)<3.19.(12分)计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6);(2)24×(﹣+﹣);(3)﹣22+[12﹣(﹣3)×2]÷(﹣3);(4)1×﹣(﹣)×2+(﹣)÷1.【解答】解:(1)原式=﹣2﹣3﹣1+6=0;(2)原式=18﹣4+15=29;(3)原式=﹣4+[12﹣(﹣6)]×(﹣)=﹣4+18×(﹣)=﹣10;(4)原式=(+﹣)×=×=.20.(8分)化简:(1)3(2x﹣7y)﹣(4x﹣10y)(2)(2a2﹣ab)﹣2(3a2﹣2ab).【解答】解:(1)原式=6x﹣21y﹣4x+10y=2x﹣11y;(2)原式=2a2﹣ab﹣6a2+4ab=﹣4a2+3ab.21.(5分)先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=3,b=﹣2.【解答】解:原式=2a2b+2ab2﹣2a2b+2﹣3ab2﹣2=﹣ab2,当a=3,b=﹣2时,原式=﹣12.22.(4分)已知:|a|=3,b2=4,ab<0,求a﹣b的值.【解答】解:∵|a|=3,b2=4,∴a=±3,b=±2,又∵ab<0,∴当a=3,b=﹣2时,a﹣b=5;当a=﹣3,b=2时,a﹣b=﹣5.∴a﹣b=±5.23.(6分)已知:A=2a2+2ab﹣2a﹣1,B=﹣a2+ab﹣1(1)求A﹣(A﹣2B)的值;(2)若A+2B的值与a的取值无关,求b的值.【解答】解:(1)A﹣(A﹣2B)=A﹣A+2B=2B∵B=﹣a2+ab﹣1,∴原式=2B=2(﹣a2+ab﹣1)=﹣2a2+2ab﹣2;(2)∵A=2a2+2ab﹣2a﹣1,B=﹣a2+ab﹣1,∴A+2B=2a2+2ab﹣2a﹣1+2(﹣a2+ab﹣1)=2a2+2ab﹣2a﹣1﹣2a2+2ab﹣2=4ab﹣2a﹣3.∵A+2B的值与a的取值无关,∴4ab﹣2a﹣3与a的取值无关,即(4b﹣2)a﹣3与a的取值无关∴4b﹣2=0,解得b=.答:b的值为.24.(4分)已知a,b互为倒数,c、d互为相反数,|x|=3.试求:x2﹣(ab+c+d)x+|ab+3|的值.【解答】解:由题意得:ab=1,c+d=0,x=±3,x=3时,原式=10,x=﹣3时,原式=16.综上所述,x2﹣(ab+c+d)x+|ab+3|的值为10或16.25.(5分)日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.26.(6分)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于m﹣n;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①(m+n)2﹣4mn.方法②(m﹣n)2;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.【解答】解:(1)m﹣n;(2)(m+n)2﹣4mn或(m﹣n)2;(3)(m+n)2﹣4mn=(m﹣n)2;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=4,∴(a﹣b)2=36﹣16=20.27.(7分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8,数轴上表示2和﹣10的两点之间的距离是12.(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2| .(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|.【解答】解:(1)|2﹣10|=8,|2﹣(﹣10)|=|2+10|=12;故答案为:8,12;(2)|x﹣(﹣2)|=|x+2|;故答案为:|x+2|(3)①x≥1原式=x﹣1+x+2=2x+1x=1,最小值为3②﹣2<x<1原式=1﹣x+x+2=3③x≤﹣2原式=1﹣x﹣x﹣2=﹣2x﹣1x=﹣2,最小值为3.综上,|x﹣1|+|x+2|有最小值,最小值为3;(4)①当x≤1时,原式=1﹣x+2﹣x+3﹣x+4﹣x+5﹣x=15﹣5x;②当1<x≤2时,原式=x﹣1+2﹣x+3﹣x+4﹣x+5﹣x=13﹣3x;③当2<x≤3时,原式=x﹣1+x﹣2+3﹣x+4﹣x+5﹣x=9﹣x;④当3<x≤4时,原式=x﹣1+x﹣2+x﹣3+4﹣x+5﹣x=3+x;⑤当4<x≤5时,原式=x﹣1+x﹣2+x﹣3+x﹣4+5﹣x=3x﹣5;⑥当x>5时,原式=x﹣1+x﹣2+x﹣3+x﹣4+x﹣5=5x﹣15;赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

江苏省镇江市七年级数学上学期期中试题-人教版初中七年级全册数学试题

江苏省镇江市七年级数学上学期期中试题-人教版初中七年级全册数学试题

2015~2016学年度七年级数学试卷第一学期期中考试满分120分,时间90分钟题 号一 二三四总分19 20 21 22 23 24 25 26 27得 分一、填空题:(本大题共10小题,每小题2分,共20分) 1.15-的倒数是__________. 2.计算:(﹣0.91)÷(﹣0.13)=__________. 3.比较大小:.4.数轴上点A 表示﹣1,点B 到点A 的距离为3个单位,则B 点表示的数是________. 5.平方得16的数是________.6.用代数式表示:比a 的3倍大2的数________. 7.若4x 2my m +n 与-3x 6y 2是同类项,则m+n =.8.如果x ﹣y=3,m+n=2,则(x+m )﹣(y ﹣n )的值是. 9.已知0>a ,0>b ,且,,,a b a a b b>--则按照从小到大顺序排列为___________________.(用“<”号连接)10. 用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:第n 个图案中有白色纸片___________X .(1) (2) (3)二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内)11.如果向北走3km记作+3km,那么向南走5km记作()A.﹣5km B.﹣2km C. +5km D. +8km12.在纪念中国人民抗日战争暨世界反法西斯战争胜利70周年大会上宣布:裁减军队员额30万,这个数据用科学记数法表示为()×106 B. 30×104 C. 3×105 D. 3×10613.下列各式中结果为负数的是()A.﹣(﹣8) B.(﹣8)2 C. |﹣8| D.﹣|﹣8|14.下列说法中,正确的是 ( )A.平方是本身的数是0 B.立方是本身的数是0、1C.绝对值是本身的数是正数 D.倒数是本身的数是±115.下列关于单项式一的说法中,正确的是()A.系数是﹣,次数是4 B.系数是﹣,次数是3C.系数是﹣5,次数是4 D.系数是﹣5,次数是316.下列各数中……(相邻两个1之间的2的个数逐次加1),正无理数的个数有()A.1个 B.2个 C.3个 D.4个17.在﹣2 , 3 , 4,﹣5这四个数中,任取两个数相乘,所得积最小的是( ) A.﹣8 B.﹣20 C.﹣6 D.1018.己知a、b为有理数,且ab>0,则a b aba b ab++的值是 ( )A.3 B.-1 C.-3或1 D.3或-1三、解答题(本大题共7小题,共56分,解答时应写出必要的计算过程或文字说明)19.在数轴上表示下列有理数,并用“<”号连接起来:(本题5分)1.5-,12-,0,-22,-(-3).20.计算题:(每题4分,共16分)(1)﹣(﹣18)+12﹣15+(﹣17) (2) ()()()5362-⨯+-÷-(3)()313()24468--⨯-(4)[]2212(3)2(3)-+--⨯÷-21.先化简,再求值:(本题5分)⎥⎦⎤⎢⎣⎡-+--+-)213(2)5(42222y xy x y xy x xy ,其中1-=x , 2=y .22.已知10箱苹果,以每箱15千克为标准,超过15千克的数记为正数,不足15千克的数记为负数,称重记录如下:+0.2,﹣0.2,+0.7,﹣0.3,﹣0.4,+0.6,0,﹣0.1,+0.3,﹣(本题6分)(1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为15±0.5(千克),则这10箱有几箱不符合标准的?23.已知:A=2a2+2ab-2a-1,B=-a2+ab-1(本题6分)⑴求A-(A-2B)的值;⑵若A+2B的值与a的取值无关,求b的值.24.甲、乙两家文具商店出售同样的钢笔和本子。

江苏省镇江市2016_2017学年七年级数学上学期期中试题

江苏省镇江市2016_2017学年七年级数学上学期期中试题

2016~2017 学年度第一学期七年级数学期中考试一、填空题: (本大题共 12 小题,第 1~5 题每空 1 分,第 6~12 题每空 2 分,共 24 分)1.1▲; -2 的相反数是▲ .的倒数为22.若 a 4 ,则 a =▲;若 a 29 ,则 a =▲ .3.比较大小:- 5▲2 ;4 ▲5 5.64. 单项式2 x 2 y 的系数是▲,次数是▲ .35.3x m y 2 与 5x 3 y n 是同类项,则 m =▲ , n =▲ .6. 10 月 19 日清晨神州十一号与天宫二号进行交会对接,此次成功对接被媒体称为 393000 米的“太空之吻”,此中“ 393000 米”用科学记数法可表示为▲米 .7. 小红为奶奶冲杯热牛奶,她需要做以下事情:烧开水( 4.5 分钟),洗杯子( 2 分钟),冲奶粉( 1.5 分钟) . 她起码要用▲分钟才能让奶奶喝上热牛奶 .8. 依据以下图所示的操作步骤,若输入 x 的值为 3,则输出 y 的值为▲ .输入 x - 6()2×2输出 y9. 已知代数式 x 2 y3,则代数式 2x 4 y 5 值是▲ .10.a2)2b3 0, 那么代数式 b a 的值是▲.已知有理数 a 、b 知足 (11. 如图,将一个直径为1 个单位长度的圆片上的点A 放在原点,并把圆片沿数轴转动1周,点 A 所在地点表示的数是▲ .1212. 以下图形都是由几个黑色和白色的正方形按必定规律构成,图 1 中有 2 个黑色正方形,图 2 中有 5 个黑色正方形,图 3 中有 8 个黑色正方形,图 4中有 11 个黑色正方形, ,依此规律,图 11 中黑色正方形的个数是▲ .二、选择题:(本大题共 8 小题,每题3 分,共 24 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的,把你以为正确的答案填在相应的括号内)13.若将向东行驶3 ,记作+ 3 ,则向西行驶 2应记作 (▲ )kmkmkmA .+ 2B.- 2 kmC.+ 3 kmD .- 3kmkm14.以下一组数: 8 ,2.7 ,1 ,,?,(相邻两个之间依0.6, ,20.0800800088322次增添一个 0)此中是无理数有(▲ )个A . 0 B.1 C .2D. 315. 以下说法错误的选项是 (▲ )A. 2x 23xy 1是二次三项式B.x 1 是多项式C.2 xy 2 的系数是 2 D.x 与 是同类项3 316. 用代数式表示“a 的 3 倍与b 的差的平方”,此中正确的选项是(▲)A . (3a b)2B . 3(a b)2C . 3a b 2D. (a3b) 217.现规定一种新的运算“※” b21※3等于( ▲), a ※ b= a ,如 3※ 2=3 =9,则2A .1B . 8C . 1D .386218.数轴上一点 A ,一只蚂蚁从 A 出发爬了 4 个单位长度到了原点,则点A 所表示的数是( ▲)A . 4B.4C.4D. 819. 已知 x3, y2, xy 0 ,则 xy 的值等于(▲ )A.5 或- 5B.1或- 1 C.5或 1D.-5或-120. 若 x 为有理数, x x 表示的数是(▲ )A .正数B.非正数C.负数D .非负数三、解答题 (本大题共 7 小题,共 72 分,解答时应写出必需的计算过程或文字说明)21.计算:(每题 5 分,共 20 分)(1) 23 17( 7) ( 16)(2) 5 61(2) ;3(3) ( 36) (15 7 ) (4)12( 10) 12 (4)229 12222. 化简(每题 5 分,共 10 分) (1) 3x 22x 5x 2 3x ( 2) 4 m 2 n2 n 2m 223.( 此题 8 分 ) 先化简,再求值:(3x 2 xy y) 2(5xy 4x 2y) ,此中 x 2, y 124. (此题 8 分)画一条数轴 , 将以下各数在此数轴上表示出来,并把这些数用“<”连结起来 .( 1),2, 31,( 2)2225.(此题 8 分)某食品厂从生产的袋装食品中随机抽样检测20 袋的质量能否切合标准质量,超出或不足的质量分别用正、负数表示,比如+ 3 表示该袋食品超出标准质量3 克,现记录以下:与标准质量的偏差-4- 2+ 1+ 2+ 3(单位:克)袋数5 3 3 423(1)在抽取的样品中,随意精选两袋,它们的质量相差最大多少克?(2)食品包装袋中标有“净重 500 2 克”,这批样品中有几袋质量不合格 ?并请你计算出这 20 袋食品的合格率是多少? 【产品的合格率 =(一批产品中的合格产品数目÷这批产品总量)× 100%】(3)若标准质量为 500 克/袋,则此次抽样检测的总质量是多少克?26.(此题 8 分)为了节俭用水,某市决定调整居民用水收费方法,规定假如每户每个月用水不超出10 吨,每吨水收费2 元,假如每户每个月用水超出10 吨,则超出部分 每吨水收费....2.5元;小红看到这类收费方法后,想算算她家每个月的水费 :(1)假如小红家每个月用水 8 吨,则水费是▲ 元;假如小红家每个月用水 20 吨,则水费是▲元.(2)假如字母x表示小红家每个月用水的吨数,那么小红家每个月的水费该怎样用x 的代数式表示呢?27.(此题10 分)一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线运动。

七年级(上)数学期中试卷(较难)(含答案)

七年级(上)数学期中试卷(较难)(含答案)

七年级(上)数学期中试卷(较难)(含答案)(考试时间:120分钟 试卷满分:100分)温馨提示:本卷一点也不难;只要认真审题;仔细计算;会的题做对;定得高分!!一、选择题(每小题2分;共20分;答案写到后面的答题区) 1、代数式2,51,4,16222yx xy y p xy p y x ++-++中不是整式的有( ). A 、1个 B 、2个 C 、3个 D 、 4个2、小丽制作了一个对面图案均相同的正方体礼品盒(如下图所示);则这个正方体礼品盒的平面展开图可能是( ).A B C D3.某公司员工分别住在A 、B 、C 三个住宅区;A 区有30人;B 区有5人;C 区有10人;三个区在一直线上;位置如图所示。

公司的接送车打算在此间只设一个停靠点;为要使所有员工步行到停靠点的路程总和最少;那么停靠点的位置应在( )C 区A 区A 、A 区B 、B 区C 、C 区D 、A 、B 两区之间4.在下列代数式中:a a -,)()()(,),0(a c c b b a a b b a a a a -+-+--+-≤+其中值永远等于0的有( )个.A 、4B 、3C 、2D 、1 5.若a<-2则|2-|1-a| | 等于( )A 、3-aB 、a-3C 、1+aD 、-1-a6.观察以下数组:(1);(3、5);(7、9、11);(13、15、17、19);…… 。

问2005在第( )组。

A 、44 B 、45 C 、46 D 、无法确定 7、38.33°可化为( ).A 、38°30ˊ3"B 、38°20ˊ3"C 、38°19ˊ8"D 、38°19ˊ48" 8、∠1;∠2互为补角;∠1<∠2;则∠1的余角是____ A 、12(∠1+∠2 B 、12∠1 C 、12(∠1-∠2) D 、12(∠2-∠1) 9、如图;已知AB∥CD∥EF;EH⊥CD 于H ;则∠BAC+∠ACE+∠CEH 等于( ).23ba b A 、180° B 、270° C 、360° D 、450° 10、设11++-=x x y ;则下面四个结论中正确的是( ). A 、y 没有最小值 B 、只有一个x 使y 取最小值 C 、有限个x (不止一个)y 取最小值 D 、有无穷多个x 使y 取最小值 二、填空题(每小题2分;共20分;答案写到后面的答题区)11、已知∠AOB=30°;∠BOC=24°;∠AOD=15°;则锐角∠COD 的度数 12、已知M 、N 是同一直线上的三个点;MN =a;NP =b;那么M 、P 的距离等于 13、设多项式M d cx bx ax =+++35;已知当x =0时;5-=M ;当3-=x 时;M=9;则当3=x 时;M = ;14、某同学在做一道题:求代数式10x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x +1当x=-1时的值.由于将式中某一项前的“+”号错看为“-”号;所以他得出的答案是7.那么该同学把________项的符号看错了.15、如图4;两个长方形的一部分重叠在一起 (重叠部分也是一个长方形);则阴影部分的周长为(并化简结果)__________________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016~2017学年度第一学期七年级数学期中考试
一、填空题:(本大题共12小题,第1~5题每空1分,第6~12题每空2分,共24分) 1.1
2
-
的倒数为 ▲ ;-2的相反数是 ▲ . 2.若4a =,则a = ▲ ;若29a =,则a = ▲ . 3.比较大小:-5 ▲ 2;54-
▲ 6
5-. 4. 单项式3
22
y x -
的系数是 ▲ ,次数是 ▲ .
5. 23y x m -与n
y x 35是同类项,则m = ▲ ,n = ▲ . 6.10
月19日凌晨神州十一号与天宫二号进行交会对接,此次成
功对接被媒体称为393000
米的“太空之吻”,其中“393000米”
用科学记数法可表示为 ▲ 米.
7.小红为奶奶冲杯热牛奶,她需要做下列事情:烧开水(4.5分钟),洗杯子(2分钟),冲奶粉(1.5分钟). 她至少要用 ▲ 分钟才能让奶奶喝上热牛奶. 8. 按照下图所示的操作步骤,若输入x 的值为3,则输出y 的值为 ▲ .
9. 已知代数式23x y +=,则代数式245x y +-值是 ▲ .
10. 已知有理数a 、b 满足,03)2(2=++-b a 那么代数式a
b 的值是 ▲ .
11. 如图,将一个直径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴滚动1
周,点A 所在位置表示的数是 ▲ .
12.下列图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是 ▲ .
2
1 0
二、选择题:(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在相应的括号内) 13.若将向东行驶3km ,记作+3km ,则向西行驶2km 应记作 ( ▲ )
A .+2km
B .-2km
C .+3km
D .-3km
14.下列一组数:8-,2.7,132,2
π
,0.6∙-,0,2,0.080080008…(相邻两个8之间依
次增加一个0)其中是无理数有( ▲ )个
A .0
B .1
C .2
D . 3 15.下列说法错误的是 ( ▲ )
A. 2231x xy --是二次三项式
B. 1x -+是多项式
C. 2
23xy π-的系数是2
3
π-
D. π与x 是同类项 16.用代数式表示“a 的3倍与b 的差的平方”,其中正确的是( ▲ ) A .2(3)a b - B .23()a b - C .2
3a b - D .2(3)a b -
17.现规定一种新的运算“※”,a ※b=b a ,如3※2=32
=9,则
1
2
※3等于( ▲ ) A .
1
8
B .8
C .
1
6
D .3
2
18.数轴上一点A ,一只蚂蚁从A 出发爬了4个单位长度到了原点,则点A 所表示 的数是( ▲ ) A .4 B. 4-
C. 4±
D. 8±
19. 已知3,
2,0x y xy ==<,则y x +的值等于( ▲ )
A.5或-5
B.1或-1
C.5或1
D.-5或-1
20.若x 为有理数,x x -表示的数是( ▲ )
A .正数
B .非正数
C .负数
D .非负数
三、解答题(本大题共7小题,共72分,解答时应写出必要的计算过程或文字说明) 21. 计算:(每小题5分,共20分)
(1)2317(7)(16)---+- 1
(2)56(2);
3-+÷-⨯
157(3)(36)()2912-⨯-+ 221
(4)1(10)2(4)2
---÷⨯+-
22.化简(每小题5分,共10分)
(1)x x x x 352322+-+ (2)()()
22224m n n m -++
23.(本题8分)先化简,再求值:)45(2)3(22y x xy y xy x +--+-,其中2,1x y =-=
24.(本题8分)
画一条数轴,将下列各数在此数轴上表示出来,并把这些数用“<”连接起来.
),1(--,2--,2
1
3-2)2(-
25.(本题8分)某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,
超过或不足的质量分别用正、负数表示,例如+3表示该袋食品超过标准质量3克,现记录如下:
(1)在抽取的样品中,任意挑选两袋,它们的质量相差最大多少克?
(2)食品包装袋中标有“净重500±2克”,这批样品中有几袋质量不合格?并请你计算出这20袋食品的合格率是多少?【产品的合格率=(一批产品中的合格产品数量÷这批产品总量)×100%】
(3)若标准质量为500克/袋,则这次抽样检测的总质量是多少克?
26.(本题8分)为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分....每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费: (1)如果小红家每月用水8吨,则水费是 ▲ 元;
如果小红家每月用水20吨,则水费是 ▲ 元.
(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢?
27. (本题10分)一只甲虫在5×5的方格(每小格边长为1m)上沿着网格线
.....运动。

它从A 处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上)。

规定:向上向右走为正,向下向左走为负。

如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A→C(▲,▲),B→C(▲,▲),C→▲(+1,▲);
(2)若这只甲虫沿着网格线
.....的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去P处的行走路线依次为(+2,+1),(+3,+2),(-2,-1),(-2,-2),请在图中标出P的位置.
(4) 在(3)中甲虫若每走1m需消耗1.5焦耳的能量,则甲虫从A走到P的过程中共需消耗多
少焦耳的能量?
2016~2017学年度第一学期七年级数学期中考试
参考答案
一、填充题(本大题共12小题,每小题2分,共24分。

将结果直接填写在横线上) 1. 2,2- 2. 4,3±± 3. < , > 4. 2
,33
-
5. 3 , 2
6. 53.9310⨯
7. 6 8.18 9.1 10. 9 11. π± 12. 32
二、选择题(本大题共8小题。

每小题3分,共24分)
13. B 14.C 15. D 16. A 17. A 18. C 19. B 20. B 三、解答题(本大题共7小题,共72分) 21. 计算:(每小题5分,共20分)
(1)2317(7)(16)23177162'30334'
35'
---+-=-+-=-=- 1
(2)56(2);
3
15(3)2'3514'65'-+÷-⨯=-+-⨯=--=-
157
(3)(36)()
2912157
(36)(36)()(36)2'2912
1820214'195'
-⨯-+=-⨯+-⨯-+-⨯=-+-=-
22. 化简(每小题5分,共10分)
22222(1)
325335232'255'
x x x x
x x x x x x +-+=-++=-+ ()()
2222(2)42244242'65'm n n m m n n m n ++-=++-=
22
1
(4)1(10)2(4)2
1(10)22162'1(40)16140164'555'---÷⨯+-=---⨯⨯+=---+=-++=
2222223.(3)2(54)310822'11115'
x xy y xy x y x xy y xy x y x xy y -+--+=-+-+-=-- 将2,1x y =-=代入得,
211(2)11(2)116'44(22)1658'
⨯--⨯-⨯-=---=
24.(本题8分)
图略6' (正确画出数轴2分,标对一个点给1分)
2
1
32(1)(2)8'2
-<--<--<-
25.(本题8分) (1)7克2'
(2)8袋4' ,60%6' (3)9991克8' 26.(本题8分)
(1)16元,45元4' (2)当0<x ≤10时5' 2x 元6' 当x>10时7' (2.5x -5)元8'
(如果没有化简,答案写成 20+2.5(x -10) 也算正确,范围包括0也对)
27.(本题10分)
(1)(3,4)1'(2,0)2'
3'24'
D +++-
(2)11m 6' (3)
8'
(4)22.5焦耳10'。

相关文档
最新文档