因式分解习题_3

合集下载

因式分解练习题加答案

因式分解练习题加答案

因式分解练习题一、填空题:2.(a (a--3)(33)(3--2a)=_______(32a)=_______(3--a)(3a)(3--2a)2a);;12.若m ²-3m 3m++2=(m 2=(m++a)(m a)(m++b)b),则,则a=______a=______,,b=______b=______;;15.当m=______m=______时,时,时,x x ²+2(m 2(m--3)x 3)x++25是完全平方式.是完全平方式. 二、选择题:1.下列各式的因式分解结果中,正确的是[ ]A .a ²b +7ab 7ab--b =b(a ²+7a)B .3x ²y -3xy 3xy--6y=3y(x 6y=3y(x--2)(x 2)(x++1)C .8xyz 8xyz--6x ²y ²=2xyz(42xyz(4--3xy)D .-.-2a 2a ²+4ab 4ab--6ac 6ac=-=-=-2a(a 2a(a 2a(a++2b 2b--3c) 2.多项式m(n m(n--2)2)--m ²(2(2--n)n)分解因式等于分解因式等于分解因式等于[ ]A .(n (n--2)(m 2)(m++m ²)B B..(n (n--2)(m 2)(m--m ²)C .m(n m(n--2)(m 2)(m++1)D D..m(n m(n--2)(m 2)(m--1) 3.在下列等式中,属于因式分解的是.在下列等式中,属于因式分解的是[ ]A .a(x a(x--y)y)++b(m b(m++n)n)==ax ax++bm bm--ay ay++bnB .a ²-2ab 2ab++b ²+1=(a 1=(a--b)²+1C .-.-4a 4a ²+9b ²=(-2a 2a++3b)(2a 3b)(2a++3b)D .x ²-7x 7x--8=x(x 8=x(x--7)7)--84.下列各式中,能用平方差公式分解因式的是[ ]A .a ²+b ²B .-.-a a ²+b ²C .-.-a a ²-b ²D .-.-((-a ²)+b ² 5.若9x ²+mxy mxy++16y ²是一个完全平方式,那么m 的值是的值是[ ]A .-.-12 12B B.±24.±24.±24C .12D D.±12.±12.±12 6.把多项式a n+4-a n+1分解得分解得[ ]A .a n (a 4-a)B B..a n-1(a 3-1) C .a n+1(a (a--1)(a ²-a +1) D D..a n+1(a (a--1)(a ²+a +1) 7.若a ²+a =-=-11,则a 4+2a 3-3a ²-4a 4a++3的值为的值为[] A.8 B B..7C.10 D D..128.已知x²+y²+2x2x--6y6y++10=0的值分别为,那么x,y的值分别为10=0,那么[] A.x=1x=1,,y=3 B B..x=1x=1,,y=y=--3C.x=x=--1,y=3 D D..x=1x=1,,y=y=--39.把分解因式得.把(m(m²+3m)4-8(m²+3m)²+16分解因式得[] A.(m(m++1)4(m(m++2)²B.(m(m--1)²(m(m--2)²(m²+3m3m--2)C.(m(m++4)²(m(m--1)²D.(m(m++1)²(m(m++2)²(m²+3m3m--2)²10.把x²-7x7x--60分解因式,得分解因式,得[] A.(x(x--10)(x10)(x++6) B B..(x(x++5)(x5)(x--12)C.(x(x++3)(x5)(x++12)3)(x--20) D D..(x(x--5)(x11.把3x²-2xy分解因式,得2xy--8y²分解因式,得[] A.(3x4)(x++2)(3x++4)(x(3x--4)(x4)(x--2) B B..(3xC.(3x4y)(x++2y)(3x--4y)(x4y)(x--2y) D D..(3x(3x++4y)(x12.把a²+8ab分解因式,得8ab--33b²分解因式,得[] A.(a(a++11)(a11b)(a--3b)11)(a--3) B B..(a(a--11b)(aC.(a(a++11b)(a11b)(a++3b)11b)(a--3b) D D..(a(a--11b)(a13.把x4-3x²+2分解因式,得分解因式,得[]A .(x ²-2)(x ²-1)B B..(x ²-2)(x 2)(x++1)(x 1)(x--1)C .(x ²+2)(x ²+1)D D..(x ²+2)(x 2)(x++1)(x 1)(x--1) 14.多项式x ²-ax ax--bx bx++ab 可分解因式为可分解因式为[ ]A .-.-(x (x (x++a)(x a)(x++b)B B..(x (x--a)(x a)(x++b)C .(x (x--a)(x a)(x--b)D D..(x (x++a)(x a)(x++b)15.一个关于x 的二次三项式,其x ²项的系数是1,常数项是-,常数项是-121212,且能分解因式,这样的二,且能分解因式,这样的二次三项式是次三项式是[ ]A .x ²-11x 11x--12或x ²+11x 11x--12B .x ²-x -12或x ²+x -12C .x ²-4x 4x--12或x ²+4x 4x--12D .以上都可以.以上都可以16.下列各式x 3-x ²-x +1,x ²+y -xy xy--x ,x ²-2x 2x--y ²+1,(x ²+3x)2-(2x (2x++1)²中,不含有(x (x--1)1)因式的有因式的有因式的有[ ]A .1个B B..2个C .3个D D..4个 17.把9-x ²+12xy 12xy--36y ²分解因式为分解因式为[ ]A .(x (x--6y 6y++3)(x 3)(x--6x 6x--3)B .-.-(x (x (x--6y 6y++3)(x 3)(x--6y 6y--3)C .-.-(x (x (x--6y 6y++3)(x 3)(x++6y 6y--3)D .-.-(x (x (x--6y 6y++3)(x 3)(x--6y 6y++3) 18.下列因式分解错误的是.下列因式分解错误的是[ ]A .a ²-bc bc++ac ac--ab=(a ab=(a--b)(a b)(a++c)B .ab ab--5a 5a++3b 3b--15=(b 15=(b--5)(a 5)(a++3)C .x ²+3xy 3xy--2x 2x--6y=(x 6y=(x++3y)(x 3y)(x--2)D .x ²-6xy 6xy--1+9y ²=(x =(x++3y 3y++1)(x 1)(x++3y 3y--1)19.已知a ²x ²±2x+±2x+b b ²是完全平方式,且a ,b 都不为零,则a 与b 的关系为的关系为[ ]A .互为倒数或互为负倒数.互为倒数或互为负倒数B B.互为相反数.互为相反数.互为相反数C .相等的数.相等的数D D.任意有理数.任意有理数.任意有理数 20.对x 4+4进行因式分解,所得的正确结论是进行因式分解,所得的正确结论是[ ]A .不能分解因式.不能分解因式B B.有因式.有因式x ²+2x 2x++2C .(xy (xy++2)(xy 2)(xy--8)D D..(xy (xy--2)(xy 2)(xy--8) 21.把a 4+2a ²b ²+b 4-a ²b ²分解因式为分解因式为[ ]A .(a ²+b ²+ab)²B .(a ²+b ²+ab)(a ²+b ²-ab)C .(a ²-b ²+ab)(a ²-b ²-ab)D D..(a ²+b ²-ab)² 22.-.-(3x (3x (3x--1)(x 1)(x++2y)2y)是下列哪个多项式的分解结果是下列哪个多项式的分解结果是下列哪个多项式的分解结果[ ]A .3x ²+6xy 6xy--x -2yB B..3x ²-6xy 6xy++x -2yC .x +2y 2y++3x ²+6xyD D..x +2y 2y--3x ²-6xy 23.64a 8-b ²因式分解为因式分解为[ ]A .(64a 4-b)(a 4+b)B B..(16a ²-b)(4a ²+b) C .(8a 4-b)(8a 4+b) D D..(8a ²-b)(8a 4+b) 24.9(x 9(x--y)²+12(x ²-y ²)+4(x 4(x++y)²因式分解为因式分解为[] A.(5x(5x++y)²(5x--y)²B.(5xC.(3x2y)(3x++2y) D D..(5x(5x--2y)²(3x--2y)(3x25.(2y2y)++1因式分解为因式分解为2(3x--2y)(2y--3x)²-2(3x[] A.(3x(3x++2y2y++1)²(3x--2y2y--1)²B.(3xC.(3x(2y--3x3x--1)²(3x--2y2y++1)²D.(2y26.把分解因式为.把(a(a(a++b)²-4(a²-b²)+4(a4(a--b)²分解因式为[] A.(3a(3b++a)²(3a--b)²B.(3bC.(3b(3b--a)²D.(3a(3a++b)²27.把a²(b(b++c)²-2ab(a分解因式为2ab(a--c)(bc)(b++c)c)++b²(a(a--c)²分解因式为[] A.c(ac(a++b)²B.c(ac(a--b)²C.c²(a(a++b)²D.c²(a(a--b)28.若4xy4xy--4x²-y²-k有一个因式为,则k的值为的值为有一个因式为(1(1(1--2x2x++y)y),则[] A.0 B B..1C.-.-1 1 D D..429.分解因式3a²x-4b²y-3b²x+4a²y,正确的是,正确的是[] A.-b)(a++b)(3xb)(3x++4y))(3x++4y) B B..(a(a--b)(a.-(a(a²+b²)(3xC.(a²+b²)(3xb)(3x--4y)b)(a++b)(3x)(3x--4y) D D..(a(a--b)(a30.分解因式2a²+4ab,正确的是4ab++2b²-8c²,正确的是[]A .2(a 2(a++b -2c)B B..2(a 2(a++b +c)(a c)(a++b -c)C .(2a (2a++b +4c)(2a 4c)(2a++b -4c)D D..2(a 2(a++b +2c)(a 2c)(a++b -2c) 三、因式分解: 1.m ²(p (p--q)q)--p +q ; 2.a(ab a(ab++bc bc++ac)ac)--abc abc;; 3.x 4-2y 4-2x 3y +xy 3;4.abc(a ²+b ²+c ²)-a 3bc bc++2ab ²c ²; 5.a ²(b (b--c)c)++b ²(c (c--a)a)++c ²(a (a--b)b);; 6.(x ²-2x)²+2x(x 2x(x--2)2)++1; 7.(x (x--y)²+12(y 12(y--x)z x)z++36z ²; 8.x ²-4ax 4ax++8ab 8ab--4b ²;9.(ax (ax++by)²+(ay (ay--bx)²+2(ax 2(ax++by)(ay by)(ay--bx)bx);; 10.(1(1--a ²)(1)(1--b ²)-(a ²-1)²(b ²-1)²; 11.(x (x++1)²-9(x 9(x--1)²; 12.4a ²b ²-(a ²+b ²-c ²)²; 13.ab ²-ac ²+4ac 4ac--4a 4a;; 14.x 3n +y 3n ; 15.(x (x++y)3+125125;; 16.(3m (3m--2n)3+(3m (3m++2n)3; 17.x 6(x ²-y ²)+y 6(y ²-x ²); 18.8(x 8(x++y)3+1;19.(a (a++b +c)3-a 3-b 3-c 3; 20.x ²+4xy 4xy++3y ²; 21.x ²+18x 18x--144144;; 22.x 4+2x ²-8;23.-.-m m 4+18m ²-1717;; 24.x 5-2x 3-8x 8x;; 25.x 8+19x 5-216x 2;26.(x ²-7x)²+10(x ²-7x)7x)--2424;; 27.5+7(a 7(a++1)1)--6(a 6(a++1)²; 28.(x ²+x)(x ²+x -1)1)--2; 29.x ²+y ²-x ²y ²-4xy 4xy--1;30.(x (x--1)(x 1)(x--2)(x 2)(x--3)(x 3)(x--4)4)--4848;; 31.x ²-y ²-x -y ;32.ax ²-bx ²-bx bx++ax ax--3a 3a++3b 3b;; 33.m 4+m ²+1; 34.a ²-b ²+2ac 2ac++c ²; 35.a 3-ab ²+a -b ;36.625b 4-(a (a--b)4; 37.x 6-y 6+3x ²y 4-3x 4y ²; 38.x ²+4xy 4xy++4y ²-2x 2x--4y 4y--3535;; 39.m ²-a ²+4ab 4ab--4b ²; 40.5m 5m--5n 5n--m ²+2mn 2mn--n ². 四、证明(求值):1.已知a +b=0b=0,求,求a 3-2b 3+a ²b -2ab ²的值.的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.,一定是一个完全平方数. 3.证明:.证明:(ac (ac (ac--bd)²+(bc (bc++ad)²=(a ²+b ²)(c ²+d ²).4.已知a=k a=k++3,b=2k b=2k++2,c=3k c=3k--1,求a ²+b ²+c ²+2ab 2ab--2bc 2bc--2ac 的值.的值. 5.若x ²+mx mx++n=(x n=(x--3)(x 3)(x++4)4),求,求,求(m (m (m++n)²的值.的值.6.当a 为何值时,多项式x ²+7xy 7xy++ay ²-5x 5x++43y 43y--24可以分解为两个一次因式的乘积.可以分解为两个一次因式的乘积.7.若x ,y 为任意有理数,比较6xy 与x ²+9y ²的大小.的大小. 8.两个连续偶数的平方差是4的倍数.的倍数. 参考答案参考答案: : 一、填空题:7.9,(3a (3a--1)10.x -5y 5y,,x -5y 5y,,x -5y 5y,,2a 2a--b 11.+.+55,-,-2 212.-.-11,-,-2(2(2(或-或-或-22,-,-1) 1)14.bc bc++ac ac,,a +b ,a -c 15.8或-或-2 2 二、选择题:1.B 2 2..C 3 3..C 4 4..B 5 5..B 6 6..D 7 7..A 8 8..C 9 9..D 10 10..B 11 11..C 12 12..C 1313..B 14 14..C 15 15..D 16 16..B 17 17..B 18 18..D 19 19..A 20 20..B 21 21..B 22 22..D 23 23..C 2424..A 2525..A 26 26..C 27 27..C 28 28..C 29 29..D 30 30..D三、因式分解:1.(p (p--q)(m q)(m--1)(m 1)(m++1)1)..8.(x(x--2b)(x2b)..2b)(x--4a4a++2b)11.4(2x1)(2--x)x)..4(2x--1)(220.(x(x++3y)(x3y)(x++y)y)..21.(x(x--6)(x24)..6)(x++24)27.(3(3++2a)(23a)..2a)(2--3a)31.(x(x++y)(xy)(x--y-1)1)..∴a=-∴a=-181818..。

初中数学因式分解(练习题)

初中数学因式分解(练习题)

1初中因式分解的常用方法例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++例5、分解因式:652++x x例6、分解因式:672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x 练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y例8、分解因式:221288b ab a --练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --例9、22672y xy x +- 例10、2322+-xy y x练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++ 思考:分解因式:abc x c b a abcx +++)(2222例11、分解因式:2910322-++--y x y xy x练习11、分解因式(1)56422-++-y x y x (2)67222-+--+y x y xy x(3)613622-++-+y x y xy x (4)36355622-++-+b a b ab a 例12、分解因式(1)2910322-++--y x y xy x(2)613622-++-+y x y xy x练习12、分解因式(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---。

三十道因式分解练习题

三十道因式分解练习题

三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。

因式分解练习题(有答案)

因式分解练习题(有答案)

因式分解练习题(有答案)篇一:因式分解过关练习题及答案因式分解专题过关1.将以下各式分解因式22(1)3p﹣6pq(2)2x+8x+82.将以下各式分解因式3322(1)xy﹣xy (2)3a﹣6ab+3ab.3.分解因式222222 (1)a(x﹣y)+16(y﹣x)(2)(x+y)﹣4xy4.分解因式:222232 (1)2x﹣x(2)16x﹣1(3)6xy﹣9xy﹣y (4)4+12(x﹣y)+9(x﹣y)5.因式分解:(1)2am﹣8a (2)4x+4xy+xy23226.将以下各式分解因式:322222 (1)3x﹣12x (2)(x+y)﹣4xy7.因式分解:(1)xy﹣2xy+y223 (2)(x+2y)﹣y228.对以下代数式分解因式:(1)n(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a﹣4a+4﹣b10.分解因式:a﹣b﹣2a+111.把以下各式分解因式:42422 (1)x﹣7x+1 (2)x+x+2ax+1﹣a22222(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+112.把以下各式分解因式:32222224445(1)4x﹣31x+15;(2)2ab+2ac+2bc ﹣a﹣b﹣c;(3)x+x+1;(4)x+5x+3x﹣9;(5)2a﹣a﹣6a﹣a+2. 3243222242432因式分解专题过关1.将以下各式分解因式22(1)3p﹣6pq;(2)2x+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p﹣6pq=3p(p﹣2q),222(2)2x+8x+8,=2(x+4x+4),=2(x+2).2.将以下各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.分析:(1)首先提取公因式xy,再利用平方差公式开展二次分解即可;(2)首先提取公因式3a,再利用完全平方公式开展二次分解即可.2解答:解:(1)原式=xy(x﹣1)=xy(x+1)(x﹣1);222(2)原式=3a(a﹣2ab+b)=3a(a﹣b).3.分解因式222222(1)a(x﹣y)+16(y﹣x);(2)(x+y)﹣4xy.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a(x﹣y)+16(y﹣x),=(x﹣y)(a ﹣16),=(x﹣y)(a+4)(a﹣4);22222222222(2)(x+y)﹣4xy,=(x+2xy+y)(x ﹣2xy+y),=(x+y)(x﹣y).4.分解因式:222232(1)2x﹣x;(2)16x﹣1;(3)6xy ﹣9xy﹣y;(4)4+12(x﹣y)+9(x﹣y).222分析:(1)直接提取公因式x即可;(2)利用平方差公式开展因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.2解答:解:(1)2x﹣x=x(2x﹣1);2(2)16x﹣1=(4x+1)(4x﹣1);223222(3)6xy﹣9xy﹣y,=﹣y(9x﹣6xy+y),=﹣y(3x﹣y);222(4)4+12(x﹣y)+9(x﹣y),=[2+3(x﹣y)],=(3x﹣3y+2).5.因式分解:2322 (1)2am﹣8a;(2)4x+4xy+xy分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.22解答:解:(1)2am﹣8a=2a(m﹣4)=2a(m+2)(m﹣2);322222(2)4x+4xy+xy,=x(4x+4xy+y),=x(2x+y).6.将以下各式分解因式:322222(1)3x﹣12x (2)(x+y)﹣4xy.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x=3x(1﹣4x)=3x(1+2x)(1﹣2x);22222222222(2)(x+y)﹣4xy=(x+y+2xy)(x+y ﹣2xy)=(x+y)(x﹣y).7.因式分解:22322(1)xy﹣2xy+y;(2)(x+2y)﹣y.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的构造特点,利用平方差公式开展因式分解即可.解答:解:(1)xy﹣2xy+y=y(x﹣2xy+y)=y(x﹣y);22(2)(x+2y)﹣y=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y). 223222328.对以下代数式分解因式:(1)n(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式开展因式分解. 解答:解:(1)n(m﹣2)﹣n(2﹣m)=n(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);22(2)(x﹣1)(x﹣3)+1=x﹣4x+4=(x﹣2).229.分解因式:a﹣4a+4﹣b.分析:此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有a的二次项a,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式开展分解.222222解答:解:a﹣4a+4﹣b=(a﹣4a+4)﹣b=(a﹣2)﹣b=(a﹣2+b)(a﹣2﹣b).10.分解因式:a﹣b﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法开展分解.此题中有a的二次项,a的一次项,有常数项.所以要考虑a﹣2a+1为一组.222222解答:解:a﹣b﹣2a+1=(a﹣2a+1)﹣b=(a﹣1)﹣b=(a﹣1+b)(a﹣1﹣b).11.把以下各式分解因式:42422(1)x﹣7x+1;(2)x+x+2ax+1﹣a(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+1分析:(1)首先把﹣7x变为+2x﹣9x,然后多项式变为x﹣2x+1﹣9x,接着利用完全平方公式和平方差公式分解因式即可求解;4222(2)首先把多项式变为x+2x+1﹣x+2ax﹣a,然后利用公式法分解因式即可解;222(3)首先把﹣2x(1﹣y)变为﹣2x(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;222422222424322222222篇二:因式分解练习题加答案200道因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解以下各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解以下各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

初中数学北师大版八年级下册第四章 因式分解3.公式法-章节测试习题(3)

初中数学北师大版八年级下册第四章 因式分解3.公式法-章节测试习题(3)

章节测试题1.【答题】把x2y-y分解因式,正确的是()A. y(x2-1)B. y(x+1)C. y(x-1)D. y(x+1)(x-1)【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:原式选D.2.【答题】已知a-b=3,则的值是()A. 4B. 6C. 9D. 12【答案】C【分析】先分解因式,再代入求值即可.【解答】∵a-b=3,∴=(a+b)(a-b)-6b=(a+b)(a-b)-6b=3(a+b) -6b=3a+3b-6b=3(a-b)=3×3=9.选C.3.【答题】下列多项式,能用完全平方公式分解因式的是()A. -x2-2x-1B. x2-2x-1C. x2+xy+y2D. x2+4【答案】A【分析】能用完全平方公式分解因式的式子的特点是:有三项,其中两个平方项的符号必须相同,第三项为两平方项底数乘积的2倍.【解答】解:A、-x2-2x-1=-(x2+2x+1)=-(x+1)2,能用完全平方公式分解因式,故此选项正确;B、x2-2x-1不符合能用完全平方公式分解因式的式子的特点,故此选项错误;C、x2+xy+y2不符合能用完全平方公式分解因式的式子的特点,故此选项错误;D、x2+4不符合能用完全平方公式分解因式的式子的特点,故此选项错误.选A.4.【答题】下列多项式中,在有理数范围内能够分解因式的是()A. ﹣5B. +5x+3C. 0.25﹣16D. +9【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:0.25x2-16y2=(0.5x)2-(4y)2=(0.5x+4y)( 0.5x-4y),所以在有理数范围内能够分解因式的是C,选C.5.【答题】把多项式x3-2x2+x分解因式结果正确的是()A. x(x2-2x)B. x2(x-2)C. x(x+1)(x-1)D. x(x-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:x3-2x2+x=x(x2-2x+1)=x(x-1)2选D.6.【答题】下列分解因式正确的是()A. x3﹣x=x(x2﹣1)B. x2+y2=(x+y)(x﹣y)C. (a+4)(a﹣4)=a2﹣16D. m2+m+=(m+)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:A、x3﹣x=x(x+1)(x-1),故此选项错误;B、x2+y2不能够进行因式分解,故错选项错误;C、是整式的乘法,不是因式分解,故此选项错误;D、正确.选D.7.【答题】把代数式x3﹣4x2+4x分解因式,结果正确的是()A. x(x2﹣4x+4)B. x(x﹣4)2C. x(x+2)(x﹣2)D. x(x﹣2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】原式=x(x2﹣4x+4)=x(x﹣2)2,选D.8.【答题】下列各式中,能用完全平方公式分解因式的是()A. 16x2+1B. x2+2x-1C. a2+2ab+4b2D. x2-x+【答案】D【分析】根据完全平方公式因式分解.【解答】解: A. 16x2+1只有两项,不能用完全平方公式分解;B. x2+2x-1,不能用完全平方公式分解;C. a2+2ab+4b2,不能用完全平方公式分解;D. x2-x+=,能用完全平方公式分解.选D.9.【答题】分解因式结果正确的是()A.B.C.D.【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:选D.10.【答题】把代数式3x3-12x2+12x分解因式,结果正确的是()A. 3x(x2-4x+4)B. 3x(x-4)2C. 3x(x+2)(x-2)D. 3x(x-2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2选D.11.【答题】2 0152-2 015一定能被()整除A. 2 010B. 2 012C. 2 013D. 2 014【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解析:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,所以一定能被2 014整除.选D.12.【答题】下列因式分解正确的是().A.B.C.D.【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】A选项中,因为,所以本选项分解错误;B选项中,因为,所以本选项错误;C选项中,因为,所以本选项正确;D选项中,因为,所以本选项错误;选C.13.【答题】把2x-4x分解因式,结果正确的是()A. (x+2)(x-2)B. 2x(x-2)C. 2(x-2x)D. x(2x-4)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】2x2-4x=2(x2-2x)=2x(x-2).选B.14.【答题】计算:2-(-2) 的结果是()A. 2B. 3×2C. -2D. ()【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】22014-(-2)2015=22014+22015=22014(1+2)=3×22014.选B.15.【答题】下列多项式① x²+xy-y²② -x²+2xy-y²③ xy+x²+y²④1-x+ x其中能用完全平方公式分解因式的是()A. ①②B. ①③C. ①④D. ②④【答案】D【分析】根据完全平方公式分解因式.【解答】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.选D.16.【答题】下列各式是完全平方公式的是()A. 16x²-4xy+y²B. m²+mn+n²C. 9a²-24ab+16b²D. c²+2cd+c²【答案】C【分析】根据完全平方式解答即可.【解答】A.16x²-4xy+y²,不能分解成两个因式的乘积,故本选项错误;B.m²+mn+n²不能分解成两个因式的乘积,故本选项错误;C.9a²-24ab+16b²=(3a-4b)2,故本选项正确;D.c²+2cd+c²不能分解成两个因式的乘积,故本选项错误.选C.17.【答题】下列各式中,能用平方差公式分解因式的是()A.B.C.D.【答案】C【分析】根据平方差公式分解因式解答即可.【解答】平方差公式为:a2-b2=(a+b)(a-b),C选项-x2+4y2= -(x2-4y2)= -(x+2y)(x-2y).方法总结:平方差公式:a2-b2=(a+b)(a-b).18.【答题】一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A. 4x2-4x+1=(2x-1)2B. x3-x=x(x2-1)C. x2y-xy2=xy(x-y)D. x2-y2=(x+y)(x-y)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】B选项中,(x2-1)仍能继续运用平方差公式,最后结果应为x(x+1)(x-1);选B.19.【答题】把8a3-8a2+2a进行因式分解,结果正确的是()A. 2a(4a2-4a+1)B. 8a2(a-1)C. 2a(2a+1)2D. 2a(2a-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a-1)2.选D.20.【答题】下列各式不能用公式法分解因式的是()A.B.C.D.【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】选项A能用平方差公式分解因式;选项C、D能用完全平方公式因式分解;选项B不能因式分解,选B.。

初中数学冀教版七年级下册第十一章 因式分解11.1 因式分解-章节测试习题(3)

初中数学冀教版七年级下册第十一章 因式分解11.1 因式分解-章节测试习题(3)

章节测试题1.【答题】下列各式从左到右的变形(1)15x2y=;(2)(x+y)(x-y)=x2-y2;(3)x2-6x+9=(x-3)2;(4)x2+4x+1=x(x+4+),其中是因式分解的个数是()A. 1个B. 2个C. 3个D. 4个【答案】A【分析】根据因式分解的意义解答即可.【解答】把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.根据因式分解的定义可得只有(3)符合要求,选A.2.【答题】下列各式从左到右的变形中,是分解因式的是()A. x2-9+6x=(x+3)(x-3)+6xB. (x+5)(x-2)=x2+3x-10C. x2-8x+16=(x-4)2D. (x-2)(x+3)=(x+3)(x-2)【答案】C【分析】根据因式分解的意义解答即可.【解答】把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.根据因式分解的定义可得,只有选项C符合因式分解的形式,选C.3.【答题】下列从左到右的变形哪个是分解因式()A.B.C.D.【答案】A【分析】根据因式分解的意义解答即可.【解答】根据因式分解的定义,可知因式分解是把一个多项式化为几个因式积的形式,可知A是因式分解.选A.4.【答题】下列各式从左到右的变形是因式分解的是()A.B.C.D.【答案】D【分析】根据因式分解的意义解答即可.【解答】选项A. .不是因式分解.选项B. (x+y)(x+y)=x2-y2.不是因式分解.选项C. x2-xy+y2=(x-y)2 ,等式两边不成立,不是因式分解. 选项D. 2x-2y=2(x-y),是因式分解.选D.5.【答题】下列从左到右的变形是因式分解的是()A. (﹣a+b)2=a2﹣2ab+b2B. m2﹣4m+3=(m﹣2)2﹣1C. ﹣a2+9b2=﹣(a+3b)(a﹣3b)D. (x﹣y)2=(x+y)2﹣4xy【答案】C【分析】根据因式分解的意义解答即可.【解答】解: A.是整式的乘法,故A错误;B.没把一个多项式转化成几个整式积乘积的形式,故B错误;C.把一个多项式转化成几个整式积乘积的形式,故C正确;D.没把一个多项式转化成几个整式积乘积的形式,故D错误;选C.6.【答题】(上海松江区期末)下列各等式中,从左到右的变形是因式分解的是()A. x·(x-y)=x2-xyB. x2+3x-1=x(x+3)-1C. (x-y)2-y2=x(x-2y)D.【答案】C【分析】【解答】7.【答题】一次课堂练习,小敏同学做了如下4道分解因式题,你认为小敏做得不够完整的一题是()A. x3-x=x(x2-1)B. x2-2xy+y2=(x-y)2C. x2y-xy2=xy(x-y)D. x2-y2=(x-y)(x+y)【答案】A【分析】【解答】8.【答题】在①6a2b=2a2·3b;②x2-4-3x=(x+2)(x-2)-3x;③ab2-2ab=ab(b-2);④-a2+4=(2-a)(2+a)这四个式子中,从左到右的变形是因式分解的有()A. 4个B. 3个C. 2个D. 1个【答案】C【分析】【解答】9.【答题】下列式子中,分解因式结果为(3a-y)(3a+y)的多项式是()A. 9a2+y2B. -9a2+y2C. 9a2-y2D. -9a2-y2【答案】C【分析】【解答】10.【答题】若(x+5)(x-4)=x2+x-20,则多项式x2+x-20因式分解的结果是______.【答案】【分析】【解答】11.【答题】(x+3)(2x-1)是多项式______因式分解的结果.【答案】【分析】【解答】12.【答题】依据因式分解的意义填空:因为______=x2-4y2,所以x2-4y2因式分解的结果是______.【答案】,【分析】【解答】13.【题文】判断下列各式哪些是整式乘法,哪些是因式分解.(1)x2-4y2=(x+2y)(x-2y)(2)2x(x-3y)=2x2-6xy(3)(5a-1)2=25a2-10a+1(4)x2+4x+4=(x+2)2【答案】(1)因式分解(2)整式乘法(3)整式乘法(4)因式分解【分析】【解答】14.【答题】下列从左到右的变形:①15x2=3x·5xy;②(a+b)(a-b)=a2-b2;③a2-2a+1=(a-1)2;④中因式分解的个数是()A. 0个B. 1个C. 2个D. 3个【答案】B【分析】【解答】15.【答题】利用因式分解简便计算:57×99+44×99-99,下列正确的是()A. 99×(57+44)=99×101=9999B. 99×(57+44-1)=99×100=9900C. 99×(57+44+1)=99×102=10098D. 99×(57+44-99)=99×2=198【答案】B【解答】16.【答题】(广西贺州中考)下列各式分解因式正确的是()A. x2+6cy+9y2=(x+3y)2B. 2x2-4xy+9y2=(2x-3y)2C. 2x2-8y2=2(x+4y)(x-4y)D. x(x-y)+y(y-x)=(x-y)(x+y)【答案】A【分析】【解答】17.【答题】若x2+mx+n=(x+3)(x-2),则()A. m=-1,n=6B. m=1,n=-6C. m=5,n=-6D. m=-5,n=6【答案】B【分析】【解答】18.【答题】若x2-x-12=(x-a)(x+b),则ab=()A. -1B. 1C. -12D. 12【分析】【解答】19.【答题】乐乐从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图1),然后拼成一个平行四边形(如图2).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A. a2-b2=(a-b)2B. (a+b)2=a2+2ab+b2C. (a-b)2=a2-2ab+b2D. a2-b2=(a+b)(a-b)【答案】D【分析】【解答】20.【答题】若某多项式分解因式的结果为(xy+2)(y-2),则原多项式为______.【答案】【分析】。

初中因式分解经典练习题100道

初中因式分解经典练习题100道

初中因式分解经典练习题100道1.3a³b²c - 12a²b²c² + 9ab²c³可以因式分解为3abc(a - 3b)²。

2.16x² - 81可以因式分解为(4x - 9)(4x + 9)。

3.xy + 6 - 2x - 3y可以重写为xy - 2x - 3y + 6.4.x²(x - y) + y²(y - x)可以重写为x²(x - y) - y²(x - y)。

5.2x² - (a - 2b)x - ab可以重写为2x² - ax + 2bx - ab。

6.a⁴ - 9a²b²可以因式分解为(a² - 3ab)(a² + 3ab)。

7.x³ + 3x² - 4可以重写为x³ - x² + 4x² - 4.8.ab(x² - y²) + xy(a² - b²)可以重写为ab(x + y)(x - y) + xy(a +b)(a - b)。

9.(x + y)(a - b - c) + (x - y)(b + c - a)可以重写为(x + y)(a - b - c) - (y - x)(a - b + c)。

10.a² - a - b² - b可以重写为(a² - a) - (b² + b)。

11.(3a - b)² - 4(3a - b)(a + 3b) + 4(a + 3b)²可以重写为(3a -b)² - 4(3a - b)(a + 3b) + 4(a + 3b)²。

12.(a + 3)² - 6(a + 3)可以重写为(a + 3)² - 6(a + 3)。

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)一、填空题(共20题)1、a²-9b²=2、2x³-12x²+4x =2x()3、-27a³=()³4、2xy²-8x³ = 2x()()5、(x+2y)(y-2x)= -(x+2y)()6、x(x-y)+y(y-x)=7、a-a³= a(a+1)()8、1600a²-100=100()()9、9a²+()+4 =()²10、(x+2)x-x-2= (x+2)()11、a³-a =a()()12、()x²+4x+16 =()²13、3a³+5a²+()=(a+ )( +2a-4)14、()-2y² = -2( +1)²15、x²-6x-7=(x )(x )16、3xy+6y²+4x²+8xy=3y( )+4x()=()()17、a²+3a-10=(a+m)(a+n),则m= ,n=18、8a³-b³=(2a-b)()19、xy+y²+mx+my=(y²+my)+()=()()20、(x²+y²)²-4x²y²=二、选择题(共32题)1、多项式2a²+3a+1因式分解等于()A、(a+1)(a-1)B、(2a+1)(2a-1)C、(2a+1)(a+1)D、(2a+1)(a-1)2、下列各式分解因式正确的是()A、3x²+6x+3= 3(x+1)²B、2x²+5xy-2y²=(2x+y)(x+2y)C、2x²+6xy= (2x+3)(x+2y)D、a²-6=(a-3)(a-2)3、下列各式中,能有平方差公式分解因式的是()A、4x²+4B、(2x+3)² -4(3x²+2)²C、9x²-2xD、a²+b²4、把多项式x²-3x-70因式分解,得()A、(x-5)(x+14)B、(x+5)(x-14)C、(x-7)(x+10)D、(x+7)(x-10)5、已知a+b=0,则多项式a³+3a²+4ab+b²+b³的值是()A、0B、1C、 -2D、 26、把4a²+3a-1因式分解,得()A、(2a+1)(2a-1)B、(2a-1)(a-3)C、(4a-1)(a+1)D、(4a+1)(a-1)7、下列等式中,属于因式分解的是()A、a(1+b)+b(a+1)= (a+1)(b+1)B、2a(b+2)+b(a-1)=2ab-4a+ab-bC、a²-6a+10 =a(a-6)+10D、(x+3)²-2(x+3)=(x+3)(x+1)8、2m²+6x+2x²是一个完全平方公式,则m的值是()A、 0B、±32C、±52D、949、多项式3x³-27x 因式分解正确的是()A、3x(x²-9)B、3x(x²+9 )C、3x(x+3)(x-3)D、3x(3x-1)(3x+1)10、已知x>0,且多项式x³+4x²+x-6=0,则x的值是()A、1B、2C、3D、411、多项式2a²+4ab+2b²+k分解因式后,它的一个因式是(a+b-2),则k的值是()A、4B、-4C、8D、-812、对 a4 + 4进行因式分解,所得结论正确的是()A、(a²+2)²B、(a²+2)(a²-2)C、有一个因式为(a²+2a+2)D、不能因式分解13、多项式a²(m-n)+9(n-m)分解因式得()A、(a²+9)(m-n)B、(m-n)(a+3)(a-3)C、(a²+9)(m+n)D、(m+n)(a+3)²14、多项式m4-14m²+1分解因式的结果是()A、(m²+4m+1)(m²-4m+1)B、(m²+3m+1)(m²-6m+1)C、(m²-m+1)(m²+m+1)D、(m²-1)(m²+1)15、下列分解因式正确的是()A、-x²+3x = -x(x+3)B、x²+xy+x=x(x+y)C、2m(2m-n)+n(n-2m)= (2m-n)²D、a²-4a+4=(a+2)(a-2)16、下列等式从左到右的变形,属于因式分解的是()A、2x(a-b)=2ax-2bxB、2a²+a-1=a(2a+1)-1C、(a+1)(a+2)= a²+3a+2D、3a+6a²=3a(2a+1)17、下列各式① 2m+n 和m+2n ② 3n(a-b)和-a+b③x³+y³和x²+xy ④a²+b²和a²-b²其中有公因式的是()A、①②B、②③C、①④D、③④18、下列四个多项式中,能因式分解的是()A、x²+1B、 x²-1C、 x²+5yD、x²-5y19、将以下多项式分解因式,结果中不含因式x-1的是()A、1 -x³B、x²-2x+1C、x(2a+3)-(3-2a) D 、2x(m+n)-2(m+n)20、若多项式2x²+ax可以进行因式分解,则a不能为()A、0B、-1C、1D、221、已知x+y= -3,xy=2 ,则x³y+xy³的值是()A、 2B、 4C、10D、2022、多项式x a-y a因式分解的结果是(x²+y²)(x+y)(x-y),则a的值是()A、2B、4C、-2 D-423、对8(a²-2b²)-a(7a+b)+ab 进行因式分解,其结果为()A、(8a-b)(a-7b)B、(2a+3b)(2a-3b)C、(a+2b)(a-2b)D、(a+4b)(a-4b)24、下列分解因式正确的是()A、x²-x-4=(x+2)(x-2)B、2x²-3xy+y² =(2x-y)(x-y)C、x(x-y)- y(y-x)=(x-y)²D、4x-5x²+6=(2x+3)(2x+2)25、多项式a=2x²+3x+1,b=4x²-4x-3,则M和N的公因式是()A、2x+1B、2x-3C、x+1D、x+326、多项式(x-2y)²+8xy因式分解,结果为()A、(x-2y+2)(x-2y+4)B、(x-2y-2)(x-2y-4)C、(x+2y)²D、(x-2y)²27、下面多项式① x²+5x-50 ②x³-1③ x³-4x ④3x²-12他们因式分解后,含有三个因式的是()A、①②、B、③④C、③ D 、④28、已知x= 12+1,则代数式(x+2)(x+4)+x²-4的值是()A、4+2 2B、4-2 2C、2 2D、4 229、下列各多项式中,因式分解正确的()A、4x² -2 =(4x-2)x²B、1-x²=(1-x)²C、x²+2 = (x+2)(x+1)D、x²-1=(x+1)(x-1)30、若x²+7x-30与x²-17x+42有共同的因式x+m,则m的值为()A、-14B、-3C、3D、1031、下列因式分解中正确的个数为()① x²+y²=(x+y)(x-y)② x²-12x+32=(x-4)(x-8)③ x³+2xy+x=x(x²+2y)④x4-1=(x²+1)(x²-1)A、1B、2C、3D、432、下列各式中,满足完全平方公式进行因式分解的是()A、0.0 9- x²B、x²+20x+100C、 4x²+4x+4D、x²-y²-2xy三、因式分解(共42题)1、x²(a-b)+(b-a)2、x³-xy²3、(a+1)²-9(a-1)²4、x(xy+yz+xz)-xyz5、(x-1)(x-3)+16、a²-4a+4-b²7、(x²-2x)²+2x(x-2)+18、(x+y+z)³-x³-y³-z³9、x4-5x²+410、5+7(x+1)+2(x+1)²11、a²+b²-a²b²-4ab-112、x4+x²+113、a5-2a³-8a14、a²(b-2)-a(2-b)15、a²(x-y)+16(y-x)16、x²+6xy+9y²-x-3y-3017、(x²+y²-z²)²-4x²y²18、xy²-xz²+4xz-4x19、x²(y-z)+y²(z-x)+z²(x-y)20、3x²-5x-11221、3m²x-4n²y-3n²x+4m²y22、x²(2-y)+(y-2)23、x4+x²y²+y424、x4-1625、(x-1)²-(y+1)²26、(x-2)(x-3)-2027、2(x+y)²-4(x+y)-3028、x²+1-2x+4(x-1)29、(a²+a)(a²+a+1)-1230、5x+5y+x²+2xy+y²31、x³+x²-x-132、x(a+b)²+x²(a+b)33、(x+2)²-y²-2x-334、(x²-6)(x²-4)-1535、(x+1)²-2(x²-1)36、(ax+by)²+(ax-by)²-2(ax+by)(ax-by)37、(a+1)(a+2)(a+3)(a+4)-338、(a+1)4+(a+1)²+139、x4+2x³+3x²+2x+140、4a³-31a+1541、a5+a+142、a³+5a²+3a-9四、求值(共10题)1、x+y=1,xy=2求x²+y²-4xy的值2、x²+x-1=0,求x4+x³+x的值3、已知a(a-1)-(a²-b)+1=0,求a²+b²2-ab的值4、若(x+m)(x+n)=x²-6x+5,求2mn的值5、xy=1,求x²+xx²+2x+1+y²y²+y的值6、已知x>y>0,x-y=1,xy=2,求x²-y²的值7、已知a= 2+1,b= 3-1,求ab+a-b-1的值8、已知x=m+1,y= -2m+1,z=m-2,求x²+y²-z²+2xy的值。

因式分解100题试题附答案

因式分解100题试题附答案

100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。

因式分解练习题40道

因式分解练习题40道

因式分解一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+93.因式分解:(1)3ax2﹣6axy+3ay2 (2)(3x﹣2)2﹣(2x+7)24.分解因式:(1)3mx﹣6my (2)4xy2﹣4x2y﹣y3.5.因式分解:(1)9a2﹣4 (2)ax2+2a2x+a36.分解因式:①﹣a4+16 ②6xy2﹣9x2y﹣y37.因式分解:x4﹣81x2y2.8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy310.因式分解(1)﹣x3+2x2y﹣xy2 (2)x2(x﹣2)+4(2﹣x)11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.(1)8ax2﹣2ax (2)4a2﹣3b(4a﹣3b)14.因式分解(1)m2﹣4n2 (2)2a2﹣4a+2.15.分解因式:(m2+4)2﹣16m2.16.分解因式:(1)﹣2m2+8mn﹣8n2 (2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.17.分解因式:m2﹣25+9n2+6mn.18.分解因式:(1)x3y﹣2x2y2+xy3 (2)x2﹣4x+4﹣y2.(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y220.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.21.分解因式:a2b﹣b3.22.因式分解:x4﹣10x2y2+9y4.23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2 (2)a3b﹣ab;(3)x2+2x﹣324.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2(1)5a2+10ab;(2)mx2﹣12mx+36m.26.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3 (2)4x2+12x﹣7.28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.(1)a3﹣2a2+a (2)x4﹣130.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16 (4)a2﹣2ab+b2﹣1.33.因式分解:(1)x2﹣2x﹣8=(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y435.将下列多项式因式分解①4ab2﹣4a2b+a3 ②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.36.因式分解①﹣2a3+12a2﹣18a ②9a2(x﹣y)+4b2(y﹣x)37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b 【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz ﹣z2(3)尝试运用以上思路分解因式:m2﹣6m+8.39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.40.分解因式:(1)x2﹣9 (2)x2+4x+4(3)a2﹣2ab+b2﹣16 (4)(a+b)2﹣6(a+b)+9.2018年04月15日173****3523的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+9【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.3.因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)2【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y);(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(2x+7)]=(5x+5)(x﹣9)=5(x+1)(x﹣9).4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【解答】解:(1)3mx﹣6my=3m (x﹣2y);(2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a3【解答】解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)26.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3【解答】解:①﹣a4+16=(4﹣a2)(4+a2)=(2+a)(2﹣a)(4+a2);②6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2.7.因式分解:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y)2;(2)原式=x(x2﹣5),=x(x+)(x﹣).9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y);(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.10.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.【解答】解:(1)3a3b2﹣12ab3c;=3ab2(a2﹣4bc);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)【解答】解:(1)8ax2﹣2ax=2ax(4x﹣1);(2)4a2﹣3b(4a﹣3b)=4a2﹣12ab+9b2=(2a﹣3)2.14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【解答】解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)=2(a﹣1)215.分解因式:(m2+4)2﹣16m2.【解答】解:(m2+4)2﹣16m2=(m2+4+4m)(m2+4﹣4m)=(m+2)2(m﹣2)2.16.分解因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.【解答】解:(1)﹣2m2+8mn﹣8n2=﹣2(m2﹣4mn+4n2)=﹣2(m﹣2n)2;(2)a2(x﹣1)+b2(1﹣x)=(x﹣1)(a2﹣b2)=(x﹣1)(a﹣b)(a+b);(3)(m2+n2)2﹣4m2n2=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2.17.分解因式:m2﹣25+9n2+6mn.【解答】解:原式=(m2+6mn+9n2)﹣25 =(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).18.分解因式:(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.【解答】解:(1)x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)x2﹣4x+4﹣y2=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).19.把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.20.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).21.分解因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).22.因式分解:x4﹣10x2y2+9y4.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣3【解答】解:(1)原式=[(m+n)﹣2m]2 =(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).24.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2【解答】解:(1)原式=(9x2+4)(9x2﹣4)=(9x2+4)(3x+2)(3x﹣2);(2)原式=2ab(4b2+a2﹣4ab)=2ab(a﹣2b)2.25.分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)226.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)2x﹣8x3;=2x(1﹣4x2)=2x(1﹣2x)(1+2x);(2)﹣3m3+18m2﹣27m=﹣3m(m2﹣6m+9)=﹣3m(m﹣3)2;(3)(a+b)2+2(a+b)+1=(a+b+1)2;(4)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=a2(a2﹣b2)=a2(a+b)(a﹣b)(2)原式=x2﹣4x+3+1=(x﹣2)229.因式分解:(1)a3﹣2a2+a(2)x4﹣1【解答】解:(1)原式=a(a2﹣2a+1)(2)原式=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).30.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.【解答】解:(1)原式=x(x2﹣9)=x(x﹣3)(x+3)(2)原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2(3)原式=1﹣(a2﹣2ab+b2)=1﹣(a﹣b)2=(1﹣a+b)(1+a﹣b)31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.【解答】解:(1)原式=a(x2﹣16y2)=a(x+4y)(x﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)33.因式分解:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y4【解答】解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).35.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2=[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.36.因式分解①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)【解答】解:①﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;②9a2(x﹣y)+4b2(y﹣x),=(x﹣y)(9a2﹣4b2),=(x﹣y)(3a+2b)(3a﹣2b).37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2【拓展提升】:(3)尝试运用以上思路分解因式:m2﹣6m+8.【解答】【学以致用】:解:(1)x3﹣x2﹣x+1=(x3﹣x2)﹣(x﹣1)=x2(x﹣1)﹣(x﹣1)=(x﹣1)(x2﹣1)=(x﹣1)(x+1)(x﹣1)=(x﹣1)2(x+1)(2)解:4x2﹣y2﹣2yz﹣z2=4x2﹣(y2+2yz+z2)=(2x)2﹣(y+z)2=(2x+y+z)(2x﹣y﹣z)′【拓展提升】:(3)解:m2﹣6m+8=m2﹣6m+9﹣1=(m﹣3)2﹣1=(m﹣2)(m﹣4).39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)]=(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.【解答】(1)x2﹣9=(x+3)(x﹣3)(2)x2+4x+4=(x+2)2(3)a2﹣2ab+b2﹣16=(a﹣b)2﹣42=(a﹣b+4)(a﹣b﹣4)(4)(a+b)2﹣6(a+b)+9=(a+b﹣3)2。

因式分解50题(答案版)

因式分解50题(答案版)

因式分解50题1.43269a b a b a b -+分解因式的正确结果是()A .()2269a b a a -+B .()()233a b a a +-C .()223b a -D .()223a b a -【答案】D2.下列各式从左到右的变形中,是因式分解的是()A .()()24416x x x -+=-B .()()2222x y x y x y -+=+-+C .()222ab ac a b c +=+D .()()()()1221x x x x --=--【答案】C3.下列等式的变形是因式分解的是()A .21234a b a ab=-B .()()2224x x x +-=-C .()2481421x x x x --=--D .()111222ax ay a x y -=-【答案】D4.下面的多项式中,能因式分解的是()A .2m n +B .21m m -+C .2m n-D .221m m -+【答案】D5.观察下列各式:①2a b +和a b +;②()5m a b -和a b -+;③()3a b +和a b --;④22x y -和22x y +,其中有公因式的是()A .①②B .②③C .③④D .①④【答案】B6.因式分解:224x x -=__________.【答案】()212x x -7.因式分解()()3a x y x y ---【答案】()()31x y a --8.分解因式:22226482x y x y xy xy -++【答案】()23241xy xy x y -++9.分解因式()()()222m x y n y x x y ---=-(______).【答案】m n+10.在分解因式()()22353223x a b b a --+-时,提出公因式()232a b --后,另一个因式是()A .35x B .351x +C .351x -D .35x -【答案】C11.⑴23423232545224()20()8()x y z a b x y z a b x y z a b ---+-⑵346()12()m n n m -+-【答案】⑴原式22323224()(652)x y z a b yz x x y z =--+⑵原式[]34336()12()6()12()6()(122)m n m n m n m n m n m n =-+-=-+-=-+-12.分解因式:⑴2316()56()m m n n m -+-⑵(23)(2)(32)(2)a b a b a b b a +--+-【答案】⑴原式[]232216()56()8()27()8()(75)m n m n m n m m n m n m n m =-+-=-+-=--⑵原式(23)(2)(32)(2)(2)(55)5(2)()a b a b a b a b a b a b a b a b =+-++-=-+=-+13.分解因式:⑴()()2121510n na ab ab b a +---(n 为正整数)⑵212146n m n m a b a b ++--(m 、n 为大于1的自然数)【答案】(1)原式=()()()()()()212221510532535n nn na ab ab a b a a b a b b a a b a b +---=---=--⎡⎤⎣⎦⑵(21)(2)10n n n +-+=->,(21)(2)n n +>+,2121211462(23)n m n m n m n a b a b a b a b ++-+---=-14.因式分解()219x --的结果是()A .()()24x x +-B .()()81x x ++C .()()24x x -+D .()()108x x -+【答案】A15.马小虎同学做了一道因式分解的习题,做完之后,不小心让墨水把等式:()()()4242a a a a -++-■=▲中的两个数字盖住了,那么式子中的■、▲处对应的两个数字分别是()A .64,8B .24,3C .16,2D .8,1【答案】C16.因式分解:()222224x y x y +-.【答案】()()()22222224x y x y x y x y +-=+-17.分解因式()2222224c a b a b ---【答案】()()()()c a b c a b c a b c a b +--+++--18.求证:无论m 为何整数时,多项式()2459m +-能被8整除【答案】原式=()()8221m m ++19.已知x 是有理数,则多项式2114x x --的值是()A.一定为负数B.不可能为正数C.一定为正数D.可能是正数、负数、0【答案】B20.因式分解222(6)25x x +-【答案】原式22(65)(65)x x x x =+++-(2)(3)(2)(3)x x x x =++--21.()222416xx +-【答案】22(2)(2)x x +-22.分解因式:2()6()9x y x y ++++=【答案】2(3)x y ++23.分解因式()()2269x y z x y z +-++【答案】2(3)x y z +-24.(1)316x x-(2)3244y y y-+【答案】(1)()()3164141x x x x x -=+-(2)()232442y y y y y -+=-25.因式分解:22363x xy y -+-=.【答案】()23x y --26.分解因式:322x y x y xy -+-=.【答案】2(1)xy x --27.因式分解:2221a b b ---=【答案】(1)(1)a b a b ++--28.分解因式:()22323m x y mn --【答案】()()322m x y n x y n -+--29.分解因式:222328712x y y xy xy+++【答案】()()437y x x y ++30.因式分解:2m mn mx nx -+-=【答案】()()m n m x -+31.分解因式:22x x y y +--=【答案】()()1x y x y -++32.分解因式:222694a ab b x -+-【答案】()()3232a b x a b x -+--33.分解因式22x y ax ay -++=【答案】()()x y x y a +-+34.若248123x x +-可因式分解成()()13x a bx c ++,其中a 、b 、c 均为整数,则下列叙述正确的是()A .1a =B .468b =C .3c =D .29a b c ++=【答案】C35.已知2y x -=,31x y -=,则2243x xy y -+的值为()A .1-B .2-C .3-D .4-【答案】B36.如果多项式212x kx ++能够分解成两个系数为整数的一次因式的积,那么整数k 可取的值有()A .2个B .4个C .6个D 8个【答案】C37.分解因式:231212b b -+=.【答案】23(2)b -38.分解因式:2412x x --=__________________【答案】(6)(2)x x -+39.若多项式26x mx +-有一个因式是()3x +,则m =.【答案】1m =40.分解因式:257(1)6(1)a a ++-+【答案】[][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+41.分解因式:222()14()24x x x x +-++【答案】(2)(1)(3)(4)x x x x +--+42.分解因式:222332x xy y x y +-+++43.分解因式:22344883x xy y x y +-+--22344883(32)(2)8()3x xy y x y x y x y x y +-+--=-++--(321)(23)x y x y =--++44.分解因式:2265622320x xy y x y --++-【答案】2265622320(234)(325)x xy y x y x y x y --++-=-++-45.分解因式:22276212x xy y x y -++--【答案】22276212(23)(234)x xy y x y x y x y -++---+--=46.分解因式:22121021152x xy y x y -++-+【答案】22121021152(32)(421)x xy y x y x y x y -++-+-+-+=47.分解因式:222695156x xy y xz yz z-+-++【答案】222695156(32)(33)x xy y xz yz z x y z x y z -+-++=----48.已知:a 、b 、c 为三角形的三条边,且满足232433720a ac c ab bc b ++--+=,求证2b =a +c23243372(3)(2)a ac c ab bc b a b c a b c ++--+=-+-+(3)(2)0a b c a b c -+-+=;两边之和大于第三边30a b c -+>,所以20a b c -+=,即2b a c=+49.设a 、b 、c 是三角形的三边长,且满足322322a ab bc b a b ac ++=++,三角形的形状为______由322322a ab bc b a b ac ++=++得3223220a ab bc b a b ac ++---=322322()()()0a a b ab b bc ac -+-+-=222()()()0a a b b a b c a b -+---=222()()0a b a b c -+-=∴22200a b a b c -=+-=或∴形状为等腰或直角50.设a 、b 、c 是三角形的三边长,且满足2222b ab c ac +=+,三角形的形状为_____【答案】由2222b ab c ac +=+得222222b ab a c ac a ++=++22()()a b a c +=+则有a b a c+=+所以b =c ∴是等腰三角形。

因式分解(十字交叉法)练习题

因式分解(十字交叉法)练习题

用十字交叉法分解因式一、选择题1、若34-x 是多项式a x x ++542的一个因式,则a 是 ( ) A.-8 B.-6 C.8 D.62、下列变形中,属于因式分解的是 ( )A.c b a m c bm am ++=++)( B.⎪⎭⎫ ⎝⎛++=++a a a a a 15152C.)123(123223+-=+-a a a a a a D.22244)2(y xy x y x ++=+ 3、下列多项式:(1)672++x x ,(2)342++x x ,(3)862++x x ,(4),1072++x x (5)44152++x x .其中有相同因式的是( ) A.只有(1)、(2) B.只有(3)、(4)C.只有(2)、(4) D.不同于上述答案4、下列各式中,可以分解因式的是 ( )A.22y x -- B.ny mx + C.222a m n -- D.42n m - 5、在下列各式的因式分解中,分组不正确的是( ) A.)2()1(122222n mn m n mn m ++-=+-+ B.)1()(1+++=+++x y xy y x xyC.)()(xy ay bx ab xy ay bx ab +++=+++ D.)()(32233223y y x xy x y y x xy x +++=+++ 6、若4:5:y x =,则2215174y xy x +-的值是( ) A.54 B.45C.1 D.07、如果)5)(3(152-+=--x x kx x ,那么k 的值是( ) A.-3 B.3 C.-2 D.28、若多项式162--mx x 可以分解因式,则整数m可取的值共有( ) A.3个 B.4个 C.5个 D.6个二、填空题9、若多项式65222-++--y mx y xy x 可以分解为)32)(2(-++-y x y x ,则____=m . 三、计算题10、把多项式n n n b b a b a 5324257912-+-分解因式,并注明每一步因式分解所用的方法.11、已知012)1)((2222=--++y x y x ,求22y x +的值.四、分解因式:1、32576x y x y xy --2、219156n n n x x x ++-- 3 、25724--x x4、611724-+x x5、4224257y y x x -+6、42246117y y x x --7、3)()(22----b a b a8、3)()(22-+++n m n m 9、3)2(8)2(42++-+y x y x10、3168)2(42++--y x y x 11、222215228d c abcd b a +- 12、42248102mb b ma ma +-13、2592a a -+14、2x 2 13x 15 15、22152y ay a --16、2210116y xy x ++-17、22166z yz y -- 18、6)2(5)2(2++++b a b a。

因式分解(十字交叉法)练习题

因式分解(十字交叉法)练习题

因式分解(十字交叉法)练习题用十字交叉法分解因式一、选择题1、若4x-3是多项式4x^2+5x+a的一个因式,则a是()A.-8B.-6C.8D.6解析:根据因式定理,4x-3是多项式4x^2+5x+a的一个因式,那么4x-3=0时,4x^2+5x+a=0也成立,即x=-3/4是4x^2+5x+a=0的一个根,代入可得a=6,因此选D。

2、下列变形中,属于因式分解的是()a^2+5a+1=a(a+5)+1a-3a^2+12a=a(a-3)+12ax+2y)^2=x^2+4xy+4y^2解析:只有第二个式子是因式分解,因为它可以写成a(a-3a+12),所以选C。

3、下列多项式:(1)x^2+7x+6,(2)x^2+4x+3,(3)x^2+6x+8,2x+7x+10,(5)x^2+15x+44.其中有相同因式的是()解析:可以用因式分解法或者求根公式来判断,答案为A,因为(1)可以分解为(x+1)(x+6),(2)可以分解为(x+1)(x+3),它们都有共同的因式(x+1)。

4、下列各式中,可以分解因式的是()x - ymx + nyn-m-am-n^2解析:只有第二个式子可以分解因式,因为它可以写成(m+n)y,所以选B。

5、在下列各式的因式分解中,分组不正确的是()m+2mn-1+n=(m-1)+(2mn+n)xy+x+y+1=(xy+y)+(x+1)ab+bx+ay+xy=(ab+ay)+(bx+xy)4x-17xy+15yx/5=y/4解析:第四个式子不是因式分解,而是化简,因此选D。

6、若45x-kx-15=(x+3)(x-5),那么k的值是()解析:将(x+3)(x-5)展开,得到x^2-2x-15=45x-kx-15,即x^2-(2+k)x-30=0,根据因式定理,x-5是该多项式的一个因式,因此(x-5)(x+m)=x^2-(2+k)x-30,展开可得m=k-3,因此选A。

7、如果4x^2-2kx+1=0有两个相等的实数根,则k的值是()解析:4x^2-2kx+1=0有两个相等的实数根,即Δ=0,因此(-2k)^2-4(4)(1)=0,解得k=-3或k=1/2,因此选B。

因式分解(十字交叉法)练习题

因式分解(十字交叉法)练习题

用十字交叉法分解因式一、选择题1、假设4x-3是多项式4/+5x+α的一个因式,那么4是(A.—8B.-6C.8D.62、以下变形中,属于因式分解的是( )α~+5ι+1=n(n+5+-|A.am^-bm-^c=m(a-^b)^-cB. I a)C./—3/+12^=。

(片-3α+12)D.(X+2y)?=x2+4xy j+4y23、以下多项式:(1)/+7x+6,(2)X2+4Λ+3,(3)/+6x+8,(4)<+7x+10,(5)/+]5χ+44.其中有相同因式的是()A.只有(1)、(2)B.只有(3)、(4)C.只有(2)、(4)D.不同于上述答案4,以下各式中,可以分解因式的是( )A.一χ一一3"B,mx+ny c h2一用2一^2D,m2-045、在以下各式的因式分解中,分组不正确的选项是( )AW2+2〃〃2-1+,/=(〃/-1)+(2,HH+n~)Bxy÷x÷y÷l=(ΛJ J÷y)÷(∙^÷l)C ab+bx-^-ayA-xy=(αb+fox)÷(αy+xy)D"+4+∕,+y3=(√+jcy2)+(√γ+/)6,假设x:5=>:4,那么4/-17xy+15V的值是()4 5A.5B.4c.1D.07、如果-—人一15=(x+3)(x-5),那么k的值是( )A.—3B.3C.—2D.28、假设多项式x2-mχ-16可以分解因式,那么整数m可取的值共有(A.3个B.4个C.5个D.6个二、填空题2/-D-V2+机x+5y-6可以分解为(X-y+2)(2x+y-3),那么加= 9,假设多项式三、计算题10.把多项式-⑵'"+79"*"-25/分解因式,并注明每一步因式分解所用的方法.“、(x2+y2Xx2+y2-1)-12=0,求炉+尸的值.四、分解因式:1、5χ3y-7χ2y-6xy 2.9x"*2-15x n+,-6x" 3∖7d-5χ2-2%7√+11Λ2-65,7x*+5χ2y2_2J?6、7_?-1lx'y'-6y'72(〃一A)?-(a-b)-3^2(/〃+〃)?+(〃?+〃)一3g4(2x+y)?-8(2x+y)+3,4(x-2y)2-8x+l6y+311‰z2⅛2-22abcd+∖5c2d2^2ma4-lθma2b2+Smb41013、2+9α-5∕i4,2*+13Λ+15i5,2α~-αy-15y--6√+l∣jy+10y217y2-6y∑-16z i忙(α+2b)'+5(。

因式分解 提公因式法 3

因式分解 提公因式法 3

因式分解提公因式法3一.选择题(共20小题)1.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.62.将多项式m2﹣m分解因式,结果正确的是()A.m(m﹣1)B.(m+1)(m﹣1)C.m(m+1)(m﹣1)D.﹣m(m﹣1)3.如图,边长为a、b的长方形周长为20,面积为16,则a2b+ab2的值为()A.80B.160C.320D.4804.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.2505.用提公因式法分解因式2x2y2+8x2y4时,应提取的公因式是()A.2x2y4B.8x4y2C.8x2y4D.2x2y26.下列因式分解正确的是()A.2a+4=2(a+2)B.(a﹣b)m=am﹣bmC.x(x﹣y)+y(x﹣y)=(x﹣y)2D.a2﹣b2+1=(a+b)(a﹣b)+17.多项式m2﹣4m分解因式的结果是()A.m(m﹣4)B.(m+2)(m﹣2)C.m(m+2)(m﹣2)D.(m﹣2)28.若ab=2,a﹣b=1,则代数式a3b﹣2a2b2+ab3的值为()A.2B.3C.4D.59.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣210.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.211.下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.x(x﹣y)+y(y﹣x)=(x﹣y)2 C.﹣2y2+4y=﹣2y(y+2)D.x2+xy+x=x(x+y)12.下列因式分解正确的是()A.2a2﹣a=2a(a﹣1)B.﹣a2﹣2ab=﹣a(a﹣2b)C.﹣3a+3b=﹣3(a+b)D.a2+3ab=a(a+3b)13.计算21×3.14+79×3.14=()A.282.6B.289C.354.4D.31414.下列因式分解正确的是()A.(x﹣y)3﹣(x﹣y)=(x﹣y)(x﹣y)2B.(x﹣y)2﹣(x﹣y)3=(x﹣y)2(x﹣y+1)C.(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y+1)D.(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y﹣0)=(x﹣y)215.把多项式6a2b2﹣18ab2分解因式时,应提出的公因式是()A.6a2b B.6ab2C.a2b2D.18ab2 16.如图,边长为a、b的长方形周长为20,面积为16,则a2b+ab2的值为()A.160B.180C.320D.48017.下列因式分解中,结果正确的是()A.2m2﹣6m=m(2m2﹣6)B.x2+y2=(x+y)2C.a2+ab+a=a(a+b)D.﹣x2+2xy﹣y2=﹣(x﹣y)2 18.用提公因式法分解因式4x3y3+6x3y﹣2xy2时,应提取的公因式是()A.2x3y3B.﹣2x3y3C.12x3y3D.2xy19.计算(﹣2)100+(﹣2)99的结果为()A.﹣299B.299C.﹣2D.220.边长为a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15B.30C.60D.120二.填空题(共40小题)21.分解因式:m2﹣m=.22.已知(2x﹣10)(x﹣2)﹣(x﹣2)(x﹣13)可分解因式为(x+a)(x+b),则a b的值是.23.分解因式3xy﹣6xz=.24.已知x+y=5,xy=﹣1,则代数式x2y+xy2的值为.25.因式分解2m2﹣4m+2=.26.因式分解3xy﹣6y=.27.分解因式:2abc+4a2b=.28.分解因式:m2+m=.29.已知ab=﹣4,a+b=2,则a2b+ab2的值为.30.因式分解:2x2﹣6x=.31.分解因式:4m﹣2m2=.32.分解因式:ab2﹣5b2=.33.因式分解:6x2﹣9xy=.34.因式分解:﹣4y3+4y=.35.因式分解:﹣3a2b+12b=.36.因式分解:x3﹣4x2=.37.将多项式ab(a﹣b)﹣a(b﹣a)2分解因式的结果是.38.因式分解:x3﹣2x2=.39.多项式﹣6x2y+12xy2﹣3xy提公因式﹣3xy后,另一个因式为.40.分解因式x2y﹣4xy=.41.因式分解:b2﹣2b=.42.分解因式:m2+3m=.43.因式分解:3m2﹣6m=.44.分解因式:x2y﹣xy2=.45.分解因式:2a2﹣ab=.46.把多项式ab2﹣4ab﹣12a分解因式的结果是.47.将多项式2a2﹣6ab因式分解为.48.因式分解:3mx﹣9my=.49.若ab=﹣2,a+b=﹣1,则代数式a2b+ab2的值等于.50.若ab=2,a+b=﹣1,则代数式a2b+ab2的值等于.因式分解提公因式法3参考答案与试题解析一.选择题(共20小题)1.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.6【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.2.将多项式m2﹣m分解因式,结果正确的是()A.m(m﹣1)B.(m+1)(m﹣1)C.m(m+1)(m﹣1)D.﹣m(m﹣1)【解答】解:原式=m(m﹣1).故选:A.3.如图,边长为a、b的长方形周长为20,面积为16,则a2b+ab2的值为()A.80B.160C.320D.480【解答】解:∵边长为a、b的长方形周长为20,面积为16,∴a+b=10,ab=16,∴a2b+ab2=ab(a+b)=16×10=160.故选:B.4.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.250【解答】解:∵矩形的周长为16,面积为15,∴a+b=8,ab=15.∴a2b+ab2=ab(a+b)=15×8=120.故选:A.5.用提公因式法分解因式2x2y2+8x2y4时,应提取的公因式是()A.2x2y4B.8x4y2C.8x2y4D.2x2y2【解答】解:2x2y2+8x2y4=2x2y2(1+4y2),故应提取的公因式是2x2y2.故选:D.6.下列因式分解正确的是()A.2a+4=2(a+2)B.(a﹣b)m=am﹣bmC.x(x﹣y)+y(x﹣y)=(x﹣y)2D.a2﹣b2+1=(a+b)(a﹣b)+1【解答】解:A、2a+4=2(a+2),正确;B、(a﹣b)m=am﹣bm,是整式乘法,不是因式分解,故此选项错误;C、x(x﹣y)+y(x﹣y)=(x+y)(x﹣y),故此选项错误;D、a2﹣b2+1=(a+b)(a﹣b)+1,不符合因式分解的定义,故此选项错误.故选:A.7.多项式m2﹣4m分解因式的结果是()A.m(m﹣4)B.(m+2)(m﹣2)C.m(m+2)(m﹣2)D.(m﹣2)2【解答】解:m2﹣4m=m(m﹣4),故选:A.8.若ab=2,a﹣b=1,则代数式a3b﹣2a2b2+ab3的值为()A.2B.3C.4D.5【解答】解:原式=ab(a2﹣2ab+b2)=ab(a﹣b)2,当ab=2,a﹣b=1时,原式=2×1=2.故选:A.9.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣2【解答】解:(﹣2)2020+(﹣2)2021=(﹣2)2020×(1﹣2)=﹣22020.故选:A.10.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.2【解答】解:把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则:n≥5,故选:A.11.下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.x(x﹣y)+y(y﹣x)=(x﹣y)2 C.﹣2y2+4y=﹣2y(y+2)D.x2+xy+x=x(x+y)【解答】解:A.x2﹣1=(x﹣1)(x+1),故此选项不合题意;B.x(x﹣y)+y(y﹣x)=(x﹣y)(x﹣y)=(x﹣y)2,故此选项符合题意;C.﹣2y2+4y=﹣2y(y﹣2),故此选项不合题意;D.x2+xy+x=x(x+y+1),故此选项不合题意;故选:B.12.下列因式分解正确的是()A.2a2﹣a=2a(a﹣1)B.﹣a2﹣2ab=﹣a(a﹣2b)C.﹣3a+3b=﹣3(a+b)D.a2+3ab=a(a+3b)【解答】解:A.2a2﹣a=a(2a﹣1),故A错误,B.﹣a2﹣2ab=﹣a(a+2b),故B错误,C.﹣3a+3b=﹣3(a﹣b),故C错误,D.a2+3ab=a(a+3b),故D正确.故选:D.13.计算21×3.14+79×3.14=()A.282.6B.289C.354.4D.314【解答】解:原式=3.14×(21+79)=3.14×100=314,故选:D.14.下列因式分解正确的是()A.(x﹣y)3﹣(x﹣y)=(x﹣y)(x﹣y)2B.(x﹣y)2﹣(x﹣y)3=(x﹣y)2(x﹣y+1)C.(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y+1)D.(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y﹣0)=(x﹣y)2【解答】解:A、应为(x﹣y)3﹣(x﹣y)=(x﹣y)[(x﹣y)2﹣1],有漏项,错误;B、应为(x﹣y)2﹣(x﹣y)3=(x﹣y)2(﹣x+y+1),错误;C、(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y+1),正确;D、应为(x﹣y)2﹣(y﹣x)=(x﹣y)(x﹣y+1),错误.故选:C.15.把多项式6a2b2﹣18ab2分解因式时,应提出的公因式是()A.6a2b B.6ab2C.a2b2D.18ab2【解答】解:6a2b2﹣18ab2=6ab2(a﹣3),则应提出的公因式是6ab2.故选:B.16.如图,边长为a、b的长方形周长为20,面积为16,则a2b+ab2的值为()A.160B.180C.320D.480【解答】解:由题意得:2(a+b)=20,ab=16,∴a+b=10,∴a2b+ab2=ab(a+b)=16×10=160,故选:A.17.下列因式分解中,结果正确的是()A.2m2﹣6m=m(2m2﹣6)B.x2+y2=(x+y)2C.a2+ab+a=a(a+b)D.﹣x2+2xy﹣y2=﹣(x﹣y)2【解答】解:A、原式=2m(m﹣3),不符合题意;B、原式不能分解,不符合题意;C、原式=a(a+b+1),不符合题意;D、原式=﹣(x﹣y)2,符合题意.故选:D.18.用提公因式法分解因式4x3y3+6x3y﹣2xy2时,应提取的公因式是()A.2x3y3B.﹣2x3y3C.12x3y3D.2xy 【解答】解:4x3y3+6x3y﹣2xy2=2xy(2x2y2+3x2﹣y).故选:D.19.计算(﹣2)100+(﹣2)99的结果为()A.﹣299B.299C.﹣2D.2【解答】解:原式=(﹣2)99×(﹣2+1)=(﹣2)99×(﹣1)=299.故选:B.20.边长为a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15B.30C.60D.120【解答】解:由题意得:2(a+b)=10,ab=6,∴a+b=5,∴a2b+ab2=ab(a+b)=6×5=30,故选:B.二.填空题(共40小题)21.分解因式:m2﹣m=m(m﹣1).【解答】解:m2﹣m=m(m﹣1).故答案为:m(m﹣1).22.已知(2x﹣10)(x﹣2)﹣(x﹣2)(x﹣13)可分解因式为(x+a)(x+b),则a b的值是﹣8或.【解答】解:因为(2x﹣10)(x﹣2)﹣(x﹣2)(x﹣13)=(x﹣2)[(2x﹣10)﹣(x﹣13)]=(x﹣2)(x+3)=(x+a)(x+b),所以a=﹣2,b=3或a=3,b=﹣2,当a=﹣2,b=3时,a b=(﹣2)3=﹣8,当a=3,b=﹣2时,a b=3﹣2=,故答案为:﹣8或.23.分解因式3xy﹣6xz=3x(y﹣2z).【解答】解:原式=3x(y﹣2z).故答案为:3x(y﹣2z).24.已知x+y=5,xy=﹣1,则代数式x2y+xy2的值为﹣5.【解答】解:∵x+y=5,xy=﹣1,∴x2y+xy2=xy(x+y)=﹣1×5=﹣5.25.因式分解2m2﹣4m+2=2(m﹣1)2.【解答】解:原式=2(m2﹣2m+1)=2(m﹣1)2.故答案为:2(m﹣1)2.26.因式分解3xy﹣6y=3y(x﹣2).【解答】解:3xy﹣6y=3y(x﹣2).故答案为:3y(x﹣2).27.分解因式:2abc+4a2b=2ab(c+2a).【解答】解:2abc+4a2b=2ab(c+2a).故答案为:2ab(c+2a).28.分解因式:m2+m=m(m+1).【解答】解:m2+m=m(m+1).故答案为:m(m+1).29.已知ab=﹣4,a+b=2,则a2b+ab2的值为﹣8.【解答】解:原式=ab(a+b),当ab=﹣4,a+b=2时,原式=﹣8.故答案为:﹣8.30.因式分解:2x2﹣6x=2x(x﹣3).【解答】解:2x2﹣6x=2x(x﹣3).故答案为:2x(x﹣3).31.分解因式:4m﹣2m2=2m(2﹣m).【解答】解:4m﹣2m2=2m(2﹣m),故答案为:2m(2﹣m).32.分解因式:ab2﹣5b2=b2(a﹣5).【解答】解:原式=b2(a﹣5),故答案是:b2(a﹣5).33.因式分解:6x2﹣9xy=3x(2x﹣3y).【解答】解:原式=3x•2x﹣3x•3y=3x(2x﹣3y).故答案为:3x(2x﹣3y).34.因式分解:﹣4y3+4y=﹣4y(y+1)(y﹣1).【解答】解:原式=﹣4y(y2﹣1)=﹣4y(y+1)(y﹣1),故答案为:﹣4y(y+1)(y﹣1).35.因式分解:﹣3a2b+12b=﹣3b(a+2)(a﹣2).【解答】解:原式=﹣3b(a2﹣4)=﹣3b(a+2)(a﹣2).故答案为:﹣3b(a+2)(a﹣2).36.因式分解:x3﹣4x2=x2(x﹣4).【解答】解:原式=x2(x﹣4),故答案为:x2(x﹣4).37.将多项式ab(a﹣b)﹣a(b﹣a)2分解因式的结果是a(a﹣b)(2b﹣a).【解答】解:ab(a﹣b)﹣a(b﹣a)2=ab(a﹣b)﹣a(a﹣b)2=a(a﹣b)[b﹣(a﹣b)]=a(a﹣b)(2b﹣a).故答案为:a(a﹣b)(2b﹣a).38.因式分解:x3﹣2x2=x2(x﹣2).【解答】解:x3﹣2x2=x2(x﹣2).故答案为:x2(x﹣2).39.多项式﹣6x2y+12xy2﹣3xy提公因式﹣3xy后,另一个因式为2x﹣4y+1.【解答】解:﹣6x2y+12xy2﹣3xy=﹣3xy(2x﹣4y+1),则多项式﹣6x2y+12xy2﹣3xy提公因式﹣3xy后,另一个因式为2x﹣4y+1.故答案为:2x﹣4y+1.40.分解因式x2y﹣4xy=xy(x﹣4).【解答】解:x2y﹣4xy=xy(x﹣4).故答案为:xy(x﹣4).41.因式分解:b2﹣2b=b(b﹣2).【解答】解:原式=b(b﹣2).故答案为:b(b﹣2).42.分解因式:m2+3m=m(m+3).【解答】解:m2+3m=m(m+3),故答案为:m(m+3).43.因式分解:3m2﹣6m=3m(m﹣2).【解答】解:3m2﹣6m=3m(m﹣2).故答案为:3m(m﹣2).44.分解因式:x2y﹣xy2=xy(x﹣y).【解答】解:原式=xy(x﹣y).故答案为:xy(x﹣y).45.分解因式:2a2﹣ab=a(2a﹣b).【解答】解:2a2﹣ab=a(2a﹣b).故答案为:a(2a﹣b).46.把多项式ab2﹣4ab﹣12a分解因式的结果是a(b+2)(b﹣6).【解答】解:原式=a(b2﹣4b﹣12)=a(b+2)(b﹣6),故答案为:a(b+2)(b﹣6).47.将多项式2a2﹣6ab因式分解为2a(a﹣3b).【解答】解:原式=2a(a﹣3b).故答案为:2a(a﹣3b).48.因式分解:3mx﹣9my=3m(x﹣3y).【解答】解:3mx﹣9my=3m(x﹣3y).故答案为:3m(x﹣3y).49.若ab=﹣2,a+b=﹣1,则代数式a2b+ab2的值等于2.【解答】解:∵ab=﹣2,a+b=﹣1,a2b+ab2=ab(a+b)=﹣2×(﹣1)=2.故答案为:2.50.若ab=2,a+b=﹣1,则代数式a2b+ab2的值等于﹣2.【解答】解:∵ab=2,a+b=﹣1,∴原式=ab(a+b)=2×(﹣1)=﹣2.故答案为:﹣2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解综合提高题
1.22424y x y xy x ++--有一个因式是x-2y ,另一个因式是( )
A. x+2y+1
B.x+2y-1
C.x-2y+1
D.x-2y-1
2.已知a 为任意整数,且()2213a a -+的值总可以被n (n 为自然数,且1≠n )整数,则n 的值为( )
A. 13
B.26
C. 13或26
D. 13的倍数
3.已知2=b a +,5-=ab ,则a
b b a +的值为( ) A.52-; B.57-; C.5
14-; D.524-; 4.填空:a 2-3a+__=(a+2)(______), (m+n)2+6(m+n)+__=(m+n+__)2
5.已知1+a 与1-b 互为倒数,且ab ≠0,则_______1
1
=-b a
6.计算:⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-
22221011911...311211=
7.若2x+5y-3=0,则y x 324⋅=
8.因式分解:(1)22244c bc b a -+- (2)(p-4)(p+1)+3p
(3)222)4(16+-x x (4)12)1(2++--m mx x m (5)54)1(3)22--+-x x x x (
(6)()24)4)(3)(2(1-++++x x x x (7)16)3(8)3(2
22++-+m m m m (8)222222)(4)(xy ab a y b x ---+-
(9)2222224)(b a b a c --- 9.已知:0516416422=+--+y x y x ,求x+y 的值。

10.若28,1422=++=++x xy y y xy x ,求x+y 的值。

11.已知:012=-+a a ,求201122
3++a a 的值。

12.求满足319422=-y x 的正整数解。

13.已知:012=++x x ,求1 (2)
200920102011++++++x x x x x 的值。

14.已知321=+x x ,求:x
x 1- 的值. 15.已知:32+=+y x ,32-=xy ,求x +y 的值.
16.计算:(2+1)(22+1)(24+1)…(2128+1)+1 17.已知:0152=+-x x ,计算:221
x x +的值.
18.若11
342+-k k 的值不小于21-,求k 的负整数解。

19.利用因式分解说明:1276
36-能被140整除。

20.若0)()()(222=-+-+-b a c a c b c b a ,求证:a 、b 、c 三个数中至少有两个数相等。

21.如果二次三项式82--ax x (a 为整数)在整数范围内可以分解因式,那么a 可以取那些值?
22.已知:))((32
q x p x k x x ++=+-,其中k 、p 、q 均为整数,且10≤k ,k 可能取哪些值?
23.在△ABC 中,三边a 、b 、c 满足010616222=++--bc ab c b a ,求证:a+c=2b。

相关文档
最新文档