投影 经典练习
投影专项练习-九年级数学下册基础知识专项讲练浙教版
专题3.1 投影(专项练习)一、单选题1.(2020·绵阳市富乐实验中学九年级期末)下列关于投影的说法中不正确的是()A.正午,上海中心大厦在地面上的投影是平行投影B.匡衡借光学习时,他在地面上的投影是中心投影C.三角形木板的正投影是一个点D.晚上,小强向路灯走去,他的影子越来越短2.(2020·广东佛山市·九年级月考)如图是小红在某天四个时刻看到一根木棒及其影子的情况,那么她看到的先后顺序是()A.①②③④B.④③①②C.④①③②D.②①③④3.(2020·甘州区碱滩镇中心学校九年级月考)如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是()A.②④①③B.①④③②C.②④③①D.①③②④4.(2021·全国九年级专题练习)如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为( )A.3B.5C.6D.71.65.(2020·广东揭阳市·九年级月考)身高米的小明同学利用相似三角形测量学校旗杆的1019高度,上午点,小明在阳光下的影长为米,此时测得旗杆的影长为米,则学校旗杆的高度是()91013.414.4A.米B.米C.米D.米6.(2020·银川唐徕回民中学九年级二模)如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( )A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长7.(2020·福建省沙县高砂中学九年级月考)如图所示,表示两棵小树在同一时刻阳光下的影子的图形可能是( )A.B.C.D.8.(2020·广西南宁市·九年级其他模拟)长方形的正投影不可能是( )A.正方形B.长方形C.线段D.梯形9.(2020·安徽淮南市·九年级其他模拟)下列现象不属于投影的是()A.皮影B.素描画C.手影D.树影10.(2020·陕西宝鸡市·九年级期末)如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是( )A.4.25m B.4.45m C.4.60m D.4.75m 11.(2019·广东深圳市·九年级期中)下列说法错误的是()A .高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长B .对角线互相垂直的四边形是菱形C .方程x 2=x 的根是x 1=0,x 2=1D .对角线相等的平行四边形是矩形二、填空题12.(2020·四川省新都县第四中学九年级期中)如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成角时,第二次是阳光60︒与地面成角时,两次测量的影长相差8米,则树高______米.(结果保留根号)30°13.(2020·全国九年级期末)一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为米,旗杆的影长为米,若小青的身高为米,则旗杆的高220 1.60度为__________米.14.(2020·河南平顶山市·九年级期末)如图,有一张直径为1.2米的圆桌,其高度()BC 为0.8米,同时有一盏灯距地面2米,圆桌在水平地面上的影子是,∥,A DE DE BC 和是光线,建立如图所示的平面直角坐标系,其中点的坐标是.那么点AD AE D (2,0)的坐标是_________.E15.(2020·深圳市龙岗区南湾街道沙湾中学九年级其他模拟)如图,小明在A 时测得旗杆的影长是2米,B 时测得旗杆的影长是8米,两次的日照光线恰好互相垂直,则旗杆的高度是______米.16.(2020·贵溪市第二中学九年级期末)如图是小孔成像原理的示意图,点与物体O 的距离为,与像的距离是,. 若物体的高度为,AB 30cm CD 14cm //AB CD AB 15cm 则像的高度是_________.CD cm17.(2019·渝中区·重庆巴蜀中学八年级期末)如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高,CD =1.2m ,(点A 、E 、C 在同一直线上).已知小明身高EF 是1.6m ,则楼高CE =0.6m CA =30m AB 为______m .1.8 18.(2019·陕西西安市·高新一中九年级月考)在某一时刻,测得一根高为m的竹竿的影长为3m,同时测得一根旗杆的影长为24m,那么这根旗杆的高度为_____m.19.(2019·全国九年级单元测试)在直角坐标平面内,一点光源位于A(0,5)处,线段CD 垂直于x轴,D为垂足,C(3,1),则CD在x轴上的影子长________,点C的影子E的坐标为________.20.(2019·全国九年级单元测试)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD 是水平的,在阳光的照射下,塔影DE留在坡面上.已知CD=12 m,DE=18 m,小明和小华的身高都是1.5 m,同一时刻小明站在E处,影子落在坡面上,影长为2 m,小华站在平地上,影子也落在平地上,影长为1 m,则塔高AB是__________米.21.(2018·山西实验中学九年级月考)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.三、解答题22.(2020·陕西西北工业大学附属中学九年级其他模拟)小华想用学过的测量知识来测量家门前小河BC的宽度:如图所示,他们在河岸边的空地上选择一点C,并在点C处安装了测倾器CD,选择了河对岸边的一棵大树,将其底部作为点B,顶部作为点A,现测得古树的项端A的仰角为37°,再在BC的延长线上确定一点F,使CF=5米,小华站在F处,测得小华的身高EF=1.8米,小华在太阳光下的影长FG=3米,此时,大树AB在太阳光下的影子为BF.已知测倾器的高度CD=1.5米,点G、F、C、B在同一水平直线上,且EF、CD、AB均垂直于BG,求小河的宽度BC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)23.(2020·湖南长沙市·九年级其他模拟)在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?参考答案1.C【分析】A B C由平行投影的定义判断,由中心投影的定义判断,由正投影的含义判断,由物体与D光源的远近判断投影的变化可判断.A解:太阳光下的投影是平行投影,故的说法正确;B匡衡借光中的光是灯光,灯光下的投影是中心投影,故的说法正确;C三角形木板的正投影不可能是一个点,故的说法不准确;D路灯下,离路灯越近,影子越短,故的说法正确;C故选:.【点睛】本题考查的是投影的定义,平行投影与中心投影,掌握以上知识是解题的关键,2.B【分析】根据平行投影中影子的变化规律:就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短再变长.解:根据平行投影的特点以及北半球影长的规律可知:从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知先后顺序是④③①②.故选:B.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.3.B【分析】根据影子变化的方向正好太阳所处的方向是相反的来判断,太阳从东方升起最后从西面落下确定影子的起始方向;太阳从东方升起最后从西面落下,木杆的影子开始时应该在西面,随着时间的变化影子逐渐的向北偏西,北偏东,正东方向的顺序移动,故它们按时间先后顺序进行排列为:①④③②,故选:B.【点睛】本题主要考查了平行投影的判定,准确分析判断是解题的关键.4.C【分析】利用中心投影,延长PA 、PB 分别交x 轴于A′、B′,作PE ⊥x 轴于E ,交AB 于D ,如图,证明△PAB ∽△PA′B′,然后利用相似比可求出A'B'的长.【详解】延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D,如图∵P (2,2),A (0,1),B (3,1).∴PD =1,PE =2,AB =3,∵AB ∥A ′B ′,∴△PAB ∽△PA ′B ′,∴,即AB AD A B AE =''312A B =''∴A ′B ′=6,故选:C .【点睛】本题考查了中心投影和三角形相似,引出辅助线利用三角形相似的性质求解是本题的关键.5.D【分析】同一时刻,物体的实际高度与影长成比例,据此列方程即可解答.【详解】∵同一时刻的物高与影长成正比例,∴1.6∶1=旗杆的高度∶9.∴旗杆的高度为14.4米.故选D.【点睛】本题主要考查了平行投影的知识点.6.B【分析】小亮由A 处径直路灯下,他得影子由长变短,再从路灯下到B 处,他的影子则由短【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.7.B【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【详解】A、影子的方向不相同,故本选项错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D、影子的方向不相同,故本选项错误;故选:B.【点睛】本题考查了平行投影特点,难度不大,注意结合选项判断.8.D【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得出答案.解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是梯形,故选:D.【点睛】此题主要考查了平行投影的性质,利用太阳光线是平行的,那么对边平行的图形得到的投影依旧平行是解题关键.9.B【分析】根据投影的概念,皮影、树影、手影都是由光线照射形成的,都是投影,而素描画不满足,不是投影,即可得到答案.【详解】根据平行投影的概念可知,素描画不是光线照射形成的,故选:B.【点睛】本题考查了投影的概念,掌握知识点是解题关键.【分析】此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】如图,设BD 是BC 在地面的影子,树高为x ,根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,10.8CB BD =∴BD=0.96,∴树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得,13.560.8x =∴x=4.45,∴树高是4.45m .故选B .【点睛】抓住竹竿的高与其影子的比值和树高与其影子的比值相同是关键.11.B【分析】根据中心投影的性质、菱形的判定定理、矩形的判定定理及解一元二次方程的方法对各选项进行判断即可.【详解】A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长,正确,不符合题意,B.对角线互相垂直且平分的四边形是菱形,故该选项错误,符合题意,C.方程x 2=x 的根是x 1=0,x 2=1,正确,不符合题意,D. 对角线相等的平行四边形是矩形,正确,不符合题意,故选B.【点睛】本题考查中心投影的性质、菱形和矩形的判定及解一元二次方程,熟练掌握相关性质及判定定理是解题关键.12.【分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.【详解】如图在中,设AB 为xRt ABC A ,tan ∠=AB ACB BC ∴,tan tan 60AB x BC ACB ==∠︒同理:,tan 30xBD =∵两次测量的影长相差8米,∴,8tan 30tan 60x x -=︒︒∴x =则树高为故答案为:【点睛】本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.13.16【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD ,∴,CE OA 16OA ,DE AB 220==解得OA=16.故答案为16.14.(4,0)【分析】先证明△ABC ∽△ADE ,再根据相似三角形的性质:相似三角形的对应高的比等于相似比求解即可.【详解】∵BC ∥DE ,∴△ABC ∽△ADE ,∴,20.8=2BC DE-∵BC=1.2,∴DE=2,∴E (4,0).故答案为:(4,0).【点睛】本题考查了中心投影,相似三角形的判定和性质,准确识图,熟练掌握相似三角形的对应高的比等于相似比是解题的关键.15.4【分析】如图,∠CPD=90°,QC=2m ,QD=8m ,利用等角的余角相等得到∠QPC=∠D ,则可判断Rt △PCQ ∽Rt △DPQ ,然后利用相似比可计算出PQ .【详解】解:如图,∠CPD=90°,QC=2m ,QD=8m,∵PQ ⊥CD ,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D ,∴Rt △PCQ ∽Rt △DPQ ,∴=PQ QC QD PQ 即,8=2PQ PQ ∴PQ=4,即旗杆的高度为4m .故答案为4.【点睛】本题主要考查了相似三角形的判定和性质的应用,也考查了平行投影,找准相似三角形是解答此题的关键.16.7【分析】根据三角形相似对应线段成比例即可得出答案.【详解】作OE ⊥AB 与点E ,OF ⊥CD 于点F根据题意可得:△ABO ∽△DCO ,OE=30cm ,OF=14cm ∴OE AB OF CD=即301514CD =解得:CD=7cm故答案为7.【点睛】本题考查的是相似三角形的性质,注意两三角形相似不仅对应边成比例,对应中线和对应高线也成比例,周长同样成比例,均等于相似比.17.21.2【解析】过点D 作DN ⊥AB ,可得四边形CDME 、ACDN 是矩形,即可证明△DFM ∽△DBN ,从而得出BN ,进而求得AB 的长.解:过点D 作DN ⊥AB ,垂足为N .交EF 于M点,∴四边形CDME 、ACDN 是矩形,∴AN=ME=CD=1.2m ,DN=AC=30m ,DM=CE=0.6m ,∴MF=EF-ME=1.6-1.2=0.4m ,依题意知EF ∥AB ,∴△DFM ∽△DBN , ,DM DN=MF BN 即:,解得:BN=20,0.630=0.4BN∴AB=BN+AN=20+1.2=21.2,答:楼高为AB 为21.2米.【点睛】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.18.14.4米【解析】根据同时同地物高与影长成正比列式计算即可得解.【详解】设旗杆高度为x 米,由题意得, 1.8324x 解得:x =14.4故答案为14.4.【点睛】考查平行投影,掌握同一时刻,物高与影长成比例是解题的关键.19. (,0)34154【解析】根据题意,结合图形,利用相似三角形△ECD ∽△EAO 的性质解答.【详解】如图:∵CD ⊥x 轴,∴CD ∥OA ,∴△ECD ∽△EAO ,∴DE :OE=CD :OA ,∵A (0,5),C 点坐标为(3,1),∴DE :(DE+3)=1:5,∴DE=,34∴CD 在x 轴上的影长为,点C 的影子的坐标为(,0).34154故答案是:,(,0).34154【点睛】此题考查了平面直角坐标系的知识,还考查了相似三角形的判定与性质,相似三角形的对应边成比例.20.22.5【分析】过D 点作DF ∥AE ,交AB 于F 点,设塔影留在坡面DE 部分的塔高AF =h 1,塔影留在平地BD 部分的塔高BF =h 2,再根据小明和小华的身高在斜面与平地上的影长特点分别求出h 1, h 2即可.【详解】过D 点作DF ∥AE ,交AB 于F 点,如图所示:设塔影留在坡面DE 部分的塔高AF =h 1,塔影留在平地BD 部分的塔高BF =h 2,则铁塔的高为h 1+h 2.∵h 1∶18 m =1.5 m ∶2 m ,∴h 1=13.5 m ;∵h 2∶6 m =1.5 m ∶1 m ,∴h 2=9 m.∴AB =13.5+9=22.5(m).∴铁塔的高度为22.5 m.【点睛】此题主要考查平行投影的应用,解题的关键是将影长分开两类进行计算.21.6+【解析】延长AC 交BF 延长线于D 点,则BD 即为AB 的影长,然后根据物长和影长的比值计算即可.【详解】延长AC 交BF 延长线于D 点,则∠CFE =30°,作CE ⊥BD 于E .在Rt △CFE 中,∠CFE =30°,CF =4,∴CE =2,EF =.在Rt △CED 中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE =2,CE :DE =1:2,∴DE =4,∴BD =BF +EF +ED =12+在Rt △ABD 中,AB BD (12+=612=12=故答案为(6)米.【点睛】本题考查了相似三角形的性质.解决本题的关键是作出辅助线得到AB 的影长.22.10米【分析】过点D 作DH ⊥AB 所在直线于点H ,可得四边形DCBH 是矩形,BC =DH ,BH =CD =1.5,设BC =DH =x,在Rt △ADH 中,用x 表示出AH ,再根据同一时刻物高与影长的比相等,列出等式即可求出小河的宽度BC .解:如图,过点D 作DH ⊥AB 所在直线于点H ,可得四边形DCBH 是矩形,∴BC =DH ,BH =CD =1.5,设BC =DH =x ,根据题意可知:在Rt △ADH 中,∠ADH =37°,∴AH =DH •tan 37°≈0.75x ,∴AB =AH +BH =0.75x +1.5,BF =FC +CB =5+x ,根据同一时刻物高与影长的比相等,∴,EF AB FG BF =∴,1.80.75 1.535x x +=+解得x =10,所以BC =10(米),答:小河的宽度BC 为10米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题、平行投影,解决本题的关键是设出未知数,利用同一时刻物高与影长的比相等建立方程.23.(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得=,DE=0.3,EH=0.18,进而可求大树的影长AF ,所以可求DE EH 10.6大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:=,DE =0.3,DE EH 10.6∴EH =0.3×0.6=0.18,∵四边形DGFH 是平行四边形,∴FH =DG =0.2,∵AE =4.42,∴AF =AE +EH +FH =4.42+0.18+0.2=4.8,∵=,AB AF 10.6∴AB ==8(米).4.80.6答:树的高度为8米.(3)由(2)可知:AF =4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.。
《好题》九年级数学下册第二十九章《投影与视图》综合经典练习卷(含答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26 B.38 C.54 D.562.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.3.如图所示的几何体的主视图是()A.B.C.D.4.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形5.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.56.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个7.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.8.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm29.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A .B .C .D .11.如图,水杯的俯视图是( )A .B .C .D .12.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 13.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )A .B .C .D .14.如图所示的立体图形的主视图是()A.B.C.D.二、填空题15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60 角时,第二次是阳光与地面成30角时,两次测量的影长相差8米,则树高______米.(结果保留根号)16.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是个__________.17.某几何体从三个方向看到的图形分别如图,则该几何体的体积为___________.18.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是__________.19.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为__________(结果保留π)20.如图,是一个几何体的三视图(含有数据)则这个几何体的侧面展开图的面积等于__.21.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.22.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影_________.(填长或短)23.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.24.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.25.以下给出的几何体:球、正方体、圆柱、圆锥中,主视图是矩形,俯视图是圆形的是_____.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.一个几何体的三种视图如图所示.(1)这个几何体的名称是 __,其侧面积为 __;(2)画出它的一种表面展开图;(3)求出左视图中AB的长.28.如图,AB和DE直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB影子长时,同时测量出EF=6m,计算DE的长.29.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.30.一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形的数字表示在该位置的小立方体块的个数,请画出从正面和从左面看到的这个几何体的形状图.【参考答案】一、选择题1.A2.C3.C4.D5.A6.A7.B8.B9.B10.C11.A12.A13.C14.A二、填空题15.【分析】设出树高利用所给角的正切值分别表示出两次影子的长然后作差建立方程即可【详解】如图在中设AB为x∴同理:∵两次测量的影长相差8米∴∴则树高为米故答案为:【点睛】本题考查了平行投影的应用太阳光线16.5【分析】根据俯视图打地基主视图疯狂盖左视图拆违章的原则解答可得【详解】几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5故答案为:5【点睛】本题考查学生对三视图的掌握程度和灵活运用能力17.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定18.2【解析】考点:由三视图判断几何体分析:由主视图可得长方体的高和底面正方形的对角线长利用勾股定理即可求得长方体的底面边长解答:解:∵主视图的长为2俯视图为正方形∴长方体的底面边长为2÷=2∵主视图的19.081π【解析】如图由题意可知DE是☉O1的直径BC是☉O2的直径AO2⊥DE于O1AO2⊥BC于O2DE=12AO2=3O1O2=1∴DE∥BCAO1=2∴△ADE∽△ABC∴即∴BC=18∴O220.【解析】易得此几何体为圆柱底面直径为1高为2圆柱侧面积=底面周长×高代入相应数值求解即可解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积=π×1×2=2π故答案为2π21.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R22.长【解析】中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的影子短离点光源远的物体它的影子长据此判断即可解:中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的23.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD=DE=17m在Rt△MNF中MN=NF24.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯25.圆柱【分析】根据三视图的基本知识分析各个几何体的三视图然后可解答【详解】解:俯视图是圆的有球圆柱圆锥主视图是矩形的有正方体圆柱故答案为:圆柱【点睛】本题考查了简单几何体的三视图熟记简单几何的三视图是26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×3×3=36个小正方体,∴至少还需要36-10=26个小正方体.故选:A.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.2.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.3.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.4.D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.5.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.6.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A .【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征. 7.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形. 故选B .【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.8.B解析:B【解析】【分析】先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论.【详解】解:如图所示:∵AC ⊥OB ,BD ⊥OB ,∴△AOC ∽△BOD , ∴OA AC OB BD =,即112BD=, 解得:BD =2m , 同理可得:AC ′=0.5m ,则BD ′=1m ,∴S 圆环形阴影=22π﹣12π=3π(m 2).故选B .【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.9.B解析:B【详解】解:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第,三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.考点:由三视图判断几何体.10.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 11.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.12.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.13.C解析:C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C .【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键. 14.A解析:A【解析】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线且为实线,故选A . 点睛:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.二、填空题15.【分析】设出树高利用所给角的正切值分别表示出两次影子的长然后作差建立方程即可【详解】如图在中设AB 为x ∴同理:∵两次测量的影长相差8米∴∴则树高为米故答案为:【点睛】本题考查了平行投影的应用太阳光线 解析:43【分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.【详解】如图在Rt ABC 中,设AB 为xtan ∠=AB ACB BC , ∴tan tan 60AB x BC ACB ==∠︒,同理:tan 30x BD =, ∵两次测量的影长相差8米,∴8tan 30tan 60x x -=︒︒, ∴43x ,则树高为43米.故答案为:43.【点睛】本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案. 16.5【分析】根据俯视图打地基主视图疯狂盖左视图拆违章的原则解答可得【详解】几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5故答案为:5【点睛】本题考查学生对三视图的掌握程度和灵活运用能力解析:5【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【详解】几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故答案为:5.【点睛】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案. 17.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定解析:3π.【分析】由三视图可得这个几何体为圆柱,利用圆柱的体积公式求解即可.【详解】由三视图可得,此几何体为圆柱,所以圆柱的体积为3×π•(22)2=3π, 故答案为3π.【点睛】 本题考查了与三视图有关的计算,根据三视图确定这个几何体为圆柱是解决问题的关键. 18.2【解析】考点:由三视图判断几何体分析:由主视图可得长方体的高和底面正方形的对角线长利用勾股定理即可求得长方体的底面边长解答:解:∵主视图的长为2俯视图为正方形∴长方体的底面边长为2÷=2∵主视图的 解析:2【解析】考点:由三视图判断几何体.分析:由主视图可得长方体的高和底面正方形的对角线长,利用勾股定理即可求得长方体的底面边长.解答:解:∵主视图的长为,俯视图为正方形,∴长方体的底面边长为=2,∵主视图的高就是几何体的高,∴这个长方体的高和底面边长分别是3,2.点评:用到的知识点为:主视图反映几何体的长与高,注意物体摆放位置的不同得到主视图的形状也不同.19.081π【解析】如图由题意可知DE 是☉O1的直径BC 是☉O2的直径AO2⊥DE 于O1AO2⊥BC 于O2DE=12AO2=3O1O2=1∴DE ∥BCAO1=2∴△ADE ∽△ABC ∴即∴BC=18∴O2 解析:0.81π【解析】如图,由题意可知,DE 是☉O 1的直径,BC 是☉O 2的直径,AO 2⊥DE 于O 1,AO 2⊥BC 于O 2,DE=1.2,AO 2=3,O 1O 2=1,∴DE ∥BC ,AO 1=2,∴△ADE ∽△ABC, ∴12AO DE BC AO =,即1.223BC =, ∴BC=1.8,∴O 2C=0.9,∴S ☉O2=2(0.9)0.81ππ⋅=.点睛:本题解题的关键是作出如图所示的辅助线,这样即可构造出:△ADE∽△ABC,再利用相似三角形对应高之比等于相似比即可求得BC的长,从而即可得到☉O2的半径,使问题得到解决.20.【解析】易得此几何体为圆柱底面直径为1高为2圆柱侧面积=底面周长×高代入相应数值求解即可解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积=π×1×2=2π故答案为2π解析:【解析】易得此几何体为圆柱,底面直径为1,高为2.圆柱侧面积=底面周长×高,代入相应数值求解即可.解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×1×2=2π.故答案为2π.21.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R解析:6【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得ED DCDC FD;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD,即DC2=ED×FD,代入数据可得DC2=36,DC=6,故答案为6.22.长【解析】中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的影子短离点光源远的物体它的影子长据此判断即可解:中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的解析:长【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以小明的投影比小华的投影长.综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短23.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD =DE=17m在Rt△MNF中MN=NF解析:3【分析】如图,由题意证明AB=EB,AB=BF,推出DB=AB﹣1.7,BN=AB﹣1.5,根据DN=2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt△CDE中,CD=DE=1.7m,在Rt△MNF中,MN=NF=1.5m,∵∠CDE=∠MNF=90°,∴∠E=∠F=45°,∵AB⊥EF,∴AB=EB=BF,∴DB=AB﹣1.7,BN=AB﹣1.5,∵DN=2.8m,∴2AB﹣1.7﹣1.5=2.8,∴AB=3(m),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.24.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n 的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯 解析:18【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有2327++=个,第二层最多有2327++=个,第三层最多有2024++=个则n 的最大值是77418++=故答案为:18.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键. 25.圆柱【分析】根据三视图的基本知识分析各个几何体的三视图然后可解答【详解】解:俯视图是圆的有球圆柱圆锥主视图是矩形的有正方体圆柱故答案为:圆柱【点睛】本题考查了简单几何体的三视图熟记简单几何的三视图是 解析:圆柱.【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.【详解】解:俯视图是圆的有球、圆柱、圆锥,主视图是矩形的有正方体、圆柱,故答案为:圆柱.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题27.(1)正三棱柱,72;(2)见解析;(3)23【分析】(1)由三视图可知,该几何体为正三棱柱,再根据正三棱柱侧面积计算公式计算可得; (2)画出正三棱柱的展开图即可;(3)在EFG ∆中,作EH FG ⊥于点H ,根据勾股定理求出EH ,即可得到AB .【详解】解:()1由三视图可知,该几何体为正三棱柱;这个几何体的侧面积为36472⨯⨯=;故答案为:正三棱柱;72.()2展开图如下:()3在EFG ∆中,作EH FG ⊥于点H ,则2FH =,224223EH =-=AB ∴长23【点睛】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图,属于中考常考题型.28.(1)详见解析;(2)10m【分析】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影;(2)易证△ABC∽△DEF,再根据相似三角形的对应边成比例进行解答即可.【详解】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE,∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴AB:DE=BC:EF,∵AB=5m,BC=3m,EF=6m,∴5:DE=3:6,∴DE=10m.【点睛】本题主要考查相似三角形的应用,解此题的关键在于熟练掌握相似三角形的判定与性质. 29.见解析【分析】根据几何体的三视图的性质作图即可.【详解】如图所示,即为所求.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.30.答案见解析.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【详解】解:作图如下:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.。
《机械识图》点线面投影练习
《点线面投影》练习卷
班级姓名
一、根据点的两面投影,求第三面投影。
二、根据点的坐标,求点的三面投影。
已知A(20,15,25)B(30,10,20)C(5,5,5)D(18,25,15)
(一)(二)
三、已知直线的两面投影,求第三面,并填空。
直线AB对V面直线CD对V面
直线AB对H面直线CD对H面
直线AB对W面直线CD对W面
直线AB是线直线CD是线反映实长的投影为反映实长的投影为
直线EF对V面直线GH对V面
直线EF对H面直线GH对H面
直线EF对W面直线GH对W面
直线EF是线直线GH是线反映实长的投影为反映实长的投影为
四、根据平面的两面投影,求第三面投影,并填空。
平面ABC对V面平面DEF对V面
平面ABC对V面平面DEF对V面
平面ABC对V面平面DEF对V面
平面ABC 是面平面DEF 是面
实形实形
平面ABC 对V 面 平面对V 面 平面ABC 对V 面 平面对V 面 平面ABC 对V 面 平面对V 面 平面ABC 是 面
平面是 面 实形 实形。
投影与视图练习题
投影与视图练习题1. 如图是六个棱长为1的立方块组成的 一个几何体,其俯视图的面积是( ) A .6 B .5 C .4 D .32. 一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 个.A 6个B 5个C 3个D 4个3. 在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是 ( )4. 下面四个几何体中,俯视图为四边形的是5. 如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的主视图是 ( )6. (2011湖北襄阳)有一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有A .3块B.4块C .6块D .9块AB C DA B DC 主视图 左视图主视图左视图俯视图7如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是( )A . 3个B . 4个C . 5个D . 6个8.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( )9. (2011山东泰安)下列几何体:其中,左视图是平等四边形的有( )A.4个B.3个C. 2个D.1个`10.如图是由一些大小相同的小立方体组成的几何体的主视图和左视图, 则组成这个几何体的小立方体的个数不可能是( )A .3个B .4个C . 5个D .6个11. (2011山东烟台)从不同方向看一只茶壶,你认为是俯视效果图的是( )12. (2011浙江杭州)如图是一个正六棱柱的主视图和左视图,则图中的a =( )A .BC .2D .113. (2011浙江绍兴)由5个相同的正方体搭成的几何体如图所示,则它的左视图是( )A B CD三棱柱 圆锥 圆柱 长方体 主视方向14.下列四个几何体中,主视图是三角形的是( )15. (2011浙江温州)如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是( )16. (2011浙江)如图,下列水平放置的几何体中,主视图不是..长方形的是()17. (2011浙江省嘉兴)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ) (A)两个外离的圆 (B )两个外切的圆(C)两个相交的圆(D )两个内切的圆18. (2011江西)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).19. (2011甘肃兰州)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是A .B .C .D .20. (2011组成的立体图形,它的左视图是( )A .BC .D . 主视方向主视方向A B C D21 1 121. 右图是一个几何体的三视图,则这个几何体是A .圆锥B .圆柱C .长方体D . 球体22. (2011山东聊城)如图,空心圆柱的左视图是( )23. 由n 个相同的小正方体堆成的几何体,其视图如下所示,则n 的最大值是( )A .18B .19C .20D .2124. 由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是ABCD25. 如图所示的几何体的主视图是( )26. (2011重庆綦江)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是A .B .C .D . 27 (2011江苏)如图所示的几何体的主视图是( )俯视图左视图主视图主视图 俯视图A .BCD12213A.B. C. D.28. (2011江苏南通)下列水平放置的几何体中,俯视图是矩形的是29. (2011四川绵阳)由四个相同的小正方体搭建了一个积木,它的三视图如右图所示,则这个积木可能是30. (2011四川乐山)如图(2),在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是AB 、BB 1、BC 的中点,沿EG 、EF 、FG 将这个正方体切去一个角后,得到的几何体的俯视图是31. (2011四川凉山州)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( )A .66B .48 C.36 D .5732. (2011湖北武汉市)右图是某物体的直观图,它的俯视图是D .AB C D33. (2011湖北黄石)如图(1)所示的几何体的俯视图是34. 如图是一个几何体的实物图,则其主视图是( )A .B .C .D .35. (2011广东肇庆)如图是一个几何体的实物图,则其主视图是36. (2011湖南永州)如图所示的几何体的左视图是( )A B C D37. (2011山东)一个几何体的三视图如图所示,那么这个几何体是( )38. (2011内蒙古乌兰察布)如图是由五个相同的小正方体搭成的几何体,它的主视图是( )ACBD正面DC BAA B C D39.(2011重庆市潼南)如图,在四个几何体中,主视图与其它几何体的主视图的形状不同的是40. (2011安徽)下图是五个相同的小正方体搭成的几何体,其左视图是( )C . 41. (2011广东湛江)下面四个几何体中,主视图是四边形的几何体有圆锥 圆柱 球 正方体 A 1个 B 2个 C 3个 D 4个42.(2011湖北宜昌)一个圆锥体按如图所示摆放,它的主视图是( ).43.一个几何体的三视图如图所示,那么这个几何体是()44. 下图所示几何体的主视图是( )A .B . 6题图A C 正面45. (2011山东)如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中; 共有1个小立方体,其中1个看得见,0个看不见;如图②中;把共有8个小立方体,其中7个看得见,1个看不见;如图③中;共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有______________个河南省中考.1.(07年)由一些大小相同的小正方体组成的几何 体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )2.(08年)如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,其俯视图是【 】3.(09)6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为【 】 (A )3 (B ) 4(C) 5 (D)6 4.(10河南省)13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为______________.5.(2011河南省)14.如图是一个几何体的三视图, 根据图示的数据可计算出该几何体的表面积为 .6 (2011广东广州市)5个棱长为1的正方体组成如图5的几何体. (1)该几何体的体积是 (立方单位), 表面积是 (平方单位) (2)画出该几何体的主视图和左视图AB C D图①图② A B C D(第13题)主视图 左视图正面。
地图投影判别(练习题)
进阶练习题
2. 如何判断地图投影的类型?
答案:判断地图投影的类型可以通过观察地图上的经纬线形状和分布特点。例如,如果经纬线呈现为直线或近似直线,并且 没有明显的角度或面积变形,则可能是方位投影或圆柱投影;如果经纬线呈现为曲线或折线,并且有明显的角度或面积变形 ,则可能是圆锥投影或多圆锥投影。
进阶练习题
研发更精确的投影算法
随着地理信息系统(GIS)和遥感技术的发展,对地图投 影的精度要求越来越高,需要研发更精确的投影算法以满 足实际需求。
探索新型投影方式
目前常见的投影方式有等角投影、等面积投影和任意投影 等,未来可以探索更多新型的投影方式,以满足不同应用 场景的需求。
考虑地球模型的影响
地球是一个近似于椭球的球体,不同的地球模型对地图投 影的结果会产生影响,未来需要深入研究地球模型对地图 投影的影响,以提高投影精度。
1. 什么是地图投影?
答案:地图投影是将地球表面上的经纬网按照一定的数学法则转绘到平 面上的过程。
2. 地图投影有哪些基本类型?
基础练习题
答案
地图投影的基本类型包括方位投影、圆柱投影、圆锥投影和多圆锥投影等。
答案
等角投影是指保持角度不变的投影方式,其特点是变形小,但面积和长度变形 较大;等面积投影是指保持面积不变的投影方式,其特点是面积不变,但角度 和长度变形较大。
3. 如何纠正地图投影变形?
答案:纠正地图投影变形的方法包括多项式映射、共形映射和物理映射等。具体方法是根据地图的具 体情况和需求,选择合适的纠正方法,对原始地图进行投影变换,以减小或消除投影变形。
进阶练习题
4. 如何应用地图投影于实际工作?
答案:地图投影在实际工作中的应用非常广泛,例如在地理 信息系统、导航、气象预报、军事指挥等领域中都需要用到 地图投影。通过选择合适的地图投影,可以更好地满足实际 工作的需求,提高地图的精度和使用价值。
投影与视图练习题及答案
一、选择题(每小题3分,共36分)1.下列各种现象属于中心投影现象的是( B )A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子2.在北京阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长度的变化规律为( B )A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律3.下列投影一定不会改变△ABC的形状和大小的是( D )A.中心投影B.平行投影C.正投影D.当△ABC平行于投影面时的正投影4.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是( A )A.长方体B.四棱锥C.三棱锥D.圆锥5.下列立体图形中,主视图为矩形的是( C )6.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离( D )A.始终不变B.越来越远C.时近时远D.越来越近7.(2021河口期末)如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( C )8.(2022东营育才学校模拟)由四个正方体组成的图形如图所示,观察这个图形,不能得到的平面图形是( D )A B C D9.一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体最少为( B )第9题图A.4个B.5个C.6个D.7个10.已知圆锥的三视图如图所示,则这个圆锥的体积为( C )第10题图A.36π cm3B.24π cm3C.12π cm3D.8π cm311.(2020宁夏)如图所示,图②是图①长方体的三种视图,若用S表示面积,S主=a2,S左=a2+a,则S俯表示为( A )第11题图A.a2+aB.2a2C.a2+2a+1D.2a2+a12.骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三种视图如图所示.已知图中所标注的是部分面上的数字,则“※”所代表的数字是( A )第12题图A.4B.5C.2D.6二、填空题(每小题3分,共18分)13.如图所示,地面A处有一支燃烧的蜡烛(长度不计),一个人在A处与墙BC之间运动,则他在墙上的投影长度随着他离墙的距离变小而变小.(填“变大”“变小”或“不变”)第13题图14.四个直立在地面上的艺术字母的投影(阴影部分)效果如图所示,在艺术字母“L,K,C”的投影中,与艺术字母“N”属于同一种投影的有L,K .第14题图15.由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图如图所示,则搭建这个几何体所需要的小正方体的个数至少为 6 .第15题图16.已知李明的身高为1.8 m,他在路灯下的影长为2 m,李明距路灯灯杆底部为3 m,则路灯灯泡距地面的高度为 4.5 m.17.(2020怀化)一个几何体的三种视图如图所示,根据图中所示数据求得这个几何体的侧面积是24π cm2.(结果保留π)第17题图18.(2022博山模拟)一块直角三角形板ABC如图所示,∠ACB=90°, BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为8√13cm.第18题图三、解答题(共46分)19.(6分)画出如图所示组合体的三种视图.解:如图所示.20.(6分)晚上,小华在舞蹈室发现镜子反射灯光形成了教练的影子,如图所示,小丽的影子是在灯光下形成的,你能确定灯泡的位置吗?你能画出小华的影子吗?解:如图所示,点M即为灯泡的位置,小华的影子如图所示.21.(10分)已知一几何体的三视图如图所示.(1)写出这个几何体的名称;(2)画出它的表面展开图;(3)根据图中所给的数据,求这个几何体的表面积.(结果保留π)解:(1)这个几何体是圆柱.(2)它的表面展开图如图所示.(3)这个几何体的表面积为2π×(8÷2)×16+π×(8÷2)2×2= 128π+32π=160π(cm2).22.(12分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2 m,且AC=17.2 m,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10 m,现有一只小猫睡在台阶的MN这层上晒太阳.(1)楼房的高度约为多少米?(结果精确到0.1 m)(2)过了一会儿,当α=45°时,说明小猫能不能晒到太阳.(参考数据:√3≈1.73)解:(1)当α=60°时,在Rt△ABE中,∵tan 60°=ABAE =AB 10,∴AB=10·tan 60°=10√3≈10×1.73=17.3(m).即楼房的高度约为17.3 m.(2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,如图所示,过点B的光线与地面AD的交点为点F,与MC的交点为点H.∵∠BFA=45°,∴tan 45°=ABAF=1.此时的影长AF=AB=17.3 m.∴CF=AF-AC=17.3-17.2=0.1(m).∴CH=CF=0.1 m<0.2 m.∴大楼的影子落在台阶MC这个侧面上.∴小猫能晒到太阳.23.(12分)某数学兴趣小组利用树影测量树高,如图①所示,已测出树AB的影长AC为12 m,并测出此时太阳光线与地面成30°夹角.(以下计算结果精确到1 m,√2≈1.4,√3≈1.7,√6≈2.4)(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变(用图②解答):①求树与地面成45°角时的影长;②求树的最大影长.=4√3≈7(m).解:(1)AB=AC·tan 30°=12×√33(2)①如图所示,过点B1作B1N⊥AC1于点N.则AN=B1N=AB1×sin 45°=4√3×√2=2√6≈5(m);2NC1=NB1·tan 60°=2√6×√3≈8(m);∴AC1=AN+NC1=5+8=13(m).即树与地面成45°角时的影长约为13 m.②如图所示,当树与地面成60°角时影长最大,最大为AC2的长度(或树与光线垂直时影长最大),AC2=2AB2≈14 m.故树的最大影长约为14 m.。
2021学年初中数学《投影》同步练习(一)含答案及解析
2021学年初中数学《投影》同步练习(一)含答案及解析姓名:__________ 班级:__________考号:__________一、填空题(共8题)1、小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长为_____米.2、如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上的投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”).3、小明同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时,与他相邻的一棵小树的影长为3.6米,则这棵树的高度为米。
4、某一时刻,身高为165cm的小丽影长是55cm,此时,小玲在同一地点测得旗杆的影长为5m,则该旗杆的高度为m。
5、如图,小丽和小华在院子内捉迷藏游戏,院内有3堵墙,现在小丽站在O点,小华如果不想被小丽看见,则不应该站在的区域是.6、高4米的旗杆在水平地面的影长为10米,此时测得附近一棵小树的影长为22.5米,则这棵树的高度为_______________。
7、在上午的某一时刻身高1.7米的小刚在地面上的投影长为3.4米,小明测得校园中旗杆在地面上的影子长16米,还有2米影子落在墙上,根据这些条件可以知道旗杆的高度为_________________米。
8、如图所示是一球吊地空中,当发光的手电筒由远及近时,•落在竖直木板上的影子会逐渐_________.二、选择题(共10题)1、张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为()A、3.2米B、4.8米C、5.2米D、5.6米2、如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )A.①②③④ B.④①③② C.④②③① D.④③②①3、如图所示,在房子外的屋檐E处安有一台监视器,房子前有一块落地的广告牌,那么监视器的盲区在( )A.△ACE B.△BFD C.四边形BCED D.△ABD4、某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是()5、电影院呈阶梯或下坡形状的主要原因是( )A.为了美观B.盲区不变C.增大盲区D.减小盲区6、下列四幅图形中, 表示两棵小树在同一时刻阳光下的影子的图形可能是( )7、如图,晚上小明在路灯下散步,在小明由A处走到B处这一过程中,他在路上的影子( )A.逐渐变短 B.逐渐变长C.先变短后变长 D.先变长后变短8、下面哪个图能近似反映上午九点北京天安门广场上的旗杆与影子的位置关系( )9、下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间先后顺序正确的是()A.a→b→c→d B.d→b→c→aC.c→d→a→b D.a→c→b→d10、中午12点,身高为165cm的小明的影长为55cm,同学小红此时的影长为60cm,那么小红的身高为( )A.180cm B.175cm C.170cm D.160cm三、计算题(共2题)1、电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM = 1. 6 m,DN = 0. 6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子。
投影基础知识考试练习题
投影基础知识考试练习题一、选择题1. 投影是指将三维物体映射到二维平面上。
那么以下哪个选项最能够准确地描述投影的特点?A. 投影是一种将物体从三维空间映射到二维平面的方法。
B. 投影是一种将物体从二维平面映射到三维空间的方法。
C. 投影是一种将物体从平面映射到曲面的方法。
D. 投影是一种将物体从曲面映射到平面的方法。
2. 在投影中,视点的位置对投影结果有重要影响。
以下哪个选项最能够准确地解释视点的作用?A. 视点决定了投影的方向和大小。
B. 视点决定了投影的颜色和纹理。
C. 视点决定了投影的形状和尺寸。
D. 视点决定了投影的位置和角度。
3. 在投影中,投影平面的选择会影响投影结果的形状和特征。
以下哪个选项最能够准确地描述投影平面的选择原则?A. 投影平面应尽可能与物体垂直,以保持准确的比例关系。
B. 投影平面应与物体平行,以保持投影结果的形状一致。
C. 投影平面的选择不影响投影结果的形状和特征。
D. 投影平面的选择主要根据美观和实际需求来确定。
4. 在投影中,投影类型的选择会决定投影结果的表现形式。
以下哪个选项最能够准确地解释投影类型的选择原则?A. 投影类型的选择应根据物体的形状和结构来确定。
B. 投影类型的选择应根据投影平面的位置和角度来确定。
C. 投影类型的选择应根据投影结果的需求和用途来确定。
D. 投影类型的选择不会影响投影结果的表现形式。
二、判断题1. 在投影中,正交投影和透视投影是两种不同的投影类型。
( √ / × )2. 正交投影中,物体在投影平面上的形状和大小与物体的实际形状和大小一致。
( √ / × )3. 透视投影中,物体在投影平面上的形状和大小与物体的实际形状和大小不一致。
( √ / × )4. 在投影中,投影平面与物体垂直时,投影结果会出现形变。
( √ / × )三、简答题1. 解释正交投影和透视投影的区别。
正交投影是一种将物体从三维空间映射到二维平面的投影方式,它保持了物体在投影平面上的形状和大小与物体实际形状和大小一致。
专题训练:平行投影、中心投影、正投影四种常见应用(含答案)
专训1 平行投影、中心投影、正投影四种常见应用名师点金:1.平行投影的投影线是平行的,在同一时刻物体的影长与物高成正比例;中心投影的投影线相交于一点,在同一时刻物体的影长与物高不一定成正比例.2.平行投影在同一时刻的影子总在同一方向;中心投影在同一时刻的影子不一定在同一方向.3.正投影是投影线垂直于投影面的平行投影.利用平行投影与中心投影的定义判断投影1.如图,下列判断正确的是()A.图①是在阳光下的影子,图②是在灯光下的影子B.图②是在阳光下的影子,图①是在灯光下的影子C.图①和图②都是在阳光下的影子D.图①和图②都是在灯光下的影子2.下列四幅图中,表示两棵小树在灯光下的影子的可能是()利用平行投影与中心投影的特征作图3.如图①②分别是两棵树及其影子的情形.(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?(2)你是用什么方法判断的?(3)请分别画出图中表示小丽影子的线段.正投影的识别与画法4.如图,若投影的方向如箭头所示,则图中物体的正投影是()(第4题)平行投影的实际应用5.(2016·天门)如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地(第5题)面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高________米.(结果保留根号)6.如图,一位同学身高1.6 m,晚上站在路灯下A处,他在地面上的影长AB是2 m,若他沿着影子的方向移动2 m站在B处时,影长增加了0.5 m,求路灯的高度.参考答案1.B 点拨:题图①中影子的方向不同,是在灯光下的影子;题图②中影子的方向相同,且影长与树高成正比,是在阳光下的影子.2.B3.解: (1)题图②反映了阳光下的情形,题图①反映了路灯下的情形.(2)题图①中过影子顶端与树顶端的直线相交于一点,符合中心投影的特点,因此题图①反映了路灯下的情形;题图②中过影子顶端与树顶端的直线平行,符合平行投影的特点,因此题图②反映了阳光下的情形.(3)路灯下小丽的影子如图①所示,表示影子的线段为AB ;阳光下小丽的影子如图②所示,表示影子的线段为CD .(第3题)4.C 5.4 36.解:设路灯高为x m ,OC =y m ,由题意知当人在A 点时,影长AB =2 m ;当人在B 点时,影长BC =(2+0.5)m .易知x 1.6=OC BC ,x 1.6=OB AB, 则⎩⎨⎧x 1.6=y2+0.5,x 1.6=y -2.52,解得⎩⎪⎨⎪⎧x =8,y =12.5. 即路灯的高度为8 m .。
(必考题)初中九年级数学下册第二十九章《投影与视图》经典练习(含答案解析)
一、选择题1.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 2.如图所示的几何体的俯视图是( )A .B .C .D . 3.如图所示的几何体的主视图是( )A .B .C .D . 4.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?( )A .12个B .13个C .14个D .15个5.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A.4个B.5个C.6个D.7个6.如图,该几何体的俯视图是()A.B.C.D.7.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时8.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近9.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱10.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:911.如图所示的几何体的左视图是()A.B.C.D.12.如图所示几何体的左视图是()A.B.C.D.13.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.14.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.15.如图所示的立体图形的主视图是()A.B.C.D.二、填空题16.一般把物体从正面看到的视图叫主视图,从左面看到的视图叫左视图,从上面看到的视图叫俯视图,一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为______.17.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)18.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.19.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.20.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是__________.21.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.22.一个用小立方块搭成的几何体的主视图和左视图都是图15,这个小几何体中小立方块最少有________块.23.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.①小狗先是站在地面上看;②然后抬起了前腿看;③唉,还是站到凳子上看吧;④最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序,把下面四幅图片按对应字母正确排序为_________________.24.如图,体育兴趣小组选一名身高1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测得该同学的影长为1.2m,另一部分同学测得同一时刻旗杆影长为9m,那么旗杆的高度是__m.25.几个相同的正方体叠合在一起,该组合体的主视图和俯视图如右图所示,那么组合体中正方体的个数至多有________个.26.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,45EF cm EG cm12,18∠=︒,则AB的长为_____cm.EFG参考答案三、解答题27.如图所示为一个上、下底密封纸盒的三视图,请描述图中所表示的几何体.并根据图中数据,计算这个密封纸盒的表面积.28.正方体是特殊的长方体,又称“立方体”、“正六面体”.(1)用一个平面去截一个正方体,截面可能是几边形?(写出至少两种情况)(2)下图是由几个小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数.请你画出这个几何体的主视图、左视图.29.阅读材料,解决下面的问题:(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体.①它是正面体,有个顶点,条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm,该正多面体的体积为 cm3;(2)如图3,用6个棱长为1的小正方体搭成一个几何体.小明要再用一些完全相同的小正方体搭一个几何体.若要使新搭的几何体恰好能与原几何体拼成一个无空隙的正六面体,则小明至少需要个小正方体,他所搭几何体的表面积最小是;(3)小华用4个棱长为1的小正四面体搭成一个如图4所示的造型,可以看做是一个不完整的大四面体.小华发现此造型中间空缺部分也是一个柏拉图体!请写出该柏拉图体的名称:.30.画出下面图形的三视图.(请把线条加粗加黑!)。
投影与视图练习题(及答案)
投影与视图 练习题(二)一、细心填一填(每题3分,共36分)1.举两个俯视图为圆的几何体的例子 , 。
2.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称 。
3.请将六棱柱的三视图名称填在相应的横线上.4.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有__________个碟子。
5.当你走向路灯时,你的影子在你的 ,并且影子越来越 。
6.小明希望测量出电线杆AB 的高度,于是在阳光明媚的一天,他在电线杆旁的点D 处立一标杆CD ,使标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一直线上),量得ED =2米,DB =4米,CD =1.5米,则电线杆AB 长=7.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人 ”; 8.皮影戏中的皮影是由 投影得到的. 9.下列个物体中:(1)(2)(3)(4)是一样物体的是______________ (填相同图形的序号)俯视图主视图左视图主视图10.如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,已知房子上的监视器高3m ,广告牌高为1.5m ,广告牌距离房子5m ,则盲区的长度为________11.一个画家由14个边长为1m 的正方形,他在地面上把他们摆成如图的形式,然后把露出表面的部分都涂上颜色,那么被涂上颜色的总面积为__________12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由 个这样的正方体组成。
二、精心选一选(每题2分,共24分)13.小明从正面观察下图所示的两个物体,看到的是 ( )14.在同一时刻,阳光下,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为 ( )A 、 16mB 、 18mC 、 20mD 、 22mB AC D正面15.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )16.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了。
广西师范大学附属中学九年级数学下册第二十九章《投影与视图》综合经典练习卷(课后培优)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥3.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.4.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.5.如图所示立体图形,从上面看到的图形是()A.B.C.D.6.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)7.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个8.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近9.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B .C .D .10.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 11.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( ).A .主视图的面积为4B .左视图的面积为4C .俯视图的面积为3D .三种视图的面积都是412.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A . B . C . D . 13.如图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是( )A .4B .5C .6D .714.如图所示的立体图形的主视图是( )A.B.C.D.二、填空题15.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有________个.16.一个几何体是由一些大小相同的小正方块摆成的,从正面看与从上面看得到的形状图如图所示,则组成这个几何体的小正方体的个数n的所有可能值的和是______________17.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.5m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1m,又测得地面的影长为1.5m,请你帮她算一下,树高为______.18.某几何体从三个方向看到的图形分别如图,则该几何体的体积为___________.19.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.20.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.21.如图是某几何体的三视图,则该几何体左视图的面积为_________.22.如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是_______.23.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m ,已知小军、小珠的身高分别为1.7m ,1.5m ,则路灯的高为________m .26.如图,把14个棱长为1cm 的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm 2需用漆2g ,那么共需用漆___g .三、解答题27.如图,AB 是某公园的一个圆形桌面的主视图,MN 是该桌面在一路灯下的影子,CD 是一个圆形凳面的主视图.(桌面、凳面均与地面平行)(1)请标出路灯O 的位置,并画出CD 在该路灯下的影子PQ ;(保留画图痕迹,光线用虚线表示)(2)若桌面直径和桌面与地面的距离均为1.2m ,并测得影子2MN m ,求路灯O 与地面的距离.28.把边长为1的10个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多..可以再添加个小正方体.29.已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形(1)判断该几何体形状;(2)求该几何体的侧面展开图的面积(结果保留π)30.画出下图几何体的三视图【参考答案】一、选择题1.A2.B3.C4.C5.C6.C7.B8.D9.C10.A11.A12.B13.B14.A二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(16.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+617.4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的所以竹竿的高与其影子的比值和树高与其影子的比值相同利用这个结论可以求出树高【详解】解:如图所示:过点D作DC⊥AB于点C连接AE由题18.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定19.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°20.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P到AB距离为x则=x=09故答案为09m【点睛21.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考22.4【解析】【分析】根据从正面看可得该几何体有2层再分别根据从左面看从上面看判断该几何体有几行几列以及正方体的具体摆放即可解答【详解】观察三视图可得这个几何体有两层底下一层是一行三列有3个正方体上面一23.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△ECD∴解25.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD=DE=17m在Rt△MNF中MN=NF26.66【分析】分别求出各层的总面积进而可得答案【详解】最上层侧面积为4上表面面积为1总面积为4+1=5中间一层侧面积为2×4=8上表面面积为4﹣1=3总面积为8+3=11最下层侧面积为3×4=12上表三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得.【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形,从上面看得到的平面图形是一个圆环,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.3.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.4.C解析:C【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,3,2个正方形.【详解】由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.【点睛】此题考查几何体的三视图,解题关键在于掌握其定义.5.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.6.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.7.B解析:B【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!8.D解析:D【解析】分析:由题意易得,小阳和小明离光源是由远到近的过程,根据中心投影的特点,即可得到身影越来越短,而两人之间的距离始终与小阳的影长相等,则他们两人之间的距离越来越近.详解:因为小阳和小明两人从远处沿直线走到路灯下这一过程中离光源是由远到近的过程,所以他在地上的影子会变短,所以他们两人之间的距离越来越近.故选D.点睛:考查了中心投影的特点和规律.中心投影的特点是,等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.9.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 10.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.11.A解析:A【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选A.【点睛】本题主要考查三视图的画法,关键在于正面方向.12.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.13.B解析:B【解析】根据题意可知:第一行第一列只能有1个正方体,第二列有3个正方体,第一行第3列有1个正方体,共需正方体1+3+1=5.故选B.14.A解析:A【解析】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线且为实线,故选A.点睛:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【详解】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成.故答案为5.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.16.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+6解析:11【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=5,5+6=11,故答案为:11.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.17.4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的所以竹竿的高与其影子的比值和树高与其影子的比值相同利用这个结论可以求出树高【详解】解:如图所示:过点D作DC⊥AB于点C连接AE由题解析:4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】解:如图所示:过点D作DC⊥AB于点C,连接AE,由题意可得:DE=BC=1m ,BE=1.5m ,∵一根长为1m 的竹竿的影长是0.5m ,∴AC=2CD=3m ,故AB=3+1=4(m ).故答案为4m .【点睛】此题主要考查了平行投影,解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同.18.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定解析:3π.【分析】由三视图可得这个几何体为圆柱,利用圆柱的体积公式求解即可.【详解】由三视图可得,此几何体为圆柱,所以圆柱的体积为3×π•(22 )2=3π, 故答案为3π.【点睛】本题考查了与三视图有关的计算,根据三视图确定这个几何体为圆柱是解决问题的关键. 19.6+【解析】【分析】延长AC 交BF 延长线于D 点则BD 即为AB 的影长然后根据物长和影长的比值计算即可【详解】延长AC 交BF 延长线于D 点则∠CFE=30°作CE ⊥BD 于E 在Rt △CFE 中∠CFE=30°解析:6【解析】【分析】延长AC 交BF 延长线于D 点,则BD 即为AB 的影长,然后根据物长和影长的比值计算即可.【详解】延长AC 交BF 延长线于D 点,则∠CFE =30°,作CE ⊥BD 于E .在Rt △CFE 中,∠CFE =30°,CF =4,∴CE =2,EF在Rt △CED 中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE =2,CE :DE =1:2,∴DE =4,∴BD =BF +EF +ED在Rt △ABD 中,AB 12=BD 12=(=6.故答案为(6【点睛】本题考查了相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.20.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P 到AB距离为x则=x=09故答案为09m【点睛解析:0.9m【分析】根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB∥CD,∴△PAB∽△PCD,∴ 2.7ABx CD,假设P到AB距离为x,则2.7x=26,x=0.9.故答案为0.9m.【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA,SAS,SSS;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).21.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考解析:23cm【解析】【分析】由视图知,此几何体的侧视图为一个长方形,故由题设条件求出侧视图的面积即可.【详解】由几何体的主视图与俯视图可得,几何体为三棱柱,所以该几何体的左视图的面积为=,故答案为:2.【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三视图中的侧视图面积,解决本题的关键是由题设条件得出侧视图的形状及侧视图的几何特征.求解本题的关键是准确熟练理解三视图的投影规则,其规则是:主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.22.4【解析】【分析】根据从正面看可得该几何体有2层再分别根据从左面看从上面看判断该几何体有几行几列以及正方体的具体摆放即可解答【详解】观察三视图可得这个几何体有两层底下一层是一行三列有3个正方体上面一解析:4【解析】【分析】根据“从正面看”可得该几何体有2层,再分别根据“从左面看”、“从上面看”,判断该几何体有几行、几列以及正方体的具体摆放,即可解答.【详解】观察三视图,可得这个几何体有两层,底下一层是一行三列有3个正方体,上面一层最右边有一个正方体,故搭成这个几何体的小正方体的个数为3+1=4个.故答案为4.【点睛】本题考查对三视图的理解应用以及空间想象能力,可从主视图分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后的位置,综合上述分析出小立方体的个数.23.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭解析:5【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个考点:由三视图判断几何体.24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA==,,DE AB220解得OA=16.故答案为16.25.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD =DE=17m在Rt△MNF中MN=NF解析:3【分析】如图,由题意证明AB=EB,AB=BF,推出DB=AB﹣1.7,BN=AB﹣1.5,根据DN=2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt△CDE中,CD=DE=1.7m,在Rt△MNF中,MN=NF=1.5m,∵∠CDE=∠MNF=90°,∴∠E=∠F=45°,∵AB⊥EF,∴AB=EB=BF,∴DB=AB﹣1.7,BN=AB﹣1.5,∵DN=2.8m,∴2AB﹣1.7﹣1.5=2.8,∴AB=3(m),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.26.66【分析】分别求出各层的总面积进而可得答案【详解】最上层侧面积为4上表面面积为1总面积为4+1=5中间一层侧面积为2×4=8上表面面积为4﹣1=3总面积为8+3=11最下层侧面积为3×4=12上表解析:66【分析】分别求出各层的总面积,进而可得答案【详解】最上层,侧面积为4,上表面面积为1,总面积为4+1=5,中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11,最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17,∴露出的表面总面积为5+11+17=33,∴33×2=66(g).答:共需用漆66g.故答案为:66【点睛】此题考查的知识点是几何体的表面积,关键是明确各个面上喷漆的小正方体的面的总个数.三、解答题27.(1)见解析;(2)路灯O与地面的距离为3m【分析】(1)延长MA、NB,它们的交点即为路灯O的位置,然后再连结OC、OD,并延长交地面与P、Q点,则PQ为CD的影子;(2)作OF⊥MN交AB于E,如图,AB=1.2m,EF=1.2m,MN=2m,证明△OAB∽△OMN,利用相似比计算出OF即可得到路灯O与地面的距离.【详解】解:(1)如图,路灯O 和线段PQ 即为所画.(2)如图,过点O 作OF MN ⊥,交AB 于点E ,∵//AB MN ,∴OF AB ⊥,OAB OMN ∠=∠,OBA ONM ∠=∠.∴OAB ∽OMN , ∴AB OE MN OF=. ∵ 1.2AB =, 1.2EF =,2MN =, ∴1.2 1.22OF OF-=, ∴3OF =. 答:路灯O 与地面的距离为3m .【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.也考查了相似三角形的判定与性质.28.(1)见解析;(2)38;(3)4.【分析】(1)根据三视图的画法画出三视图即可;(2)分别求出前后左右上下一共有几个面,再计算它们的和即可;(3)保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,再计算放置小正方体的和即可.【详解】(1) 该几何体的主视图、左视图、俯视图如图所示:(2)该几何体表面积为6+6+6+6+7+7=38;(3) 要保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,所以可放置小正方体的个数为1+2+1=4.【点睛】本题考查组合体的三视图,解题的关键是计算出当左视图和俯视图不变时,可以在每一层上放置的小正方体数.29.(1)圆锥;(2)10π.【分析】(1)由三视图可知,该几何体是圆锥;(2)根据圆锥的侧面积公式计算即可.【详解】解:(1)由三视图可知,该几何体是圆锥;(2)侧面展开图的面积=π×2×5=10π.【点睛】本题考查三视图,圆锥等知识,解题的关键是掌握圆锥的侧面积公式.30.见解析【分析】观察图形可知,从正面看到的图形是3列,从左往右正方形个数依次是1,3,2;从左面看到的图形是2列,从左往右正方形个数依次是3,1;从上面看到的图形是3列,从左往右正方形个数依次是1,2,1;据此即可画图.【详解】如图所示:【点睛】此题考查几何体的三视图画法.解题关键在于掌握作图法则.。
体育运动器材投影练习题
体育运动器材投影练习题---一、背景介绍体育运动器材投影练是一种通过虚拟实境技术来模拟实际运动场景,帮助运动员提高技能和反应能力的训练方法。
通过投影仪将运动场景投射到虚拟屏幕上,让运动员可以身临其境地进行训练。
二、练题目1. 乒乓球发球- 投影一个乒乓球桌和发球方- 运动员需要根据投影的发球方向和速度来击球- 在规定时间内,运动员需要连续击球并保持球的质量2. 篮球投篮- 投影一个篮球场和投篮位置- 运动员需要根据投影的篮圈位置和投篮姿势进行投篮- 在规定时间内,运动员需要命中尽可能多的篮球3. 足球门将扑救- 投影一个足球场和射门方向- 运动员需要根据投影的射门方向和球的速度进行扑救- 在规定时间内,运动员需要尽可能多地扑救住进球4. 排球接发球- 投影一个排球场和发球方- 运动员需要根据投影的发球方向和速度进行接发球- 在规定时间内,运动员需要连续接发球并保持球的方向与力度5. 游泳练- 投影一个泳池和泳道- 运动员需要根据投影的泳道和冲刺速度进行游泳- 在规定时间内,运动员需要尽可能快地游完泳道三、目标与效果体育运动器材投影练题旨在帮助运动员提高运动技能和反应能力,并增强其在实际比赛中的表现。
通过真实的投影训练,运动员可以获得更好的运动体验和训练效果。
同时,该训练方法还可以用于提升运动员的心理素质和比赛意识。
四、总结体育运动器材投影练习题是一种创新的训练方法,通过虚拟实境技术提供真实的运动场景,帮助运动员进行针对性的训练。
这种训练方法可以提高运动员的技能水平和反应能力,使其在比赛中取得更好的成绩。
希望通过不断的投影练习,运动员们可以不断提升自己,成为更出色的运动员。
自贡市九年级数学下册第二十九章《投影与视图》综合经典练习题(培优练)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12B.13C.14D.153.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.54.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是()A.B.C.D.5.如图,该几何体的俯视图是()A.B.C.D.6.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.67.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近10.下面的三视图对应的物体是()A.B.C.D.11.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥12.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.13.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.14.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯之间的距离是()A.24 m B.25 m C.28 m D.30 m二、填空题15.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.16.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高______米.(结果精确到1米.3≈1.732,2≈1.414)17.如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为_____.18.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)19.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.20.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.21.一个几何体由几个大小相同的小正方体搭成,这个几何体的俯视图和左视图如图所示,则这个几何体中小正方体的个数最少是________个.22.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.23.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b=_____.24.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.25.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,45EF cm EG cm12,18∠=︒,则AB的长为_____cm.EFG参考答案26.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.三、解答题27.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:28.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一致,则这样的几何体最多要个小立方块.(3)若小正方体的棱长为1cm,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.29.如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.30.下图所示的几何体(*)由若干个大小相同的小正方体构成.(1)下面五个平面图形中有三个是从三个方向看到的图形,把看到的图形与观测位置连接(2)已知小正方体的边长为a,求这个几何体(*)的体积和表面积.【参考答案】一、选择题1.A2.B3.A4.A5.A6.C7.D8.B9.D10.D11.D12.A14.D二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几16.24【解析】【分析】过点C作CE⊥BD与点E可得四边形CABE是矩形知CE=AB=40AC=BE=1在Rt△CDE中DE=tan30°•CE求出DE的长由DB=DE+EB可得答案【详解】如图过点C作17.90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积再求出底面圆的面积为即可得出表面积【详解】解:∵如图所示可知圆锥的高为12底面圆的直径为10∴圆锥的母线为:13∴根据圆锥的侧面积公式:πrl=π18.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与19.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为720.(90)【详解】根据位似图形的定义连接A′AB′B并延长交于(90)所以位似中心的坐标为(90)故答案为:(90)21.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正22.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD=DE=17m在Rt△MNF中MN=NF23.12【分析】结合主视图和俯视图分别求出ab的值随之即可解答【详解】解:结合主视图和俯视图可知左边后排最多有3个左边前排最多有3个右边只有一层且只有1个所以图中的小正方体最多7块结合主视图和俯视图可知24.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则25.【分析】作EH⊥FG于点H解直角三角形求出EH即可得出AB的长度【详解】解:如图所示作EH⊥FG于点H∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图26.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得.【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形,从上面看得到的平面图形是一个圆环,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.B解析:B【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【详解】解:综合主视图与左视图分析可知,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+2=13(个),故选B.【点睛】本题考查了几何体三视图,重点是考查学生的空间想象能力.掌握以下知识点:主视图反映长和高,左视图反映宽和高,俯视图反映长和宽.3.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.4.A解析:A【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,2,1;左视图有2列,每列小正方形数目分别为2,2,据此可画出图形.【详解】根据图形可知:主视图有3列,每列小正方形数目分别为1,2,1.故选A.【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.A解析:A【解析】分析:找到从几何体的上面所看到的图形即可.详解:从几何体的上面看可得,故选:A.点睛:此题主要考查了简单几何体的三视图,关键是掌握所看的位置.6.C解析:C【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选C.【点睛】本题主要考查了由三视图判断几何体,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题的关键.7.D解析:D【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【详解】从正面看得到2列正方形的个数依次为2,1,故选D.【点睛】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.8.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.9.D解析:D【解析】分析:由题意易得,小阳和小明离光源是由远到近的过程,根据中心投影的特点,即可得到身影越来越短,而两人之间的距离始终与小阳的影长相等,则他们两人之间的距离越来越近.详解:因为小阳和小明两人从远处沿直线走到路灯下这一过程中离光源是由远到近的过程,所以他在地上的影子会变短,所以他们两人之间的距离越来越近.故选D.点睛:考查了中心投影的特点和规律.中心投影的特点是,等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.10.D解析:D【解析】解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点.故选D.点睛:本题主要考查学生对图形的三视图的了解及学生的空间想象能力.11.D解析:D【解析】试题∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选D.12.A解析:A【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.13.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A .【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型. 14.D解析:D【解析】由题意可得:EP ∥BD ,所以△AEP ∽△ADB ,所以AP EP AP PQ BQ BD=++,因为EP =1.5,BD =9,所以1.59220AP AP =+,解得:AP =5,因为AP=BQ ,PQ =20,所以AB=AP+BQ+PQ =5+5+20=30,故选D. 点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.16.24【解析】【分析】过点C 作CE ⊥BD 与点E 可得四边形CABE 是矩形知CE=AB=40AC=BE=1在Rt △CDE 中DE=tan30°•CE 求出DE 的长由DB=DE+EB 可得答案【详解】如图过点C 作解析:24【解析】【分析】过点C作CE⊥BD与点E,可得四边形CABE是矩形,知CE=AB=40,AC=BE=1.在Rt△CDE 中DE=tan30°•CE求出DE的长,由DB=DE+EB可得答案.【详解】如图,过点C作CE⊥BD与点E.在Rt△CDE中,∠DCE=30°,CE=AB=40,则DE=tan30°•CE33=⨯40≈23,而EB=AC=1,∴BD=DE+EB=23+1=24(米).【点睛】本题考查了解直角三角形的应用.注意能根据题意构造直角三角形,并能借助于解直角三角形的知识求解是解答此题的关键.17.90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积再求出底面圆的面积为即可得出表面积【详解】解:∵如图所示可知圆锥的高为12底面圆的直径为10∴圆锥的母线为:13∴根据圆锥的侧面积公式:πrl=π解析:90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.【详解】解:∵如图所示可知,圆锥的高为12,底面圆的直径为10,∴圆锥的母线为:13,∴根据圆锥的侧面积公式:πrl=π×5×13=65π,底面圆的面积为:πr2=25π,∴该几何体的表面积为90π.故答案为90π.18.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.19.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.20.(90)【详解】根据位似图形的定义连接A′AB′B并延长交于(90)所以位似中心的坐标为(90)故答案为:(90)解析:(9,0)【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).21.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层所须小正方体最少的个数,相加即可得答案.【详解】由俯视图和左视图可知此几何体有2层,第一层有4个小正方体,第二层最少有1个小正方体,∴这个几何体中小正方体的个数最少是5个,故答案为:5本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.22.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD =DE=17m在Rt△MNF中MN=NF解析:3【分析】如图,由题意证明AB=EB,AB=BF,推出DB=AB﹣1.7,BN=AB﹣1.5,根据DN=2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt△CDE中,CD=DE=1.7m,在Rt△MNF中,MN=NF=1.5m,∵∠CDE=∠MNF=90°,∴∠E=∠F=45°,∵AB⊥EF,∴AB=EB=BF,∴DB=AB﹣1.7,BN=AB﹣1.5,∵DN=2.8m,∴2AB﹣1.7﹣1.5=2.8,∴AB=3(m),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.23.12【分析】结合主视图和俯视图分别求出ab的值随之即可解答【详解】解:结合主视图和俯视图可知左边后排最多有3个左边前排最多有3个右边只有一层且只有1个所以图中的小正方体最多7块结合主视图和俯视图可知解析:12结合主视图和俯视图分别求出a ,b 的值,随之即可解答.【详解】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,所以a +b =12.【点睛】本题考查组合体的三视图,熟悉掌握根据图像获取信息是解题关键.24.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+ 【分析】 先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可. 【详解】 解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.25.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62 【分析】 作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.26.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小 解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个 故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.三、解答题27.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.28.30cm(1)见解析;(2)14;(3)2【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可;(3)数一数有多少个正方形露在外面即可求得面积.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:14;(3)若将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,30cm,则需要喷6×2+6×2+6=30个小正方形,面积为230cm.故需喷漆部分的面积为2【点睛】本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.29.(1)见解析;(2)10m【分析】(1)根据平行投影作图即可;(2)根据同一时刻,不同物体的物高和影长成比例计算即可;【详解】(1)如图所示:EF 即为所求;(2)∵AB =5m ,某一时刻AB 在阳光下的投影BC =3m ,EF =6m ,∴AB BC =DE EF ,则53=6DE , 解得:DE =10,答:DE 的长为10m .【点睛】本题主要考查了平行投影,相似三角形的性质,准确分析计算是解题的关键. 30.(1)详见解析;(2)体积是:34a ,表面积是:218a .【分析】(1)根据从物体不同方向看图的定义求解;(2)几何体的体积=原正方体体积-挖去的棱长为1的小正方体的体积;表面积与原来相同.【详解】解:(1)如图所示:(2)这个几何体的体积是:344a a a a ⨯⨯⨯=,表面积是:21818a a a ⨯⨯=.【点睛】此题主要考查了平面图形,以及求几何体的体积和表面积,掌握主视图、左视图、俯视图是从那个角度所得到的图形是解题的关键.。
(完整word版)点投影练习
1、已知各点的空间地点,画出其投影图(尺寸由立体图量取,并取整)2、已知点的一个投影和以下条件,求其他两个投影。
(1) A 点与 V 面的距离为 20mm。
(2) B 点在 A 点的左方 10mm。
3、已知点 A(35、20、20),B(15、0、25),求作它们的投影图。
4、已知各点的两个投影,求作出第三投影。
5、判断以下各点的相对地点。
6、已知点 B 在点 A 的左方 10mm,下方15mm,前面 10mm;点 C 在点 D 的正前面 10mm,作出点 B 和点 C的三面投影。
7、已知A 点(10,10,15);点B 距离投投影面W、V、H分别为20、15、5;点 C在点 A 左方 10,前面 10,上方5,作出 A、B、C的三面投影。
8、已知点 A 到 H、V 面的距离相等,求a′、 a″。
假如使点 B 到 H、V、W 面的距离相等,点 B 的三个坐标值有什么关系,作出点 B 的各投影。
9、判断以下各直线对投影面的相对地点,并画出三面投影。
10、过点A 作线段,使其知足以下各条件(议论:以下各题有几解,只作出一个解)。
11、求线段 AB的实长及其与 H、V 面的倾角α、β知识点:直角三角形法求直线的倾角及线段实长。
1、剖析:1)依据用直角三角形法求解直线与投影面的倾角及其线段的实长过程可知,在由线段两头点的 Z 坐标差和线段的水平投影长为两直角边的三角形中,斜边等于线段的实长,斜边与水平投影长的直角边的夹角等于α;2)在由线段两头点的 Y 坐标差和正面投影长为直角边的三角形中,可以反应线段与 V 面的夹角和线段的实长。
3)由投影图中可知,线段的水平投影长、正面投影长,线段两头点的 Y 坐标差和 Z 坐标差均可经过作图求得。
2、作图步骤:1)过 a′,b 分别作水平线,二直线分别交 bb′连线和 aa′连线于点 1 和点 2;2)过点 a′作 a′ b′的垂线,过点 b 作 ab 的垂线;并分别在二垂线上截取 a′ A1=a2( Y ab),bb=b′ 1( Z ab)3)用线段分别连结b′ A1和 aB1;结果如下图。
趣味投影练习题
趣味投影练习题投影是一种常见的视觉技术,通过将图像、文字或视频投射到屏幕或其他平面上,向观众传达信息。
除了传达信息外,投影还可以被用于娱乐和趣味性的目的。
本文将介绍几个趣味投影练习题,以帮助读者在投影领域获得更多乐趣。
1. 反转投影反转投影是一种有趣且具有挑战性的练习。
首先,选择一个简单的图案,例如一个圆圈或一个方形。
然后将它投射到屏幕上,并用手指轻轻触碰屏幕,观察图案在屏幕上的变化。
尝试用手指来绘制、改变或操纵图案。
你会发现,图案在屏幕上的投影与你手指的运动相反。
这是因为投影是反转的,这是投影技术的基本原理之一。
2. 投影追踪投影追踪是一种锻炼手眼协调能力和空间感知能力的练习。
选择一幅具有动态元素的图像或视频,例如一个移动的球或一只飞翔的鸟。
将其投射到屏幕上,并尝试用手指追踪图像或视频中的对象。
试着跟随它的移动轨迹、改变它的速度或方向。
这个练习可以帮助你提高对运动的感知和控制能力,并培养专注和反应的能力。
3. 投影拼图投影拼图是一种刺激思维和解决问题能力的练习。
在屏幕上投射一个拼图图案,然后将其分割成几个碎片,并进行重新排列,使其形成完整的图像。
你可以设置不同的难度级别,例如增加拼图碎片的数量或调整碎片的形状。
这个练习可以帮助你培养观察、分析和解决问题的能力,并提升你的空间想象力。
4. 投影互动游戏投影互动游戏结合了投影技术和游戏设计,为观众提供了与投影图像进行互动的机会。
例如,可以设计一个投影游戏,要求观众在屏幕上用手指捕捉虚拟的物体或进行动作。
通过设置不同的挑战和难度级别,观众可以在游戏中享受乐趣并提高技能。
这种练习不仅可以娱乐,还可以锻炼人们的反应速度、手眼协调和问题解决能力。
总结:趣味投影练习题可以为人们带来乐趣、刺激思维,并提高与投影技术的互动能力。
通过反转投影、投影追踪、投影拼图和投影互动游戏等练习,人们可以在投影领域探索和发展自己的技能。
在实践中,读者可以尝试更多创意的投影练习,并将其应用于教育、艺术、娱乐和商业等领域。
投影视图展开图练习1
投影、视图、展开图练习一1.某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是( )2.如图 ,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于()A.4.5米 B.6米C.7.2米 D.8米3.如图,水杯的俯视图是( )4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A .OB . 6C .快D .乐5. 下图是一个立体图形的二视图,根据图示的数据求出这个立体图形的体积是( )A .24πcm 3B .48πcm 3C .72πcm 3D .192πcm 36. 嘉兴市)若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有( )(A )5桶 (B )6桶(C )9桶 (D )12桶 7. 如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 .C. D.1 A B C D E F8.如图所示是 体的展开图.9.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为 。
10.如图1-4-45,阳光通过窗口照到仓库内,在地上留下2.7m 宽的亮区,如图1-4-45,已知亮区一边到窗下的墙角的距离为CD=8.7m ,窗口高AB=1.8m ,那么窗口底边高地面的高BC=_________。
投影基本知识习题及答案
一、填空题1、工程上常采用的投影法是 中心投影法 和 平行投影 法,其中平行投影法按投射线与投影面是否垂直又分为 正投影 和 斜投影 法。
2、当直线平行于投影面时,其投影 直线 ,这种性质叫 真实 性,当直线垂直投影面时,其投影 点 ,这种性质叫 积聚 性,当平面倾斜于投影面时,其投影 平面 ,这种性质叫 类似 性。
3、主视图所在的投影面称为 正立面投影面 ,简称 正立面 ,用字母 V 表示,俯视图所在的投影面称为 水平投影面 ,简称 水平面 ,用字母 H 表示。
左视图所在的投影面称为 侧立投影面 简称 侧立面 ,用字母 W 表示。
4、三视图的投影规律是:主视图与俯视图 长对正 ;主视图与左视图 高平齐 ;俯视图与左视图 宽相等 。
6、直线按其对三个投影面的相对位置关系不同,可分为 投影面垂直线、 投影面平行线、 一般位置直线 。
7、与一个投影面垂直的直线,一定与其它两个投影面 平行 ,这样的直线称为投影面的 投影面垂直线 。
8、与正面垂直的直线,与其它两个投影面一定 平行 ,这样的直线称为 正垂线 。
9、与一个投影面平行,与其它两个投影面倾斜的直线,称为投影面的 投影面平行线 ,具体又可分为 正平线 、 水平线 、 侧平线 。
10、与三个投影面都倾斜的直线称为 一般位置直线 。
11、空间平面按其对三个投影面的相对位置不同,可分投影面垂直面、 投影面平行面、 一般位置面12. 正垂面与正面 垂直 ,与水平面 倾斜 ,与侧面 倾斜 ,正垂面在正面投影为 直线 ,在水平面和侧面投影为 投影面的类似性 。
13.正平面与正面 ,与水平面 ,与侧面 ,正平面在正面投影为 ,在水平面投影和侧面投影为 。
14.参照图下图中的立体图,在三视图中填写物体的六个方位。
(填前、后、左、右、上、下)二、选择题(12分)1.下列投影法中不属于平行投影法的是( A )A 、中心投影法B 、正投影法C 、斜投影法2、当一条直线平行于投影面时,在该投影面上反映( A )A 、实形性B 、类似性C 、积聚性3、当一条直线垂直于投影面时,在该投影面上反映( C )上下左 前右后A、实形性B、类似性C、积聚性4、在三视图中,主视图反映物体的( B )A、长和宽B、长和高C、宽和高5、主视图与俯视图()A、长对正B、高平齐C、宽相等6、主视图与左视图( B )A、长对正B、高平齐C、宽相等7、为了将物体的外部形状表达清楚,一般采用(A)个视图来表达。
投影基本知识练习1
第四章投影的基本知识一、填空题2.投影法分为投影法和投影法两大类。
3.构成投影的三要素是、和。
4.形体的三面投影之间所谓投影对应关系为、和。
5.工程中常用的投影图有投影图、投影图、投影图和投影图。
6.A点到V面的距离等于投影到轴的距离和投影到轴的距离。
7.直线上的点,其投影必在直线的投影上,它分割线段之比等于点的投影分割线段的之比。
8、确定空间点的位置至少需要面投影。
9、对水平重影点而言,位于边的一点为可见点,的一点为不可见点。
10、正垂线在水平投影面上的投影为。
11、若两直线平行,则它们的互相平行。
12、点D的坐标为(10,25,15),则该点对H面的距离为。
13、空间平面与投影面的相对位置分为、、。
14、空间直线对投影面的相对位置可分为三种、、。
15、某直线的水平面投影反映实长,另外两投影为与OZ轴相垂直的两直线,则该直线为( )。
16、、、三个字母不能用于纵向定位轴线的编号。
17、三面投影体系中,水平面用____表示,侧立面用_____表示,正立面用____表示。
18、作点的投影时,两个投影面上的点的连线与投影轴____.19、A点的V面投影为a’,反映该点的_____和_____坐标.20、一般位置直线在三个投影面上的投影都比实长_____.21、铅垂线在______投影面上反映积聚性.22、空间点A(15, 20, 25)和B(5, 10, 30),则A点在B点的_____方,_____方,_____方.二、选择1、水平线上所有点的坐标有()组同名坐标相等。
A. 1B. 2C. 3D. 02、空间两直线相交于K点,在三面投影图中其交点k和k’的连线垂直于( )轴。
A. XB. YC. ZD. 以上都不对3、在三面投影中,V面和H面投影应保持的关系是()。
A. 高平齐B. 长对正C. 宽相等D. 没关系4、如果一条直线的三面投影都倾斜于投影轴,则这条空间直线为()。
A. 一般位置直线B. 正垂线C. 正平线D. 侧垂线5、倾斜于投影面的平面,在该投影面上的投影()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投影 经典练习
1.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( ) (A )相等 (B )长的较长 (C )短的较长 (D )不能确定 2.正方形在太阳光的投影下得到的几何图形一定是( )
(A )正方形 (B )平行四边形或一条线段 (C )矩形 (D )菱形
3.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( ) (A )平行 (B )相交 (C )垂直 (D )无法确定
4.在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为( ) (A )16 m (B )18 m (C )20 m (D )22 m
5.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中时间先后顺序排列,正确的是( )
(A )①②③④ (B )④②③① (C )④①③② (D )④③②①
6.如图,身高为1.6米的某学生想测量学校旗杆的高度,当他站在C 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( ) A .6.4米 B .7米 C .8米 D .9米
7.在同一时刻,两根长度不等的杆子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是( )
(A )两根都垂直于地面 (B )两根平行斜插在地上 (C )两根竿子不平行 (D )一根到在地上
8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) (A )小明的影子比小强的影子长 (B )小明的影长比小强的影子短 (C )小明的影子和小强的影子一样长 (D )无法判断谁的影子长 9.底面与投影面垂直的圆锥体的正投影是 ( )
(A )圆 (B )三角形 (C )矩形 (D )正方形 10.给出以下命题,命题正确的有( ) ①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影②物体的投影的长短在任何光线下,仅与物体的长短有关③物体的俯视图是光线垂直照射时,物体的投影④物体的左视图是灯光在物体的左侧时所产生的投影⑤看书时人们之所以使用台灯是因为台灯发出的光线是平行的光线.
A.1个
B.2个
C.3个
D.4个 11.给出下列结论正确的有( ) ①物体在阳光照射下,影子的方向是相同的 ②物体在任何光线照射下影子的方向都是相同的 ③物体在路灯照射下,影子的方向与路灯的位置有关 ④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个 B.2个 C.3个 D.4个
第6题图
12.太阳光线形成的投影是_________,灯光形成的投影是_________.
13.小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2米,小刚比小明矮5cm ,此刻小明的影长是________米。
(精确到0.01米)
14.如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2m ,CD =6m ,点P
到CD 的距离是2.7m ,则AB 与CD 间的距离是__________m .
15.晚上,身高1.6米的小华站在D 处(如图),测得他的影长DE =1.5米,BD = 4.5米,那么灯到地面的距离AB =__________米.
16.身高相同的甲、乙两人分别距同一路灯2米处、3米处,路灯亮时,甲的影子比乙的影子 (填“长”或“短”).
17. 在同一时刻的物高与水平地面上的影长成正比例.如图,小莉发现垂直地面的电线杆
AB 的影子落在地面和土坡上,影长分别为BC 和CD ,经测量得20m BC =,8m CD =,
CD 与地面成30°角,
且此时测得垂直于地面的1m 长标杆在地面上影长为2m ,求电线杆AB 的长度.
18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子。
19.已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投
A
B
C D
第17题
第15题图
(1)请你在图中画出此时DE 在阳光下的投影;
(2)在测量AB 的投影时,同时测量出DE 在阳光下的
投影长为6m ,请你计算DE 的长.
20.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果保留整数)(3≈1.732,2≈1.414)
投影参考答案
1.D 2.B 3.A 4.C 5.A 6.C 7.C 8.D 9. B 10.B 11.B
12.平行投影 中心投影
1
14. 1.8 15. 6.4 16.短
17.解:如图,过点D 作
DE AB ⊥于点E ,过点DF BC ⊥交BC 的延长线于点F ,
∵30DCF ∠=°,
∴cos30CF CD ==×°=8m ,
∴(20DE BF BC CF m ==+=+,
∵垂直于地面的1m 长标杆在地面上影长为2
m , ∴1
(102
AE DE m =
=+,
∴104(14AB AE BE AE DF m =+=+=+=+.
18.解:
19.解:(1)如图
(2)∵ AB BC =DE
EF
∵ DE = AB ·EF BC =5×6
3
=10(m )
20.解:过点C 作CE ⊥BD 于E
在Rt△DEC 中,∠DEC =90°,∠DCE =30°,CE =AB =40米
1 ∵ tan ∠DCE =DE
CE
∴ DE =CE ·tan ∠DCE =CE ·tan30°=40∴ DB =DE+BE =DE+AC =23.09+1≈24 答:新建楼房最高约24米。