秋九年级数学上册 24.1 圆(第四课时)同步练习 (新版)新人教版
人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)
E ,满足 AEC 65 ,连接 AD ,则 BAD
度.
答案: 一、选择题
1.(2020•青岛)如图,BD 是⊙O 的直径,点 A,C 在⊙O 上, = ,AC 交 BD 于点 G.若∠COD=126°,则 ∠AGB 的度数为( )
A.99°
B.108°
解:∵BD 是⊙O 的直径,
∴∠BAD=90°,
度数是( )
A.130°
B.140°
C.150°
解:由题意得到 OA=OB=OC=OD,作出圆 O,如图所示,
∴四边形 ABCD 为圆 O 的内接四边形,
∴∠ABC+∠ADC=180°,
∵∠ABC=40°,
∴∠ADC=140°,
故选:B.
D.160°
6.(2020•眉山)如图,四边形 ABCD 的外接圆为 O , BC CD , DAC 35 , ACD 45 ,则 ADB 的度数 为( )
∴∠OEC=∠OCE=40°+ x,
∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,
∴∠OED<20°+ x,
∴∠CED=∠OEC﹣∠OED>(40°+ x)﹣(20°+ x)=20°,
∵∠CED<∠ABC=40°, ∴20°<∠CED<40° 故选:C. 二、填空题
16.(2020•襄阳)在 O 中,若弦 BC 垂直平分半径 OA ,则弦 BC 所对的圆周角等于 60 或 120 . 解:如图,
上任意一点.则
A.10°
B.20°
C.30°
D.40°
解:连接 OD、OE, ∵OC=OA, ∴△OAC 是等腰三角形, ∵点 D 为弦 AC 的中点, ∴∠DOC=40°,∠BOC=100°, 设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°, ∵OC=OE,∠COE=100°﹣x,
人教版数学九年级上册《24.1.1圆》同步练习(含答案解析)
2022-2023人教版数学九年级上册同步练习:24.1.1 圆一.选择题(共15小题)1.下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°3.如图,在⊙O中,弦的条数是()A.2B.3C.4D.以上均不正确4.以下说法正确的个数有()①半圆是弧.②三角形的角平分线是射线.③在一个三角形中至少有一个角不大于60°.④过圆内一点可以画无数条弦.⑤所有角的度数都相等的多边形叫做正多边形.A.1个B.2个C.3个D.4个5.如图所示圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2cm,若铁尖的端点A固定,铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是()A.1cm B.2cm C.4cm D.πcm6.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1B.2C.3D.47.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2B.3C.4D.58.下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.长度相等的两条弧是等弧9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB 于点D,连接CD,则∠ACD=()A.10°B.15°C.20°D.25°10.下列说法:(1)长度相等的弧是等弧,(2)半径相等的圆是等圆,(3)等弧能够重合,(4)半径是圆中最长的弦,其中正确的有()A.1个B.2个C.3个D.4个11.下列说法正确的是()A.长度相等的弧是等弧B.相等的圆心角所对的弧相等C.面积相等的圆是等圆D.劣弧一定比优弧短12.下列说法错误的是()A.圆上的点到圆心的距离相等B.过圆心的线段是直径C.直径是圆中最长的弦D.半径相等的圆是等圆13.生活中处处有数学,下列原理运用错误的是()A.建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理B.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理C.测量跳远的成绩是运用“垂线段最短”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”原理14.如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M、N重合,当P点在上移动时,矩形PAOB的形状,大小随之变化,则AB的长度()A.不变B.变小C.变大D.不能确定15.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个二.填空题(共10小题)16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.17.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.18.点A、B在⊙O上,若∠AOB=40°,则∠OAB=.19.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.20.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)21.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.22.在同一平面内,1个圆把平面分成2个部分,2个圆把平面最多分成4个部分,3个圆把平面最多分成8个部分,4个圆把平面最多分成14个部分,那么10个圆把平面最多分成个部分.23.如图,AB是⊙O的直径,C是BA延长线上一点,点D在☉O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.24.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是.25.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交AB 于点D,则∠ACD=度.三.解答题(共6小题)26.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.27.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.28.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).29.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB 于F,且AE=BF,AC与BD相等吗?为什么?30.已知点P、Q,且PQ=4cm,(1)画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合.(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来.31.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.参考答案与试题解析一.选择题(共15小题)1.【解答】解:A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确.故选:B.2.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选:B.3.【解答】解:如图,在⊙O中,有弦AB、弦DB、弦CB、弦CD.共有4条弦.故选:C.4.【解答】解:圆的任意一条直径的端点把圆分成两条弧,每一条弧都叫做半圆,故①正确;根据三角形角平分线的定义可知,三角形的角平分线是一条线段,故②错误;在一个三角形中至少有一个角不大于60°,故③正确;过圆内一点可以画无数条弦,故④正确;矩形的四个角都相等,都等于90°,而矩形不是正四边形,故⑤错误;故选:C.5.【解答】解:∵AB=2cm,∴圆的直径是4cm,故选:C.6.【解答】解:①关于一条直线对称的两个图形一定能重合;正确.②两个能重合的图形一定关于某条直线对称;错误.③两个轴对称图形的对应点一定在对称轴的两侧;错误,也可以在对称轴上.④一个圆有无数条对称轴.正确.故选:B.7.【解答】解:由图可知,点A、B、E、C是⊙O上的点,图中的弦有AB、BC、CE,一共3条.故选:B.8.【解答】解:A、直径是圆中最长的弦,正确,不符合题意;B、半径相等的两个半圆是等弧,正确,不符合题意;C、面积相等的两个圆是等圆,正确,不符合题意;D、长度相等的两条弧是等弧,错误,符合题意,故选:D.9.【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.10.【解答】解:(1)长度相等的弧是等弧,错误;(2)半径相等的圆是等圆,正确;(3)等弧能够重合,正确;(4)半径是圆中最长的弦,错误;11.【解答】解:A、能完全重合的弧才是等弧,故本选项错误;B、必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;C、面积相等的圆是等圆;故本选项正确;D、在同圆或等圆中,劣弧一定比优弧短.故本选项错误.故选:C.12.【解答】解:A、正确.圆上的点到圆心的距离相等;B、错误.过圆心的线段不一定是直径;C、正确.直径是圆中最长的弦;D、正确.半径相等的圆是等圆;故选:B.13.【解答】解:A、错误.建筑工人砌墙时拉的参照线是运用“两点确定一条直线”的原理;B、正确.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理;C、正确.测量跳远成绩的依据是垂线段最短;D、正确.将车轮设计为圆形是运用了“圆的旋转对称性”的原理;故选:A.14.【解答】解:∵四边形PAOB是扇形OMN的内接矩形,∴AB=OP=半径,当P点在上移动时,半径一定,所以AB长度不变,故选:A.15.【解答】解:(1)直径是圆中最大的弦,说法正确;(2)长度相等的两条弧一定是等弧,说法错误,在同圆或等圆中,能够完全重合的两段弧为等弧,不但长度相等,弯曲程度也要相同;(3)面积相等的两个圆是等圆,说法正确;(4)同一条弦所对的两条弧一定是等弧,说法错误,同一条弦所对的两条弧不一定是等弧,除非这条弦为直径;(5)圆上任意两点间的部分叫弧.错误;故选:B.二.填空题(共10小题)16.【解答】解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm 的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.17.【解答】解:如图所示:到点A的距离为5cm的点有2个.故答案为:2.18.【解答】解:如图,∵∠AOB=40°,OA=OB,∴∠OAB=∠OBA==70°,故答案为:70°.19.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:半径.20.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器中弧PB所对的圆心角是70°,因而P在小量角器上对应的度数为70°.故答案为:70°;21.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:圆心22.【解答】解:∵1个圆把平面分成部分=2,2个圆把平面最多分成的部分=2+2=4,3个圆把平面最多分成的部分=2+2+4=2+2(1+2)=8,4个圆把平面最多分成的部分=2+2(1+2+3)=14,∴10个圆把平面最多分成的部分=2+2(1+2+3+4+5+6+7+8+9)=92.故答案为92.23.【解答】解:连接OD,∵CD=OA=OD,∠C=20°,∴∠ODE=2∠C=40°,∵OD=OE,∴∠E=∠EDO=40°,∴∠EOB=∠C+∠E=40°+20°=60°,故答案为:60°.24.【解答】解:连接OC,∵CD=4,OD=3,在Rt△ODC中,∴OC===5,∴AB=2OC=10,故答案为:10.25.【解答】解:∵△ABC中,∠ACB=90°,∠A=40°∴∠B=50°∵BC=CD∴∠B=∠BDC=50°∴∠BCD=80°∴∠ACD=10°.三.解答题(共6小题)26.【解答】解:连结OC,如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.27.【解答】解:连接OC,∵AB=5cm,∴OC=OA=AB=cm,Rt△CDO中,由勾股定理得:DO==cm,∴AD=﹣=1cm,由勾股定理得:AC==,则AD的长为1cm,AC的长为cm.28.【解答】解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:29.【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC弧=BD弧,∴AC=BD.30.【解答】解:(1)到点P的距离等于2cm的点的集合图中⊙P;到点Q的距离等于3cm的点的集合图中⊙Q.(2)到点P的距离等于2cm,且到点Q的距离等于3cm的点有2个,图中C、D.31.【解答】解:连接OD,如图,∵AB=2DE,而AB=2OD,∴OD=DE,∴∠DOE=∠E=20°,∴∠CDO=∠DOE+∠E=40°,而OC=OD,∴∠C=∠ODC=40°,∴∠AOC=∠C+∠E=60°.。
数学人教版九年级上241圆同步练习人教新课标九年级上
ACBO2 4.1.1 圆、垂至于弦的直径◆基础训练一、选择题:1、如图1,AD是⊙O的直径,AB∥CD,∠AOC=60°,则∠BAD=______度.BAODC图1 图2 图3 2.已知⊙O的半径为4,则垂直平分这条半径的弦长是( )(A)23 (B) 43 (C) 4 (D) 423.如图2,⊙O中弦AB垂直于直径CD于点E,则下列结论:①AE=BE;②;ACBC?;③ADBD?;④EO=ED.其中正确的有( )(A)①②③④ (B)①②③ (C)②③④ (D)①④二、填空题4、如图3,AB是⊙O的弦,OCAB?于C,若25cm AB?,1cm OC?,则⊙O的半径长为cm..5.圆的半径为3,则弦AB长度的取值范围是 .6.P为圆外一点,且P点到圆上点的最近距离为3,到圆上点的最远距离为15,则圆的半径为 . 7、某公园的一石拱桥的桥拱是圆弧形,其跨度是24m,拱的半径是13m,则拱高为。
三、综合题8、已知:如图4,AB、CD为⊙O的两条直径,M、N分别为AO、BO的中点. (1)求证:四边形CMDN为平行四边形;(2)四边形CMDN能够是菱形吗?若能,你知道需要添加什么条件吗?EODCBACBAODNM.OCBA图49、某市新建的滴水湖是圆形人工湖。
为测量该湖的半径,小杰和小丽沿湖边选取A、B、C三根木柱,使得A、B之间的距离与A、C之间的距离相等,并测得BC长为240米,A 到BC的距离为5米,如图5所示。
请你帮他们求出滴水湖的半径。
10.如图6,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,求∠D的度数.图6◆综合迁移一、选择题1、如图,点P是半径为5的⊙O内一点,且OP=4,在过P点的所有⊙O的弦中,你认为弦长为整数的弦的条数为()A.6条B.5条C.4条D.2条2、下列命题中,正确的命题是()A. 平分一条弧的直径,垂直平分这条弧所对的弦;B. 平分弦的直径垂直于弦,并平分弦所对的弧;C. 在⊙O中,AB、CD是弦,若ACBD ,则AB∥CD;D. 圆是轴对称图形,对称轴是圆的每一条直径.3.如图,在⊙O中,C为弦AB上一点,AC=2,BC=6,⊙O的半径为5,则OC=A BC图5COBAPO.BAOHGEDBOCO M( )(A)13 (B) 4 (C)3 (D) 234.下列四边形:①平行四边形;②矩形;③菱形;④正方形,其中四个顶点一定能在同一个圆上的有().(A)①②③④ (B)②③④ (C)②④ (D)③④二、填空题5.已知,如图,A、B、C为⊙O上的三点,∠OBA=50°,∠OBC=60°,则∠OAC= .6、如图,M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm,最短的弦长为8 cm,则OM=_____7、如图,在⊙O中,直径AB和弦CD的长分别为10 cm和8 cm,则A、B两点到直线CD 的距离之和是_____. 三、综合题:8、如图,⊙O的直径AB和弦CD相交于E,若AE=2cm,BE=6cm,∠CEA=300,求:CD 的长;9、不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F。
人教版九年级数学上册 第24章24.1 ---24.4练习题(有答案)
人教版九年级数学上册第24章24.1 ---24.4练习题(有答案)24.1 圆的有关性质一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列说法中,正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.任意三角形都一定有外接圆D.不同的圆中不可能有相等的弦2. 如图,AB是⊙O的直径,点A是弧CD的中点,若∠B=25∘,则∠AOC=()A.25∘B.30∘C.40∘D.50∘3. 如图,一座石拱桥是圆弧形其跨度AB=24米,半径为13米,则拱高CD为()A.3√5米B.5米C.7米D.8米4. 锐角△ABC的三条高AD、BE、CF交于H,在A、B、C、D、E、F、H七个点中.能组成四点共圆的组数是()A.4组B.5组C.6组D.7组5. 如图,在⊙O中,∠ABC=130∘,则∠AOC等于()A.50∘B.80∘C.90∘D.100∘6. 如图,在⊙O中,∠BAC=15∘,∠ADC=20∘,则∠ABO的度数为()A.70∘B.55∘C.45∘D.35∘7. 如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5∘,OC=3√2,CD的长为()A.2B.4C.6D.88. 如图,四边形ABCD 内接于半径为6的⊙O 中,连接AC ,若AB =CD ,∠ACB =45∘,∠ACD =12∠BAC ,则BC 的长度为( )A.6√3B.6√2C.9√3D.9√29. 高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =12米,净高CD =9米,则此圆的半径OA =( )A.122米B.132米C.142米D.152米10. 如图,四边形ABCD 是⊙O 的内接四边形,点D 是AĈ的中点,点E 是BC ̂上的一点,若∠CED =40∘,则∠ADC =( )A.100∘B.110∘C.95∘D.120∘二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 已知AB 、CD 是⊙O 的两条弦,若AB ̂=CD ̂,且AB =2,则CD =________.12. 如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,若△COD为直角三角形,则∠E的度数为________∘.13. 如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=62∘,∠E =24∘,则∠F=________.14. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.15. 在△ABC中,∠B=60∘,∠BCA=20∘,∠DAC=20∘,∠BCA的平分线交AB于E,连DE,则∠BDE=________.16. 芳芳家今年搬进了新房,新房外飘的凉台呈圆弧形(如图所示),她测得凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为________.17. 已知一条弧的度数为120∘,则它所对的圆周角的度数是________∘.18. 如图,在△ABC中,已知∠ACB=130∘,∠BAC=20∘,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,则BD的长为________.19. 如图,四边形ABCD内接于⊙O,F是弧CD上一点,且弧DF=弧BC,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105∘,∠BAC=25∘,则∠E的度数为________度.20. 如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为________m(精确到0.1m).三、解答题(本题共计6 小题,共计60分,)21. 如图,⊙O是△ABC外接圆,AB=AC,P是⊙O上一点.(1)分别出图①和图②中∠BPC的角平分线;(2)结合图②,说明你这样理由.22. 如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.23. 如图,⊙O的弦AC、BD交于点Q,AP、CP是⊙O的切线,O、Q、P三点共线.求证:PA2=PB⋅PD.24. 如图,AB、CD是⊙O中的两条弦,M、N分别是AB、CD的中点,且∠OMN=∠ONM.求证:AB=CD.25. 如图,⊙O的半径长为12cm,弦AB=16cm.(1)求圆心到弦AB的距离;(2)如果弦AB的两端点在圆周上滑动(AB弦长不变),那么弦AB的中点形成什么样的图形?̂上一点,AG、CD的延长线26. 如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是AD相交于点F,求证:∠FGD=∠AGC.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】C2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】B10.【答案】A二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】212.【答案】22.513.【答案】32∘14.【答案】11815.【答案】20∘16.【答案】5米17.【答案】6018.【答案】2√319.【答案】5020.【答案】6.1三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图①,连接AP,即为所求角平分线;如图②,连接AO并延长,与⊙O交于点D,连接PD,即为所求角平分线(2)∵ AD是直径,∵ 半圆ABD=半圆ACD又∵ AB=AC,̂=AĈ,∵ AB∵ BĈ=BD̂,∵ ∠BPD=∠CPD,即PD平分∠BPC.22.【答案】证明:连结OA、OC,如图,∵ E、F分别为弦AB、CD的中点,∵ OE⊥AB,AE=BE,OF⊥CD,CF=DF,∵ AB=CD,∵ AE=CF,在Rt△AEO和Rt△COF中,{AE=CFAO=CO,∵ Rt△AEO≅Rt△COF(HL),∵ OE=OF.23.【答案】证明:连接OA、OB、OD、OC,设DP交⊙O于E.∵ AP、CP是⊙O的切线,∵ ∠OAP=∠PCO=90∘∵ A、O、C、P四点共圆,∵ OQ⋅PQ=AQ⋅CQ(相交弦定理);又∵ DQ⋅BQ=AQ⋅CQ(相交弦定理),∵ OQ⋅PQ=DQ⋅BQ,∵ D、O、B、P四点共圆;∵ OD=OB,∵ ∠ODB=∠OBD;又∵ ODPB四点共圆∵ ∠ODB=∠OPB;∠OBD=∠OPD;∵ ∠OPD=∠OPB,∵ PB=PE,∵ PA2=PE⋅PD=PB⋅PD(切割线定理),即PA2=PB⋅PD.24.【答案】证明:∵ M、N分别是AB、CD的中点,∵ OM⊥AB,ON⊥CD,又∵ ∠OMN=∠ONM,∵ OM=ON,∵ AB=CD.25.【答案】解:(1)作OC⊥AB,垂足为C连接AO,则AC=8cm,在Rt△AOC中,OC=√OA2−AC2=√122−82=√80=4√5cm(或OC=8.944cm);即圆心到弦的距离是4√5cm.(2)形成一个以O为圆心,4√5cm为半径的圆.(答“以O为圆心,OC长为半径的圆”亦可,如果只答“是一个圆”得1分)26.【答案】证明:连接AC,∵ 四边形ACDG是圆内接四边形,∵ ∠FGD=∠ACD.∵ 弦CD⊥AB于点E,∵ AĈ=AD̂,∵ ∠AGC=∠ACD,∵ ∠FGD=∠AGC.24.2 点和圆、直线和圆的位置关系(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知⊙O的半径为7cm,OA=5cm,那么点A与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定2. 等边三角形的内切圆与它的外接圆的半径比是()A.√22B.12C.1D.23. 如图,AB是⊙O的弦,BC与⊙O相切于点B,连结OA,若∠ABC=70∘,则∠A等于()A.10∘B.15∘C.20∘D.30∘4. 如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50∘,则∠AOC的度数为()A.40∘B.50∘C.80∘D.100∘5. 如图,⊙O的半径为5,△ABC内接于⊙O,且BC=8,AB=AC,点D在AĈ上.若∠AOD=∠BAC,则CD的长为()A.5B.6C.7D.86. 下列关于圆的切线的说法正确的是()A.垂直于圆的半径的直线是圆的切线B.与圆只有一个公共点的射线是圆的切线C.经过半径的一端且垂直于半径的直线是圆的切线D.如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线7. 已知△ABC中,∠B≠∠C,求证:AB≠AC.若用反证法证这个结论,应首先假设()A.∠B=∠CB.∠A=∠BC.AB=ACD.∠A=∠C8. 如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD,现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120∘,其中正确的结论有()A.1个B.2个C.3个D.4个9. 如图,在△ABC中,AB=13,AC=5,BC=12,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.125B.6013C.5D.无法确定10. 如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20B.30C.40D.50二、填空题(本题共计7 小题,每题3 分,共计21分,)11. 如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________.12. 已知⊙O1与⊙O2相交于A,B两点,且⊙O1经过点O1,∠AO1B=100∘,则∠AO2B=________.13. 如图,一圆内切于四边形ABCD,且AB=8,CD=5,则AD+BC的长为________.14. 如图,在边长为54√3的正三角形ABC中,O1为△ABC的内切圆,圆O2与O1外切,且与AC、BC相切;圆O3与O2外切,且与AC、BC相切…如此继续下去,请计算圆O5的周长为________.(结果保留π)15. 已知⊙O是等腰梯形ABCD的内切圆,上底AD=a,下底BC=b,则其内切圆的半径OP为________.16. 已知在直角ABC中,∠C=90∘,AC=8cm,BC=6cm,则△ABC的外接圆半径长为________cm,△ABC的内切圆半径长为________cm,△ABC的外心与内心之间的距离为________cm.17. 如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF= 3,则内切圆的半径r=________.三、解答题(本题共计5小题,共计69分,)18. 如图,在△ABC中,∠ACB=90∘.(1)尺规作图(保留作图痕迹,不写作法):①作AC的垂直平分线,垂足为D;②以D为圆心,DA长为半径作圆,交AB于E(E异于A),连接CE;(2)探究CE与AB的位置关系,并证明你的结论.19. 如图,在Rt△ABC中,∠C=90∘,∠A=30∘,O为AB上一点,BO=x,⊙O的半径为2.(1)当x为何值时,直线BC与⊙O相切?(2)当x在什么范围内取值时,直线BC与⊙O相离、相交?20. 如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5√3,∠CDF=30∘,求⊙O的半径.21. 如图,⊙O的半径为5cm,AB、AC是⊙O的两条弦,AB=6√2cm,AC=8cm.过点O作一个圆与AC相切,则这个圆的半径是多少?它与AB具有怎样的位置关系?为什么?22 如图,Rt△ABC中,∠C=90∘,AC=4.BC=3,点M是AB上一点,以M为圆心作⊙M,(1)若⊙M经过A、C两点,求⊙M的半径,并判断点B与⊙M的位置关系.(2)若⊙M和AC、BC都相切,求⊙M的半径.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:∵ ⊙O的半径为7cm,OA=5cm,∵ d<r,∵ 点A与⊙O的位置关系是:点A在圆内,故选A.2.【答案】B【解答】解:如图,连接OD、OE;∵ AB、AC切圆O与E、D,∵ OE⊥AB,OD⊥AC,∵ AO=AO,EO=DO,∵ △AEO≅△ADO(HL),∵ ∠DAO=∠EAO;又∵ △ABC为等边三角形,∵ ∠BAC=60∘,×60∘=30∘,∵ ∠OAC=12∵ OD:AO=1:2.,∵ 等边三角形的内切圆与外接圆半径的比是12故选B.3.【答案】C【解答】解:连接OB,∵ BC是⊙O的切线,∵ OB⊥BC,∵ ∠CBO=90∘,∵ ∠ABC=70∘,∵ ∠OBA=90∘−70∘=20∘,∵ OA=OB,∵ ∠A=∠OBA=20∘,故选C.4.【答案】C【解答】解:∵ 在⊙O中,AB为直径,BC为弦,CD为切线,∵ ∠OCD=90∘,∵ ∠BCD=50∘,∵ ∠OCB=40∘,∵ ∠AOC=80∘,故选C.5.【答案】B【解答】连接BD,∵ AB=AC,∵ ∠ABC=∠ACB,∵ ∠BAC+2∠ACB=180∘,∵ ∠BAC=∠AOD,∵ ∠AOD+2∠ACB=180∘,∵ ∠AOD=2∠ACD,∵ 2∠ACD+2∠ACB=180∘,∵ ∠ACD+∠ACB=90∘,即∠BCD=90∘,∵ BD为⊙O的直径,∵ BD=10,∵ CD=√BD2−BC2=√102−82=6,6.【答案】D【解答】解:A,经过半径的外端点且垂直于半径的直线是圆的切线,故原命题错误;B,与圆只有一个公共点的直线是圆的切线,故原命题错误;C,经过半径的外端点且垂直于半径的直线是圆的切线,故原命题错误;D,如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线,正确.故选D.7.【答案】C【解答】解:∵ 已知△ABC中,∠B≠∠C,求证:AB≠AC.∵ 若用反证法证这个结论,应首先假设:AB=AC.故选:C.8.【答案】D【解答】解:如图,连接CO,DO,∵ MC与⊙O相切于点C,∵ ∠MCO=90∘,在△MCO与△MDO中,{MC=MD,MO=MO,CO=DO,∵ △MCO≅△MDO(SSS),∵ ∠MCO=∠MDO=90∘,∠CMO=∠DMO,∵ MD与⊙O相切,故①正确;在△ACM与△ADM中,{CM =DM ,∠CMA =∠DMA ,AM =AM ,∵ △ACM ≅△ADM(SAS),∵ AC =AD ,∵ MC =MD =AC =AD ,∵ 四边形ACMD 是菱形,故②正确;如图连接BC ,∵ AC =MC ,∵ ∠CAB =∠CMO ,又∵ AB 为⊙O 的直径,∵ ∠ACB =90∘,在△ACB 与△MCO 中,{∠CAB =∠CMO ,AC =MC ,∠ACB =∠MCO , ∵ △ACB ≅△MCO(SAS),∵ AB =MO ,故③正确;∵ △ACB ≅△MCO ,∵ BC =OC ,∵ BC =OC =OB ,∵ ∠COB =60∘,∵ ∠MCO =90∘,∵ ∠CMO =30∘,又∵ 四边形ACMD 是菱形,∵ ∠CMD =60∘,∵ ∠ADM =120∘,故④正确;故正确的有4个.故选D .9.【答案】B【解答】解:∵ 在△ABC中,AB=13,AC=5,BC=12,∵ AB2=AC2+BC2.∵ ∠ACB=90∘,∵ PQ一定是直径.要使过点C且与边AB相切的动圆的直径最小,则PQ即为斜边上的高,则PQ=AC⋅BCAB =6013.故选B.10.【答案】C【解答】解:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.故选C.二、填空题(本题共计7 小题,每题 3 分,共计21分)11.【答案】∠ABC=90∘【解答】解:当△ABC为直角三角形时,即∠ABC=90∘时,BC与圆相切,∵ AB是⊙O的直径,∠ABC=90∘,∵ BC是⊙O的切线,(经过半径外端,与半径垂直的直线是圆的切线).故答案为:∠ABC=90∘.12.【答案】130∘或50∘【解答】解:①如图:∵ ∠AO1B=80∘,∠AO1B=50∘,∵ ∠ACB=12∵ A、C、B、O2四点共圆,∵ ∠AO2B+∠ACB=180∘,∵ ∠AO2B=130∘,②如图:∠AO1B=50∘;此时∠AO2B=12故答案为:130∘或50∘.13.【答案】13【解答】解:由题意可得圆外切四边形的两组对边和相等,所以AD+BC=AB+CD=5+8=13,故选答案是:13.14.【答案】2π3【解答】解:如图过点O2作O2D⊥O1E于D,∵ △ABC是等边三角形,O1为△ABC的内切圆,∵ O1E⊥BC,∠O1BE=∠O1O2D=30∘,BE=12BC=27√3,∵ O1E=27,设⊙O1,⊙O2的半径为R,r,∴O1O2=12O1D,∵ r=13R,同理⊙O3的半径=13r=19R=3,⊙O4=13×3=1,⊙O5=13×1=13,∵ ⊙O5的周长=2×13π=23π.15.【答案】√ab2【解答】解:设⊙O的半径OP=r,过A作AE⊥BC于E,过D作DF⊥BC于F,过D作MN⊥AD交BC于N,则AE // MN // DF,∵ AD // BC,∵ 四边形AENM和四边形DFNM是平行四边形,∵ AE=NM=DF=2r,AD=EF=b−a,∵ AB=DC,∵ 由勾股定理得:BE=CF=12(b−a),∵ ⊙O是等腰梯形ABCD的内切圆,∵ AB=DC12(a+b),在Rt△ABE中,由勾股定理得:AE=√[12(a+b)]2−[12(b−a)]2=√ab,∵ OP=√ab2.故答案为:√ab2.16.【答案】5,2,√5【解答】解:(1)∵ ∠C=90∘,AC=8cm,BC=6cm,∵ AB=√82+62=10cm.∵ △ABC的外接圆半径长R=AB2=102=5cm.故答案为:5cm.(2)∵ AC=8cm,BC=6cm,由(1)知AB=10cm,∵ △ABC的内切圆半径长r=a+b−c2,=8+6−10=2cm.故答案为:2cm.(3)连接ID,IE,IF,∵ ⊙I是△ABC的内切圆,∵ ID⊥BC,IE⊥AC,IF⊥AB,∵ ∠CDI=∠CEI=∠C=90∘,又∵ DI=EI,∵ 四边形CDIE是正方形.∵ CD=CE=DI=IE,由(2)知DI=IE=IF2cm,∵ CD=2cm.∵ BC=6cm,∵ BD=4cm.∵ ⊙I是△ABC的内切圆,∵ BD=BF=4cm.∵ BO=5cm,∵ OF=1cm.在Rt△IFO中,IO=√22+12=√5cm.∵ △ABC的外心与内心之间的距离为√5cm.故答案为:√5cm.17.【答案】1【解答】解:∵ ⊙O是△ABC的内切圆,切点为D、E、F,∵ AF=AE,EC=CD,DB=BF,∵ AE=2,CD=1,BF=3,∵ AF=2,EC=1,BD=3,∵ AB=BF+AF=3+2=5,BC=BD+DC=4,AC=AE+EC=3,∵ △ABC是直角三角形,=1.∵ 内切圆的半径r=3+4−52故答案为:1.三、解答题(本题共计7 小题,每题10 分,共计70分)18.【答案】(1)解:①如解图,直线DF即为AC的垂直平分线;②如解图,⊙D即为所求作的圆;(2)证明:CE⊥AB.证明:∵ AD是⊙D的半径,点D是线段AC的中点,∵ AC是⊙D的直径,∵ ∠AEC=90∘,∵ CE⊥AB.【解答】(1)解:①如解图,直线DF即为AC的垂直平分线;②如解图,⊙D即为所求作的圆;(2)证明:CE⊥AB.证明:∵ AD是⊙D的半径,点D是线段AC的中点,∵ AC是⊙D的直径,∵ ∠AEC=90∘,∵ CE⊥AB.19.【答案】解:(1)作OD // AC,交BC于点D,∵ ∠C=90∘,∠A=30∘,∵ ∠B=60∘,∠DOB=30∘,∵ BO=x,OD=2,∵ cos30∘=2,x,解得:x=4√33时,直线BC与⊙O相切;即当x为4√33(2)由(1)得:①若圆O与直线BC相离,则有OB大于x,即x>4√3;3.②若圆O与直线CB相交,则有OB小于x,即x<4√33【解答】解:(1)作OD // AC,交BC于点D,∵ ∠C=90∘,∠A=30∘,∵ ∠B=60∘,∠DOB=30∘,∵ BO=x,OD=2,,∵ cos30∘=2x解得:x=4√3,3即当x为4√33时,直线BC与⊙O相切;(2)由(1)得:①若圆O与直线BC相离,则有OB大于x,即x>4√33;②若圆O与直线CB相交,则有OB小于x,即x<4√33.20.【答案】【解答】此题暂无解答21.【答案】解:作OD⊥AC于D,OE⊥AB于E,连接OA,如图所示:则AD=CD=12AC=4cm,AE=BE=12AB=3√2cm,∠ODA=∠OEA=90∘,由勾股定理得:OD=√OA2−AD2=√52−42=3(cm),OE=√OA2−AE2=√52−(3√2)2=√7(cm),即过点O作一个圆与AC相切,则这个圆的半径是3cm,这个圆与AB相交,理由如下:∵ √7<3,即d<r,∵ 与CA相切的圆与AB相交.【解答】解:作OD⊥AC于D,OE⊥AB于E,连接OA,如图所示:则AD=CD=12AC=4cm,AE=BE=12AB=3√2cm,∠ODA=∠OEA=90∘,由勾股定理得:OD=√OA2−AD2=√52−42=3(cm),OE=√OA2−AE2=√52−(3√2)2=√7(cm),即过点O作一个圆与AC相切,则这个圆的半径是3cm,这个圆与AB相交,理由如下:∵ √7<3,即d<r,∵ 与CA相切的圆与AB相交.22.【答案】(1)证明见解析;(2)证明见解析;(3)CP=16.9cm【解答】(1)如图,连接OD,:BC是○○的直径,________BAC=90∘AD平分么BAC,∵ ________BAC=2∠BAD,BOD=2BAD,.2BOD=∠BAC=90∘DPIIBC,.________ODP=∠BOD=90∘….PDLOD,:OD是○○半径,…PD是○O的切线;(2):PDIIBC,∵ ________ACB=2PACB=∠ADB∵ .ADB=2P________AB+∠ACD=180∘ ∴ ACD+∠DCP=180∘________DCP=∠ABD∵ ΔABD∼△DCP;(3):BC是○○的直径,∠BDC=∠BAC=90∘在Rt△ABC中,BC=√AB2+AC2=13cm:AD平分么BAC,∵ 2EAD=∠CAD∵ 2BOD=∠COD∵ BD=CE).在Rt△BCD中,BD2+CD2=BC2∴ BD=CD=√22BC=13√22ΔABD−△DCP∵ABCD=BDCPCP=16x−s rcm.BK−P22.【答案】解:(1)∵ ⊙M经过A、C两点,∵ M在AC的垂直平分线上,设点D是AC的中点,连接CM,DM,∵ DM // BC,∵ AM:BM=AD:CD=1,∵ M是AB的中点,∵ AM=CM=BM,连接CM,∵ Rt△ABC中,∠C=90∘,AC=4,BC=3,∵ AB=√AC2+BC2=5,∵ CM=12AB=2.5,∵ ⊙M的半径为 2.5,点B在⊙M上.(2)连接EM,FM,∵ ⊙M和AC、BC都相切,∵ ME⊥AC,MF⊥BC,CE=CF,∵ ∠C=90∘,∵ 四边形CEMF是正方形,设EM=x,则CE=x,∵ AE=AC−CE=4−x,∵ △AEM∽△ACB,∵ AE:AC=EM:BC,∵ 4−x4=x3,解得:x=127.即⊙M的半径为127.【解答】解:(1)∵ ⊙M经过A、C两点,∵ M在AC的垂直平分线上,设点D是AC的中点,连接CM,DM,∵ DM // BC,∵ AM:BM=AD:CD=1,∵ M是AB的中点,∵ AM=CM=BM,连接CM,∵ Rt△ABC中,∠C=90∘,AC=4,BC=3,∵ AB=2+BC2=5,∵ CM=12AB=2.5,∵ ⊙M的半径为 2.5,点B在⊙M上.(2)连接EM,FM,∵ ⊙M和AC、BC都相切,∵ ME⊥AC,MF⊥BC,CE=CF,∵ ∠C=90∘,∵ 四边形CEMF是正方形,设EM=x,则CE=x,∵ AE=AC−CE=4−x,∵ △AEM∽△ACB,∵ AE:AC=EM:BC,∵ 4−x4=x3,解得:x=127.即⊙M的半径为127.24.3正多边形和圆一.选择题1.下面说法正确的个数有()①若m>n,则ma2>nb2;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个2.下列说法,错误的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法B.一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根C.一次函数y=﹣3x+2的图象经过第一、二、四象限D.正六边形每个内角的度数是外角度数的2倍3.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=()A.45°B.36°C.35°D.30°4.如图,用若n个全等的正五边形按如下方式拼接可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,图中所示的是前3个正五边形的拼接情况,拼接一圈后,中间会形成一个正多边形,则n的值为()A.5B.6C.8D.105.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形中心角∠COD的度数是()A.60°B.36°C.76°D.72°6.如图,正方形ABCD和正三角形AEF内接于⊙O,DC、BC交EF于G、H,若正方形ABCD的边长是4,则GH的长度为()A.2B.4﹣C.D.﹣7.如图,⊙O是正八边形ABCDEFGH的外接圆,则下列结论:①弧DF的度数为90°;②AE=DF;③S=AEDF.正八边形ABCDEFGH其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③8.如图,正方形ABCD和正三角形AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,则的值为()A.B.C.D.29.如图,正五边形ABCDE与正三角形AMN都是⊙O的内接多边形,若连接BM,则∠MBC的度数是()A.12°B.15°C.30°D.48°10.如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是()A.1B.2C.3D.4二.填空题11.正六边形的边长为2,则边心距为.12.如图,正方形ABCD内接于⊙O,若⊙O的半径是1,则正方形的边长是.13.中心角为36°的正多边形边数为.14.如图,正五边形ABCDE内接于圆O,P为弧DE上的一点(点P不与点D、E重合),则∠CPD的度数为.15.如图1,将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;如图2,将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转°,所得图形与原图的重叠部分是正多边形.在图2中,若正方形的边长为4,则所得正八边形的面积为.三.解答题16.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.17.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.18.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中∠MON的度数.19.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.参考答案与试题解析一.选择题1.【解答】解:①若m>n,则ma2>nb2,当a=0时错误;故不符合题意;②由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,故不符合题意;③有两个角互余的三角形一定是直角三角形,故符合题意;④各边都相等,各角也相等的多边形是正多边形,故不符合题意.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故不符合题意;故选:A.2.【解答】解:A、为了解一种灯泡的使用寿命,此调查具有破坏性,宜采用抽查的方法;故此选项符合题意;B、一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根;故此选项不符合题意;C、一次函数y=﹣3x+2的图象经过第一、二、四象限;故此选项不符合题意;D、正六边形每个内角的度数是外角度数的2倍;故此选项不符合题意;故选:A.3.【解答】解:如图,连接OC,OD,∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.4.【解答】解:∵正五边形的每个内角为:=108°,∴组成的正多边形的每个内角为:360°﹣2×108°﹣24°=120°,∵n个全等的正五边形拼接可以拼成一个环状,中间会形成一个正多边形,∴组成的正多边形为正n边形,则=120°,解得:n=6,故选:B.5.【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:D.6.【解答】解:连接AC交EF于M,连接OF,∵四边形ABCD是正方形,∴∠B=90°,∴AC是⊙O的直径,∴△ACD是等腰直角三角形,∴AC=AD=4,∴OA=OC=2,∵△AEF是等边三角形,∴AM⊥EF,∠OFM=30°,∴OM=OF=,∴CM=,∴∠ACD=45°,∠CMG=90°,∴∠CGM=45°,∴△CGH是等腰直角三角形,∴GH=2CM=2.故选:A .7.【解答】解:设圆心为O ,连接OD ,OF ,∵∠DOE =∠EOF ==45°,∴∠DOF =90°,∴弧DF 的度数为90°,∴①正确;∵∠DOF =90°,OD =OF ,∴2OD 2=DF 2,∴OD =, ∵AE =2OD ,∴AE =DF , ∴②正确;∵S 四边形ODEF =DFOE ,∴S 正八边形ABCDEFGH =4S 四边形ODEF =2DFOE ,∵OE =AE ,∴S 正八边形ABCDEFGH =AEDF ,∴③正确;故选:D .8.【解答】解:如图,连接AC、BD、OF,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OF A=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r sin60°=r,∴EF=r×2=r,∵AO=2OI,∴OI=r,CI=r﹣r=r,∴==,∴GH=BD=r,∴==.故选:C.9.【解答】解:连接OA、OC.∵五边形ABCDE是正五边形,∴∠AOB==72°,∴∠AOC=72°×2=144°,∵△AMN是正三角形,∴∠AOM==120°,∴∠COM=∠AOC﹣∠AOM=144°﹣120°=24°,∴∠MBC=∠COM=×24°=12°.故选:A.10.【解答】解:AB的长等于六边形的边长+最长对角线的长,据此可以确定共有2个点C,位置如图,故选:B.二.填空题(共5小题)11.【解答】解:如图所示:连接OA、OB,作OC⊥AB于C,则∠OCA=90°,AC=BC=AB=1,∠AOB=60°,∴∠AOC=30°,∴OC=AC=;故答案为:.12.【解答】解:连接OB,OC,则OC=OB=1,∠BOC=90°,在Rt△BOC中,BC==.∴正方形的边长是,故答案为:.13.【解答】解:由题意可得:∵360°÷36°=10,∴它的边数是10.故答案为10.14.【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故答案为:36°.15.【解答】解:如图2所示:将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转,所得图形与原图的重叠部分是正多边形.在图2中,由题意得:PM=MN=NQ,AM=AP=BN=BQ,则MN=PM=AM,∵AM+MN+BN=AB=4,∴AM+AM+AM=4,解得:AM=4﹣2,则所得正八边形的面积为4×4﹣4××(4﹣2)2=32﹣32;故答案为:(),32﹣32.三.解答题(共4小题)16.【解答】(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.17.【解答】解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD=2.∴⊙O的内接正四边形的边长为AD的长为2.18.【解答】解:由正方形、正五边形和正六边形的性质得,∠AOM=108°,∠OBC=120°,∠NBC=90°,∴∠AOB=×120°=60°,∠MOB=108°﹣60°=48°,∴∠OBN=360°﹣120°﹣90°=150°,∴∠NOB=×(180°﹣150°)=15°,∴∠MON=33°.19.【解答】(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,。
人教版 九年级数学上册 24.1 与圆有关的性质 同步训练(含答案)
人教版九年级数学上册24.1 与圆有关的性质同步训练一、选择题(本大题共8道小题)1. 如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A. 5B. 7C. 9D. 112. 如图,以O为圆心的两个同心圆中,小圆的弦AB的延长线交大圆于点C.若AB=4,BC=1,则下列整数与圆环面积最接近的是()A.10 B.13 C.16 D.193. 有下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的有() A.1个B.2个C.3个D.4个4. 如图,⊙O的半径为8 cm,把劣弧AB沿AB折叠,使劣弧AB经过圆心O,再把劣弧CD沿CD折叠,使劣弧CD经过AB的中点E,则折痕CD的长为()A.8 cm B.8 3 cm C.27 cm D.47 cm5. 如图,量角器的零刻度线与三角尺ABC的斜边AB重合,其中量角器的零刻度线的端点N与点A重合,射线CP从CA处出发按顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是()A .48°B .64°C .96°D .132°6. 如图,A ,B ,C ,D 是⊙O 上的四个点,B是AC ︵的中点,M 是半径OD 上任意一点.若∠BDC =40°,则∠AMB 的度数不可能是( )A .45°B .60°C .75°D .85°7. 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm.若不计容器壁厚度,则球的半径为( )A .5 cmB .6 cmC .7 cmD .8 cm8. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a 为160 mm ,直角顶点A 到轮胎与地面接触点B 的距离AB 为320 mm ,请帮小名同学计算轮胎的直径为( )A .350 mmB .700 mmC.800 mm D.400 mm二、填空题(本大题共8道小题)9. 如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.10. 如图所示,动点C在⊙O的弦AB上运动,AB=23,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为________.11. 将量角器按图所示的方式放置在三角形纸片上,使顶点C在半圆上,点A,B 的读数分别为100°,150°,则∠ACB的大小为________°.12. 如图,已知等腰三角形ABC中,∠ACB=120°且AC=BC=4,在平面内任作∠APB=60°,则BP的最大值为________.13. 2018·曲靖如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=________°.14. 已知⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是方程x 2-ax +14=0的两个根.若⊙O 1与⊙O 2是等圆,则a 2021的值为________.15. 如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC 于点D ,E ,连接OD ,OE .若∠A =65°,则∠DOE =________°.16. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题(本大题共5道小题)17. 如图所示,若BD ,CE 都是△ABC 的高,求证:B ,C ,D ,E 四点在同一个圆上.18. 我们学习了“弧、弦、圆心角的关系”,事实上我们还可以得到“圆心角、弧、弦、弦心距之间的关系”.圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等.[弦心距是指从圆心到弦的距离(如图①中的OC ,OC ′的长)]请直接运用圆心角、弧、弦、弦心距之间的关系解决下列问题:如图②,O 是∠EPF 的平分线上一点,以点O 为圆心的圆与角的两边所在的直线分别交于点A ,B 和C ,D . (1)求证:AB =CD .(2)若角的顶点P 在圆上或圆内,(1)中的结论还成立吗?若不成立,请说明理由;若成立,请加以证明.19. 如图,直线AB 经过⊙O 的圆心,与⊙O 相交于点A ,B ,点C 在⊙O 上,且∠AOC =30°,P 是直线AB 上的一个动点(与点O 不重合),直线PC 与⊙O 相交于点Q .在直线AB 上使QP =QO 成立的点P 共有几个?请相应地求出∠OCP 的度数.20. 如图,已知AB 为⊙O 的直径,C 为半圆ACB ︵上的动点(不与点A ,B 重合),过点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,则点P 的位置有何规律?请证明你的结论.21. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.人教版九年级数学上册24.1 与圆有关的性质同步训练-答案一、选择题(本大题共8道小题)1. 【答案】A【解析】∵ON⊥AB,AB=24,∴AN=AB2=12,∴在Rt△AON中,ON=OA2-AN2=132-122=5.2. 【答案】C[解析] 如图,连接OA,OC,过点O作OD⊥AB,垂足为D,则AD=BD=2,∴DC=2+1=3.S圆环=πOC2-πOA2=π(OD2+DC2-OD2-AD2)=π(32-22)=5π≈15.7.3. 【答案】B4. 【答案】D[解析] 如图,作CD 关于AB 对称的弦C ′D ′,连接OE 并延长,交CD 于点F ,交C ′D ′于点F ′.由题意可得OF ′⊥C ′D ′,且OF ′=34×8=6(cm),所以C ′F ′=OC ′2-OF ′2= 2 7 cm ,所以CD =C ′D ′=2C ′F ′=47cm.5. 【答案】C[解析] ∵∠ACB =90°,∴点C 在以O 为圆心,OA 长为半径的圆上.第24秒时,∠ACE =48°,∴∠EOA =2∠ACE =96°.6. 【答案】D[解析] 连接AD ,OA ,OB .∵B 是AC ︵的中点,∴∠ADB =∠BDC =40°,∴∠AOB =2∠ADB =80°.又∵M 是OD 上一点,∴∠ADB ≤∠AMB ≤∠AOB ,即40°≤∠AMB ≤80°,则不符合条件的只有85°.7. 【答案】A[解析] 作出该球轴截面的示意图如图所示.依题意,得BE =2 cm ,AE =CE =4 cm.设OE =x cm ,则OA =(2+x )cm.∵OA 2=AE 2+OE 2,∴(2+x )2=42+x 2,解得x =3,故该球的半径为5 cm.8. 【答案】C二、填空题(本大题共8道小题) 9. 【答案】50° 【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.10. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH =12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.11. 【答案】25[解析] 设量角器的中心为O ,由题意可得∠AOB =150°-100°=50°,所以∠ACB =12∠AOB =25°.12. 【答案】8[解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.13. 【答案】n14. 【答案】1[解析] ∵⊙O 1与⊙O 2是等圆,∴r 1=r 2.∵r 1和r 2是方程x 2-ax +14=0的两个根, ∴r 1r 2=14,r 1+r 2=a ,∴r 1=r 2=12,从而a =1,∴a 2021=12021=1.15. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.16. 【答案】⎝ ⎛⎭⎪⎫360n m ° [解析] 设∠XOY 的度数为x ,则mx =n ×360°,所以x =⎝ ⎛⎭⎪⎫360n m °.三、解答题(本大题共5道小题)17. 【答案】证明:取BC 的中点F ,连接DF ,EF . ∵BD ,CE 都是△ABC 的高, ∴△BCD 和△BCE 都是直角三角形,∴DF ,EF 分别是Rt △BCD 和Rt △BCE 斜边上的中线, ∴DF =EF =BF =CF ,∴B ,C ,D ,E 四点都在以点F 为圆心,BF 的长为半径的圆上.18. 【答案】解:(1)证明:如图①,过点O 作OM ⊥AB 于点M ,ON ⊥CD 于点N . ∵PO 平分∠EPF ,∴OM =ON , ∴AB =CD .(2)(1)中的结论还成立.证明:当点P 在⊙O 上时,如图②,同(1)知OM =ON , ∴AB =CD ;当点P 在⊙O 内时,如图③,同(1)知OM =ON , ∴AB =CD .19. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°, ∴在△OPQ 中,有y +y +y +30°=180°,解得y =50°, ∴∠OCP =180°-50°-30°=100°.综上所述,在直线AB 上使QP =QO 成立的点P 共有3个,∠OCP 的度数分别为40°,20°,100°.20. 【答案】⎝ ⎛⎭⎪⎫360n m 解:P 为半圆ADB ︵的中点. 证明:如图,连接OP .∵∠OCD 的平分线交⊙O 于点P ,∴∠PCD =∠PCO .∵OC =OP ,∴∠PCO =∠OPC ,∴∠PCD =∠OPC ,∴OP ∥CD .∵CD ⊥AB ,∴OP ⊥AB ,∴AP ︵=BP ︵,即P 为半圆ADB ︵的中点.21. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD 为平行四边形,∴∠BOD =∠BCD ,∠OBC =∠ODC .又∵∠BAD +∠BCD =180°,∠BAD =12∠BOD ,∴12∠BOD +∠BOD =180°,解得∠BOD =120°,∴∠BAD =12∠BOD =12×120°=60°,∠OBC =∠ODC =180°-∠BOD =180°-120°=60°. 又∵∠ABC +∠ADC =180°,∴∠OBA +∠ODA =∠ABC +∠ADC -(∠OBC +∠ODC )=180°-(60°+60°)=60°.②如图(b)所示,连接AO .∵OA =OB ,∴∠OBA =∠OAB .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAB=∠OAD+∠BAD,∴∠OBA=∠ODA+∠BAD=∠ODA+60°. 如图(c),同理可得∠ODA=∠OBA+60°.。
新版新人教版九年级数学上册第24章、圆全章同步练习(word文档有答案)
第二十四章圆==本文档为word格式,下载后可随意编辑修改!==24.1 圆的有关性质一.选择题(共20小题)1.(安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm2.(张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.(2题图)(3题图)(4题图)(5题图)(6题图)4.(乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.(济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°6.(聊城)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C 的度数是()A.25° B.27.5°C.30° D.35°7.(南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58° B.60° C.64° D.68°8.(铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°(7题图)(8题图)(9题图)9.(菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64° B.58° C.32° D.26°10.(张家界)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30° B.45° C.55° D.60°11.(哈尔滨)如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°(10题图)(11题图)(13题图)12.(潍坊)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或213.(黔西南州)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.114.(乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2.1米15.(金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm(14题图)(15题图)(16题图)16.(泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.817.(黔南州)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A. cm B.3cm C.3cm D.6cm18.(牡丹江)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5(17题图)(18题图)(19题图)19.(赤峰)如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.π C.π D.2π20.(巴彦淖尔)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°(20题图)(22题图)二.填空题(共10小题)21.(孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD 之间的距离是cm.22.(曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= °.23.(金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.(23题图)(24题图)(25题图)24.(梧州)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO= 度.25.(烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.26.(雅安)⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.27.(湘西州)如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=28.(常州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=40°,则∠ABC= .(27题图)(28题图)(29题图)(30题图)29.(湘潭)如图,在⊙O 中,已知∠AOB=120°,则∠ACB= .30.(安顺)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .三.解答题(共5小题)31.(宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.32.(牡丹江)如图,在⊙O中, =,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.33.(济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.34.(福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.35.(宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.24.2 点和圆、直线和圆的位置关系一.选择题(共20小题)1.(哈尔滨)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.92.(眉山)如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27° B.32° C.36° D.54°3.(宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.104.(重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.55.(河北)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.26.(福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°7.(泸州)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.8.(重庆)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.9.(自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.10.(泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.811.(内江)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外离 B.外切 C.相交 D.内切12.(常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76° B.56° C.54° D.52°13.(深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.14.(台湾)平面上有A、B、C三点,其中AB=3,BC=4,AC=5,若分别以A、B、C为圆心,半径长为2画圆,画出圆A,圆B,圆C,则下列叙述何者正确()A.圆A与圆C外切,圆B与圆C外切B.圆A与圆C外切,圆B与圆C外离C.圆A与圆C外离,圆B与圆C外切D.圆A与圆C外离,圆B与圆C外离15.(莱芜)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A .46°B .47°C .48°D .49°16.(陕西)如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为( )A .5B .C .5D .517.(济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6cmD .12cm18.(邵阳)如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD .若∠ACD=30°,则∠DBA 的大小是( )A .15°B .30°C .60°D .75°19.(衢州)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A=30°,则sin ∠E 的值为( )A.B.C.D.20.(襄阳)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合二.填空题(共8小题)21.(安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE= °.22.(临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.23.(镇江)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= °.24.(泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.25.(徐州)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB= °.26.(上海)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A 内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.27.(泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.28.(徐州)如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC= °.三.解答题(共8小题)29.(黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.30.(北京)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.31.(昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.32.(资阳)如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.(1)求证:直线DE与半圆相切;(2)若BE=3,求CE的长.33.(南充)如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.34.(白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.35.(黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.36.(凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.24.3 正多边形和圆一.选择题(共10小题)1.(株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形 B.正方形C.正五边形 D.正六边形2.(2017•沈阳)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2 C.2 D.23.(河北)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.54.(滨州)若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.15.(达州)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.6.(日照)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等7.(南京)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.28.(莱芜)正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形 C.正四边形 D.正三角形9.(曲靖)如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个10.(南平)若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.2 D.4二.填空题(共18小题)11.(陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.12.(玉林)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2= .13.(呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为.14.(温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.15.(河北)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.16.(贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.17.(上海)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .18.(吉林)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).19.(宜宾)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是.20.(台州)如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是.21.(毕节市)正六边形的边长为8cm,则它的面积为cm2.22.(济宁)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.23.(贵阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为.24.(绥化)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.25.(玉林)如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是.26.(威海)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.27.(盐城)如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为.28.(钦州)如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是.24.4 弧长和扇形面积一.选择题(共20小题)1.(盘锦)如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π2.(黄石)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.3.(广安)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣4.(自贡)已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.5.(德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A. 2B.C.πm2D.2πm26.(成都)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π7.(绵阳)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)π m2B.40π m2C.(30+5)π m2D.55π m28.(遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60π B.65π C.78π D.120π9.(山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣810.(沈阳)如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.πB.π C.2πD.π11.(广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.212.(丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣13.(重庆)如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π14.(衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD ∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.πB.10π C.24+4πD.24+5π15.(宁夏)圆锥的底面半径r=3,高h=4,则圆锥的侧面积是()A.12π B.15π C.24π D.30π16.(绵阳)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm217.(阿坝州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.πB.2πC.4πD.8π18.(乌鲁木齐)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm19.(包头)120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.1820.(朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π二.填空题(共10小题)21.(安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.(结果保留π)22.(连云港)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.23.(郴州)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)24.(荆门)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.25.(乐山)如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.26.(济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD 的长度为cm.27.(盘锦)如图,在△ABC中,∠B=30°,∠C=45°,AD是BC边上的高,AB=4cm,分别以B、C为圆心,以BD、CD为半径画弧,交边AB、AC于点E、F,则图中阴影部分的面积是cm2.28.(呼伦贝尔)小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.29.(泰州)如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.30.(邵阳)如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.三.解答题(共5小题)31.(湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.32.(贵阳)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC 于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).33.(张家界)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A1B1C1是△ABC绕点逆时针旋转度得到的,B1的坐标是;(2)求出线段AC旋转过程中所扫过的面积(结果保留π).34.(攀枝花)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E(1)求证:DE=AB;(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)35.(新疆)如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.24.1 圆的有关性质参考答案一.选择题(共20小题)1.C.2.A.3.A.4.C.5.D.6.D.7.A.8.D.9.D.10.D.11.B.12.D.13.C.14.B.15.C.16.B.17.A.18.C.19.B.20.B.二.填空题(共10小题)21.2或14.22.n23.30,10﹣10,24.81.25.(﹣1,﹣2),26.4≤OP≤5.27.10.28.70°.29.60°30.4﹣.三.解答题(共5小题)31.(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.32.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.33.解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.34.(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∵===,∴=+=,∴的长=××4π=×4π=π.35.(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,(∵∠EDC+∠ADE=180°,∠B+∠ADE=180°,∴∠EDC=∠B)∴∠B=∠C,∴AB=AC;(2)方法一:解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2)2﹣a2∴42﹣(4﹣a)2=(2)2﹣a2整理得:a=,即:CD=.24.2 点和圆、直线和圆的位置关系参考答案一.选择题(共20小题)1.A.2.A.3.D.4.A.5.B.6.D.7.D.8.B.9.D.10.C.11.C.12.A.13.D.14.C.15.C.16.D.17.D.18.D.19.A.20.D.二.填空题(共8小题)21.60.22..23.40.24.(7,4)或(6,5)或(1,4).25.60.26.8<r<10.27.6.28.125.三.解答题(共8小题)29.(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.30.解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.31.(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.32.证明:(1)连接OC,∵∠ACD=60°,∠E=30°,∴∠A=30°,∵OA=OC,∴∠OCA=∠A=30°,∴∠OCD=∠OCA+∠ACD=90°,∴直线DE与半圆相切;(2)在Rt△OCE中,∠E=30°,∴OE=2OC=OB+BE,∵OC=OB,∴OB=BE,∴OE=2BE=6,∴CE=OE•cosE=.33.解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.34.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC ∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.35.(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.36.解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.24.3 正多边形和圆参考答案一.选择题(共10小题)1.A.2.B.3.C.4.A.5.A.6.A.7.B.8.B.9.C.10.A.二.填空题(共18小题)11.72°.12.12+4.13.:1.14.815.14,21.16.72.17..18.π+1.19.﹣1.20.≤a≤3﹣.21.96cm2.22..23.3.24.1::.25.8+8.26.2.27.8.28.3n﹣1•.24.4 弧长和扇形面积参考答案一.选择题(共20小题)1.B.2.D.3.C.4.A.5.A.6.C.7.A.8.B.9.A.10.A.11.D.12.A.13.C.14.A.15.B.16.C.17.B.18.A.19.C.20.C.二.填空题(共10小题)21.π.22.2π23.12π.24.﹣.25..26.20.27.(2+2﹣π).28.9.29.π.30..三.解答题(共5小题)31.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.32.解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×=π﹣.33.解:(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是:(1,﹣2),故答案为:C,90,(1,﹣2);(2)线段AC旋转过程中所扫过的面积为以点C为圆心,AC为半径的扇形的面积.∵AC==,∴面积为: =,即线段AC旋转过程中所扫过的面积为.34.(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠AED=90°=∠B,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴DE=AB;(2)解:∵BC=AD,AD=AF,∴BC=AF,∵BF=1,∠ABF=90°,∴由勾股定理得:AB==,∴∠BAF=30°,∴扇形ABG的面积==.35.解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S阴=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.。
九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆同步检测(含解析)(新版)新人教版
24.1.1 圆测试时间:25分钟一、选择题1.(2018贵州黔东南州期中)如图,在☉O中,弦的条数是( )A.2B.3C.4D.以上均不正确2.如图所示,点M是☉O上的任意一点,下列结论:①以M为端点的弦只有一条;②以M为端点的半径只有一条;③以M为端点的直径只有一条;④以M为端点的弧只有一条.其中,正确的有( )A.1个B.2个C.3个D.4个3.如图,矩形PAOB在扇形OMN内,顶点P在弧MN上,且不与M,N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( )A.变大B.变小C.不变D.不能确定二、填空题4.如图,在Rt△ABC中,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,∠BCD=40°,则∠A=.5.如图,在平面直角坐标系中,动点P在以O为圆心,10为半径的圆上运动,整数点P有个.三、解答题6.如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且CD=OA.求证:∠C=∠AOE.7.已知:如图,AB是☉O的直径,AC是☉O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠DAC的度数.24.1.1 圆一、选择题1.答案 C 在☉O中,有弦AB、弦DB、弦CB、弦CD,共4条弦.故选C.2.答案 B 以M为端点的弦有无数条,所以①错误;②正确;③正确;以M为端点的弧有无数条,所以④错误.故选B.3.答案 C 连接OP.在Rt△PAB中,AB2=PA2+PB2,又∵矩形PAOB中,OP=AB,∴PA2+PB2=AB2=OP2.故选C.二、填空题4.答案20°解析∵CB=CD,∴∠B=∠CDB.∵∠B+∠CDB+∠BCD=180°,∠BCD=40°,∴∠B=×(180°-∠BCD)=×(180°-40°)=70°.∵∠ACB=90°,∴∠A=90°-∠B=20°.5.答案12解析设点P(x,y),由题意知x2+y2=100,则方程的整数解是x=6,y=8;x=8,y=6;x=10,y=0;x=6,y=-8;x=8,y=-6;x=0,y=-10;x=-6,y=-8;x=-8,y=-6;x=-10, y=0;x=-6,y=8;x=-8,y=6;x=0,y=10.所以整数点P的坐标可以是(6,8),(8,6),(10,0),(6,-8),(8,-6),(0,-10),(-6,-8),(-8,-6),(-10,0),(-6,8),(-8,6), (0,10).所以,这样的整数点有12个.三、解答题6.证明如图,连接OD,∵OD=OA,CD=OA,∴OD=CD,∴∠COD=∠C.∵∠ODE是△OCD的外角,∴∠ODE=∠COD+∠C=2∠C.∵OD=OE,∴∠CEO=∠ODE=2∠C.∵∠AOE是△OCE的外角,∴∠AOE=∠C+∠CEO=3∠C.∴∠C=∠AOE.7.解析以A为圆心,1为半径画弧,与☉O的交点即为点D,再连接AD.本题有两种情况,图中点D与点D'均符合题意.连接OD,OD'.∵AB是☉O的直径,AB=2,∴OA=OD=1.∵AD=1,∴OA=OD=AD,∴△AOD是等边三角形,∴∠OAD=60°.当AD与AC在直径AB的同侧时,∠DAC=60°-30°=30°;当AD与AC在直径AB的异侧时,∠D'AC=60°+30°=90°.综上所述:∠DAC的度数为30°或90°.。
人教版九年级上册数学 24.1.4 圆周角 同步练习(含答案)
人教版九年级上册数学24.1.4 圆周角同步练习一.填空题1.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=54°,则∠BAC=°.2.如图,⊙O中,∠AOB=80°,点C、D是上任两点,则∠C+∠D的度数是°.3.如图,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD=.4.如图,点A,D,B为⊙O上的三点,∠AOB=120°,且过A的直线交BD延长线于点C,连接AD,且AD =CD,则∠C的度数为.5.如图,ABCD是⊙O的内接四边形,AD为直径,∠C=130°,则∠ADB的度数为.6.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=.7.如图,已知⊙O的半径为6,C、D在直径AB的同侧半圆上,∠AOC=96°,∠BOD=36°,动点P在直径AB上,则CP+PD的最小值是.8.如图,AB是⊙O的直径,弦CD⊥AB于点E,(1)若CD=16,BE=4,则⊙O的半径为;(2)点M在⊙O上,MD恰好经过圆心O,连接MB,若∠M=∠D,则∠D的度数为.9.如图,△ABC中,∠A=60°,以BC为直径的⊙O分别交AB、AC边于E、D,连接BD、CE交于点F.以下四个结论:①ED=BC;②∠ACE=30°;③BD平分∠ABC;④若连接AF,则AF⊥BC.其中正确的结论是(把你认为正确结论的序号都填上)10.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BOC=2∠BAD,则⊙O的直径为.二.解答题11.如图,AB为⊙O的直径,点C在⊙O上,连接BC并延长至点D,使DC=CB.连接DA并延长,交⊙O 于另一点E,连接AC,CE.(1)求证:∠E=∠D(2)若AB=4,BC﹣AC=2,求CE的长.12.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=62°,∠APD=86°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.13.如图,AB是半圆的直径,C、D是半圆上的两点,∠BAC=20°,∠DAC=35°.求证:AD=CD.14.如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.15.如图,在△ABC中,∠A=68°,以AB为直径的⊙O与AC、BC分别相交于点D、E,连接DE.(1)求∠CED的度数.(2)若DE=BE,求∠C的度数.16.如图,AB是⊙O的直径,点C在圆上,∠BAD是△ABC的一个外角,它的平分线交⊙O于点E.不使用圆规,请你仅用一把不带刻度的直尺作出∠BAC的平分线.并说明理由.参考答案一.填空题1.36.2.80.3.130°.4.30°.5.40°.6. 25°.7.6.8.30°.9.①②④.10. 10.二.解答题11.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,即AC⊥BC,∵DC=CB,∴AD=AB.∴∠B=∠D,∵∠E=∠B,∴∠E=∠D;(2)解:∵∠E=∠D,∴DC=CE,∵DC=CB,∴CB=CE,在Rt△ABC中,AC2+BC2=AB2,即(BC﹣2)2+BC2=42解得,BC1=1+,BC1=1﹣(舍去),∴CE=1+,即CE的长为1+.12.(1)∵∠APD=∠CAB+∠C,∴∠C=∠APD﹣∠CAB=86°﹣62°=24°,∴∠B=∠C=24°;(2)作OE⊥BD于E,如图所示:则DE=BE,∵OA=OB,∴OE是△ABD的中位线,∴OE=AD=×6=3,即圆心O到BD的距离为3.13.证明:∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,∠B=90°﹣∠BAC=90°﹣20°=70°,∵四边形ABCD是圆的内接四边形,∴∠D=180°﹣∠B=180°﹣70°=110°,在△ABC中,∵∠DAC=35°,∴∠DCA=180°﹣∠DAC﹣∠D=180°﹣35°﹣110°=35°,∴∠DCA=∠DAC,∵AD=CD.14.(1)解:连接PB,∵PA是圆M的直径,∴∠PBA=90°∴AO=OB=3又∵MO⊥AB,∴PB∥MO.∴PB=2OM=∴P点坐标为(3,)(2分)在直角三角形ABP中,AB=6,PB=2,根据勾股定理得:AP=4,所以圆的半径MC=2,又OM=,所以OC=MC﹣OM=,则C(0,)(1分)(2)证明:连接AC.∵AM=MC=2,AO=3,OC=,∴AM=MC=AC=2,∴△AMC为等边三角形(2分)又∵AP为圆M的直径得∠ACP=90°得∠OCE=30°(1分)∴OE=1,BE=2∴BE=2OE.(2分)15.(1)∵四边形ABED 圆内接四边形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°;(2)连接AE.∵DE=BE,∴=,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直径,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°.16.作直径EF交⊙O于F,连接AF,则AF是∠BAC的平分线.理由是:∵EF是⊙O的直径,∴∠EAF=90°,即∠EAO+∠OAF=90°,∵AE平分∠DAC,∴∠DAE=∠EAO,∴∠CAF=∠OAF,∴AF是∠BAC的平分线.。
人教版九年级数学上册 24.1.1 圆 同步练习题(含答案)
人教版九年级数学上册第24章 24.1.1 圆 同步练习题一、选择题1.下列条件中,能确定唯一一个圆的是(C)A .以点O 为圆心B .以2 cm 长为半径C .以点O 为圆心,5 cm 长为半径D .半径为2 cm ,且经过点A 2.已知⊙O 中最长的弦为8 cm ,则⊙O 的半径为(B)A .2 cmB .4 cmC .8 cmD .16 cm 3.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径相等的两个圆是等圆;④弧是半圆,半圆是弧;⑤长度相等的两条弧是等弧.A .1个B .2个C .3个D .4个4.如图所示,以坐标原点O 为圆心的圆与y 轴交于点A ,B ,且OA =1,则点B 的坐标是(B)A .(0,1)B .(0,-1)C .(1,0)D .(-1,0) 5.如图所示,MN 为⊙O 的弦,∠N =52°,则∠MON 的度数为(C)A .38°B .52°C .76°D .104°6.如图所示,AB ,MN 是⊙O 中两条互相垂直的直径,点P 在AM ︵上,且不与点A ,M 重合,过点P 作AB ,MN 的垂线,垂足分别是D ,C.当点P 在AM ︵上移动时,矩形PCOD 的形状、大小随之变化,则PC 2+PD 2的值(C)A .逐渐变大B .逐渐变小C .不变D .不能确定二、填空题7.到点O 的距离等于8 cm 的点的集合是以点O 为圆心,以8cm 长为半径的圆. 8.如图,在⊙O 中,弦有AC ,AB ,直径是AB ,优弧有ABC ︵,CAB ︵,劣弧有AC ︵,BC ︵.9.如图,在△ABC 中,∠ACB =90°,∠A =20°,以点C 为圆心、CB 为半径的圆交AB 于点D ,则∠ACD =50°.10.已知A ,B 是半径为6的圆上的两个不同的点,则弦长AB 的取值范围是0<AB ≤12. 11.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =1,以边AC 上一点O 为圆心,OA为半径的⊙O 经过点B ,则⊙O 312.如图,AB是⊙O的直径,D是圆上的一点,∠DOB=75°,DC交BA的延长线于点E,交圆于点C,且CE=AO,则∠E=25°.13.如图,点D,E在△ABC的边BC,AB上,过A,C,D三点的圆的圆心为点E,以点D为圆心的圆过点B,E.如果∠A=57°,那么∠B=22°.14.如图所示,将半径为1的⊙A向右平移2个单位长度至⊙B,两圆相交于C,D两点,则CD=2.15.如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG=FD.小云发现连接图中已知点得到两条线段,便可证明IG=FD.请回答:小云所作的两条线段分别是OH和OE.16.如图,正方形ABCD和正方形CEFG,点A,F在半圆O上,B,C,E在半圆O的直径上,AB=5,FE=4,则OA三、解答题17.矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.证明:∵四边形ABCD 为矩形,∴OA =OC =12AC ,OB =OD =12BD ,AC =BD .∴OA =OC =OB =OD .∴A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上(如图).18.如图,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长,分别交弦AB ,AC 于点E ,F ,∠B =∠C.求证:CE =BF.证明:∵OB ,OC 是⊙O 的半径, ∴OB =OC.又∵∠B =∠C ,∠BOE =∠COF , ∴△EOB ≌△FOC(ASA). ∴OE =OF.∴OE +OC =OF +OB ,即CE =BF.19.如图所示,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且AE =BF ,请写出线段OE 与OF 的数量关系,并给予证明.解:OE =OF. 证明:连接OA ,OB. ∵OA ,OB 是⊙O 的半径, ∴OA =OB. ∴∠OAB =∠OBA. 又∵AE =BF ,∴△OAE ≌△OBF(SAS). ∴OE =OF.20.如图,BD ,CE 是△ABC 的高,M 为BC 的中点.试说明点B ,C ,D ,E 在以点M 为圆心的同一个圆上.证明:连接ME ,MD.∵BD ,CE 分别是△ABC 的高,M 为BC 的中点, ∴ME =MD =MC =MB =12BC.∴点B ,C ,D ,E 在以点M 为圆心的同一个圆上.。
人教版九年级数学上册《24.1.1-圆》同步练习题-附答案
人教版九年级数学上册《24.1.1 圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.把圆规的两脚分开,两脚间的距离是3厘米,再把有针尖的一只脚固定在一点上,把装有铅笔尖的一只脚旋转一周,就画出一个圆,则这个圆的()A.半径是3厘米B.直径是3厘米C.周长是3π厘米D.面积是3π厘米2.已知⊙O的半径长7cm,P为线段O A的中点,若点P在⊙O上,则OA的长是()A.等于7cm B.等于14cm C.小于7cm D.大于14cm3.下列说法正确的是()A.同弧或等弧所对的圆心角相等B.所对圆心角相等的弧是等弧C.弧长相等的弧一定是等弧D.平分弦的直径必垂直于弦4.已知O的半径为5,则该圆中最长的弦的长是()A.52B.53C.10 D.155.如图,在平面直角坐标系中,Q(3,4),P是在以Q为圆心,2为半径的⊙Q上一动点,设P点的横坐标为x,A(1,0)、B(-1,0),连接P A、PB,则P A2+PB2的最大值是A.64 B.98 C.100 D.1246.如图,在矩形ABCD中,AB=10,BC=12,E是矩形内部的一个动点,连接AE BE CE DE,,,,下列选项中的结论错误..的是()A .0261CE <<B .无论点E 在何位置,总有2222AE CE BE DE +=+C .若AE BE ⊥,则线段CE 的最小值为8D .若60EAD EBC ∠+∠=︒,AE BE +的最大值为23 7.下列命题是假命题的是( )A .不在同一直线上的三点确定一个圆B .矩形的对角线互相垂直且平分C .正六边形的内角和是720°D .角平分线上的点到角两边的距离相等8.下列命题正确的是( )A .相等的圆心角所对的弧是等弧B .等圆周角对等弧C .任何一个三角形只有一个外接圆D .过任意三点可以确定一个圆9.下列条件中,能确定圆的是( )A .以已知点O 为圆心B .以1cm 长为半径C .经过已知点A ,且半径为2cmD .以点O 为圆心,1cm 为半径10.下列条件中,能确定一个圆的是( )A .经过已知点MB .以点O 为圆心,10cm 长为半径C .以10cm 长为半径D .以点O 为圆心二、填空题11.如图,在平面直角坐标系中,点A 的坐标为(0,12),点B 的坐标为(5,0),动点P 在以A 为圆心,7为半径的圆周上运动,连接BP .(1)当动点P 与点B 距离最远时,此时线段BP 的长度为 ;(2)连接OP ,当OBP ∆为等腰三角形时,则P 点坐标为 .12.(1)图⊙中有 条弧,分别为 ;(2)写出图⊙中的一个半圆 ;劣弧: ;优弧: .13.如图,在⊙ABC 中,AC =BC ,⊙ACB =90°,以点A 为圆心,AB 长为半径画弧,交AC 延长线于点D ,则AC CD 的值为 ;过点C 作CE ⊙AB ,交BD 于点E ,连接BE ,则CE AD的值为 .14.如图,在矩形ABCD 中,AB =6,AD =8,E 是AB 边的中点,F 是线段BC 的动点,将△EBF 沿EF 所在直线折叠得到△EB ´F ,连接B ´D ,则B ′D 的最小值是 .15.如图,在O 中,点A 、B 在圆上,且AB OA =,则OAB ∠的度数为 °.16.直径为6cm 的圆周长是 cm .17.如图,点A 、B 在O 上,且AB BO =.ABO ∠的平分线与AO 相交于点C ,若3AC =,则O 的周长为 .(结果保留π)18.如图,在矩形ABCD 中,AB=2,AD=3,动点P 在矩形的边上沿B C D A →→→运动.当点P 不与点A 、B 重合时,将ABP 沿AP 对折,得到AB P ',连接CB ',则在点P 的运动过程中,线段CB '的最小值为 .19.直线4y x =+分别与x 轴、y 轴相交于点M 、N ,边长为2的正方形OABC 的一个顶点O 在坐标系的原点,直线AN 与MC 相交于点P ,若正方形绕着点O 旋转一周,则点P 到点()0,2长度的最小值是 .20.国际奥委会会旗上的图案是由代表五大洲的五个圆环组成,现在在某体育馆前的草坪上要修剪出此图案.已知,每个圆环的内、外半径分别为4米和5米,图中重叠部分的每个小曲边四边形的面积都为1平方米,若修剪每平方米的人工费用为10元,则修剪此图案所花费的人工费为 元(π取3).三、解答题21.综合与实践【问题背景】“夏至”过后,越来越多的市民喜欢去海边游玩。
人教版九年级上册数学 24.1.1圆 同步练习(含解析)
24.1.1圆同步练习一.选择题1.到圆心的距离大于半径的点的集合是()A.圆的内部B.圆的外部C.圆D.圆的外部和圆2.已知点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,过点B、C的圆记作为圆O2,过点C、A的圆记作为圆O3,则下列说法中正确的是()A.圆O1可以经过点C B.点C可以在圆O1的内部C.点A可以在圆O2的内部D.点B可以在圆O3的内部3.把半径为0.5m的地球仪的半径增大0.5m,其赤道长度的增加量记为X,把地球的半径也增加0.5m,其赤道长度的增加量记为Y,那么X、Y的大小关系是()A.X>Y B.X<Y C.X=Y D.X+2π=Y4.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心5.下列说法:①直径是弦;②长度相等的两条弧是等弧;③任何一条直径所在的直线都是圆的对称轴;④任何一条直径都是圆的对称轴,其中正确的有()A.1个B.2个C.3个D.4个6.下列说法错误的是()A.长度相等的两条弧是等弧B.直径是圆中最长的弦C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧7.以下说法正确的个数有()①半圆是弧.②三角形的角平分线是射线.③在一个三角形中至少有一个角不大于60°.④过圆内一点可以画无数条弦.⑤所有角的度数都相等的多边形叫做正多边形.A.1个B.2个C.3个D.4个8.下列语句正确的有()①直径是弦;②半圆是弧;③长度相等的弧是等弧;④经过圆内一定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A.3 个B.2个C.1 个D.4个9.如图,在⊙O中,点A,O,D在一条直线上,点B,O,C在一条直线上,那么图中有弦()A.2条B.3条C.4条D.5条10.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理11.下列说法:①直径是弦;②弦是直径;③过圆上任意一点有无数条弦,且这些弦都相等;④直径是圆中最长的弦.其中正确的是()A.1个B.2个C.3个D.4个12.下列说法正确的有()①在同圆或等圆中能够完全重合的弧叫等弧;②在同一平面内,圆是到定点距离等于定长的点的集合;③度数相等的弧叫做等弧;④优弧大于劣弧;⑤直角三角形的外心是其斜边中点.A.①②③④⑤B.①②⑤C.①②③⑤D.②④⑤二.填空题13.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)14.如图,圆O的周长为4π,B是弦CD上任意一点(与C,D不重合),过B作OC的平行线交OD于点E,则EO+EB=.(用数字表示)15.如图,OA、OB是⊙O的半径,C是⊙O上一点,∠AOB=40°,∠OBC=50°,则∠OAC=°.16.如图:AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,已知AB=2DE,∠E=16°,则∠AOC的大小是°.17.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E =.三.解答题18.已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.参考答案1.解:根据点和圆的位置关系,知圆的外部是到圆心的距离大于的所有点的集合;故选:B.2.解:∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,∴点C可以在圆O1的内部,故A错误,B正确;∵过点B、C的圆记作为圆O2,∴点A可以在圆O2的外部,故C错误;∵过点C、A的圆记作为圆O3,∴点B可以在圆O3的外部,故D错误.故选:B.3.解:∵地球仪的半径为0.5米,∴X=2×(0.5+0.5)π﹣2×0.5π=πm.设地球的半径是r米,可得增加后,圆的半径是(r+0.5)米,∴Y=2(r+0.5)π﹣2πr=πm,∴X=Y,故选:C.4.解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.5.解:①直径是最长的弦,故本小题正确;②在等圆或同圆中,长度相等的两条弧是等弧,故本小题错误;③经过圆心的每一条直线都是圆的对称轴,故本小题正确;④经过圆心的每一条直线都是圆的对称轴,故本小题错误.故选:B.6.解:A、长度相等的弧的度数不一定相等,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确,故选:A.7.解:圆的任意一条直径的端点把圆分成两条弧,每一条弧都叫做半圆,故①正确;根据三角形角平分线的定义可知,三角形的角平分线是一条线段,故②错误;在一个三角形中至少有一个角不大于60°,故③正确;过圆内一点可以画无数条弦,故④正确;矩形的四个角都相等,都等于90°,而矩形不是正四边形,故⑤错误;故选:C.8.解:①直径是弦;正确,②半圆是弧;正确,③长度相等的弧是等弧;错误,④经过圆内一定点可以作无数条弦;正确,⑤经过圆内一定点可以作无数条直径;错误.其中真命题共有3个.故选:A.9.解:弦为AB、CE、BC.故选:B.10.解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选:B.11.解:①因为直径的两个端点在圆上,直径是连接圆上这两个端点的线段.所以直径是弦是正确的.②弦是连接圆上两点的线段,如果过圆心就是直径,不过圆心就不是直径.所以弦是直径不正确.③过圆内一点是有无数多条弦,但这些弦不一定相等,其中过圆心的弦是最长的.所以③不正确.④直径是过圆心的弦,当然是圆中最长的弦.所以④正确.故选:B.12.解:①在同圆或等圆中能够完全重合的弧叫等弧正确;②在同一平面内,圆是到定点距离等于定长的点的集合,正确;③度数相等的弧叫做等弧,错误;④同圆中优弧大于劣弧,故原命题错误;⑤直角三角形的外心是其斜边中点,正确.故选:B.13.解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确;正确的结论有②③.故答案为:②③.14.解:∵⊙O的周长为4π,∴OD=2,∵OC=OD,∴∠C=∠D,∵BE∥OC,∴∠EBD=∠C,∴∠EBD=∠D,∴BE=DE,∴EO+EB=OD=2,故答案为:2.15.解:连接OC,∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°×2=80°,∴∠AOC=80°+40°=120°,∵OC=OA,∴∠OAC=∠OCA=30°,故答案为:30.16.解:连结OD,如图,∵AB=2DE,∴DE=DO,∴∠E=∠DOE=16°,∴∠CDO=∠E+∠DOE=32°,∵OC=OD,∴∠C=∠CDO=32°,∴∠AOC=∠C+∠E=32°+16°=48°.故答案为48.17.解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,∵OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×74°=()°.故答案是:()°.18.解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴BC=AB=1,∠B=60°,以A圆心BC长为半径画弧可得点D,再连接AD即可;∵AD=BC,∴=,∴∠DAB=∠B=60°,∴∠DAC=60°﹣30°=30°;同理可得:∠D′AC=60°+30°=90°;综上所述:∠CAD的度数为30°或90°.。
人教版数学九年级上册:24.1.1 圆 同步练习(附答案)
24.1.1 圆1.下列条件中,能确定一个圆的是()A.以点O为圆心B.以2 cm长为半径C.以点O为圆心,以5 cm长为半径D.经过点A2.下列命题中正确的有()①弦是连接圆上任意两点的线段;②半径是弦;③直径是圆中最长的弦;④弧是半圆,半圆是弧.A.1个 B.2个 C.3个 D.4个3.如图,在⊙O中,点A,O,D和点B,O,C分别在一条直线上,图中共有3条弦,它们分别是.4.如图,在⊙O中,点B在⊙O上,四边形AOCB是矩形,对角线AC的长为5,则⊙O的半径长为.5.如图,AB是⊙O的直径,∠C=20°,则∠BOC的度数是( )A.40° B.30° C.20° D.10°6.如图,已知AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD等于(D) A.45° B.60°C.90° D.30°7.如图,在△ABC中,BD,CE是两条高,点O为BC的中点,连接OD,OE,求证:B,C,D,E四个点在以点O为圆心的同一个圆上.8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.9.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为() A.50° B.60° C.70° D.80°10.下列四边形:①平行四边形;②菱形;③矩形;④正方形.其中四个顶点在同一个圆上的有()A.1个 B.2个 C.3个 D.4个11.如图,A,B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为()A.2rB.3r C.R D.2r12.已知A ,B 是半径为6 cm 的圆上的两个不同的点,则弦长AB 的取值范围是 cm. 13.如图,CE 是⊙O 的直径,AD 的延长线与CE 的延长线交于点B ,若BD =OD ,∠AOC =114°,求∠AOD 的度数.14.如图,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且AE =BF ,请你找出线段OE 与OF 的数量关系,并给予证明.15.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E 点,已知AB =2DE ,∠E =18°,求∠AOC 的度数.16.如图,AB ,CD 是⊙O 的直径,且AB ⊥CD ,点P ,Q 为CB ︵上的任意两点,作PE ⊥CD ,PF ⊥AB ,QM ⊥CD ,QN ⊥AB ,则线段EF ,MN 的大小关系为EF MN.(填“<”“>”或“=”)参考答案: 1.C 2.B3. AE ,DC ,AD . 4.5. 5.A 6.D7.证明:∵BD ,CE 是两条高, ∴∠BDC =∠BEC =90°.∵△BEC 为直角三角形,点O 为BC 的中点, ∴OE =OB =OC =12BC.同理:OD =OB =OC =12BC.∴OB =OC =OD =OE.∴B ,C ,D ,E 在以点O 为圆心的同一个圆上. 8.证明:∵OB ,OC 是⊙O 的半径, ∴OB =OC.又∵∠B =∠C ,∠BOE =∠COF , ∴△EOB ≌△FOC (ASA ). ∴OE =OF.∵CE =CO +OE ,BF =BO +OF , ∴CE =BF. 9.C 10.B 11.B12.0<AB ≤12. 13.解:设∠B =x °. ∵BD =OD , ∴∠DOB =∠B =x °.∴∠ADO =∠DOB +∠B =2x °. ∵OA =OD ,∴∠A =∠ADO =2x °. ∵∠AOC =∠A +∠B ,∴2x+x=114.解得x=38.∴∠AOD=180°-∠A-∠ADO=180°-4x°=180°-4×38°=28°. 14.解:OE=OF.证明:∵OA,OB是⊙O的半径,∴OA=OB.∴∠OBA=∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS).∴OE=OF.15.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE.∴∠DOE=∠E,∠OCE=∠ODC.又∵∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E=18°,∴∠OCE=36°.∴∠AOC=∠OCE+∠E=36°+18°=54°.16.=。
2019-2020学年九年级数学上册 24.1 圆(第4课时)同步练习 新人教版.doc
2019-2020学年九年级数学上册 24.1 圆(第4课时)同步练习新人教版知识点1、圆周角定义:顶点在,并且两边都和圆的角叫圆周角。
2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的。
推论1、在同圆或等圆中,如果两个圆周角,那么它们所对的弧。
推论2、半圆(或直径)所对的圆周角是; 900的圆周角所对的弦是。
3、圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。
性质:圆内接四边形的对角一、选择题1.如图,在⊙O中,若C是BD的中点,则图中与∠BAC相等的角有()A.1个B.2 个C.3个D.4个2.如图,△ABC内接于⊙O,∠A=40°,则∠BOC的度数为()A. 20°B. 40°C. 60°D.80°3.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40 º,则∠B的度数为()A.80 º B.60 º C.50 º D.40 º4.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°5.如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°6.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠B MO=120°,则⊙C的半径为()A.6 B.5 C.3 D.7、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,则⊙O的半径为()A.B.C.8 D.128、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B.AF=BF C.OF=CF D.∠DBC=90°A.AD BD二、填空题12.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.3.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE= .4.如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD= ..5、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=.6、如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC= cm.7、如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为.8、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC= .9、如图,圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .B10、如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒,点E 在量角器上对应的读数是 度.三、解答题1、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.2. 如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .B3、如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.4、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.5、如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.24.1 圆(第四课时)知识点1.圆上相交2.相等一半相等一定相等直角直径3.圆内接多边形这个多边形的外接圆互补一、选择题1.C2.D3.C4.C5. C6.C7、A8、C二、填空题1.150°2.25°3.60°4. 40° .5、20°6、57、50°8.9、30°10、144°三、解答题1、A B222BC 8cmCD ACBACD BCD 45AD BDAD BDBD AB 100AD BD ∴∠∠︒∴===∠∴∠=∠=︒∴=∴=+==∴===解:AB 是O 的直径ACB=ADB=90在Rt ABC 中,AB=10cm,AC=6cm,平分在Rt ADC 中,AB=10cmAD 2.解:(1)ACB ﹦90°∴∠CEB ﹦90° 1 1﹦∠A (2) ⊙O 的半径为5 , CE 的长是524﹒3、 B解:(1)在△ABC中,∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°,∴△ABC是等边三角形;(2)∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OD=8×12=4.4、证明:(1)∵OD⊥AC OD为半径,∴CD AD,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=12 AB,∵OD=CD ADAB,∴BC=OD.5、(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△AB C中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1 圆(第四课时)
知识点
1、圆周角定义:顶点在,并且两边都和圆的角叫圆周角。
2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的。
推论1、在同圆或等圆中,如果两个圆周角,那么它们所对的弧。
推论2、半圆(或直径)所对的圆周角是; 900的圆周角所对的弦是。
3、圆内接四边形:
定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。
性质:圆内接四边形的对角
一、选择题
1.如图,在⊙O中,若C是BD的中点,则图中与∠BAC相等的角有()
A.1个
B.2 个
C.3个
D.4个
2.如图,△ABC内接于⊙O,∠A=40°,则∠BOC的度数为()
A. 20°
B. 40°
C. 60°
D.80°
3.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40 º,则∠B的度数为()
A.80 º B.60 º C.50 º D.40 º
4.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°
5.如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()
A.40°
B.50°
C.60°
D.70°
6.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三
象限内⊙C上一点,∠B MO=120°,则⊙C的半径为()
A.6 B.5 C.3 D.
7、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,则⊙O的半径为()
A.B.C.8 D.12
8、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()
二、填空题
1
2.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.
3.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE= .
4.如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD= ..
5、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=.
6、如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC= cm.
7、如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为.
8、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC= .
9、如图,圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .
10、如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N 与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是度.
B
三、解答题
1、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.
2. 如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F .
(1)求证:CF ﹦BF ;
(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .
3、如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,
(1)求证:△ABC 是等边三角形;
(2)求圆心O 到BC 的距离OD .
B
4、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD
(1)求证:BD平分∠ABC;
(2)当∠ODB=30°时,求证:BC=OD.
5、如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的长.
24.1 圆(第四课时)
知识点
1.圆上相交
2.相等一半相等一定相等直角直径
3.圆内接多边形这个多边形的外接圆互补
一、选择题
1.C
2.D
3.C
4.C
5. C
6.C
7、A
8、C
二、填空题
1.150°
2.25°
3.60°
4. 40° .
5、20°
6、5
7、50°
8.
9、30°
10、144°
三、解答题
1、
A B
222BC 8cm
CD ACB
ACD BCD 45AD BD
AD BD
BD AB 100
AD BD ∴∠∠︒
∴===∠∴∠=∠=︒
∴=∴=+==∴==
=解:AB 是O 的直径
ACB=ADB=90在Rt ABC 中,AB=10cm,AC=6cm,
平分在Rt ADC 中,AB=10cm
AD 2.
解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1
又∵C 是弧BD 的中点,∴∠1﹦∠A ∴∠1﹦∠2,
∴ CF ﹦BF ﹒
(2) ⊙O 的半径为5 , CE 的长是
524﹒
B
3、
解:(1)在△ABC中,
∵∠BAC=∠APC=60°,
又∵∠APC=∠ABC,
∴∠ABC=60°,
∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°,∴△ABC是等边三角形;
(2)∵△ABC为等边三角形,⊙O为其外接圆,
∴O为△ABC的外心,
∴BO平分∠ABC,
∴∠OBD=30°,
∴OD=8×1
2
=4.
4、
证明:(1)∵OD⊥AC OD为半径,
∴CD AD
,
∴∠CBD=∠ABD,
∴BD平分∠ABC;
(2)∵OB=OD,
∴∠OBD=∠0DB=30°,
∴∠AOD=∠OBD+∠ODB=30°+30°=60°,
又∵OD⊥AC于E,
∴∠OEA=90°,
∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°,
又∵AB为⊙O的直径,∴∠ACB=90°,
在Rt△ACB中,BC=1
2 AB,
∵OD=CD AD
AB,
∴BC=OD.
5、
(1)证明:∵AB为⊙O的直径,
∴∠ACB=90°,
∴AC⊥BC,
∵DC=CB,
∴AD=AB,
∴∠B=∠D;
(2)解:设BC=x,则AC=x﹣2,
在Rt△ABC中,AC2+BC2=AB2,
∴(x﹣2)2+x2=42,
解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,
∴∠D=∠E,
∴CD=CE,
∵CD=CB,
∴CE=CB=1+.。