旋转1
北师大版八年级下册数学第三章 图形的平移与旋转第2节《图形的旋转(1)》教学设计
第三章图形的平移与旋转2.图形的旋转(一)一、学生起点分析学生在七年级下学期已经学习了“生活中的轴对称”一节,而且在本章的第一节,学生又经历了探索图形平移性质的过程,已经积累了相当的图形变换的数学活动经验,同时八年级学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也在迅速发展,他们有强烈的独立思考、自主探索的愿望,这些对本节的学习都会有帮助。
但旋转是三种变换中难度较大的一种,图形也比较复杂,因此,学生对旋转图形的形成过程的理解仍会有一定的困难。
二、教学任务分析图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。
教材从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中的旋转,进而探索其性质。
因此,旋转是培养学生思维能力、树立运动变化观点的良好素材;同时“图形的旋转”也为本章后续学习对称图形、中心对称图形做好准备,为今后学习“圆”的知识内容做好铺垫。
教学目标知识与能力:通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.过程与方法:经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.情感态度价值观:引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,特别是,对应点到旋转中心的距离相等.三、教学过程设计第一环节创设情境,引入新知演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例,引出课题:“生活中的旋转”。
第23章旋转第1课时 旋转的概念及性质-人教版九年级数学上册讲义(机构专用)
人教版九年级数学上册讲义第二十三章旋转第1课时旋转的概念及性质知识要点旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
旋转特殊角度旋转60°得等边三角形。
旋转90°得等腰直角三角形。
旋转任意角度得等腰三角形。
对应练习1.如图,ΔABC 是等腰三角形,∠BAC = 36°,D 是BC 上一点,ΔABD 经过旋转后到达ΔACE 的位置,(1) 旋转中心是哪一点?(2)旋转了多少度?(3) 如果M 是AB 的中点,那么经过上述旋转后,点M 转到了什么位置?2.如图,是ΔAOB 绕点O 按逆时针方向旋转45°所得的.点B 的对应点是点_____ 线段OB 的对应线段是线段______ 线段AB 的对应线段是线段______∠A 的对应角是______ ∠B 的对应角是______ 旋转中心是点______ 旋转的角度是______3.如图是由正方形ABCD 旋转而成.(1)旋转中心是__________(2)旋转的角度是_________ (3)若正方形的边长是1,则C ’D =_________4.ΔA'OB '是ΔAOB 绕点O按逆时针方向旋转得到的. 已知∠AOB =20°,∠A'OB =24°,AB =3,OA =5则A'B '=____,OA' =____,旋转角=______.5.如图,ΔABC绕A 逆时针旋转使得C 点落在BC 边上的F 处,则对于结论:①AC =AF;②∠FAB =∠EAB;③EF =BC;④∠EAB =∠FAC,其中正确的结论是______________6.如图E 是正方形ABCD 内一点,将ΔABE 绕点B 顺时针方向旋转到ΔCBF,其中EB =3cm,则BF =_____cm ,∠EBF =______.7.如图将RtΔABC 绕C 点逆时针旋转30°后,点B 落在B ′,点A落在A’点位置,若A’C ⊥ AB,求∠B ’A’C 的度数.8.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=5,则BE的长度为.9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是.课后作业1.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()• A.15° B.20° C.25° D.30°2.如图,在△ABD中,AD=BD,将△ABD绕点A逆时针旋转得到△ACE,使点C落在直线BD上.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.3.如图,在Rt△ABC中,∠ACB=90°,△DCE是△ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.(1)旋转角的大小;(2)若AB=10,AC=8,求BE的长.4.如图,点E是正方形ABCD内的一点,连接AE、BE、CE.若AE=1,BE=2,CE=3,则∠AEB= 度.5.如图,P是等边三角形ABC内一点将△ACP绕点A顺时针旋转60°得到△ABQ,连接BP,若PA=2,PB=4,PC=2√3,则四边形APBQ的面积为.6.如图所示,点D是等边△ABC内一点,DA=15,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,当点E 在BD的延长线上时.求(1)∠BDA的度数;(2)△DEC的周长.7.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=8,BC=6,则线段MM′的长为 .8.如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD、CD的长.9.正方形ABCD与正方形DEFG按如图1放置,点A、D、G在同一条直线上,点E在CD边上,AD=3,DE= √2,连接AE、CG.(1)线段AE与CG的关系为;(2)将正方形DEFG绕点D顺时针旋转一个锐角后,如图2,请问(1)中的结论是否仍然成立?请说明理由.长.对应练习答案1.答案:(1)A;(2)36°;(3)AC 的中点.2.B’,OB’,A'B ',∠A’,∠B ',O,45°3.A,45°,4.3,5,44°5.①③④6.答案:3,90°.7.答案:60°.8.解答:解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,课后作业答案1.解答:解:由旋转的性质得:△ADE≌△ABC,∴∠D=∠B=40°,AE=AC,∵∠CAE=60°,∴△ACE是等边三角形,∴∠ACE=∠E=60°,∴∠DAE=180°-∠E-∠D=80DU=(180°-∠CAE)=(180°-60°)=80°,∴∠DAC=∠DAE-∠CAE=80°-60°=20°;故选:B.2.解答:证明:(1)由旋转性质得∠BAD=∠CAE,AB=AC,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.3.解答:解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt△ABC中,∵AB=10,AC=8,∴BC==6,∵△ABC绕着点C旋转得到△DCE,∴CE=CA=8,∴BE=BC+CE=6+8=144.解答:解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.5.解答:解:如图,连接PQ.∵△ACP绕点A顺时针旋转60°得到△ABQ,∴AP=AQ=2,PC=BQ=2√3,∠PAQ=60°,∴△PAQ是等边三角形,∴PQ=PA=2,∵PB=4,∴PB2=BQ2+PQ2,∴∠PQB=90°,∴S四边形APBQ=S△PBQ+S△APQ=•PQ•QB+•PA2=×2×2√3+×4=3√3,故答案为3√3.6.解答:解:(1)∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵△ABD绕点A逆时针旋转到△ACE的位置,点E在BD的延长线上,∴AD=AE,CE=DB=19,∠DAE=∠BAC=60°,∴△ADE为等边三角形,∴∠ADE=60°,DE=AD=15,∴∠BDA=120°;(2)△DEC的周长=DE+DC+CE=15+21+19=55.7.解答:连接CM,CM′,∵AC=8,BC=6,∴AB= =10,∵M是AB的中点,∴CM= AB=5,∵Rt△ABC绕点C顺时针旋转90°得到Rt△A′B′C,∴∠A′CM′=∠ACM∵∠ACM+∠MCB=90°,∴∠MCB+∠BCM′=90°,又∵CM=C′M′,∴△CMM′是等腰直角三角形,∴MM′=CM=5 ,故答案为:5 .8.解答:(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE∴△ABD≌△ACE,∠BAC=∠DAE,∴AD=AE,BD=CE,∠AEC=∠ADB=120°,∵△ABC为等边三角形∴∠BAC=60°∴∠DAE=60°∴△ADE为等边三角形,∴AD=DE,(2)∠ADC=90°,∠AEC=120°,∠DAE=60°∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°,(3)∵△ADE为等边三角形∴∠ADE=60°∴∠CDE=∠ADC﹣∠ADE=30°又∵∠DCE=90°∴DE=2CE=2BD=2,∴AD=DE=2在Rt△DCE中,.9.解答:解:(1)线段AE与CG的关系为:AE=CG,AE⊥CG,理由如下:如图1,延长AE交CG于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADE=∠CDG=90°,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠AED=90°,∠AED=∠CEH,∴∠GCD+∠CEH=90°,∴∠CHE=90°,即AE⊥CG,故答案为:AE=CG,AE⊥CG;(2)结论仍然成立,理由如下:如图2,设AE与CG交于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADC=∠EDG=90°,∴∠ADC+∠CDE=∠EDG+∠CDE,即∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠APD=90°,∠APD=∠CPH,∴∠GCD+∠CPH=90°,∴∠CHP=90°,即AE⊥CG,∴AE=CG,AE⊥CG,∴①中的结论仍然成立;。
《图形的旋转一》教学设计
《图形的旋转一》教学设计作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么问题来了,教学设计应该怎么写?以下是店铺整理的《图形的旋转一》教学设计(精选5篇),希望对大家有所帮助。
《图形的旋转一》教学设计1教学目标:1、通过动手操作、实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。
2、通过操作、观察,进一步培养学生的空间思维观念。
教学重点:了解一个简单的图形经过旋转制作复杂图形的过程教学难点:让学生清楚的表述图形的旋转过程。
教学准备:学生准备基本图形卡片、带有小方格的纸教师准备多媒体演示文稿、纸做小风车。
教学时间:20分钟教学过程:一、在游戏中导入新知1、教师手拿风车走向讲台。
问:同学们,认识它吗?玩过吗?在今天这个舞台上你敢玩吗?找一名学生上台展示玩法。
问:在你玩的过程中,这个风车的风叶是怎样运动的?它又是怎样旋转的呢?2、看了刚才这位同学的精彩表演,大家是不是也想玩一玩呀?那么就请同学们想办法让手中的东西、桌子上的东西、包中的东西旋转起来,我们来比一比,看谁最会玩?学生活动,教师巡视。
1、刚才,老师看了一下这位同学的玩法,这位同学的玩法很独特,我们就请到前面来展示一下他的玩法。
你能用语言具体描述一下它的旋转过程吗?(说清绕哪一点、按什么方向旋转,旋转的角度)1、刚才大家都让自己手中的东西旋转了起来,玩的开心吗?下面我们换一个玩法。
大家猜想一下,如果我们让一个基本图形旋转起来,会形成什么样的图案呢?2、大屏幕呈现一些美丽的图案。
这些图案美不美?这里的每一个图案都是经过一个图形的旋转而得到的,今天我们就走进图形旋转的天地。
板书课题:图形的旋转二、在实践中探索图形的旋转过程1、请大家继续欣赏这些美丽的图案,他们分别是由哪些基本图形经过旋转得到的呢?下面我们就这两幅图为例来探讨一下。
人教版九年级上册数学精品教学课件 第二十三章 旋转 图形的旋转 第1课时 旋转的概念与性质
随堂训练 基础巩固
1.下列图案中能由一个图形通过旋转而构成的是_①__②___.(填序号)
2.(2020·大连)如图,△ABC中,∠ACB=90°,∠ABC=40°. 将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落 在边AB上,则∠CAA′的度数是( D )
A.50° B.70° C.110° D.120°
点A、B、P的对应点分别为 C、B、P′ .
旋转中心就是在旋转过程中始终保持固定不变的那个点, 它可以在图形的外部或内部,还可以在图形上,即它可以是平 面内的任意一点.
旋转角:任意一对对应点与旋转中心的连线所成的角.
练习
①时钟的时针在不停地旋转,从上午6时到上午9时,时针 旋转的角度是多少?从上午9时到上午10时呢?
解:从上午6时到上午9时,时针旋转的角度为90°,从上 午9时到上午10时,时针旋转的角度是30°.
②如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是 点 O ,旋转角是 ∠AOA′,点A的对应点是点 A′ .
知识点2 旋转的性质
在硬纸板上先挖一个三角形洞,再在三角形
洞外挖一个小洞O(作为旋转中心),把挖好洞 的硬纸板放在白纸上,在白纸上描出挖掉的三角
R·九年级上册
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念与性质
新课导入 导入课题
欣赏日常生活中一些物体的运动现象,观察运动的过程。
学习目标
(1)了解生活中广泛存在的旋转现象,知道旋转是继平移、 对称之后的又一种基本变换. (2)能结合图形指出什么是旋转中心、旋转角和对应点. (3)体会旋转的形成过程,并探究旋转的性质.
3.(教材P60例题变式)如图,四边形ABCD是正方形,△ADF按 顺时针方向旋转一定的角度得到△ABE,已知AF=4,AB=7.
初三培优班课外练习测试卷23章旋转(1)
初三培优班课外练习测试卷23章旋转(1)——人教实验版九年级数学(上)第23章旋转(1)命题教师徐联君一、选择题(4分×10=40分)1.下列说法:(1)图形在平移过程中,图形上的每一点都移动了相同的距离;(2)•图形在旋转过程中,图形上的每一点都绕旋转中心转了相同的路程;(3)•中心对称图形的对称中心只有一个,而轴对称图形的对称轴可能不只一条;(4)•等边三角形既是对称图形,又是旋转对称图形,但它不是中心对称图形,其中正确的说法有()A.1个 B.2个 C.3个 D.4个2.五环旗中五环图案中看作是()A.由一个圆通过平移得到的; B.由两个圆通过平移得到的C.由两个圆通过旋转得到的; D.由两个圆通过对称得到的3.下列现象属于旋转的是()A.摩托车在急刹车时向前滑动; B.拧开自来水水龙头C.雪橇在雪地里滑动; D.空中下落的物体4.如图所示是某房间木地板图案,该图案旋转后能与自身重合,那么至少旋转的角度是() A.45° B.30° C.60° D.90°5.用一副扑克牌做实验,选其中的黑桃5和方块4,其中是中心对称图形的有()A.方块4 B.黑桃5 C.方块4或黑桃5 D.以上都不对6.如图,△ABC与△A′B′C′是成中心对称的,下列说法不正确的是()A.S△ACB=S△A`B`C`; B.AB=A′B,A′C′=AC,BC=B′C′B.AB∥A′B′,A′C′∥AC,BC∥B′C′C.S△A`B`O=S△ACO D.以上答案都不对7.将六个全等的正三角形密铺成一个六边形,下列说法正确的是() A.正六边形可看作是其中一个正三角形依次旋转60°、120°、180•°、•240•°,300°得到的。
B.正六边形可看作是三个相邻正三角形绕中心旋转60°得到的。
C.正六边形可看作是其中一个正三角形通过平移得到的;D.以上说法都不正确8.时钟钟面上的秒针绕中心旋转180°,则下列说法正确的是()A.时针不动,分针旋转了6° B.时针不动,分针旋转了3°C.时针和分针都没有旋转 D.分针旋转了3°,现在时针旋转角度专门小9.如图所示的四组图形中,左边图形与右边图形成中心对称的有()A.1组 B.2组C.3组D.4组10.如图所示,其中是中心对称图形的是()二、填空题(4分×7=28分)11.旋转对称是指一个图形绕旋转中心旋转一定的角度后,与图形自身重合,•对应点到旋转中心的距离_______以及对应线段________,对应角________.将等边△ABC绕点B旋转60°后,使得AB与BC能够重合,得到△BCD,则△ABC•与△BCD的位置关系是________.如图,将△ABC绕点A顺时针旋转60°至△ADE位置,假如∠BAC=120°,连结BD、• CE,则△BAD与△ACE是_________三角形.将图形a绕形外一点O按逆时针方向旋转80°得到图形b,则对应点A,A•′与旋转中心连线所成的角为________.12.中心对称是专门的_______对称,是指一个图形绕对称中心________后,与图形自身重合,连结对称点的线段_________,且被__________.13.如图,下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、•• 中心对称等变换,••其中进行平移变换的是_______,••进行旋转变换的是________组,进行轴对称变换的是________组,进行中心对称变换的是________组.14.一条长度为20cm的线段,当它绕线段的________旋转一周时,•线段“扫描”过的圆面积最大,现在最大面积为________,当它绕线段的_________旋转一周时,线段“扫描”通过的圆面积最小,现在最小面积为__________.15.如图,边长为3的正方形ABCD绕点C按顺时针旋转30°后得到正方形EFCG,•EF交AD 于点H,则DH的长为________.16.图(1)中的梯形符合_________条件时,能够通过旋转和翻折成图案(2).(第15题) (第16题) (第17题) 17.某综合性大学拟建校园局域网络,将大学本部A和所属专业学院B、C、D、•E、F、G 之间用网线连接起来,通过测算,网线费用如图所示(单位:万元),每个数字表示对应网线(线段)的费用.实际建网时,部分网线能够省略不建,•但本部及部属专业学院之间能够传递信息,那么建网所需最少网线费用为_________万元.三、解答题(52分)18.(6分)如图,图中的图案是风车的示意图,试分析图中的旋转现象.•你能仿此设计一种具有旋转现象的图案吗?并说明你的设计意图.(18)(19)19.(8分)如图,将ABCD绕O点按顺时针方向旋转60°,作出旋转后的图形.20.(8分)观看分析图(1)、(2)、(3),回答问题:每个图形各是什么对称图形?假如是轴对称图形,说出有多少条对称轴?•假如是旋转对称图形,指出需要旋转多少度能与自身重合?21.(6分)如图所示,把一个直角三角形ACB绕着30°角的顶点B顺时针旋转,使得得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度?(2)连接CD,试判定△CBD的形状;(3)求∠BDC的度数.22.(8分)P为正方形ABCD内一点,且AP=2,将△APB绕点A按顺时针方向旋转60•°得到△AP′B′,(1)作出旋转后的图形;(2)试求△APP′的周长和面积.23.(8分)已知:如图在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由.(2)若△ABC的面积为3cm2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.24.(8分)假如将点P绕定点M旋转180°后与点Q重合,那么点P与点Q关于点M对称,定点M叫做对称中心.现在点M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点到P1、P2、P3…中的相邻两点都关于△ABO的一个顶点对称.点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与P6关于点B对称,点P6与点P7关于点O对称…,对称中心分别是A,•B,O,A,B,O,…,且这些对称中心依次循环,已知P1的坐标是(1,1),试写出点P2,P7,P100•的坐标.初三培优班课外练习测试题答案——人教实验版九年级数学(上)第23章旋转(1)1.C 2.A 3.B 4.D 5.A 6.D 7.A 8.D 9.C 10.B11.相等相等相等关于BC对称等边80°;12.旋转旋转180°过对称中心对称中心平分;13.C AD组 B D ;14.某一端点400πcm2中点100πcm2;15.3;16.底角为60•°的等腰梯形;17.9 ;18.能够看作“1”绕中心依次旋转60°、120°、180°、240°、•270°得到的;也能够看作“1”绕中心依次旋转120°、240°得到的;还能够看作“1”绕中心旋转180°得到的,图案略.19.略20.图(1)是轴对称图形,有4条对称轴,也是旋转对称图形,绕中心顺(或逆)时针方向旋转90°、180°、270°图(2)是旋转对称图形,顺(或逆)•时针方向旋转120°、240°图(3)是轴对称图形,有两条对称轴,也是中心对称21.(1)由旋转的性质知旋转角度是∠ABE度数,△ACB≌△EDC,∴∠ABE=180•°-30°=150°(2)由△ACB≌△EDB知,BC=BD,∴△CBD是等腰三角形.∠EBD=15°(3)∵BC=BD,∴∠BCD=∠BDC,∴∠BDC=12×222.(1)略(2)△APP′周长为6,面积为223.(1)AE与BF平行且相等.∵ABC绕点C顺时针旋转180°得到△FEC,∴△ABC•与△FEC关于C点中心对称,∴AC=CF,BC=CE,∴四边形ABFE为平行四边形,•∴AE•平行于BF;(2)∵AC=CF,∴S△BCF=S△ABC=3,∵BC=CE,∴S△ABC=S△ACE=3,∴S △CEF=S△BCF=3,∴S ABFE=3×4=12(cm2).(3)•当∠ACB=60°时,四边形ABFE为矩形,∵AB=AC,∴∠ABC=∠ACB=60°,∴AB=BC=CA24.P2(1,-1),P7(1,1),P100(1,-3)。
人教版五年级下册《旋转(1)》教学设计及反思
第1课时旋转(1)教学内容:教科书P83~84例1、例2及“做一做”,完成教科书P85“练习二十一”中第1~3题。
教学目标:1.进一步认识图形的旋转,明确含义,感悟其特征及性质。
会运用数学语言简单描述旋转运动的过程。
2.经历观察实例、操作想象、语言描述等活动,培养学生的推理能力。
积累几何活动经验,发展空间观念。
3.体验数学与生活的联系,学会用数学的眼光观察、思考生活,感受数学的美,体会数学的应用价值。
教学重点:通过多种学习活动沟通联系,理解旋转的含义,初步感悟旋转的性质。
教学难点:用数学语言描述物体的旋转过程。
教学准备:课件,三角尺。
教学过程:一、认识旋转要素(一)课件出示生活实例,引出研究问题。
师:同学们,你们见过这些现象吗?仔细观察。
师:你们看见了什么?生:看见大风车在旋转,小女孩在荡秋千,栏杆转动起来,车子开走了等等。
师:看一看这些物体的运动,用我们学过的知识描述一下它们在做怎样的运动。
师:这些物体的运动,都可以称为旋转运动。
在二年级的时候我们已经初步学习了生活中的旋转现象,能举几个例子吗?学生举例。
师:我也收集了一些生活中的实例,大家一起来看看。
选择一个你喜欢的,说说它是怎样旋转的。
课件展示生活中的动态旋转现象。
师:通过刚才的观察,你认为什么样的运动是旋转?学生简单描述后,教师板书课题:旋转(1)。
【设计意图】由于在第一阶段学习时,具体实例多是物体围绕一个点或一个轴做整圆周运动,所以部分学生形成了认识上的误区,认为只有转一圈才是旋转,所以本节课从学生的问题入手,选取学生熟悉的但又有争议的实例作为研究旋转现象的素材,有意识地引导学生探讨:“荡秋千属于平移还是旋转?”学生有明显的争议,以此产生认知冲突,引发探究的欲望。
教师还可以选取旋转角度不是360°的实例作为教科书的补充,如钟摆等,丰富学生的认知。
(二)借助实例,认识旋转三要素。
1.认识旋转要素——旋转方向。
(1)认识顺时针旋转。
人教版小学五年级数学下册第1课时《旋转(1)》说课稿
人教版小学五年级数学下册第1课时《旋转(1)》说课稿一. 教材分析《旋转(1)》是人教版小学五年级数学下册的一课时内容。
本节课主要让学生理解旋转的概念,掌握旋转的性质,并能运用旋转知识解决实际问题。
教材通过丰富的图片和生动的语言,引导学生认识旋转,探究旋转的性质,培养学生的空间想象能力和解决问题的能力。
二. 学情分析五年级的学生已经具备了一定的空间观念和几何知识,他们对图形的变换有一定的了解。
但旋转作为一个新的几何变换,对学生来说还需要进一步的认识和理解。
学生在学习本节课时,需要通过观察、操作、思考、交流等活动,掌握旋转的性质,培养空间想象能力。
三. 说教学目标1.知识与技能:学生能理解旋转的概念,掌握旋转的性质,能运用旋转知识解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等活动,培养空间想象能力和解决问题的能力。
3.情感态度与价值观:学生感受数学与生活的联系,培养学习数学的兴趣。
四. 说教学重难点1.教学重点:学生能理解旋转的概念,掌握旋转的性质。
2.教学难点:学生能运用旋转知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、讨论法、操作活动法等。
2.教学手段:多媒体课件、实物模型、几何画板等。
六. 说教学过程1.导入新课:通过多媒体课件展示生活中的一些旋转现象,引导学生认识旋转,激发学生学习兴趣。
2.探究旋转的性质:学生分组讨论,观察实物模型,运用几何画板等手段,探索旋转的性质。
3.讲解与演示:教师讲解旋转的概念,并通过几何画板演示旋转的过程,帮助学生理解旋转。
4.练习与应用:学生进行课堂练习,解决实际问题,运用旋转知识。
5.总结与反思:学生总结本节课所学内容,分享学习体会,教师进行课堂小结。
七. 说板书设计板书设计如下:•概念:图形绕某点转动一个角度的图形变换1.旋转前后图形形状、大小不变2.旋转前后对应点与旋转中心的连线的夹角相等3.旋转前后对应线段的长度相等4.旋转前后对应角的大小相等八. 说教学评价本节课的评价主要从学生的知识掌握、能力培养、情感态度三个方面进行。
23.1图形的旋转(1)教学设计
水龙头的转动;钟摆的运动;荡秋千运动。
a.2b.3c.4d.5②教科书第56页练习1,2,3。
义; (3) 能够准确指出旋转中心、旋转角、旋转的对应点。
让学生从数学的角度认识现实生活,从而内化旋转的定义,为活动2的顺利进行打好基础。
活动2 请大家在硬纸板上,挖一个三角形洞,再挖一个小洞o 作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形洞(△abc),然后围绕o 转动硬纸板,再描出这个挖掉的三角形洞(△a′b′c′),移开硬纸板。
问题:线段oa 与线段oa′间有什么关系? ∠aoa′与∠bob′间有什么关系? δabc 与δa′b′c′形状和大小有什么关系?学生动手实践,教师利用几何画板操画图形的旋转变换后,指出进一步探究的方向.组织学生交流,得出正确结论。
学生独立进行数学实验,按照教师提出的探究方向度量、分析、归纳、抽象概括出图形旋转的特征:1.对应点到旋转中心的距离相等;2.对应点与旋转中心连线的夹角(旋转角)彼此相等;3.旋转变换前后的图形全等。
在活动2中教师应关注学生通过动手实验后发现的“新大陆”,即图中所存在的线段、角的相等关系,并对其中正确的发现予以肯定,鼓励学生课后进行论证.同时还应明确指出问题中涉及的是旋转变换的本质特征,应重点掌握。
通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力。
活动32.如教科书图23.1-4,e 是正方形abcd 中cd 边上任意一点,以点a为中心,把δade 顺时针旋转90°,画出旋转后的图形.2.巩固练习:①随堂练习1,2,3.②教科书第58页1,2,3.③动手操作:请设计一个绕一点旋转60°后能与自身重合的图形.在学生归纳出图形旋转的特征后,教师提出相关的数学问题. 学生独立思考、分析、解答问题. 在本次活动中,教师应重点关注: (1) 学生画出图形后,能否准确地运用旋转的基本特征表达出画图的理论依据; (2) 学生画图的不同方法。
人教版-数学-九年级上册-说课稿:图形的旋转(一)
23.1 图形的旋转(一)各位评委、老师:大家好,我今天说课的题目是新人教版八年级下册第23章第一节《图形的旋转》,根据新课标的理念,对于这节课,我是以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律来进行这节课的教学设计,那么接下来我就从教材地位、教学目标、教学重难点、教法学法、教学过程以及板书设计这几方面加以说明。
一、教材的地位与作用图形的旋转是继平移、轴对称之后的又一种图形基本变换,是数学课程标准中图形变换的一个重要组成部分。
教材中从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中具有旋转特点的事物,进而探索其性质,是培养学生思维能力、树立运动变化观点的良好素材。
同时“图形的旋转”是一个重要的基础知识,隐含着重要的变换思想,它不仅为本章后续学习中心对称图形做好准备,而且也为今后学习“圆”的知识内容做好铺垫。
二、学情分析这节课的知识内容生动活泼,符合学生的个性特点,并且八年级的学生已有了一定的观察和抽象分析能力,他们能从简单物体的运动抽象成几何图形的变换,但思维的严谨性和抽象性仍相对薄弱,在授课的过程中需加强引导。
针对学生的这种现状和一般性的认知规律,确立本节课的教学目标和重难点如下:三、教学目标知识与技能(1)了解生活中旋转现象的广泛存在;(2)掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;(3)会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角;(4)理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转后图形上的每一点都绕着旋转中心转动了相同的角度,但图形的形状和大小都没有变化;过程与方法通过观察、操作、交流、归纳等过程,培养学生的动手能力、观察能力、探究问题的能力以及与人合作交流的能力。
23.1 图形的旋转(1)教学设计
23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标1.知识与技能了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.2.过程与方法让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.。
《图形的旋转(1)》导学案
《图形的旋转(1)》导学案一、学习目标1、知道旋转的定义以及相关概念2、能记住旋转的基本性质3、利用性质解决相关问题 二、重点:1. 旋转的定义以及相关概念2.旋转的基本性质难点:利用性质解决相关问题 (一).自学教材P56并填空:把一个平面图形___着平面内某一点O_____一个角度,就叫做图形的旋转,点O 叫做_________,转动的角叫做________。
所以,旋转的决定因素....是_________和_________。
(二).自学检测:1.钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了_________度。
2.如图,类似于钟表的指针,将△OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A 、B 分别转到______________ 3.如图:∆ABC 是等边三角形,D 是BC 上一点,∆ABD 经过旋转后到达∆ACE 的位置。
(1)旋转中心是_______(2)旋转了_______度.(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了________________。
(三)自学教材P57探究,总结归纳旋转的性质。
①_______________________________________________________ ②__________________________________________________________ ③_____________________________________________________________ (四)旋转性质的应用1、已知△ABC 是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△DEC ,则∠D=______,∠B=______,DE=_______㎝, EC=______㎝,AE=_______㎝,DE 与AB 的位置关系为_________________。
231图形的旋转(1)
教学设计(教案)模板2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.四、应用拓展例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,•另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.解:面积不变.理由:设任转一角度,如图所示.在Rt△ODD′和Rt△OEE′中∠ODD′=∠OEE′=90°∠DOD′=∠EOE′=90°-∠BOEOD=OD∴△ODD′≌△OEE′∴S△ODD`=S△OEE`∴S四边形OE`BD`=S正方形OEBD=1 4五、归纳小结(学生总结,老师点评)本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.板书设计一、复习引入三、范例教学例1例2二、探索新知例3 作业复习巩固1、2、3作业或预习六、布置作业1.教材P66 复习巩固1、2、3.2.选用作业设计一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个 B.7个 C.8个 D.9个2.从5点15分到5点20分,分针旋转的度数为().A.20° B.26° C.30° D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC 旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().A.70° B.80° C.60° D.50°(1) (2) (3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP•是________三角形.三、综合提高题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(4) (5) (6) (7)如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=12 AB.(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE移到△ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系.2.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?自我评价精心准备,学生配合好,学生能在课堂上掌握基本知识,效果好。
旋转(1)1八年级上册数学导学案
探究二:旋转性质的运用及作旋转图形 1.如图:P 是等边 ABC 内的一点,把 ABP 通过 旋转分别得到 BQC 和 ACR, (1)指出旋转中心、旋转方向和旋转角度?
A R B P Q
A
C
(2)ACR 是否可以直接通过把 BQC 旋转得到?
2.把△ABO 绕点 O 逆时针方向旋转 60°,画出 旋转后的图形.
学习目标:1.转型旋转的要领和基本性质,能分辨一个由旋转得到的图形的形成过程与特征;
导学内容及预见性问题 1.请指出旋转中心和各对应点,哪一个角是旋转角? 2.从我们看到的旋转现象以及你所完成的实验中, 你认为旋转主要因素是什 么?
t 方法与措施
序 t 方法与措施 3.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变? 归纳总结:
创新学校八年级数学导学案
课 题:3.1 旋转 2.识旋转对称图形,并能够按要求作出简单的平面图形旋转后的图形; 3.培养学生创造图案的设计能力 重点:旋转得到的图形的形成过程与特征 难点:能用变换的思想理解生活中的现象 导 学 程 导学内容及预见性问题
主备人:郭尚金
上课日期___ 导 学 程 序
班级__姓名___编号 22
预习案
1.请同学们复习在七年级学过的有关平移和轴反射的知识,为本节的学习做好准备. ①举例说明什么是平移和轴反射 ②平移和轴反射各有什么性质 2.通过预习教材 P63~P65 的内容,试着完成下面各题. ①将一个平面图形 F 上的每一个点,绕这个平面内一定点__________同一个角 ,得到 图形 F′,图形的这种变换叫作旋转.这个定点叫___,角 叫做____ ②旋转具有下列性质:对应点到旋转中心的距离_____,对应点与旋转中心的连线所成 的角彼此____,且等于旋转角. ③旋转不改变图形的______ 3.预习自测 ①下列现象中属于旋转的有( )个. 地下水位逐年下降;传送带的移动;方向盘的转动;水龙头开关的转动;钟摆的运动;荡 秋千运动. A 2 B 3 C 4 D 5 ②如图,△ABO 绕点 O 旋转得到△CDO,则: A 点B的对应点是点_____; 线段OB的对应线段是线段______; 线段 AB 的对应线段是线段______;∠A 的对应角是______; B ∠B 的对应角是______;旋转中心是点______; C 旋转的角是______
《 旋转1》优秀教案
第5单元图形的运动(三)第1课时旋转(1)【教学内容】教材第83页的例1及练习二十一的第1~3题。
【教学目标】1进一步认识图形的旋转,探索图形旋转的特征和性质。
2通过观察、想象、分析和推理等过程,独立探究、增强学生的空间观念。
3让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。
【教学重难点】重难点:进一步认识旋转,理解旋转的三要素:旋转中心、旋转方向、旋转角。
【教学过程】一、情景导入1教师用课件演示:1钟表的转动;(2)风车的转动。
提问:观察课件的演示,你看到了什么?学生在交流汇报时可能会说出:(1)钟表上的指针和风车都在转动;(2)钟表上的指针和风车都是绕着一点转动;(3)钟表上的指针沿着顺时针方向转动,风车沿着逆时针方向转动。
教师:像钟表上指针和风车都绕着一个点或一个轴转动的这种现象就是旋转。
(板书课题:图形的旋转变换)2提问:旋转现象有几种情况?生回答后板书。
3师:在日常生活中你在哪些地方见到过旋转现象?学生自己举例说一说。
二、新课讲授出示教材第83页例1的钟面。
(1)观察,描述旋转现象。
观察:出示动画(指针从12指向1),请同学们仔细观察指针的旋转过程。
提问:谁能用一句话完整地描述一下刚才的这个旋转过程?(教师引导学生叙述完整)观察:出示动画(指针从1指向3)。
提问:这次指针又是如何旋转的?观察:出示动画(指针从3指向6)。
同桌互相说一说指针又是如何旋转的?提问:如果指针从“6”继续绕点O顺时针旋转180°会指向几呢?(2)教师:根据我们刚才描述的旋转现象,想想看,要想把一个旋转现象描述清楚,应该从哪些方面去说明?小结:要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。
三、课堂作业完成课本第85页练习二十一的第1~3题。
四、课堂小结师:通过本节课的学习,你有什么收获?(学生交流)【板书设计】旋转(1)相对应的点到O点的距离都相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点二
画一个图形关于某点的对称图形
【示范题2】如图,方格纸中每个小正方形的边长都是1个单位长度, Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2). (1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出 △A1B1C的图形. (2)平移△ABC,使点A的对应点A2的坐标为(-2,-6),请画出平移后 对应的△A2B2C2的图形.
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心
的坐标.
【思路点拨】(1)根据中心对称的性质,点C为线段AA1和线段BB1的交 点,得到点A1和B1的坐标,找出点A1和B1的位置,顺次连接A1,B1和C 三点. (2)根据点A和对应点A2的坐标关系,得到平移的方向和距离,再画出 平移后的图形. (3)找出两对对应点并连接,交点即为旋转中心 .
180° ,如果旋转后的 3.中心对称图形:把一个图形绕某一定点旋转______ 原来 的图形重合,那么这个图形叫做中心对称图形,这个 图形能和_____ 中心 定点叫做对称_____.
【小题快练】
1.判断对错
(1)旋转后能够重合的两个图形成中心对称. (×) (×)
(2)两个图形成中心对称,则它们一定不成轴对称.
【自主解答】(1)选A.根据中心对称图形的概念,中心对称图形是图 形沿对称中心旋转180度后与原图重合.因此, A.∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形; B.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称 图形; C.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称 图形;
【示范题3】(1)(2015·杭州中考)下列图形是中心对称图形的 是( )
(2)(2015·毕节中考)如图,将四个“米”字格的正方形内涂上阴影,
其中既是轴对称图形,又是中心对称图形的是(
)
【思路点拨】(1)根据中心对称图形的定义和图形的特点:如果一个 图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中 心对称图形. (2)根据轴对称图形的定义:沿一条直线对折后,直线两旁部分完全 重合的图形是轴对称图形,以及中心对称图形的定义分别结合选项判 断即可得出答案.
D.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称 图形.故选A. (2)选B.A.不是轴对称图形,是中心对称图形,故本选项错误; B.是轴对称图形也是中心对称图形,故本选项正确; C.是中心对称图形,但不是轴对称图形,故本选项错误; D.是轴对称图形,但不解答】(1)(2)如图:
(3)旋转中心是直线B1B2和A1A2的交点,由图可知旋转中心的坐标为 (0, -2).
【规律总结】画一个图形关于某点的对称图形的“三个步骤” (1)在原图形确定关键点. (2)分别画出关键点的对称点. (3)按照原图形的连接顺序连接各关键点的对称点.
知识点三
中心对称图形的识别
24.1 旋 第2课时
转
180° ,得到另一个图形, 1.中心对称:将一个图形绕某一定点旋转______
中心对称 ,定点为对称_____. 中心 这时,这两个图形关于该定点对称叫_________ 2.中心对称的性质: 中心 ,并且被对 成中心对称的两个图形中,对应点的连线经过对称_____ 平分 称中心_____.
【自主解答】∵DE是△ABC的中位线,∴DE∥AC,且AC=2DE.
又∵△BDE绕着CB的中点D逆时针旋转180°,
∴∠E′DE=180°,
即点E′、点D、点E在同一直线上且DE= DE′,
∴E′E∥AC且E′E=AC,∴四边形ACE′E是平行四边形.
【规律总结】判断中心对称的“两个方法” (1)连接两个图形的对应点的线段是否经过同一个点,并且被该点平 分. (2)把其中一个图形绕着某一个点旋转180°是否能与另一个图形重合.
2.下列图形是中心对称图形的是
(D )
③ 3.下图②③④⑤中是由①图顺时针旋转180°变换而成的是___.
知识点一
中心对称的概念及性质
【示范题1】如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在
平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,
则四边形ACE′E是什么图形?
【解题探究】(1)点E′、点D、点E是否在同一直线上?为什么?
提示:因为旋转角为180°,所以∠E′DE=180°,即点E′、点D、
点E在同一直线上.
(2)线段E′E和AC有什么关系?为什么?
提示:平行且相等,因为E′E=2DE,AC=2DE,所以E′E=AC.因为
DE∥AC,且点E′、点D、点E在同一直线上,所以E′E∥AC.
【规律总结】判断中心对称图形的“两个方法” 1.若一个图形上,存在这样的一个点,使整个图形绕着这个点旋转 180°后能够与原来的图形重合,则这个图形就是中心对称图形. 2.若图形中的对应点的连线都经过同一个点,并且被这个点平分,则 这个图形就是中心对称图形.