有序纳米结构ppt课件

合集下载

《纳米技术》PPT课件

《纳米技术》PPT课件
纳米技术
h
1
纳米
“纳米”是长度单位,1nm=10-9m
即1纳米等于十亿分之一米,大约等于10个氢原子并排起 来的长度,相当于万分之一头发的粗细。纳米正好处于原 子、分子为代表的微观世界和以人类活动空间为代表的宏 观世界的中间地带,被称为介观世界。
h
2
纳米技术
纳米科学技术是研究在千万分之一米(10-8m)到亿分之一米 (10-9m)内,原子、分子和其它类型物质的运动和变化的学 问;同时在这一尺度范围内对原子、分子或原子团、分子 团进行操纵和加工使其形成所需要的物质称为纳米技术。
费曼对纳米技术的最早梦想,成为一个光 辉的起点,人类开始了对纳米世界的探求。
h
6
科学家发现,在纳米的世界里,物质发生了质的飞 跃。比如硅晶体是不发光的,但纳米硅却会发光;陶瓷 在通常情况下是很硬、很脆的,如果采用纳米粉体制成 纳米陶瓷,它也可以具有韧性;纳米材料还具有超塑性, 室温下的纳米铜丝经过轧制,其长度可以从1cm延伸到 100cm,其厚度可以从1mm减小到0.01mm。
h
14
虽然纳米陶瓷还有许多关键技术需要解决,但其
优良的室温和高温力学性能、抗弯强度、断裂韧
性,使其在切削刀具、轴承、汽车发动机部件等
诸多方面都有广泛的应用,并在许多超高温、强
腐蚀等苛刻的环境下起着其他材料不可替代的作
用,具有广阔的应用前景。
返回
h
15
纳米级微电子元件
日本日立中心实验室利用半导体材料砷化镍, 率先开发新一代微电子元件。这些电子元件呈细长 的鬃状结晶形,粗仅20纳米,可使计算机的计算速 度、通讯用发光元件的效率数十、数百倍地提高。
h
16
超微型计算机
随着微电子技术的不断发展,集成度越来越 高,计算机信息存储芯片越来越小,而存储量却 越来越大,信息容量比现有光盘高100万倍,整个 美国国会图书馆的图书都能存储在一个糖块大小 的芯片中。

纳米颗粒自组装技术PPT课件

纳米颗粒自组装技术PPT课件
发展趋势
随着技术的不断进步和应用需求的增 加,纳米颗粒自组装技术将朝着规模 化、集成化、智能化方向发展。
对人类社会的影响与价值
影响
纳米颗粒自组装技术有望在医疗、能 源、环境等领域发挥重要作用,为解 决人类面临的重大问题提供新的解决 方案。
价值
纳米颗粒自组装技术具有巨大的经济 价值和市场前景,有望推动相关产业 的发展和进步。
技术挑战与解决方案
技术挑战
纳米颗粒自组装技术面临的关键 挑战包括控制组装过程、提高组 装效率、优化组装结构等。
解决方案
通过深入研究纳米颗粒间的相互 作用机制,开发新型的组装方法 和技术,提高纳米颗粒自组装的 可控性和效率。
未来发展方向与趋势
研究方向
未来纳米颗粒自组装技术的研究将更 加注重跨学科合作,结合生物学、物 理学、化学等多学科知识,探索更广 泛的自组装应用领域。
热力学与动力学原理
热力学原理在纳米颗粒自组装中起着关键作用。根据热力学第二定律,自发过程总是向着熵增加的方 向进行,即向着更加无序的状态发展。然而,在纳米颗粒自组装过程中,由于存在多种相互作用,使 得系统熵减小,形成有序结构。
动力学原理则决定了自组装的速率和过程。纳米颗粒自组装的速率受到多种因素的影响,如颗粒浓度 、温度、相互作用强度等。通过控制这些因素,可以调控自组装的进程03
04
温度
选择适宜的温度,以保证自组 装的稳定性和效率。
pH值
调节溶液的酸碱度,以控制纳 米颗粒的表面电荷和溶解度。
浓度
合理控制纳米颗粒的浓度,以 实现最佳的自组装效果。
添加剂
根据需要添加表面活性剂、稳 定剂等添加剂,以调节纳米颗
粒间的相互作用。
纳米颗粒的制备与修饰

纳米技术ppt课件

纳米技术ppt课件
在第四个阶段中纳米计算机将得以实现。这个阶段的市场规模将 达到2000亿至1万亿美元。
在第五阶段里,科学家们将研制出能够制造动力源与程序自律化 的元件和装置,市场规模将高达6万亿美元。
.
5. 纳米技术的主要研究项目
主要有超细薄膜、碳纳米管、纳米陶瓷、金属纳米晶体和 量子点线等。
1) 超细薄膜
超细薄膜的厚度通常只有1纳米-5纳米,甚至会做成1个分 子或1个原子的厚度。超细薄膜可以是有机物也可以是无机物, 具有广泛的用途。如沉淀在半导体上的纳米单层,可用来制 造太阳能电池,对开发新型清洁能源有重要意义;将几层薄 膜沉淀在不同材料上,可形成具有特殊磁特性的多层薄膜, 是制造高密度磁盘的基本材料。
.
3) 陶瓷材料 陶瓷材料在通常情况下具有坚硬、易碎的特点,但
由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的 韧性,有的可大幅度弯曲而不断裂,表现出金属般的 柔韧性和可加工性。
.
纳米技术的内容
纳米技术包含下列四个主要方面: 1、纳米材料:
当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性 能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子, 也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺 度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。
.
2) 碳纳米管
碳纳米管是由碳60分子经加工形成的一种直径只有几纳米 的微型管,是纳米材料研究的重点之一。与其它材料相比, 碳纳米管具有特殊的机械、电子和化学性能,可制成具有导 体、半导体或绝缘体特性的高强度纤维,在传感器、锂离子 电池、场发射显示、增强复合材料等领域有广泛应用前景, 因而受到工业界的普遍重视。目前,碳纳米管虽仍处于研究 阶段,但许多研究成果已显示出良好的应用前景。

生物材料课件---10纳米生物材料-PPT课件

生物材料课件---10纳米生物材料-PPT课件
靶向给药系统(Targeting Drug Delivery System,TDDS) 或称靶向制剂,诞生于20世纪70年代,是指。这种制剂能将 药品运送到靶器药物通过局部或全身血液循环而浓集定位于 靶组织、靶器官、靶细胞的给药系统官或靶细胞,而正常部 位几乎不受药物的影响。
液相法主要包括沉淀法,水解法,喷雾法,乳液法,溶胶-凝胶法等, 其中应用最广的是溶胶-凝胶法和沉淀法。
沉淀法
沉淀法是指包括一种或多种离子的可溶性盐溶液,当加入沉 淀剂 ( 如 OH-,C2O42- 等 ) 于一定温度下使溶液发生水解 , 形成 不溶性的氢氧化物、水合氧化物或盐类从溶液中析出,将溶剂 和溶液中原有的阳离子洗去,经热解或热脱即得到所需的氧化 物粉料。沉淀法包括共沉淀法、 直接沉淀法、均相沉淀法等。
为固相法、液相法和气相法。
固相法
固相法主要包括物理粉碎法、固相物质热分解法、旋转涂
层法和机械合金法等。固相反应不使用溶剂 ,具有高选择性、
高产率、低能耗、工艺过程简单等特点。
液相法
液相法是目前实验室和工业上最为广泛采用的合成纳米材 料的方法,与固相法相比,液相法的特点主要表现在:可控 制化学组成;颗粒的表面活性好、易控制颗粒形状和粒径; 工业化成本较低。
§10.2 高分子纳米生物材料
高分子纳米生物材料也称为高分子纳米微粒或者高分子超微
粒,主要通过微乳液聚合的方法得到。由于高分子纳米生物材 料具有良好的生物相容性和生物可降解性,已经成为非常重要 的纳米生物医学材料,在靶向药物、控释剂以及疑难病的介入 诊断方面有着广阔的应用前景。
10.2.1 靶向药物载体中使用的高分子纳米生物 材料
图7-1 粒子粒径与表面原子占总原子数比例的关系
量子尺寸效应

纳米材料--纳米材料分类ppt课件

纳米材料--纳米材料分类ppt课件
纳米材料
纳米科技材料分类
.
按特殊性能 可分为 纳米润滑剂
纳米光电材料纳米材料的分类
纳米 半透膜等等……
.
按材质,
可分为金属纳米材料 无机纳米材料
有机纳米材料 纳米材料的分类
.
按几何结构可分Байду номын сангаас零维纳米材料(颗粒)
一维纳米 材料纳(纳米米材管或料纤的维)分类
二维纳米材料(薄 膜) 三维纳米材料(纳米块体)
.
按用途 可分为
功能纳米材料和结构纳米材料;
纳米材料的分类
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!

《纳米材料导论》课件

《纳米材料导论》课件
伦理问题
纳米技术的广泛应用可能涉及隐私、 安全和伦理等问题,需要加强伦理规 范和监管。
05 结论
研究成果总结
纳米材料特性
详细介绍了纳米材料的 尺寸、表面效应、量子 效应和介电限域效应等 基本特性,以及它们在 物理、化学和生物领域
的应用。
制备方法
总结了纳米材料的各种 制备方法,如物理法、 化学法、生物法等,并 讨论了各种方法的优缺
《纳米材料导论》ppt课件
$number {01}
目录
• 纳米材料简介 • 纳米材料制备方法 • 纳米材料的应用 • 纳米材料的发展前景 • 结论
01
纳米材料简介
纳米材料定义
01
纳米材料是指在三维空间中至少 有一维处于纳米尺度范围(1100nm)或由它们作为基本单元 构成的材料。
02
纳米尺度通常对应于物质中原子 或分子的集合行为发生显著变化 的尺度,因此纳米材料具有许多 独特的物理、化学和机械性能。
点和适用范围。
应用领域
概述了纳米材料在能源 、环境、医疗、信息等 领域的应用,并给出了
具体实例和效果。
对未来研究的展望
新制备技术
预测未来将出现更多高效、环保 的纳米材料制备技术,以满足不
断增长的应用需求。
跨学科应用
鼓励跨学科合作,将纳米材料应 用于更多领域,如生物医学、农
业、航天等。
绿色纳米技术
强调发展绿色、可持续的纳米技 术,以降低生产过程中的环境污
染和资源消耗。
伦理与法规
呼吁加强对纳米技术的伦理和法 规研究,以确保其在应用过程中
的安全性和合法性。
溶胶-凝胶法
通过溶液中的化学反应,使原材料转化为凝胶态,再经过干燥和热处理得到纳米材料。该方法操 作简便,成本较低,但制备周期较长。

3.纳米结构单元(1)

3.纳米结构单元(1)

二、纳米微粒

纳米微粒是指颗粒尺寸为纳米量级的超细微粒, 它的尺度大于原子簇(cluster),小于通常的 微粉

血液中的红细胞的大小为200~300nm,一般细 菌(例如,大肠杆菌)长度为200—600nm,引起 人体发病的病毒尺寸一般为几十纳米。因此, 纳米微粒的尺寸为红细胞和细菌的几分之一, 与病毒大小相当或略小些,这样小的物体只能 用高倍的电子显微镜进行观察
图3-9
碳纳米管

每个单壁管侧面由碳原子六边形组成, 两端由碳原子的五边形封顶。单壁碳纳 米管可能存在三种类型的结构,分别称 为单臂纳米管、锯齿形纳米管和手性纳 米管

这些类型的碳纳米管的形成,取决于碳 原子的六角阵二维石墨片是如何“卷起 来”形成圆筒形态
图3-10 按截面边缘形状区分的各种碳纳米管


理论计算和实验研究表明,单壁碳纳米管的杨 氏模量和剪切模量都与金刚石相当,其强度是 钢的100倍,而密度却只有钢的六分之一,是 一种新型的“超级纤维”材料

有学者曾对碳纳米管这种“超级纤维”材 料作了一个奇特的设想--用来制造太空升 降机的缆绳 如果人类将来真的有一天能够制造出太空 升降机用作从地球到外层空间站的通道的 话,碳纳米管缆绳将是唯一不会因为自重 而折断的材料
人造原子的意义

人造原子的一个重要特点是放入一个电子或拿出 一个电子很容易引起电荷涨落,放入一个电子相 当于对人造原子充电,这些现象是设计单电子晶 体管的物理基础 研究人造原子中电子的输运特性,特别是该系统 表现出的独有的量子效应将为设计和制造量子效 应原理性器件和纳米结构器件奠定理论基础

一维纳米结构单元
三、人造原子
人造原子(artificial atoms)有时称为量子 点,是20世纪90年代提出来的一个新概念。所谓 人造原子是由一定数量的实际原子组成的聚集体, 它们的尺寸小于l00nm

纳米结构

纳米结构
纳米结构体系
以纳米尺度的物质单元作一个基元按一定的规律排列起来形成一维、二维、三 维的阵列称之为纳米结构体系。
由于纳米结构具有纳米微粒的特征,如量子尺寸效应、小尺寸效应、表面效应等, 又存在由纳米结构组合引起的新的效应,如量子耦合效应和协同效应等。其次,这 种纳米结构体系很容易通过外场(电、磁、光)实现对其性能的控制,这就是纳米超 微型器件的设计基础。
纳米结构的自装和分子自组装体系是物理学、化学、生物学、材料科学在纳 米尺度交叉而衍生出来的新的学科领域,为新材料的合成带来了新的机遇,也 为新物理和新化学的研究提供了新的研究对象。
12.2 厚膜模板合成纳米阵列
模板组装纳米结构的优点:
➢ 利用模扳可以制备各种材料,例如金属、合金、半导体、导电高分子、氧化物、 碳及其他材科的纳米结构;
图4纳米孔洞氧化铝模板照片(a)正面图(b)横断面
2.高分子模板
合成方法:
厚度为6-20um的聚碳酸 酯、聚酯和其他高分子膜
核裂变碎片轰击
出现许多损 伤的痕迹

特征:
孔洞呈圆柱形,很多孔 洞与膜面斜交,与膜面
学 腐 蚀
法线的夹角最大可达
34° ,因此在厚膜内
有孔通道交叉现象,总 体来说,孔分布是无序 的,孔的密度大致为
表面包敷三烷基 磷硅族化合物
90%辛烷和10 %辛醇混合溶 液
80℃和常压
特点:可以通过胶体晶体的参数进行调制,随着CdSe量子
悬浮液 先辛
降 挥烷 压 发优
点的尺寸和它们之间距离的改变,光吸收带和发光带位 置发生变化。图1示出了CdSe量子点的胶体晶体的光吸 收和光发射谱,可以看出,随着量子点直径由6.2nm减
缺点:只能调节纳米管内径尺寸,不能调节管的长度。

有序纳米结构及其应用(共54张PPT)

有序纳米结构及其应用(共54张PPT)
外表活性剂分子存在的2种状态:
带电的,所以粒子之间存在静电斥力 这些微结构大都在纳米尺度范围内,可为化学反响提供特殊的微环境,即可以作为微反响器,也可以起到模板的作用
人为利用自组装技术合成材料仅有20年的历史。 外表活性剂分子的自组装
材料学院8
从粒子的负电性考虑,一般将固体的结合分为 五种根本类型,即离子结合、共价键结合、金属结 合、分子结合和氢键结合。
离子晶体一般由负电性相差较大的两个元 素结合而成,它们之间的作用力是正负离子的静电 库仑作用,具有可加性,因而结合能很大,大约 150kcal/mol;共价结合靠两个原子各奉献相同的电 子,形成共用电子对,由于电荷量加倍,因此自旋 相反配对两个原子核的吸引力加强,这种结合所释 放的结合能也很多(大约150kcal/mol)共价结合具有 方向性和饱和性,因而不具有可加性。金属结合是 靠共有 材料学院9 化电子与离子实之间的库仑相互作用结合起
材料学院14
外表活性剂分子的自组装
材料学院15
外表活性剂的结构
❖外表活性剂:头部至少有一个亲水性基团,尾部有 一个疏水性基团,低浓度下,可吸附在外表或界面 上来降低外表能
图5-18 外表活性剂分子的结构示意图
材料学院16
外表活性剂分子的分类
水溶性外表活性剂
按溶解性 油溶性外表活性剂
按在水中是否 离子型外表活性剂
材料学院24
图5-21 微乳液法自组装BaMoO4纳米带的TEM照片
利用范德华力自组装
材料学院25
❖利用范德华力将一种或两种不同材料、不同粒 度的纳米微粒组装在一起,可分别形成一元或 二元晶体〔BNSL〕结构
❖自组装过程的推动力是纳米粒子堆积密度的 最大化,这与范德华力结合的本质是一致的

纳米技术及材料PPT课件

纳米技术及材料PPT课件

农业食品
纳米肥料、纳米农 药、纳米食品包装 等。
纳米技术的发展历程
1986年,IBM阿尔马登研究中心的科 学家发明了扫描隧道显微镜(STM), 使人类第一次能够直接观察并操纵单 个原子。
1990年代初,美国政府和欧洲委员 会分别设立了针对纳米的科研计划, 推动了全球范围内的纳米技术研究和 应用。
1989年,美国贝尔实验室的科学家 发明了原子力显微镜(AFM),可以 观察和操纵单个原子和分子。
对未来的展望与建议
政府和企业应加大对纳米技术 研发和应用的投入,推动其快
速发展。
建立完善的法规和标准体系, 确保纳米技术的安全可控和可
持续发展。
加强国际合作和交流,共同推 动纳米技术的发展和应用。
提高公众对纳米技术的认知和 理解,促进其广泛应用和社会 接受度。
THANKS
感谢观看
燃料电池
纳米材料可以改善燃料电池的电极 性能和催化剂活性,提高燃料电池 的效率和稳定性。
医学领域
药物输送
生物传感器
纳米材料可以作为药物载体,实现药 物的定向输送和控释,提高药物的疗 效和降低副作用。
纳米材料可以用于构建高灵敏度和特 异性的生物传感器,用于检测生物分 子和细胞活性。
医学成像
纳米材料可以提高医学成像的分辨率 和灵敏度,为疾病的早期诊断和治疗 提供帮助。
环境领域
空气净化
纳米材料可以用于空气过滤和净 化,去除空气中的有害物质和异
味,改善室内空气质量。
水处理
纳米材料可以用于水过滤和消毒, 去除水中的细菌、病毒和有害物
质,提供清洁的饮用水。
土壤修复
纳米材料可以用于土壤修复和治 理,吸附和固定重金属和有害物
质,降低土壤污染风险。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
光刻技术主要包括图形复印和定域刻蚀两个方面。 图形复印,就是经曝光系统将预制在掩模版上的器件或电路图形 按所要求的位置,精确传递到预涂在晶片表面或介质层上的光致 抗蚀剂薄层上。
.
ห้องสมุดไป่ตู้
定域刻蚀就是利用化学或物理方法,将抗蚀剂薄层未掩蔽的晶片 表面或介质层除去,从而在晶片表面或介质层上获得与抗蚀剂薄 层图形完全一致的图形。
.
目前的发展趋势:电子束刻蚀与光学光刻的混合匹配曝光技术 即电路的大部分工艺由光学光刻完成,超精细图形由电子束光 刻完成。 电子束光刻一般用于制作高精度掩模
线宽分别为100 nm和12 nm的纳米线条、规则的六角图案。
.
离子束刻蚀 : 散射极小,邻近效应几乎为零(离子质量重 ); 感光胶对离子的灵敏度高。
.
X 射线掩模版是由氮化硅或碳化硅等轻元素材料做成1~5 μm 厚 的薄膜底版,然后在上面根据电路图形要求,沉积0.14~0.17 μm 厚的重金属层(通常为金或钨),作为吸收层。 X 射线掩模版制作困难;受热容易变形。
.
5.1.2 电子束刻蚀(EBL)和离子束刻蚀(IBL)
无需掩模版 波长更短 电磁透镜聚焦 速度极慢 电子散射造成 邻近效应
纳米压印技术主要包括热压印(HEL)、紫外压印(UV-NIL) 以及微接触印刷(μCP)。
.
5.1.3.1 热压印技术(HEL)
.
整个热压印过程可以分为三个步骤: (1) 聚合物被加热到它的玻璃化温度以上。 (2 ) 在印章(SiC)上施加机械压力(气压小于1 Pa )。 (3) 冷却到聚合物玻璃化温度以下,以使图案固化,便于脱模。
经连续化的图形化、显影、腐蚀和沉积许多不同的工序就可以
制造复杂的集成电路。
.
光刻技术有两个重要的指标:分辨率和焦深。
分辨率表示能分辨的最小线宽; 光学光刻的分辨率决定了芯片上单个器件的最小尺度。
根据瑞利定律:R=k1λ/NA ,D=k2λ/(NA)2 R为分辨率,D为焦深,λ为曝光波长; NA为数值孔径,由成像系统决定,k1和k2是与系统有关的常数。
第五章 有序纳米结构及其应用
有序纳米结构是指由零维纳米微粒、一维纳米材料构筑的, 在长程范围内具有一定排布规律,有序稳定的纳米结构。
.
“自上而下” (top-down)方式主要用于制造存储器和CPU等 半导体器件的微细加工,是利用光线或电子束等削除大片材料 ,从而留下所需要的微细图形结构。
“自下而上” (bottom-up)方式,则是利用薄膜形成技术, 即通过人工手段把原子或分子一层一层淀积(在极端情况下可 以把原子或分子一个一个的淀积)来形成新的晶体结构(人工 晶格),从而造出新的物质或者新的器件。
极紫外光刻( EUVL) 技术:用波长范围为11~14 nm的光,经过 周期性多层膜反射镜,照射到反射掩模上,反射出的EUV 光再 经过投影系统,将掩模图形形成在硅片的光刻胶上。
.
对于波长小于157 nm的光来说,自然界中的大多数材料均对其有 强烈的吸收,难以制作透镜和掩模材料。 最近的研究表明,由Si和Mo组成的多层膜结构对13 nm附近的 极紫外光的反射率很高,因此可以用来制作13 nm波长的反射式 光学系统和掩模版,其理论分辨率可以达到7 nm。
曝光系统的极限分辨率为λ/2,即半波长。 波长193 nm的光源(ArF激光器)分辨率可达0.1 μm; 157 nm的光源(F2激光器)分辨率可达0.08 μm。
减小波长、增加数值孔径、减小k1等方式都可以提高光刻曝光 系统的分辨率,其中减小波长是主要手段。
.
5.1.1 极紫外光刻(EUVL)和X射线光刻(XRL)
聚焦离子束系统所采用的静电透镜有较大的色差系数(离子 的能量分散 ),分辨率比电子束曝光低 ; 曝光深度有限。 离子束曝光在集成电路工业中主要用于光学掩模的修补和集 成电路芯片的修复。
.
5.1.3 纳米压印技术(NIL)
通过将具有纳米图案的模版以机械力( 高温、高压) 压在涂有高 分子材料的硅基板上, 等比例压印复制纳米图案, 进行加热或紫 外照射, 实现图形转移。
.
5.1.3.2 紫外压印技术
紫外压印对环境要求更低,仅在室温和低压力下就可进行,从 而使该技术大大缩短生产周期,同时减小印章磨损。
.
5.1.3.3 微接触印刷(μCP)
微接触印刷:弹性模板结合自组装单分子层技术。
.
NIL技术除具有操作简单的优点之外,还具有一个突出的优点,就 是可以采用层层压印的方式获得三维有序纳米结构。
有序纳米结构的制备方法:纳米刻蚀技术、自组装、模板法以 及它们的组合。 首先,简单介绍一下“自上而下”的纳米刻蚀技术和“自下而 上”的自组装方法。
.
5.1 纳米刻蚀技术
传统半导体加工中的光刻工艺 : 光刻是利用光致抗蚀剂的光敏性和抗蚀性,配合光掩模版对光透 射的选择性,使用光学和化学的方法完成特定区域刻蚀的过程。
EUVL技术与传统的光刻技术基本一致,其工艺兼容性、技术规 范和系统要求也非常相似,所以很容易被现代的半导体工业接受 和采用。目前相当多的科学家认为该技术是制造未来纳米集成电 路的较佳候选者。
.
X射线光刻技术通常采用的波长范围在0.4~1.4 nm,可获得极高 的分辨率。 因为无法对X 射线聚焦,所以采用的曝光系统基本都是无投射 光学系统的近贴式和1∶1 投影式。
光致抗蚀剂简称光刻胶或抗蚀剂,是一种光照后能改变抗蚀能力 的高分子化合物,包括正抗蚀剂和负抗蚀剂两种。 对于正抗蚀剂,紫外光照后,曝光区域在显影液中变得可溶; 对于负抗蚀剂,紫外光照后,曝光区域在显影液中变得不可溶。
光掩模版俗称光掩模或光刻板,是指在光照时覆盖于光刻胶膜 上,除特定区域外均对光有掩蔽作用的图样,也就是晶体管制 作所需图样的模板。
加工分辨力只与模版图案的尺寸有关, 而不受光学光刻的最短曝 光波长的物理限制(线宽在5 nm以下 )。
由于省去了光学光刻掩膜版和使用光学成像设备的成本,因此 纳米压印技术具有低成本、高产出,同时不需要很多的资金来 维持生存的经济优势。大面积、快速、多层纳米压印技术的发 展使得纳米压印曝光技术很可能成为下一代电子和光电子产业 的基本技术。
相关文档
最新文档