2018届高考数学(文)二轮专题复习习题:第1部分 专题八 选考系列4-4、4-5 1-8-2 Word版含答案
高考数学(文)二轮专题复习课件:第1部分 专题八 选考系列4-4、4-5 1-8-2
[ 自我挑战] 2.(2017· 高考全国卷Ⅱ)已知 a>0,b>0,a3+b3=2,证明: (1)(a+b)(a5+b5)≥4; (2)a+b≤2.
证明:(1)(a+b)(a5+b5)=a6+ab5+a5b+b6 =(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4. (2)证明:因为(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2 3a+b2 3a+b3 + 4 (a+b)=2+ 4 , 所以(a+b)3≤8,因此 a+b≤2.
于是 a=3.
1.用零点区分法解绝对值不等式的步骤: (1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的 不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端 点值. 2.用图象法、数形结合可以求解含有绝对值的不等式,使得 代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.
a+b+c 3 定理 3:如果 a,b,c 为正数,则 3 ≥ abc,当且仅当 a=b=c 时,等号成立. 定理 4:(一般形式的算术—几何平均不等式)如果 a1、a2、…、 a1+a2+…+an n an 为 n 个正数, 则 ≥ a1a2…an, 当且仅当 a1=a2=… n =an 时,等号成立.
2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法: (1)|ax+b|≤c⇔-c≤ax+b≤c; (2)|ax+b|≥c⇔ax+b≥c 或 ax+b≤-c. 3.基本不等式 定理 1:设 a,b∈R,则 a2+b2≥2ab.当且仅当 a=b 时,等号 成立. a+b 定理 2:如果 a,b 为正数,则 2 ≥ ab,当且仅当 a=b 时, 等号成立.
1.不等式的证明常利用综合法、分析法、反证法、放缩法、 基本不等式和柯西不等式等,要根据题目特点灵活选用方法. 2.证明含绝对值的不等式主要有以下三种方法: (1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再 证明; (2)利用三角不等式||a|-|b||≤|a± b|≤|a|+|b|进行证明; (3)转化为函数问题,利用数形结合进行证明.
2018年高考数学(文)二轮复习 专题突破讲义:专题八 系列4选讲专题八 第2讲
第2讲 不等式选讲本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想.热点一 含绝对值不等式的解法含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ;(2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 例1 (2017届辽宁省葫芦岛协作体模拟)设函数f (x )=|x +2|-|x -1|.(1)求不等式f (x )>1的解集;(2)若关于x 的不等式f (x )+4≥|1-2m |有解,求实数m 的取值范围.解 (1)∵f (x )=|x +2|-|x -1|=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1,当x ≤-2时,f (x )=-3<0,不合题意.∴当-2<x <1时,由2x +1>1,得0<x <1,当x ≥1时,f (x )=3>1恒成立,得x ≥1.故不等式f (x )>1的解集为(0,+∞).(2)由(1)可知,f (x )的最大值为3,故f (x )+4的最大值为7.若关于x 的不等式f (x )+4≥|1-2m |有解,只需7≥|1-2m |,即-7≤2m -1≤7,求得m 的取值范围为[-3,4].思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017届河北省石家庄二中三模)已知不等式|x -a |+|2x -3|>a 22. (1)已知a =2,求不等式的解集;(2)已知不等式的解集为R ,求a 的取值范围.解 (1)当a =2时,可得|x -2|+|2x -3|>2,当x ≥2时,由3x -5>2,得x >73, 当x <32时,由-3x +5>2,得x <1, 当32≤x <2时,由x -1>2,得x ∈∅, 综上所述,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >73或x <1. (2)∵f (x )=|x -a |+|2x -3|的最小值为f (a )或f ⎝⎛⎭⎫32,∵f (a )=2⎪⎪⎪⎪a -32,f ⎝⎛⎭⎫32=⎪⎪⎪⎪a -32, ∴f (x )min =⎪⎪⎪⎪a -32,令⎪⎪⎪⎪a -32>a 22, 则32-a >a 22或32-a <-a 22, 可得-3<a <1或a ∈∅,综上所述,a 的取值范围是(-3,1).热点二 不等式的证明1.含有绝对值的不等式的性质||a |-|b ||≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ; (2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1, 当且仅当x ≤-23或x ≥12时等号成立,所以M =1. (2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1 ≥2⎣⎢⎡⎦⎥⎤a +b +(a +b )22+1=(a +b +1)2≥0, 当且仅当a =b =-12,c =12时取等号, 所以存在实数a =b =-12,c =12满足条件. 思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数.(1)求证:a4+6a2b2+b4≥4ab(a2+b2);(2)求函数f(x)=|2x-a4+(1-6a2b2-b4)|+2|x-(2a3b+2ab3-1)|的最小值.(1)证明a4+6a2b2+b4-4ab(a2+b2)=(a2+b2)2-4ab(a2+b2)+4a2b2=(a2+b2-2ab)2=(a-b)4.因为(a-b)4≥0,所以a4+6a2b2+b4≥4ab(a2+b2).(2)解f(x)=|2x-a4+(1-6a2b2-b4)|+2|x-(2a3b+2ab3-1)|=|2x-a4+(1-6a2b2-b4)|+|2x-2(2a3b+2ab3-1)|≥|[2x-2(2a3b+2ab3-1)]-[2x-a4+(1-6a2b2-b4)]|=|(a-b)4+1|≥1.即f(x)min=1.热点三 柯西不等式的应用柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.例3 (2017届贵州省贵阳市高三适应性考试)已知函数f (x )=m -|x -1|(m >0),且f (x +1)≥0的解集为[-3,3].(1)求m 的值;(2)若正实数a ,b ,c 满足1a +12b +13c=m ,求证:a +2b +3c ≥3. (1)解 因为f (x +1)=m -|x |,所以f (x +1)≥0等价于|x |≤m ,由|x |≤m ,得解集为[-m ,m ](m >0),又由f (x +1)≥0的解集为[-3,3],故m =3.(2)证明 由(1)知1a +12b +13c=3, 又因为a ,b ,c 是正实数,所以a +2b +3c =13(a +2b +3c )⎝⎛⎭⎫1a +12b +13c ≥13⎝⎛⎭⎫ a ·1a + 2b ·12b + 3c ·13c 2=3. 当且仅当a =1,b =12,c =13时等号成立, 所以a +2b +3c ≥3.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 (2017届江西省重点中学盟校联考)若关于x 的不等式|ax -2|<6的解集为⎩⎨⎧ x ⎪⎪⎭⎬⎫-43<x <83. (1)求a 的值;(2)若b =1,求-at +12+3bt 的最大值.解 (1)依题意知-43和83是方程|ax -2|=6的两个根,则⎩⎨⎧ ⎪⎪⎪⎪-43a -2=6,⎪⎪⎪⎪83a -2=6,∴⎩⎪⎨⎪⎧a =3或a =-6,a =3或a =-32,∴a =3. (2)-3t +12+3t =3(4-t +t ) ≤3(1+1)(4-t +t )=26,当且仅当4-t =t ,即t =2时等号成立. 所以-at +12+3bt 的最大值为2 6.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R .(1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐.解 (1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2; 当-12<x <2时,不等式等价于2-x +2x +1≥4, 即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4, 解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|.因为∃x 0,使f (x 0)+|x 0-2|<3成立,所以(f (x )+|x -2|)min <3,所以|a +4|<3,解得-7<a <-1,故实数a 的取值范围为(-7,-1).2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y≥|a +2|-|a -1|恒成立,求实数a 的取值范围; (2)求证:x 2+2y 2≥323,并指出等号成立的条件. 押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.(1)解 因为x ,y ∈R +,x +y =4,所以x 4+y 4=1. 由基本不等式,得1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y ≥12+12 y x ·x y=1, 当且仅当x =y =2时取等号.要使不等式1x +1y≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可.构造函数f (a )=|a +2|-|a -1|,则等价于解不等式f (a )≤1.因为f (a )=⎩⎪⎨⎪⎧ -3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0].(2)证明 因为x ,y ∈R +,x +y =4, 所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届湖南省郴州市质检)已知函数f (x )=|x +1|+|x -3|,g (x )=a -|x -2|.(1)若关于x 的不等式f (x )<g (x )有解,求实数a 的取值范围;(2)若关于x 的不等式f (x )<g (x )的解集为⎝⎛⎭⎫b ,72,求a +b 的值. 解 (1)当x =2时,g (x )=a -|x -2|取得最大值a ,∵f (x )=|x +1|+|x -3| ≥4,当且仅当-1≤x ≤3,f (x )取得最小值4,又∵关于x 的不等式f (x )<g (x )有解,∴a >4,即实数a 的取值范围是(4,+∞).(2)当x =72时,f (x )=5, 则g ⎝⎛⎭⎫72=-72+a +2=5,解得a =132, ∴当x <2时,g (x )=x +92, 令g (x )=x +92=4,得x =-12∈(-1,3), ∴b =-12,则a +b =6. 2.(2017届辽宁省锦州市质检)已知函数f (x )=|x -a |.(1)若对x ∈[0,4]不等式f (x )≤3恒成立,求实数a 的取值范围;(2)当a =2时,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. 解 (1)由f (x )≤3,得|x -a |≤3,解得a -3≤x ≤a +3,∴不等式f (x )≤3的解集M =[a -3,a +3],根据题意知[0,4]⊆M ,∴⎩⎪⎨⎪⎧a -3≤0,a +3≥4,∴1≤a ≤3. (2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),∴g(x)的最小值为5,因此,若g(x)=f(x)+f(x+5)≥m对x∈R恒成立,则实数m的取值范围是(-∞,5].3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值. 解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.4.(2017届黑龙江省哈尔滨师范大学附属中学二模)已知x ,y ∈R .(1)若x ,y 满足|x -3y |<12,|x +2y |<16,求证:|x |<310; (2)求证:x 4+16y 4≥2x 3y +8xy 3.证明 (1)∵|5x |=|2(x -3y )+3(x +2y )|≤|2(x -3y )|+|3(x +2y )|<2×12+3×16=32, ∴|x |<310. (2)∵x 4+16y 4-(2x 3y +8xy 3)=x 3(x -2y )-8y 3(x -2y )=(x -2y )(x 3-8y 3)=(x -2y )2(x 2+2xy +4y 2)=(x -2y )2[(x 2+2xy +y 2)+3y 2]≥0,∴x 4+16y 4≥2x 3y +8xy 3.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1. 证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1, 即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2 =⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a·a +n 2b ·b +p 2c ·c 2 =(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1. B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc . (1)解 令g (x )=2f (x )-x =2|x -1|-x =⎩⎪⎨⎪⎧x -2,x ≥1,-3x +2,x <1,当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)证明|x-1|-|x+5|≤|x-1-(x+5)|=6,又∵a,b,c>0,∴1a3+1b3+1c3+3abc≥331a3·1b3·1c3+3abc=3abc+3abc≥23abc·3abc=6,当且仅当a=b=c=1时取等号,∴|x-1|-|x+5|≤1a3+1b3+1c3+3abc.7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和.接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4, 即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43, 即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94.8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于|x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12,解得x ≥0. 综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a | ≤|x +a -x +1-a | =|a +1-a |=a +1-a , 当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a , 对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a ) =1+2 -⎝⎛⎭⎫a -122+14. ∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。
2018届高三数学文二轮复习课件全国通用方法突破 专题八 选修4系列 精品
3
【方法技巧】 解绝对值不等式的基本方法 (1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等 式; (2)当不等式两端均为正数时,可通过两边平方的方法,转化为解不含绝对值 符号的普通不等式; (3)利用绝对值的几何意义,数形结合求解.
解:(1)当a=2时,f(x)=|2x-2|+2.
解不等式|2x-2|+2≤6得-1≤x≤3.
因此f(x)≤6的解集为{x|-1≤x≤3}.
(2)当x∈R时,
f(x)+g(x)=|2x-a|+a+|1-2x|
≥|2x-a+1-2x|+a
=|1-a|+a,
当x= 1 时等号成立,所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a
3
联立
x2 x2
y2 y2
2 2
y
0, 3x
0,
解得
xy0, 0来自或x y
2 3. 2
,
所以 C2 与 C3 交点的直角坐标为(0,0)和( 3 , 3 ). 22
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
解:(2)曲线 C1 的极坐标方程为θ=α(ρ∈R,ρ≠0),其中 0≤α<π. 因此 A 的极坐标为(2sin α,α),B 的极坐标为(2 3 cos α,α). 所以|AB|=|2sin α-2 3 cos α|=4|sin(α- π )|.
3 当α= 5π 时,|AB|取得最大值,最大值为 4.
6
3.(2015·全国Ⅰ卷,理24)已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集;
2018届高考数学(文)二轮专题复习:第1部分 专题八 选考系列4-4、4-5 1-8-1
限时规范训练十九 坐标系与参数方程 限时30分钟,实际用时________ 分值40分,实际得分________解答题(本题共4小题,每小题10分,共40分)1.(2017·河南六市联考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =7cos α,y =2+7sin α(其中α为参数),曲线C 2:(x -1)2+y 2=1,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1的普通方程和曲线C 2的极坐标方程.(2)若射线θ=π6(ρ>0)与曲线C 1,C 2分别交于A ,B 两点,求|AB |.解:(1)因为曲线C 1的参数方程为⎩⎨⎧x =7cos α,y =2+7sin α(其中α为参数),所以曲线C 1的普通方程为x 2+(y -2)2=7. 因为曲线C 2:(x -1)2+y 2=1,所以把x =ρcos θ,y =ρsin θ代入(x -1)2+y 2=1, 得到曲线C 2的极坐标方程(ρcos θ-1)2+(ρsin θ)2=1, 化简得ρ=2cos θ.(2)依题意设A ⎝⎛⎭⎪⎫ρ1,π6,B ⎝ ⎛⎭⎪⎫ρ2,π6, 因为曲线C 1的极坐标方程为ρ2-4ρsin θ-3=0, 将θ=π6(ρ>0)代入曲线C 1的极坐标方程,得ρ2-2ρ-3=0,解得ρ1=3,同理,将θ=π6(ρ>0)代入曲线C 2的极坐标方程.得ρ2=3,所以|AB |=|ρ1-ρ2|=3- 3.2.(2017·武昌区调研)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α| =4⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.3.(2017·广东普宁模拟)在极坐标系中曲线C 的极坐标方程为ρsin 2θ=4cos θ,点M ⎝⎛⎭⎪⎫1,π2,以极点O 为原点,以极轴为x 轴正半轴建立直角坐标系.斜率为-1的直线l 过点M ,且与曲线C 交于A ,B 两点.(1)求出曲线C 的直角坐标方程和直线l 的参数方程. (2)求点M 到A ,B 两点的距离之积. 解:(1)令x =ρcos θ,y =ρsin θ,由ρsin 2θ=4cos θ,得ρ2sin 2θ=4ρcos θ, 所以y 2=4x ,所以曲线C 的直角坐标方程为y 2=4x , 因为点M 的直角坐标为(0,1),直线l 的倾斜角为3π4,故直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos 3π4,y =1+t sin 3π4,(t 为参数),即⎩⎪⎨⎪⎧x =-22t ,y =1+22t ,(t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =-22t ,y =1+22t ,(t 为参数)代入曲线C 的方程得⎝ ⎛⎭⎪⎫1+22t 2=4×⎝ ⎛⎭⎪⎫-22t , 即t 2+62t +2=0, Δ=(62)2-4×2=64,设A ,B 对应的参数分别为t 1,t 2,则⎩⎨⎧t 1+t 2=-62,t 1t 2=2,又直线l 经过点M ,故由t 的几何意义得点M 到A ,B 两点的距离之积|MA |·|MB |=|t 1||t 2|=|t 1·t 2|=2.4.(2017·黑龙江哈尔滨模拟)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数)以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求C 1的极坐标方程,C 2的直角坐标方程.(2)求C 1与C 2交点的极坐标(其中ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos ty =5+5sin t,消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,代入x 2+y 2-8x -10y +16=0,得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.因为曲线C 2的极坐标方程为ρ=2sin θ,变为ρ2=2ρsin θ,化为直角坐标方程为x 2+y 2=2y ,即x 2+y 2-2y =0.(2)因为C 1的普通方程为x 2+y 2-8x -10y +16=0,C 2的普通方程为x 2+y 2-2y =0,由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.。
2018届高考数学二轮复习专题八选做题课件(12张)
(β 为参数)上,对应参数分别为β =α 与
(2)将M到坐标原点的距离d表示为α 的函数,并判断M的轨迹是否过坐标原点.
考点训练
【考点二:不等式选讲】 (1)均值不等式的应用:a+b≥2 ������������(a>0,b>0) (2)利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c 证明不等式的基本方法:比较法、综合法、分析法 11.设函数 f(x)=|2x+1|-|x-4|. (1)解不等式 f(x)>2; (2)求函数 y=f(x)的最小值.
1 2 ������ +1 ������2 = 3 − 2������1 把点 A 的坐标代入圆 C 的方程得 m2=1,则 m=± 1. ������ 2 +1
������ +1
|������ |
������1 =
������ +1
������ +1
2018年高考真题文科数学分类汇编专题8选修系列
专题8选修系列(2018全国1卷)22. [选修4—4:坐标系与参数方程]在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)综上,所求的方程为.【解析】分析:(1)就根据,以及,将方程中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k所满足的关系式,从而求得结果.详解:(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.(2018全国1卷)23. [选修4–5:不等式选讲]已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.(2018全国2卷)22. [选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)【解析】分析:(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分与两种情况.(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关系,求得,即得的斜率.详解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0) 若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.(2018全国2卷)23. [选修4-5:不等式选讲]设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【答案】(1),(2)【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.详解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.(2018全国3卷)22. 选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】分析:(1)由圆与直线相交,圆心到直线距离可得。
2018届高考数学(文)二轮专题复习课件:第1部分 专题八 选考系列4-4、4-5 1-8-1
(Ⅰ卷) (Ⅰ卷) (Ⅰ卷) T23(参数方程与普通 T23(极坐标 T23(参数方程与 方程的互化、 极坐标方 与直角坐 普通方程的互 程与直角坐标方程的 标的互化 化、 极坐标方程 互化及应用) 以及极坐 与直角坐标方 (Ⅱ卷) 标方程的 程的互化、 三角 T23(极坐标方程与直 应用) 恒等变换) 角坐标方程互化及应 (Ⅱ卷) (Ⅱ卷) 用、 直线与圆的位置关 T23(参数方 T23(极坐标方程 系) 程和普通 与参数方程的 (Ⅲ卷) 方程的互 互化、 参数方程 T23(参数方程、极坐标 化、 三角函 的几何意义) 方程及点到直线的距 数的性质) 离、三角函数的最值)
x=x0+rcos θ, y=y0+rsin θ
(θ 为参数,0≤θ≤2π).
6.圆锥曲线的参数方程
x=acos θ, x2 y2 (1)椭圆a2+b2=1(a>b>0)的参数方程为 (θ 为参 y=bsin θ
数). a x=cos θ, x y (2)双曲线a2-b2=1(a>0,b>0)的参数方程为 (θ y=btan θ
分值:10 分. 题型:解答题. 题量:一大题. 难度:中档. 考点:极坐标 (方程)与直角坐 标(方程)互化, 参数方程与普 通方程互化, 其 中参数方程, 极 坐标方程与曲 线的综合是命 题热点.
选修 4-5
全国卷
(不等式选讲)
考情
预测 2014 2015 2018 2017 2018 分值: 10 分. 通过对近 5 年全 (Ⅰ卷) 题型:解答 国高考试题分 (Ⅰ卷) T23(绝对值 题. 析,可以预测: T24(绝对值不等 不等式的解 题量:一大 不等式选讲是高 (Ⅰ卷) (Ⅰ卷) 式的解法及分段 法,不等式 题. 考选考内容之一 T24(绝对值不等 T24(基本不等 函数的图象) 恒成立问题) 难度:中档. 命题的热点是绝 式的求解、 数形 (Ⅱ卷) 考点:绝对 对值不等式的求 式、函数最值) (Ⅱ卷) 结合求三角形 T24(含绝对值不 T23(不等式 值不等式的 解,以及绝对值 (Ⅱ卷) 面积公式) 等式的解法及比 的证明) 解法,不等 不等式与函数的 T24(绝对值的三 (Ⅱ卷) 角不等式、 基本 较法证明不等 (Ⅲ卷) 式的证 综合问题的求 T24(不等式的证 不等式、 一元二 式) T23(解含绝 明.其中绝 解. 明、 充要条件的 次不等式) (Ⅲ卷) 对值的不等 对值不等 此部分命题形式 判断) T24(绝对值不等 式,解集非 式,不等式 单一、稳定,备 式解法) 空转化为函 恒成立与函 考时应突出分类 数最值问题) 数的综合是 讨论,数形结合 命题的热点. 思想的应用
2018届高考数学(文)二轮复习专题突破(1-4)(16份含答案解析)(10)最新版
3.关于非零等差数列奇数项与偶数项的性质 (1)若项数为 2n,则 S 偶-S 奇=nd,SS奇偶=aan+n 1; (2)若项数为 2n-1,则 S 偶=(n-1)an,S 奇=nan,S 奇-S 偶=an, SS奇偶=n-n 1; (3)两个等差数列{an}、{bn}的前 n 项和 Sn、Tn 之间的关系为abnn =TS22nn--11.
(Ⅱ卷)
T5(等差 数列) T9(等比 数列)
通过对近 5 年全国高考试
(Ⅰ卷) T17(等差、 等比数列
求和) (Ⅱ卷) T17(等差数 列及求和) (Ⅲ卷) T17(等比数 列)
(Ⅰ卷) T17(等比、 等差数
列) (Ⅱ卷) T17(等差、 等比数
列) (Ⅲ卷) T17(数列 通项求
和)
分值:10~12 分. 题型:选择、填 空、解答. 题量:两小一大. 难度:中档题为 主. 考点:等差,等 比数列通项公 式,求和及性质; an 与 Sn 的递推关 系,裂项相消法, 错位相减法求 和.
解析:通解:求 a1a2…an 关于 n 的表达式 aa21+ +aa43=aa1+1+aa33·q=150,∴q=12 ∴a1+a1122=10,∴a1=8
当 n=3 或 n=4 时,-n22+7n最大为 6. ∴a1a2…an 的最大值为 26=64
,∴da=1=1-. 1,
∴a100=a1+99d=-1+99×1=98,选 C.
优解:设等差数列{an}的公差为 d,因为{an}为等差数列,且 S9=9a5=27,所以 a5=3.又 a10=8,解得 5d=a10-a5=5,所以 d =1,所以 a100=a5+95d=98,选 C.
ap·aq; (2)an=amqn-m;
2018届高考数学(文)二轮专题复习习题:第1部分 专题八 选考系列4-4、4-5 1-8-2
限时规范训练二十 不等式选讲限时30分钟,实际用时________分值40分,实际得分________解答题(本题共4小题,每小题10分,共40分)1.(2017·吉林长春调研)设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14. 解:(1)f (x )=⎩⎪⎨⎪⎧ 3x -3,x ∈[1,+,1-x ,x ∈-∞,当x ≥1时,由f (x )=3x -3≤1得x ≤43, 故1≤x ≤43; 当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1.所以f (x )≤1的解集M ={x |0≤x ≤43}. (2)证明:由g (x )=16x 2-8x +1≤4得16⎝ ⎛⎭⎪⎫x -142≤4, 解得-14≤x ≤34,因此N ={x |-14≤x ≤324}, 故M ∩N ={x |0≤x ≤34}. 当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14. 2.(2017·江南十校联考)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:|13a +16b |<14; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.解:(1)证明:设f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧ 3,x ≤-1-2x -1,-1<x <1-3,x ≥1由-2<-2x -1<0,解得-12<x <12,则M =⎝ ⎛⎭⎪⎫-12,12. 所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14. 因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.3.(2016·高考全国卷Ⅲ)f (x )=|2x -a |+a .(1)当a =2时,求不等式已知函数f (x )≤6的解集;(2)设函数g (x )=|2x -1|,当x ∈R 时,f (x )+g (x )≥3,求实数a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3. ① 当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以实数a 的取值范围是[2,+∞).4.(2017·高考全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解:(1)f (x )=⎩⎪⎨⎪⎧ -3 x <-1,2x -1, -1≤x ≤2,3, x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得 m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎪⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围为⎝⎛⎦⎥⎤-∞,54.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限时规范训练二十 不等式选讲
限时30分钟,实际用时________
分值40分,实际得分________
解答题(本题共4小题,每小题10分,共40分)
1.(2017·吉林长春调研)设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .
(1)求M ;
(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14
. 解:(1)f (x )=⎩⎪⎨⎪⎧ 3x -3,x ∈[1,+∞ ,1-x ,x ∈ -∞,1 .
当x ≥1时,由f (x )=3x -3≤1得x ≤43
, 故1≤x ≤43
; 当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1.
所以f (x )≤1的解集M ={x |0≤x ≤43
}. (2)证明:由g (x )=16x 2-8x +1≤4得16⎝ ⎛⎭
⎪⎫x -142≤4, 解得-14≤x ≤34,因此N ={x |-14≤x ≤324
}, 故M ∩N ={x |0≤x ≤34
}. 当x ∈M ∩N 时,f (x )=1-x ,于是
x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14
. 2.(2017·江南十校联考)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .
(1)证明:|13a +16b |<14
; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.
解:(1)证明:设f (x )=|x -1|-|x +2|
=⎩⎪⎨⎪⎧ 3,x ≤-1-2x -1,-1<x <1
-3,x ≥1
由-2<-2x -1<0,解得-12<x <12
,
则M =⎝ ⎛⎭
⎪⎫-12,12. 所以⎪⎪⎪⎪⎪⎪13a +16b ≤13
|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14
. 因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.
3.(2016·高考全国卷Ⅲ)f (x )=|2x -a |+a .
(1)当a =2时,求不等式已知函数f (x )≤6的解集;
(2)设函数g (x )=|2x -1|,当x ∈R 时,f (x )+g (x )≥3,求实数a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2.
解不等式|2x -2|+2≤6得-1≤x ≤3.
因此f (x )≤6的解集为{x |-1≤x ≤3}.
(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥
|2x -a +1-2x |+a =|1-a |+a ,
当x =12
时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3. ① 当a ≤1时,①等价于1-a +a ≥3,无解.
当a >1时,①等价于a -1+a ≥3,解得a ≥2.
所以实数a 的取值范围是[2,+∞).
4.(2017·高考全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|.
(1)求不等式f (x )≥1的解集;
(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.
解:(1)f (x )=⎩⎪⎨⎪⎧ -3 x <-1,2x -1, -1≤x ≤2,
3, x >2.
当x <-1时,f (x )≥1无解;
当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,
解得1≤x ≤2;
当x >2时,由f (x )≥1,解得x >2.
所以f (x )≥1的解集为{x |x ≥1}.
(2)由f (x )≥x 2-x +m ,得 m ≤|x +1|-|x -2|-x 2+x .
而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2
+|x |
=-⎝
⎛⎭⎪⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54
, 故m 的取值范围为⎝
⎛⎦⎥⎤-∞,54.。