连续时间傅里叶变换

合集下载

第四章-连续时间傅里叶变换

第四章-连续时间傅里叶变换

谱线间隔
0
2π T
k
nT 2T1
2,4,6时,ak 0
k
(b) T=8 T1 -4 0
谱线间隔
0
2π T
k
nT 2T1
4,8,12时,ak 0
k 4
T 2T1 T 2T1
T 不变T1 时
1/ 2
20 0 0 40
1/ 4
80 0 0 40
1/8
0 0
80
T
2T1
2T1 1 k0 T0 2
2T1 1 k0 T0 4
2020/8/9
4.0 引言
在工程应用中常见的信号是非周期信号:
➢对非周期信号应该如何进行分解? ➢非周期信号的频谱如何表示? 在时域,若一个周期信号的周期趋于无穷大,则周期信号将演 变成一个非周期信号。 考查连续时间傅立叶级数在周期趋于无穷大时的变化,就能得 到对非周期信号的频域表示方法。
2
4.1 非周期信号的表示— 连续时间傅立叶变换
第4章 连续时间傅立叶变换
The Continuous time Fourier Transform
本章的主要内容: 1. 连续时间非周期信号的傅立叶变换 2. 傅立叶级数与傅立叶变换之间的关系 3. 傅立叶变换的性质 4. 采样定理
说明:内容1-3对应于教材第4章的4.1-4.6节; 内容4对应与教材第7章7.1-7.3节部分内容
T / 2 x(t )e jk0t dt
T / 2
当 T
0
2
T
d,
k0 ,
若令
lim
T
Tak
X(
j)
则有
X ( j) x(t)e jtdt

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

常见傅里叶变换

常见傅里叶变换

常见傅里叶变换傅里叶变换是一种常见的数学方法,用来把一个信号从时域(time domain)变换到频域(frequency domain),即从时间变换成周期,为信号分析和处理提供理论。

从量子物理学到电路设计,从数字图像处理到数字信号处理,傅里叶变换都发挥着重要作用。

一般来说,傅里叶变换可分为离散傅里叶变换(Discrete Fourier Transform,DFT)和连续傅里叶变换(Continuous Fourier Transform,CFT)。

离散傅里叶变换是对某类数字信号进行频率谱分析的方法,用于表达在某一时刻及其之前的信号。

例如,它可以用来分析歌曲中的某些音调,或者某个难以分析的电路中的某些信号。

另一方面,连续傅里叶变换是一种从时域变换到频域的数学技术,它可以计算信号的振幅和相位,以及其他用于检测特定频率信号的信息。

它广泛应用于音频处理,天文观测,射电望远镜等领域。

傅里叶变换也可以用来表示函数和操作,比如傅里叶级数、小波变换等。

傅里叶变换可以帮助人们实现更高精度的信号处理,提高信号处理效率。

它有助于确定信号构成,也可以探索不同信号之间的关系。

举个例子,当电台收到许多不同频率的电视信号时,傅里叶变换可帮助把这些信号的相位分开,避免它们混合在一起。

此外,傅里叶变换也有助于把复杂的数据简化为简单的数学形式,比如利用傅里叶级数来解决非线性方程。

除离散傅里叶变换和连续傅里叶变换外,还有一类受欢迎的傅里叶变换,它在信号处理领域也有广泛的应用。

它包括快速傅里叶变换(Fast Fourier Transform,FFT)、中心矩形法(Central Momentum Method)、矩形变换(Rectangular Transform)、拉普拉斯变换(Laplace Transform)等。

快速傅里叶变换几乎在所有的数字信号处理系统中都有应用,它可以以更少的时间来完成傅里叶变换,从而使信号处理变得更有效率。

傅里叶变换公式

傅里叶变换公式

连续时间周期信号傅里叶级数:⎰=T dt t x Ta )(1⎰⎰--==T tTjkT tjk k dt et x Tdt et x Ta πω2)(1)(1离散时间周期信号傅里叶级数:[][]()∑∑=-=-==Nn nN jk Nn njkwk e n x Ne n x Na /2110π连续时间非周期信号的傅里叶变换:()⎰∞∞--=dt e t x jw Xjwt )(连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ⎰∞∞-=π21)(连续时间周期信号傅里叶变换:∑+∞-∞=⎪⎪⎭⎫⎝⎛-=k k kw a jw X T 22)(πδπ连续时间周期信号傅里叶反变换:()dw e w w t x jwt ⎰∞∞--=0221)(πδπ离散时间非周期信号傅里叶变换:∑∞-∞=-=nnj e n x eX ωωj ][)(离散时间非周期信号傅里叶反变换:⎰=π2d e )(e π21][ωωωn j j X n x离散时间周期信号傅里叶变换:∑+∞-∞=-=kk k a X )(π2)e (0j ωωδω离散时间周期信号傅里叶反变换:[]ωωωδωd e n n j ⎰--=π20πl)2(π2π21][x拉普拉斯变换:()dt e t s Xst -∞∞-⎰=)(x拉普拉斯反变换:()()s j21t x j j d e s X st ⎰∞+∞-=σσπZ 变换:∑∞-∞=-=nnz n x X ][)z (Z 反变换: ⎰⎰-==z z z X r z X n x n nd )(πj21d )e ()(π21][1j π2ωω。

连续时间系统傅里叶变换的性质

连续时间系统傅里叶变换的性质

第4章 连续时间信号的傅立叶变换
FT [ x (t ) cos 0t ]
FT [ x( t )] X ( )
X ( )
1 j 0t j 0 t x (t )[e e ] 2
频 移 特 性
1 2

0
1 2
X ( 0 )
X ( )
X ( 0 )
0
0

1 [ X ( 0 ) X ( 0 )] 2
1
2 X ( w ) F { xe ( )} F { xo ( )} j
第4章 连续时间信号的傅立叶变换
3、时移特性
若 则
x( t ) X ( )
x(t t0 ) X ( )e
j t 0
例4 11 : 求移位冲激函数的频谱 函数
(t ) 1
第4章 连续时间信号的傅立叶变换
例4 13 : 已知x(t)为三角形调幅信号,试 求其频谱
T 1 2
x1 ( t )
T1 2
T 1 2
x( t )
T1 2
x(t ) x1 (t ) cos0t
T1 2 T1 X 1 ( ) Sa ( ) 2 4
P147
T1 2 ( 0 )T1 2 ( 0 )T1 X ( ) [ Sa Sa ] 4 4 4
( j )
(t t0 ) e
(t t0 ) e
jt 0
jt 0
t 0

第4章 连续时间信号的傅立叶变换
思考:下列信号的傅立叶变换
x( t )
1
t
2
X ( w) 2e
jw
sinc( w)

连续信号的傅里叶变换

连续信号的傅里叶变换

连续信号的傅里叶变换一、引言连续信号的傅里叶变换是信号处理领域中非常重要的一部分。

它可以将时域上的连续信号转换为频域上的频谱,从而方便我们对信号进行分析和处理。

在本文中,我们将详细介绍连续信号的傅里叶变换的相关概念、公式以及应用。

二、连续信号与傅里叶变换1. 连续信号在信号处理领域中,连续信号是指在时间上是连续的函数。

它可以表示为:f(t) = A*cos(ωt + φ)其中,A表示振幅,ω表示角频率,φ表示相位。

2. 傅里叶变换傅里叶变换是一种将时域上的函数转换为频域上函数的方法。

对于一个连续信号f(t),它的傅里叶变换F(ω)可以表示为:F(ω) = ∫f(t)*exp(-jωt)dt其中,j为虚数单位。

3. 傅里叶变换公式对于一个实数函数f(t),其傅里叶变换F(ω)和反变换f(t)可以表示为:F(ω) = ∫f(t)*exp(-jωt)dtf(t) = (1/2π)∫F(ω)*exp(jωt)dω4. 傅里叶变换的性质傅里叶变换具有许多重要的性质,包括线性性、平移性、卷积定理等。

这些性质使得傅里叶变换在信号处理中得到了广泛的应用。

三、连续信号的频域表示1. 频谱对于一个连续信号f(t),它的频谱是指在频域上表示该信号的振幅和相位信息。

通常情况下,我们将频谱表示为F(ω)或S(ω),其中F(ω)为傅里叶变换结果,S(ω)为傅里叶变换结果的幅度谱。

2. 幅度谱和相位谱对于一个连续信号f(t),它的频谱可以分解为振幅和相位两个部分。

振幅谱指的是在不同频率下该信号振动的强度大小,而相位谱则表示不同频率下该信号振动相对于某个参考点所处的相位差。

四、应用举例1. 语音信号处理语音信号是一种典型的连续信号,在语音处理领域中,傅里叶变换被广泛应用于声学特征提取、语音识别等方面。

通过对语音信号的傅里叶变换,我们可以得到该信号在不同频率下的频谱信息,从而方便我们进行特征提取和分类。

2. 图像处理图像信号也是一种连续信号,在图像处理领域中,傅里叶变换被广泛应用于图像滤波、图像增强等方面。

傅里叶变换 - 维基百科,自由的百科全书

傅里叶变换 - 维基百科,自由的百科全书

代表狄拉克δ函数分布.这 个变换展示了狄拉克δ函数的重 要性:该函数是常函数的傅立叶 变换
变换23的频域对应
由变换3和24得到.
由变换1和25得到,应用了欧拉 公式:
由变换1和25得到
这里, 是一个自然数. 是狄拉克δ函数分布的
阶微分。这个变换是根据变换7 和24得到的。将此变换与1结合 使用,我们可以变换所有多项 式。
7/8
三元函数
时域信号
角频率表示 的
傅里叶变换
参见
正交变换 傅里叶级数 连续傅里叶变换 离散时间傅里叶变换 离散傅里叶变换 傅里叶分析 拉普拉斯变换 小波变换
参考资料
弧频率表示的 傅里叶变换
注释
此球有单位半径;fr是频率矢量的量值 {fx,fy,fz}.
1. ^ 林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974
时频分析变换
小波变换,chirplet转换和分数傅里叶变换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确 定性原理的限制。
傅里叶变换家族
下表列出了傅里叶变换家族的成员。容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连 续则意味着在对应域的信号的非周期性.
来自“/w/index.php?title=傅里叶变换&oldid=24462958”
其中an和bn是实频率分量的振幅。
傅里叶分析最初是研究周期性现象,即傅里叶级数的,后来通过傅里叶变换将其推广到了非周期性现象。理解这种推广 过程的一种方式是将非周期性现象视为周期性现象的一个特例,即其周期为无限长。

4.5非周期信号的连续时间傅里叶变换

4.5非周期信号的连续时间傅里叶变换



R( ) R( ) X ( ) X ( )
是ω的偶函数 是ω的奇函数
F ( j) F ( j) e j ( )
| F ( j) |= R2 () + X 2 ()
R( ) = F ( j ) cos ( ) X ( ) = F ( j ) sin ( )
f (t) 为偶函数, 相位频谱为:
F ( j ) 为
且为

的实函数,
( ) 0
的偶函数。
4.4 连续时间信号傅里叶变换 例:利用双边指数信号求直流信号的傅立叶变换
f (t ) e
1 lim e
0
t
(a>0)
t
FT [1] lim F ( j )
0
2 lim 2 0 2

0
0 0
lim
2[

2 ( )
2 d( )
2
2 lim d 0 2 2
0
1 ( )2
( 2 )]
lim 2 arctan( ) 0
dt
e e
t

0
j t
dt e
0

t
e
j t
dt

1 j
1 j
2 2 2
4.4 连续时间信号傅里叶变换 双边指数信号一
f (t ) e
t
(a>0)
2 F ( j ) 2 2
其振幅频谱为:
2 F ( j ) 2 2
t0 t0
t0 t0
f (t ) sgn(t )

周期信号的连续时间傅里叶级数

周期信号的连续时间傅里叶级数
傅里叶级数是无穷级数,但只有在满足一定条件下才能收敛。对于周期信号,其傅里叶级数在频域上 是收敛的,即其频谱在无穷大频率处的值趋近于零。在时域上,傅里叶级数在每个周期内的积分值是 有限的,因此也是收敛的。
傅里叶级数的收敛性取决于信号的形状和频率范围。对于具有快速衰减特性的信号,其傅里叶级数可 能具有良好的收敛性;而对于具有缓慢衰减特性的信号,其傅里叶级数可能具有较差的收敛性。在实 际应用中,通常需要对信号进行截断或加窗处理,以提高傅里叶级数的收敛性。
傅里叶级数的重要性和应用价值
信号分析
傅里叶级数提供了将周期信号 分解为正弦和余弦波的方法,
是信号分析中的重要工具。
通信系统
在通信系统中,傅里叶级数用 于信号调制和解调,实现信号 的传输和接收。
控制系统
在控制系统中,傅里叶级数用 于频域分析和系统稳定性分析 。
物理和工程领域
在物理、化学、生物和工程领 域,傅里叶级数用于分析各种
DTFS的主要应用包括信号分析和数字信号处理中的频谱分析。
快速傅里叶变换(FFT)
1
快速傅里叶变换(FFT)是一种高效的计算离散 傅里叶变换(DFT)和其逆变换的算法。
2
FFT的主要思想是将长度为$N$的DFT分解为多 个较短的DFT,然后利用旋转因子的周期性和对 称性来减少计算的复杂度。
3
FFT的出现极大地促进了数字信号处理领域的发 展,使得实时信号处理成为可能。
滤波器设计
滤波器是信号处理中的重要元件,用于提取或抑制特定频率范围的信号。通过傅 里叶级数,可以设计出各种类型的滤波器,如低通、高通、带通和带阻滤波器等 。
滤波器设计在音频处理、图像处理、雷达和通信等领域有广泛应用,例如在音频 处理中可以通过滤波器来消除噪音或增强特定音色。

连续时间傅里叶变换

连续时间傅里叶变换

连续时间傅里叶变换连续时间傅里叶变换(Continuous-Time Fourier Transform,CTFT)是傅里叶变换(Fourier Transform,FT)的一种,它适用于连续信号。

它能够将连续时间信号表示为一系列相同时间周期内信号幅度和相位不同的空间频率组份,即信号可以按其频率分解为更加精细的空间组份,这也是傅里叶级数的基础。

CTFT可以将任意连续时间信号表示成一组正弦信号的和,即可以将一种信号表示为正弦信号组成的线性组合,这样就可以将信号的复杂性减简,并用数学方法对它进行分析。

从理论上讲,CTFT可以将任意的空间信号表示为一组正弦信号的和,这也是CTFT的核心特性之一,也是CTFT的优势所在。

CTFT的公式可以用以下方式表示:X(ω)=∫-∞σ(t)e-^{jωt} dt其中ω为频率,s(t)为连续时间信号,X(ω)表示其傅里叶变换。

具体而言,CTFT既能够反映信号的时间变化,也能够反映其频域变化,可以将信号从时域变换到频域,允许我们从不同的角度看待信号,从而更好地理解信号。

如果将CTFT与频域分析进行比较,CTFT能够更精确地捕捉信号特征,可以更精确地确定频率、幅度和相位,因此它在信号处理、声学分析和时域分析等方面具有重要作用。

CTFT能够有效应用于维纳滤波器(Wiener Filters)、短时傅里叶变换(Short Time Fourier Transform,STFT)和抗谐波滤波(Notch Filters)等方面,通过CTFT的应用,可以利用频域的信号表示技术来提高信号分析的精度和效率。

总的来说,CTFT是一种非常实用的时域分析工具,它能够密切捕捉信号的复杂性,在信号处理,时域分析和声学分析等方面都有着广泛的应用,为更好地获取信号中的有价值信息提供了重要的视角。

为什么狄利克雷条件是连续时间傅里叶变换的是充分条件

为什么狄利克雷条件是连续时间傅里叶变换的是充分条件

在研究连续时间傅里叶变换的过程中,狄利克雷条件是至关重要的。

狄利克雷条件是指一个信号在进行傅里叶变换时,如果其幅度和相位以及频率都是可预测的,并且信号本身是有限长的,那么这个信号就满足狄利克雷条件。

而为什么狄利克雷条件是连续时间傅里叶变换的充分条件,这是一个需要深入思考和研究的问题。

1. 傅里叶级数和傅里叶变换的关系在理解狄利克雷条件为何是连续时间傅里叶变换的充分条件之前,首先需要理解傅里叶级数和傅里叶变换的关系。

傅里叶级数是将周期信号分解为正弦和余弦函数的和的形式,而傅里叶变换则是将非周期信号分解为不同频率的正弦和余弦函数的积分的形式。

两者都是用来描述信号在频域上的特性,但傅里叶变换可以描述更广泛范围内的信号,比如非周期信号。

2. 连续时间傅里叶变换的定义和性质连续时间傅里叶变换是将一个信号在频域上的特性表示为一个复数函数的形式。

它的定义如下:\[X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt\]其中,\(x(t)\)是输入信号,\(X(f)\)是在频率\(f\)处的频谱。

3. 狄利克雷条件的定义和意义狄利克雷条件是指一个信号在进行傅里叶变换时,其本身是有限长的,并且其幅度、相位和频率都是可预测的。

在数学上,它的定义如下:\[\int_{-\infty}^{\infty} |x(t)| dt < \infty\]\[x(t) = \sum_{n=-\infty}^{\infty} X(nT)e^{j2\pi nfT}\]其中,\(T\)是信号的周期,\(X(nT)\)是信号在时域上的采样。

4. 狄利克雷条件对于傅里叶变换的作用狄利克雷条件是傅里叶变换的充分条件,这意味着满足狄利克雷条件的信号可以进行傅里叶变换,并且其傅里叶变换是唯一的。

满足狄利克雷条件的信号在频域上的频谱是连续、平滑且不会发散的,这使得对信号的频谱分析变得更加准确和有效。

MATLAb连续时间傅里叶变换

MATLAb连续时间傅里叶变换

Ts




o TS
t
x(n)


o1
n
MATLAB在信号与系统课程中的应用
s

2
om s
X ej 1
Ts

om 2
离散时间信号 的傅里叶变换 DTFT就是抽样 信号的傅立叶 变换。
Ts
EE of BUPT
比较
利用时域卷积定理
Xs
t
xn

Ts
2 fs
f fs
MATLAB在信号与系统课程中的应用
1 O 1 2 3
n EE of BUPT
8.3 理想抽样信号的傅里叶变换(利用卷积定理)
连续信号 xt
抽样信号
xs t
xt X
(m m )
抽样脉冲
pt T t
间隔必须不大于 1 2 fm
,即T

1 2 fm
m

2πfm
;
(3)可以使用一个理想低通滤波器从xs t 中恢复出x t 。理想低通滤波器的
增益为T,截止频率为
1 Ts
X s Ts
m

c

s



m
s
om s
m C s m
MATLAB在信号与系统课程中的应用
如 果 给 出 一 个 频 率 范 围 , 即 可 以 选 取 一 些 间 隔 上 的 点 求 出
其 取 值 。 问 题 : T s 如 何 选 取 ? 频 谱 特 点 ?
MATLAB在信号与系统课程中的应用
EE of BUPT

连续时间傅里叶变换

连续时间傅里叶变换

连续时间傅⾥叶变换連續時間傅裡葉變換(Continuous Time Fourier Transform)引⾔傅裡葉變換試圖將⾮週期信號也納⼊到傅裡葉的體系中。

對於⾮週期信號,可以看成是週期無限⾧的週期信號。

當週期無限⼤時,傅裡葉級數的頻率分量就變成了⼀個連續域。

⾮週期信號的表⽰:連續時間傅裡葉變換⾸先以週期⽅波為例,即在⼀個週期內x(t)=1,|t|<T10,T1<|t|<T/2若將其表⽰為傅裡葉級數,其傅裡葉級數的係數為a k=2sin(kω0T1)kω0T將其在頻域圖上畫出來,並逐漸增⼤週期T就可以得到下圖可想⽽知,隨著T的增⼤,頻率越來越⼩,包絡線裡⾯的頻率越來越密集,最終形成⼀條連續的曲線。

傅裡葉變換的⼯作就是要求出這條曲線,從⽽完成信號從時域到頻域的轉換。

這就是對⾮週期信號建⽴傅裡葉級數表⽰的基本思想。

將˜x(t)看作是x(t)的⼀個週期,由於傅裡葉的級數表⽰是在⼀個週期內推出來的,所以對於⾮週期信號的⼀個週期,也有˜x(t)=+∞∑k=−∞a k e jkω0t a k=1T∫T2−T2˜x(t)e−jkω0t dt由於⾮週期信號可以看成只有⼀個週期的信號,所以在週期之外,即|t|>T/2時,x(t)=0,⽽在週期之內,˜x(t)=x(t),則有a k=1T∫+∞k=−∞x(t)e−jkω0t dt則可以得到X(jω)=Ta k=∫+∞−∞x(t)e−jωt dt 稱X(jω)為Ta k的包絡。

再將a k=X(jω)T代⼊式1得˜x(t)=+∞∑k=−∞1T X(jkω0)ejkω0t=12π+∞∑k=−∞X(jkω0)e jkω0tω0當T→∞時,˜x(t)→x(t),ω0→0,因此ω0可以看作⼀個微分,⽽右端式⼦可以看作⼀個積分式。

則有x(t)=12π∫+∞−∞X(jω)e jωt dω{⽽X(jω)=∫+∞−∞x(t)e−jωt dt這兩式即稱為⼀對傅裡葉變換對。

信号与系统傅里叶变换对总结

信号与系统傅里叶变换对总结

| z | 1
| z | 1
[r cos 0 n]u[n]
n
| z | r
[r sin 0 n]u[ n]
n
| z | r
te at u(t ), Re{a} 0
t n 1 e at u (t ), Re{a} 0 (n 1)!
减幅余弦

e at cos(0t )u (t )
减幅正弦
e at sin(0t )u (t )
0 (a j ) 2 +0 2
1 a t2
2

a
e
a
j
)
[n]
u[n]
单位阶跃序列
单边指数序列
nu[n], | | 1
1 1 e j
复指数序列
e
j0 n
l
2 (

0
2 l )
2 l ) ( 0 2 l )
余弦序列
cos 0 n
sin 0 n
l
sin(0t )
1
2 ( )
jk0t
周期波
k
ce
k
2
k
c ( k )
k 0

周期矩形脉冲
t T1 / 2 A, 0, T1 / 2 t T1 / 2
2 A sin(k0T1 / T0 ) ( k0 ) k k
1
单位冲激 延迟冲激
(t )
(t t0 )
sgn(t )
e jt0
2 j
正负号函数
单位阶跃
u(t )
1 ( ) j
j ( ) 1

离散傅里叶变换和连续傅立叶变换区别

离散傅里叶变换和连续傅立叶变换区别

离散傅里叶变换和连续傅立叶变换区别
离散傅里叶变换和连续傅立叶变换是两种不同的信号处理方法。

它们的区别在于信号的采样方式和处理方式。

连续傅立叶变换是一种将时域信号转换为频域信号的方法。

它适用于连续信号,即信号在时间上是连续的。

在进行连续傅立叶变换时,需要对信号进行采样,将其离散化,然后进行傅立叶变换。

这种方法可以用于分析和处理各种类型的信号,例如音频信号、图像信号等。

相比之下,离散傅里叶变换是一种将离散信号转换为频域信号的方法。

它适用于离散信号,即信号在时间上是离散的。

在进行离散傅里叶变换时,信号已经被离散化,因此不需要进行采样。

离散傅里叶变换通常用于数字信号处理中,例如数字滤波器设计、频域滤波等。

另一个区别是它们的计算方式不同。

连续傅立叶变换是通过积分计算得到的,而离散傅里叶变换是通过离散的计算公式得到的。

这意味着离散傅里叶变换可以在计算机上进行快速计算,而连续傅立叶变换需要进行数值积分,计算速度较慢。

它们的应用场景也有所不同。

连续傅立叶变换通常用于分析和处理模拟信号,例如音频信号、图像信号等。

而离散傅里叶变换则更适用于数字信号处理,例如数字滤波器设计、频域滤波等。

离散傅里叶变换和连续傅立叶变换是两种不同的信号处理方法,它们的区别在于信号的采样方式和处理方式、计算方式以及应用场景。

在实际应用中,我们需要根据信号的特点和处理需求选择合适的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 连续时间傅里叶变换1 周期信号的频谱分析——傅里叶级数FS(1) 狄义赫利条件:在同一个周期1T 内,间断点的个数有限;极大值和极小值的数目有限;信号绝对可积∞<⎰dt t f T 1)(。

(2) 傅里叶级数:正交函数线性组合。

正交函数集可以是三角函数集}:sin ,cos ,1{11N n t n t n ∈ωω或复指数函数集}:{1Z n e t jn ∈ω,函数周期为T 1,角频率为11122T f π=π=ω。

(3) 任何满足狄义赫利条件周期函数都可展成傅里叶级数。

(4) 三角形式的FS :(i) 展开式:∑∞=ω+ω+=1110)sin ()(n n n t n b t con a a t f(ii) 系数计算公式:(a) 直流分量:⎰=1)(110Tdt t f T a (b) n 次谐波余弦分量:N n tdt n t f T a Tn ∈ω=⎰,cos )(2111(c) n 次谐波的正弦分量:N n tdt n t f T b Tn ∈ω=⎰1,sin )(211(iii) 系数n a 和n b 统称为三角形式的傅里叶级数系数,简称傅里叶系数。

(iv) 称11/1T f =为信号的基波、基频;1nf 为信号的n 次谐波。

(v)合并同频率的正余弦项得:n ψ和n θ分别对应合并后n 次谐波的余弦项和正弦项的初相位。

(vi) 傅里叶系数之间的关系: (5) 复指数形式的FS :(i) 展开式:∑∞-∞=ω=n t jn n e F t f 1)((ii)系数计算:Z n dt e t f T F Tt jn n ∈=⎰ω-,)(1111(iii) 系数之间的关系: (iv) n F 关于n 是共扼对称的,即它们关于原点互为共轭。

(v) 正负n (n 非零)处的n F 的幅度和等于n c 或n d 的幅度。

(6) 奇偶信号的FS : (i) 偶信号的FS : ⎰ω=111cos )(2Tn tdt n t f T a ;0sin )(2111=ω=⎰Tn tdt n t f T b ; n n n a d c ==n n n n n F a jb a F -==-=22 (n F 实,偶对称);0=ψn ;2π=θn (ii) 偶的周期信号的FS 系数只有直流项和余弦项。

(iii)奇信号的FS :00==n a a ;⎰ω=111sin )(2Tn tdt n t f T b ;n n n n jF b d c 2===;n n n jb F F 21-=-=- (n F 纯虚,奇对称); 2π-=ψn ;0=θn (iv) 奇的周期信号的FS 系数只有正弦项。

(7) 周期信号的傅里叶频谱:(i) 称{}n F 为信号的傅里叶复数频谱,简称傅里叶级数谱或FS 谱。

(ii)称{}n F 为信号的傅里叶复数幅度频谱,简称FS 幅度谱。

(iii)称{}n ϕ为傅里叶复数相位频谱,简称FS 相位谱。

(iv)周期信号的FS 频谱仅在一些离散点角频率1ωn (或频率1nf )上有值。

(v)FS 也被称为傅里叶离散谱,离散间隔为11/2T π=ω。

(vi)FS 谱、FS 幅度谱和相位谱图中表示相应频谱、频谱幅度和频谱相位的离散线段被称为谱线、幅度谱线和相位谱线,分别表示FS 频谱的值、幅度和相位(vii)连接谱线顶点的虚曲线称为包络线,反映了各谐波处FS 频谱、幅度谱和相位谱随分量的变化情况。

(viii)称n c 为单边谱,表示了信号在谐波处的实际分量大小。

(ix)称n F 为双边谱,其负频率项在实际中是不存在的。

正负频率的频谱幅度相加,才是实际幅度。

(8) 周期矩形脉冲序列的FS 谱的特点:(i) 谱线包络线为Sa 函数;(ii) 谱线包络线过零点:(其中112T π=ω为谱线间隔): π=πτk T n 1,或τπ=ωk n 21,0,≠∈k Z k 即当τπ=ω=ω/21k n 时,0===n n n F c a 。

(iii) 在频域,能量集中在第一个过零点之内。

(iv) 带宽τπ=βω/2或τ=β/1f 只与矩形脉冲的脉宽τ有关,而与脉高和周期均无关。

(定义τπ/2~0为周期矩形脉冲信号的频带宽度,简称带宽)(9) 周期信号的功率:[]∑∞-∞==n nF t f P 2)((10) 帕斯瓦尔方程:⎰1)(121Tdt t f T 2∑∞-∞==n nF2 非周期信号的频谱分析—傅里叶变换(FT)(1) 信号f (t )的傅里叶变换:是信号)(t f 的频谱密度函数或FT 频谱,简称为频谱(函数)。

(2) 频谱密度函数)(ωF 的逆傅里叶变换为:[])(ˆ)(21)(1ω=ωωπ=-∞∞-ω⎰F F d eF t f tj (3) 称t j e ω-为FT 的变换核函数,t j e ω为IFT 的变换核函数。

(4) FT 与IFT 具有唯一性。

如果两个函数的FT 或IFT 相等,则这两个函数必然相等。

(5) FT 具有可逆性。

如果[])()(ω=F t f F ,则必有[])()(1t f F F =ω-;反之亦然。

(6) 信号的傅里叶变换一般为复值函数,可写成)()()(ωϕω=ωj e F F(i) 称)(ωF 为幅度频谱密度函数,简称幅度谱,表示信号的幅度密度随频率变化的幅频特性; (ii) 称())()(ω=ωϕF Arg 为相位频谱密度函数,简称相位谱函数,表示信号的相位随频率变化的相频特性。

(7) FT 频谱可分解为实部和虚部:)()()(ω+ω=ωi r jF F F(8) FT 存在的充分条件:时域信号)(t f 绝对可积,即⎰∞∞-∞<dt t f )(。

注意:这不必要条件。

有一些并非绝对可积的信号也有FT 。

(9) FT 及IFT 在赫兹域的定义:⎰∞∞-π-=dt e t f f F ft j 2)()(;⎰∞∞-π=dfef F t f ftj 2)()((10)3 (1) 单边指数信号:)0()()(>=-a t u e t f at幅度谱:221)(ω+=ωa F相位谱:()⎪⎭⎫⎝⎛ω-=⎪⎪⎭⎫⎝⎛ω+ω-=ω=ωϕa arctg a j a Arg F Arg 22)()( 单边指数信号及其幅度谱、相位谱如图1所示。

图1 (a)单边指数信号 (b)幅度谱 (c)相位谱(2) 偶双边指数信号:)0()(>=-a et f ta220)(0)(211ω+=ω++ω-=+=⎰⎰∞ω+-∞-ω+--a aj a j a dt e dt e t j a tj a ,为实偶函数。

幅度谱:222)(ω+=ωa a F相位谱:0)(=ωϕ偶双边指数信号及其频谱如图2所示。

图2 (a)偶双边指数信号 (b)频谱(3) 矩形脉冲信号:)()(t EG t f τ= (脉宽为?、脉高为E )⎪⎭⎫⎝⎛ωτ⋅τ=ωω⋅=ττ-2sin 2/2/Sa E t E ,为实函数。

幅度谱:⎪⎭⎫⎝⎛ωττ=ω2)(Sa E F 相位谱:-∈⎪⎪⎩⎪⎪⎨⎧<ωτπ+<ω<τ+π>ωτπ+<ω<τπ=ωϕZ k F k k F k k )0)(()1(4)12(2,)0)(()12(24,0)(对应对应矩形脉冲信号及其频谱如图3所示。

图3 (a)矩形脉冲信号 (b)频谱矩形脉冲FT 的特点:(i) FT 为Sa 函数,原点处函数值等于矩形脉冲的面积; (ii) FT 的过零点位置为)0(/2≠τπ=ωk k ;(iii)频域的能量集中在第一个过零点区间[]τπτπ-∈ω/2,/2之内(iv) 带宽为τπ=ω/2B 或τ=/1f B ,只与脉宽τ有关,与脉高E 无关。

信号等效脉宽:)0(/)0(f F =τ 信号等效带宽:τ=1f B图4 (a)信号的等效脉宽 (b)等效带宽(4) 符号函数:不满足绝对可积条件,但存在FT 。

幅度谱:ω=ω2)(F 相位谱:⎩⎨⎧<ωπ>ωπ-=ωϕ0,2/0,2/)(符号函数及其频谱如图5所示。

图5 (a)符号函数 (b)频谱(5) 冲激信号:均匀谱/白色谱:频谱在任何频率处的密度都是均匀的。

强度为E 的冲激函数的频谱是均匀谱,密度就是冲激的强度。

(6) 阶跃信号:不满足绝对可积条件,但存在FT在0=ω处有一个冲激,该冲激来自)(t u 中的直流分量。

单位阶跃信号及其幅度谱如图6所示。

图6 单位阶跃函数及其幅度谱4 FT 的性质(1) 线性性:[]∑∑=⎥⎥⎦⎤⎢⎢⎣⎡nn n nn n t f F a t f a F )()(线性性包括:齐次性[][])()(t f aF t af F =;叠加性[][][])()()()(2121t f F t f F t f t f F +=+。

(2) 奇偶虚实性:偶⇔偶 奇⇔奇实偶⇔实偶 (FT 可变为余弦变换) 实奇⇔虚奇 (FT 可变为正弦变换)实信号的FT :(实信号可分解为:实偶+实奇)实部是偶函数,虚部是奇函数:实⇔实偶+j 实奇偶共扼对称:)()(*ω=ω-F F幅度谱为偶函数,相位谱为奇函数:实⇔实偶EXP(实奇) 虚信号的FT 具有奇共扼对称性:)()(*ω-=ω-F F偶共轭对称或奇共轭对称的函数满足幅度对称:)()(ω=ω-F F 。

实信号或虚信号的FT 幅度谱偶对称,幅度谱函数是偶函数。

(3) 反褶和共轭性:(4) 对偶性:傅里叶正逆变换的变换核函数是共轭对称的:()t j tj e e ωω-=*;()t j tj e e ω-ω=*[]ωω=ωω-∞∞-ω⎰d eg g F tj )()(表示按自变量?进行傅里叶变换,结果是t 的函数。

IFT 可以通过FT 来实现。

FT 的对偶特性:)(2)]([ω-π=f t F F若)(t f 为偶函数,则[])(2)(ωπ=f t F F ; 若)(t f 为奇函数,则[])(2)(ωπ-=f t F F 。

(5) 尺度变换特性:)0(,1)]([≠⎪⎭⎫⎝⎛ω=a a F a at f F 此性质表明:时域压缩对应频域扩展、时域扩展对应频域压缩。

(6) 时移特性:[][]0)()()(0t j t j e t f F e F t t f F o ω-ω-=ω=-时移不影响幅度谱,只在相位谱上叠加一个线性相位。

与尺度变换特性综合:(7) 频移特性:与尺度变换特性综合:())0(,10/0≠ω-ω=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛ωa a F e a t f a F a t j频谱搬移:时域信号乘以一个复指数信号后,频谱被搬移到复指数信号的频率位置处。

利用欧拉公式,通过乘以正弦或余弦信号达到频谱搬移目的。

相关文档
最新文档