03初三函数应用数学培优

合集下载

初三上数学培优工作计划5篇

初三上数学培优工作计划5篇

初三上数学培优工作计划5篇初三上数学培优工作计划(篇1)一、教学背景:为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。

二、学情分析:这学期我所带的班级成绩较为一般。

查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。

三、新课标要求:初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。

通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。

会用归纳演绎、类比进行简单的推理。

使学生懂得数学****与实践又反过来作用于实践。

提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。

培养学生应用数学知识解决问题的能力。

四、本学期学科知识八在整个体系中的位置和作用:本册书的4章内容涉及《数学课程标准》中“数与代数”“空间与图形”和“实践与综合应用”三个领域的内容,其中“二次函数”和“锐角三角函数”的内容,都是基本初等函数的基础知识,属于“数与代数”领域。

然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。

“相似”的内容属于“空间与图形”领域,其内容以相似三角形为核心,此外还包括了“位似”变换。

在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。

“投影与视图”也属于“空间与图形”领域,这一章是应用性较强的内容,它从“由物画图”和“由图想物”两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。

初三数学培优试卷及答案

初三数学培优试卷及答案

一、选择题(每题5分,共50分)1. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的解为:A. x = 2,x = 3B. x = 1,x = 6C. x = 2,x = 4D. x = 3,x = 52. 下列函数中,是奇函数的是:A. y = x^2B. y = x^3C. y = |x|D. y = x^43. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠B = ∠C = °。

4. 下列命题中,正确的是:A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 直角三角形的两条直角边相等D. 矩形的对边平行且相等5. 若a、b、c是等差数列,且a + b + c = 12,则a^2 + b^2 + c^2的值为:6. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, -2),则a、b、c的值分别为:7. 在直角坐标系中,点A(2, 3)关于x轴的对称点为B,则点B的坐标为:8. 已知等腰三角形ABC中,AB = AC,且BC = 6,AD是BC边上的高,则AD的长度为:9. 下列不等式中,正确的是:A. 3x > 2x + 1B. 2x < 3x - 1C. 3x ≥ 2x + 1D. 2x ≤ 3x - 110. 若a、b、c是等比数列,且a + b + c = 27,b^2 = ac,则a、b、c的值分别为:二、填空题(每题5分,共50分)11. 已知一元二次方程x^2 - 4x + 3 = 0的解为x1和x2,则x1 + x2 = ,x1x2 = 。

12. 函数y = 2x - 3的图象与x轴、y轴的交点坐标分别为(),()。

13. 在等腰三角形ABC中,AB = AC,若∠BAC = 45°,则∠B = ∠C = °。

14. 下列命题中,正确的是:平行四边形的对角线互相平分,等腰三角形的底角相等,矩形的对边平行且相等。

九年级数学下学期培优扶困计划

九年级数学下学期培优扶困计划

九年级数学下学期培优扶困计划九年级数学下学期培优扶困计划杨金花本学期我担任初三(2)班的数学课,这一学期是非常关键的一个学期,做好培优扶困工作至关重要,我所采取的具体措施如下:一、多关注学生,做好学生的思想工作做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,尤其对学困生更要挤时间找他们谈心,及时了解他们的思想动态。

因为他们更容易情绪化,分不清主次,针对这种情况,给他们讲道理端正他们的思想态度。

距离中考越来越近了,每年到这个时候,对于初三的学生来说也是很关键的时候,中国有句古话叫"行百里者半九十",意思是说如果把走一百里的路看成一件事的话,前面走过的九十理路,仅仅完成了一半,也就是说最后虽然仅剩十里路,十整个路程的十分之一,但承担任务却是整个事情的一半。

让学生从思想上非常重视最后这一段时间,这是根据学生的思想心态进行相应的辅导。

二、分析学情,因材施教对于知识基础薄弱,学习态度不端正、学习习惯不好、学习方法不理想的学生,一方面我们要对他们的闪光点及时鼓励,以激发他们学习的积极性;另一方面进行有针对性的辅导:1.利用自习课、晚自习,根据他们的作业情况,以及试卷解答情况,及时寻找他们的知识盲点和易误点,然后有针对性的进行查漏补缺。

并要求学生及时反思,了解自己巩固了那些知识点,又长了什么见识,从中受到了什么启发。

2、课上差生板演,中等生订正,优等生解决难题。

3、安排座位时坚持“好差同桌”结为学习对子。

4、优化备课,向课堂40分钟要质量。

备好学生,备好教材,备好练习,保证培优补差的效果。

精编习题,习题设计要有梯度,紧扣重、难点,巩固“双基”。

习题的讲评要增加信息程度,围绕重点,引导学生高度注意,教学生学会解答。

解答习题要有多角度,一题多解,一题多变,多题一解,拓展思路,努力培养学生思维的灵活性、广阔性和变通性。

解题的训练要讲精度,精选构思巧妙、新颖灵活的典型题,有代表性和针对性的题,练不在数量而在质量。

初三数学二次函数的专项培优练习题含详细答案

初三数学二次函数的专项培优练习题含详细答案

初三数学二次函数的专项培优练习题含详细答案一、二次函数1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH ⊥OB 于H ,∴∠DHB=∠AOB=90°,∴DH ∥AO ,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE ∥x 轴、PD ⊥x 轴,∴∠DPE=90°,若△PDE 为等腰直角三角形,则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4,即点P (4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.2.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元【解析】【分析】(1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可; (2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可.【详解】(1)()()()80802320w x y x x =-=--+,2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-;(2)()2224802560021203200w x x x =-+-=--+,2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元.(3)当2400w =时,()2212032002400x --+=.解得:12100140x x ,.== ∵想卖得快, 2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.3.如图,抛物线y =﹣x 2﹣2x+3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求点A 、B 、C 的坐标;(2)点M(m ,0)为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG =22DQ ,求点F 的坐标.【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ 的周长=﹣2m 2﹣8m+2;(3) m =﹣2;S =12;(4)F(﹣4,﹣5)或(1,0). 【解析】【分析】 (1)利用函数图象与坐标轴的交点的求法,求出点A ,B ,C 的坐标;(2)先确定出抛物线对称轴,用m表示出PM,MN即可;(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.【详解】(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴303k bb-+=⎧⎨=⎩解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S=12AM×EM=12.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC∵FG=,∴FG=4.设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方且FG=4,∴(n+3)﹣(﹣n2﹣2n+3)=4.解得n =﹣4或n =1,∴F(﹣4,﹣5)或(1,0).【点睛】此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m 表示出矩形PMNQ 的周长.4.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+),①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.5.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C .(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S=252m m--,S的最大值是25 8,此时动点M的坐标是(52,74);(3)点M82秒.【解析】【分析】(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;(2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB =S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可.(3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值.【详解】(1)将x=0代入y=﹣3x+3,得y=3,∴点B的坐标为(0,3),∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,∴3=a+4,得a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)将y=0代入y=﹣x2+2x+3,得x1=﹣1,x2=3,∴点C的坐标为(3,0),∵点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,∴0<m<3,点M的坐标为(m,﹣m2+2m+3),将y=0代入y=﹣3x+3,得x=1,∴点A的坐标(1,0),∵△ABM的面积为S,∴S=S四边形OAMB﹣S△AOB=S△BOM+S△OAM﹣S△AOB=()2123313 222m mm⨯-++⨯⨯+-,化简,得S=252m m--=21525228m⎛⎫--+⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m --,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=, ∵A ′H +A ′C ≥HC =2218233⎛⎫+= ⎪⎝⎭, ∴t ≥82, 即点M 在整个运动过程中用时最少是82秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t 的取值范围,难度系数较大,是中考的压轴题.6.对于某一函数给出如下定义:若存在实数m ,当其自变量的值为m 时,其函数值等于﹣m ,则称﹣m 为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n 称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n 为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n 等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b ≤3,∴0≤n ≤8;(3)∵y =223()3()x x x m x x x m ⎧-≥⎨--<⎩, ∴当x ≥m 时,﹣m =m 2﹣3m ,得m =0或m =2,∴n =2﹣0=2,∴m >2或m ≤﹣2;当x <m 时,﹣m =﹣m 2﹣3m ,解得,m =0或m =﹣4,∴n =0﹣(﹣4)=4,∴﹣2<m ≤2,由上可得,当m >2或m ≤﹣2时,n =2,当﹣2<m ≤2时,n =4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.7.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,1032;(3)存在,点M 坐标为(14), 【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小.如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C Q (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆.(3)存在满足条件的点M ,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=S △PAM =S △PAC∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA ∴1012A P Q (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩ ∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩Q 解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.8.如图,抛物线y =ax 2+bx+c 经过A (﹣3,0),B (1,0),C (0,3)三点. (1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若△PAC 面积为3,求点P 的坐标; (3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与△ABC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,4)或(﹣2,3);(3)存在,(3 2 -,32)或(34-,94),见解析.【解析】【分析】(1)利用待定系数法,然后将A、B、C的坐标代入解析式即可求得二次函数的解析式;(2))过P点作PQ垂直x轴,交AC于Q,把△APC分成两个△APQ与△CPQ,把PQ作为两个三角形的底,通过点A,C的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB,使得以M,A,O为顶点的三角形与△ABC 相似,则有两种情况,∠AOM=∠CAB=45°,即OM为y=-x,若∠AOM=∠CBA,则OM为y=-3x+3,然后由直线解析式可求OM与AD的交点M.【详解】(1)把A(﹣3,0),B(1,0),C(0,3)代入抛物线解析式y=ax2+bx+c得9303a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得123abc=-⎧⎪=-⎨⎪=⎩,所以抛物线的函数表达式为y=﹣x2﹣2x+3.(2)如解(2)图1,过P点作PQ平行y轴,交AC于Q点,∵A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,设P点坐标为(x,﹣x2﹣2x+3.),则Q点坐标为(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.∴S△PAC=1PQ A2O⋅,∴()213332x x --⋅=, 解得:x 1=﹣1,x 2=﹣2.当x =﹣1时,P 点坐标为(﹣1,4),当x =﹣2时,P 点坐标为(﹣2,3),综上所述:若△PAC 面积为3,点P 的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D 点作DF 垂直x 轴于F 点,过A 点作AE 垂直BC 于E 点,∵D 为抛物线y =﹣x 2﹣2x+3的顶点,∴D 点坐标为(﹣1,4),又∵A (﹣3,0),∴直线AC 为y =2x+4,AF =2,DF =4,tan ∠PAB =2,∵B (1,0),C (0,3)∴tan ∠ABC =3,BC 10,sin ∠ABC 310BC 解析式为y =﹣3x+3. ∵AC =4,∴AE =AC•sin ∠ABC =310410⨯=6105,BE =105, ∴CE 310, ∴tan ∠ACB =2AE CE =, ∴tan ∠ACB =tan ∠PAB =2,∴∠ACB =∠PAB ,∴使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM =∠CAB =45°时,△ABC ∽△OMA ,即OM 为y =﹣x ,设OM 与AD 的交点M (x ,y )依题意得:3y x y x =-⎧⎨=+⎩, 解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩, 即M 点为(32-,32). Ⅱ.若∠AOM =∠CBA ,即OM ∥BC ,∵直线BC 解析式为y =﹣3x+3.∴直线OM 为y =﹣3x ,设直线OM 与AD 的交点M (x ,y ).则依题意得:33y x y x =-⎧⎨=+⎩, 解得3494x y ⎧=-⎪⎪⎨⎪=⎪⎩, 即M 点为(34-,94), 综上所述:存在使得以M ,A ,O 为顶点的三角形与△ABC 相似的点M ,其坐标为(32-,32)或(34-,94). 【点睛】 本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.9.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)A (﹣3,0),C (0,3),D (﹣1,4);(2)E (37-,0);(3)P (2,﹣5)或(1,0).【解析】 试题分析:(1)令抛物线解析式中y=0,解关于x 的一元二次方程即可得出点A 、B 的坐标,再令抛物线解析式中x=0求出y 值即可得出点C 坐标,利用配方法将抛物线解析式配方即可找出顶点D 的坐标;(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,由点C 的坐标可找出点C′的坐标,根据点C′、D 的坐标利用待定系数法即可求出直线C′D 的解析式,令其y=0求出x 值,即可得出点E 的坐标;(3)根据点A 、C 的坐标利用待定系数法求出直线AC 的解析式,假设存在,设点F (m ,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A 、F 点的坐标找出点P 的坐标,将其代入抛物线解析式中即可得出关于m 的一元二次方程,解方程求出m 值,再代入点P 坐标中即可得出结论.试题解析:(1)当223y x x =--+中y=0时,有2230x x --+=,解得:1x =﹣3,2x =1,∵A 在B 的左侧,∴A (﹣3,0),B (1,0).当223y x x =--+中x=0时,则y=3,∴C (0,3).∵223y x x =--+=2(1)4x -++,∴顶点D (﹣1,4).(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,如图1所示.∵C (0,3),∴C′(0,﹣3).设直线C′D 的解析式为y=kx+b ,则有:3{4b k b =--+=,解得:7{3k b =-=-,∴直线C′D 的解析式为y=﹣7x ﹣3,当y=﹣7x ﹣3中y=0时,x=37-,∴当△CDE 的周长最小,点E 的坐标为(37-,0). (3)设直线AC 的解析式为y=ax+c ,则有:3{30c a c =-+=,解得:1{3a c ==,∴直线AC 的解析式为y=x+3.假设存在,设点F (m ,m+3),△AFP 为等腰直角三角形分三种情况(如图2所示): ①当∠PAF=90°时,P (m ,﹣m ﹣3),∵点P 在抛物线223y x x =--+上,∴2323m m m --=--+,解得:m 1=﹣3(舍去),m 2=2,此时点P 的坐标为(2,﹣5);②当∠AFP=90°时,P (2m+3,0)∵点P 在抛物线223y x x =--+上,∴20(23)2(23)3m m =-+-++,解得:m 3=﹣3(舍去),m 4=﹣1,此时点P 的坐标为(1,0);③当∠APF=90°时,P (m ,0),∵点P 在抛物线223y x x =--+上,∴2023m m =--+,解得:m 5=﹣3(舍去),m 6=1,此时点P 的坐标为(1,0). 综上可知:在抛物线上存在点P ,使得△AFP 为等腰直角三角形,点P 的坐标为(2,﹣5)或(1,0).考点:二次函数综合题;最值问题;存在型;分类讨论;综合题.10.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.11.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=25cm.如图①,动点M从点A出发,在矩形边上沿着A B C→→的方向匀速运动(不包含点C).设动点M的运动时间为t(s),APM∆的面积为S(cm²),S与t的函数关系如图②所示:(1)直接写出动点M的运动速度为/cm s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点D出发,在矩形边上沿着D C B→→的方向匀速运动,设动点N的运动速度为()/v cm s.已知两动点M、N经过时间()x s在线段BC上相遇(不包含点C),动点M、N相遇后立即停止运动,记此时APM DPN∆∆与的面积为()()2212,S cm S cm.①求动点N运动速度()/v cm s的取值范围;②试探究12S S⋅是否存在最大值.若存在,求出12S S⋅的最大值并确定运动速度时间x的值;若不存在,请说明理由.【答案】(1)2,10;(2)①2/6/3cm s v cm s≤<;②当154x=时,12S S⋅取最大值2254.【解析】【分析】(1)由题意可知图像中0~2.5s时,M在AB上运动,求出速度,2.5~7.5s时,M在BC上运动,求出BC长度;(2)①分别求出在C点相遇和在B点相遇时的速度,取中间速度,注意C点相遇时的速度不能取等于;②过M点做MH⊥AC,则125 MH CM==得到S1,同时利用12()PAD CDM ABM NABCDS S S S S S∆∆∆+=---(N)矩形=15,得到S2,再得到12S S⋅关于x的二次函数,利用二次函数性质求得最大值【详解】(1)5÷2.5=2/cm s;(7.5-2.5)×2=10cm(2)①解:在C点相遇得到方程57.5v=在B点相遇得到方程152.5v=∴5=7.515=2.5vv⎧⎪⎪⎨⎪⎪⎩解得23=5vv⎧=⎪⎨⎪⎩∵在边BC上相遇,且不包含C点∴2/6/3cm s v cm s≤<②如下图12()PAD CDM ABM NABCDS S S S S S∆∆∆+=---(N)矩形()()5152525751022x x⨯-⨯-=---=15过M点做MH⊥AC,则125MH CM==∴112152S MH AP x =⋅=-+ ∴22S x =()122152S S x x ⋅=-+⋅ =2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254. 【点睛】本题重点考查动点问题,二次函数的应用,求不规则图形的面积等知识点,第一问关键能够从图像中得到信息,第二问第一小问关键在理清楚运动过程,第二小问关键在能够用x 表示出S 1和S 212.如图,已知直线AB 与抛物线C :2y ax 2x c =++ 相交于()1,0A -和点()B 2,3两点.⑴求抛物线C 的函数表达式;⑵若点M 是位于直线AB 上方抛物线上的一动点,以MA MB 、为相邻两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时四边形MANB 的面积S 及点M 的坐标;⑶在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线17y 4=的距离,若存在,求出定点F 的坐标;若不存在,请说明理由. 【答案】⑴2y x 2x 3=-++;⑵当12a =,S □MANB =2S △ABM =274,此时115M ,24⎛⎫ ⎪⎝⎭;⑶存在. 当15F 1,4⎛⎫⎪⎝⎭时,无论x 取任何实数,均有PG PF =. 理由见解析.【解析】 【分析】(1)利用待定系数法,将A ,B 的坐标代入y=ax 2+2x+c 即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,-a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【详解】(1)由题意把点(-1,0)、(2,3)代入y=ax2+2x+c,得,20 443 a ca c-+=⎧⎨++=⎩,解得a=-1,c=3,∴此抛物线C函数表达式为:y=-x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(-1,0)、(2,3)代入y=kx+b中,得,0 23k bk b-+⎧⎨+⎩==,解得,k=1,b=1,∴y AB=x+1,设点M(a,-a2+2a+3),则K(a,a+1),则MK=-a2+2a+3-(a+1)=-(a-12)2+94,根据二次函数的性质可知,当a=12时,MK有最大长度94,∴S△AMB最大=S△AMK+S△BMK=12MK•AH+12MK•(x B-x H)=12MK•(x B-x A)=12×94×3=278,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×278=274,M(12,154);(3)存在点F,∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,当y=0时,x1=-1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,设F(1,a),连接BF,CF,则BF=BN=174-3=54,CF=CH=174,由题意可列:2222225(21)(3)417(31)4aa⎧⎛⎫-+-=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得,a=154,∴F(1,154).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.13.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为E(﹣4,5)(3)当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.【解析】试题分析:(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E 的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形时满足条件,直接计算即可.试题解析:(1)当m=﹣3时,B(﹣3,0),把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)如图1,设E(m,m2+2m﹣3),由题意得:AD=1+1=2,OC=3,S△ACE=S△ACD=×ADOC=×2×3=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,,解得:,∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如图2,当B在原点的左侧时,连接BF,以BF为直径作圆E,当⊙E与y轴相切时,设切点为P,∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,连接EP,则EP⊥OG,∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=,∴,∴m=﹣4,∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,则∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.考点:二次函数的综合题.14.一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.【答案】(1)点C(2,);(2)①y=x2-x;②y=-x2+2x+.【解析】试题分析:(1)求得二次函数y=ax2-4ax+c对称轴为直线x=2,把x=2代入y=x求得y=,即可得点C的坐标;(2)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax2-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A 点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax2-4ax+c即可求得函数表达式.试题解析:(1)y=ax2-4ax+c=a(x-2)2-4a+c.∴二次函数图像的对称轴为直线x =2.当x=2时,y=x=,∴C(2,).(2)①∵点D与点C关于x轴对称,∴D(2,-),∴CD=3.设A(m,m)(m<2),由S△ACD=3,得×3×(2-m)=3,解得m=0,∴A(0,0).由A(0,0)、 D(2,-)得解得a=,c=0.∴y=x2-x.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,。

初三数学 二次函数的专项 培优练习题附详细答案

初三数学 二次函数的专项 培优练习题附详细答案

初三数学二次函数的专项培优练习题附详细答案一、二次函数1.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+515-),P2(35-1+52),P35+5,1+52),P4(552-,152).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=5+5或55-, ∴P 的坐标为(5+5,1+5)或(55-,15-); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m2+4m-3=m-2,解得:x=3+5或35 -;P的坐标为(3+5,15-)或(35-,1+52);综上所述,点P的坐标是:(5+52,1+52)或(552-,152-)或(3+5,15-)或(35-,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.2.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB与抛物线解析式成方程组,得:214114y xy x x⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114xy⎧⎪⎨⎪⎩==,2241xy⎧⎨⎩==,∴点A的坐标为(1,14),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=-1,∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,14)、B′(4,-3)代入y=kx+b,得:1443k bk b⎧+⎪⎨⎪+-⎩==,解得:131243kb⎧-⎪⎪⎨⎪⎪⎩==,∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等,∴(m-x 0)2+(n-y 0)2=(n+1)2,∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1.∵M (m ,n )为抛物线上一动点,∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值, ∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴0021x y ⎧⎨⎩==, ∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.3.如图,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ =34AB 时,求tan ∠CED 的值; ②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(16,74). 【解析】【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式.【详解】(1)∵抛物线的对称轴为直线x=1, ∴− 221bb a-⨯==1 ∴b=-2 ∵抛物线与y 轴交于点C (0,-3),∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3;(2)∵抛物线与x 轴交于A 、B 两点,当y=0时,x 2-2x-3=0.∴x 1=-1,x 2=3.∵A 点在B 点左侧,∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩, ∴13k m ⎧⎨-⎩==∴直线BC的函数表达式为y=x-3;(3)①∵AB=4,PQ=34 AB,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(1-2,-2),P2(1-6,-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+2或1-2∵点P在第三象限.∴P1(1-2,-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-6,或1+6,∵点P在第三象限.∴P2(1-62,-52).综上所述:满足条件为P1(1-2,-2),P2(1-6,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.4.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.5.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得抛物线解析式. (2)当x =0时可求C 点坐标,求出直线AB 解析式,当x =0可求D 点坐标.(3)由题意可知P 点纵坐标为﹣2,代入抛物线解析式可求P 点横坐标.【详解】解:(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得 304233a b a b --=⎧⎨+-=-⎩ 解得12a b =⎧⎨=-⎩∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2)∴P 点纵坐标为﹣2,∴x 2﹣2x ﹣3=﹣2解得:x =∵x >0∴x =.∴P (,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.6.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:x = 即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.7.如图,已知二次函数图象的顶点坐标为(1,4)A ,与坐标轴交于B 、C 、D 三点,且B 点的坐标为(1,0)-.(1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值;(3)当矩形MNHG 的周长最大时,能否在二次函数图象上找到一点P ,使PNC ∆的面积是矩形MNHG 面积的916?若存在,求出该点的横坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++ (2)最大值为10(3)故点P 坐标为:315(,)24或332362+--或332362--+. 【解析】【分析】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式,即可求解; (2)矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,即可求解; (3)2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯94PH HG ==,即可求解.【详解】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式得:044a =+,解得:1a =-,故函数表达式为:223y x x =-++…①;(2)设点M 的坐标为()2,23x x x -++,则点()22,23N x x x --++,则222MN x x x =-+=-,223GM x x =-++,矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++, ∵20-<,故当22b x a=-=,C 有最大值,最大值为10, 此时2x =,点()0,3N 与点D 重合; (3)PNC ∆的面积是矩形MNHG 面积的916, 则99272316168PNC S MN GM ∆=⨯⨯=⨯⨯=, 连接DC ,在CD 得上下方等距离处作CD 的平行线m 、n ,过点P 作y 轴的平行线交CD 、直线n 于点H 、G ,即PH GH =,过点P 作PK CD ⊥于点K ,将()3,0C 、()0,3D 坐标代入一次函数表达式并解得:直线CD 的表达式为:3y x =-+,OC OD =,∴45OCD ODC PHK ∠=∠=︒=∠,32CD =设点()2,23P x x x -++,则点(),3H x x -+, 2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯ 解得:94PH HG ==, 则292334PH x x x =-+++-=, 解得:32x =, 故点315,24P ⎛⎫ ⎪⎝⎭, 直线n 的表达式为:93344y x x =-+-=-+…②, 联立①②并解得:3322x ±=, 即点'P 、''P 的坐标分别为332362+--⎝⎭、332362--+⎝⎭; 故点P 坐标为:315,24⎛⎫ ⎪⎝⎭或33236224⎛⎫+-- ⎪ ⎪⎝⎭或33236224⎛--+ ⎝⎭. 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.8.如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a=﹣1时,求抛物线顶点D 的坐标,OE 等于多少;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣3≤a≤﹣1;(4)n=﹣m﹣1(m<1).【解析】【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.【详解】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,33∴﹣3∴a=﹣3,∴45°≤β≤60°,a的取值范围为﹣3≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).故答案为:(1)(﹣1,4),3;(2)OE的长与a值无关;(3)3﹣1;(4)n=﹣m﹣1(m<1).【点睛】本题是二次函数综合题,考查了二次函数的图象与性质。

九年级数学培优讲解及测试

九年级数学培优讲解及测试

第一讲一次函数和反比例函数知识点、重点、难点函数称为一次函数,其函数图像是一条直线。

若时,则称函数为正比例函数,故正比例函数是一次函数特殊情况。

当时,函数是单调递增函数,即函数值随增大(减小)而增大(减小);当,是递减函数,即函数值随增大(减小)而减小(增大)。

函数称为反比例函数,其函数图像是双曲线。

当且时,函数值随增大(减小)而减小(增大);当且,函数值随增大(减小)而减小(增大),也就是说:当时,反比例函数分别在第一或第三象限内是单调递减函数;当时,函数分别在第二或第四象限内是单调递增函数。

若当时,时,两面直线平行。

当时,时,两面直线重合。

当时,两直线相交。

当时,两直线互相垂直。

求一次函数、反比例函数解析式,关键是要待定解析式中未知数系数;其次,在解题过程中要重视数形相结合。

例题精讲例1:在直角坐标平面上有点、、,求为何值时取最小值。

解显然,当点在线段内时,最短。

设直线方程为,代入、得解得所以线段为代入,得例2:求证:一次函数图像对一切有意义恒过一定点,并求这个定点。

解由一次函数得整理得。

因为等式对一切有意义成立,所以得解得当,时,一次函数解析式变为恒等式,所以函数图像过定点.例3:已知、、为常数,,并且求。

解用代换原方程中,得○1用代换原方程中,得○2○2○1得因为,所以,所以.例4:如图,设因为当时,为递增函数,在上最小值为所以因此在上为递减函数;在上为递增函数,故最大值为例5:画函数图像。

解,,,将整个数轴分为四段讨论(见图)并定义域为一切实数。

例6:一次函数图像交轴于A点,将此直线沿直线翻折交轴于B点,这两条直线相交于P点,且四边形OAP B面积为3,求k值。

解设点P坐标为又与是翻折而成,所以面积是四边形OAPB一半等于。

设代入得点为由得即点因点在上,代入得A卷一、填空题1.设是反比例函数,则;其图像经过第象限时;当时,随增大而。

2.两个一次函数图像与轴所围成三角形面积是。

3.等腰三角形一个底角度数记作,顶角度数记作,将表示成函数是,其中取值范围是。

初三数学备课组培优补差总结

初三数学备课组培优补差总结

初三数学备课组培优补差总结初三数学备课组数理化补差总结初三数学备课组培优补差总结一学期的教学组织工作教学活动即将结束,为了进一步发掘并培养数学优等生,巩固并巩固提高中等生的教学质量,帮助后进生得到适当进步,的开学初我们全组老师针对学生在具体情况和迎接中考的现状,制定出更培优补差计划,经过一学期的实施,取得了一定的最新进展,但也有不尽人意的方面,为了今后取得更好良好效果,现对本学期的培优补差工作总结如下:一、抓好课堂常规教学活动,提高课堂教学运行效率。

课堂是教学的主阵地,提高课堂实效是实施培优补差的根本。

通过集体备课我们达成共识:在课堂教学中会注重基础知识教学,在抓好双基的同时进行知识的拓展与延伸。

在教学中每项中教师都能认真钻研教材,深入了解学生,能结合萨兰勒班县具体情况实施教学,在培养人才教学中重视基础知识的教学和学生数学能力的培养,根据所带班级学生的接受能力,在教学中推行分层教学,贯彻“让不同的人在生物医学计算机科学上有不同的发展”的教学理念,不断探索新的教学模式,让每一位学生都能动手动脑,掌握不同程度的数学。

同时重视问题情境的创设,问题使问题的提出富有现实意义,激发学生的学习兴趣,让学生经历“难题情境建立模型解释,应用与拓展”的过程,培养学生应用数学的法律意识,进一步提高解决问题的能力,对于每一节课的幼儿教育,确实能做到精心设计,既给学生足够多的思维空间,又或使教学活动有目的、有层次地进行,促使学生独立思考和自主探索,寻求其他解决问题的有效途径。

重视引导学生本土化探索,培养学生培育的实践能力和创新精神。

课下能认真反思教学初三数学备课组培优补差计划一、指导思想进一步巩固并提高中等生的学习成绩,帮助后进生取得适当进步,让后进生在教师的辅导和优生的帮助下,逐步提高学习成绩,并培养较好的学习习惯,形成数学基本能力。

培优计划要落到实处,发掘并培养一大批数学尖子,挖掘他们的潜能,从培养数学能力入手,训练良好学习饮食习惯,从而形成较扎实的数学能力,以期在中考中取得考前好的成绩,并能协助老师进行补差活动,提高减低整个班级的数学素养和数学成绩。

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用一、单选题1.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(为y =x 2−x +c c 常数)在的图象上存在两个二倍点,则的取值范围是( )−2<x <4c A .B .C .D .−2<c <14−4<c <94−4<c <14−10<c <942.已知直线 过一、二、三象限,则直线 与抛物线 的交点y =kx +2y =kx +2y =x 2−2x +3个数为( ) A .0个B .1个C .2个D .1个或2个3.抛物线 (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =x 2+bx +c ( )有交点,则c 的值不可能是( ) y =2x−11≤x <3A .5B .7C .10D .144.函数y=ax+b 和y=ax 2+bx+c 在同一直角坐标系内的图象大致是( )A .B .C .D .5.已知0<x <1,10<y <20,且y 随x 的增大而增大,则y 与x 的关系式不可以是( )A .y =10x+10B .y =﹣10(x﹣1)2+20C .y =10x 2+10D .y =﹣10x+206.在同一坐标系中,函数y=ax 2与y=ax+a (a <0)的图象的大致位置可能是( )A .B .C .D .7.对于题目“一段抛物线L :y=﹣x (x﹣3)+c (0≤x≤3)与直线l :y=x+2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确8.将二次函数 的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图y =−x 2+2x +3所示.当直线 与新函数的图象恰有3个公共点时,b 的值为( )y =x +bA . 或B . 或 −214−3−134−3C . 或D . 或 214−3134−39.已知抛物线 与直线 相交,若 ,则 的取值范围是( y 1=−2x 2+2y 2=2x +2y 1>y 2x ).A .B .x >−1x <0C .D . 或 −1<x <0x >0x <−110.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y= x 2的切线;14②直线x=﹣2与抛物线y= x 2 相切于点(﹣2,1);14③若直线y=x+b 与抛物线y= x 2相切,则相切于点(2,1);14④若直线y=kx﹣2与抛物线y= x 2相切,则实数k= .142其中正确命题的是( )A .①②④B .①③C .②③D .①③④11.一次函数与二次函数的图象交点( )y =2x +1y =x 2−4x +3A .只有一个B .恰好有两个C .可以有一个,也可以有两个D .无交点12.将抛物线y=x 2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )A .(0,3)或(﹣2,3)B .(﹣3,0)或(1,0)C .(3,3)或(﹣1,3)D .(﹣3,3)或(1,3)二、填空题13.如图,在平面直角坐标系中,抛物线 交y 轴于点A ,直线AB 交x 轴正半轴于y =x 2−2x +2点B ,交抛物线的对称轴于点C ,若 ,则点C 的坐标为  .OB =2OA14.函数 与 的图象如图所示,有以下结论:① ,②y =x 2+bx +c y =x b 2−4c >0 ,③ ,④当 时, .则正确的个数为 b +c +1=03b +c +6=01<x <3x 2+(b−1)x +c <0个.15.已知一次函数y 1=kx+m (k≠0)和二次函数y 2=ax 2+bx+c (a≠0)部分自变量和对应的函数值如表:x…﹣10245…y1…01356…y2…0﹣1059…当y2>y1时,自变量x的取值范围是 .y=ax2+c y=mx+n A(−1,p)B(3,q)16.如图,抛物线与直线交于,两点,则不等式ax2+mx+c<n的解集是 .17.如图,在平面直角坐标系xOy中,直线y1=kx+m(k≠0)的抛物线y2=ax2+bx+c(a≠0)交于点A(0,4),B(3,1),当y1≤y2时,x的取值范围是 .y=ax+b(a<0,b>0)18.如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函y=−kx+k(k>0)数关联的二次函数.如果一次函数的关联二次函数是y=mx2+2mx+c m≠0(),那么这个一次函数的解析式为 .三、综合题19.如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴的正半轴上,点B在第一象限.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA .过点P 作PD ⊥OB 于D 点(1)直接写出BD 的长并求出点C 的坐标(用含t 的代数式表示)(2)在点P 从O 向A 运动的过程中,△PCA 能否成为直角三角形?若能,求t 的值.若不能,请说明理由;(3)点P 从点O 运动到点A 时,点C 运动路线的长是多少?20.如图,函数 的图象与函数 ( )的图象相交于点P (3,k ),Q 两点.y =2x y =ax 2−3a ≠0(1) = , =  ;a k (2)当 在什么范围内取值时, > ;x 2x ax 2−3(3)解关于 的不等式: >1.x |ax 2−3|21.如图,抛物线与 轴交于 , 两点,点 , 分别位于原点的y =3+3x 2+bx +c x A B A B 左、右两侧, ,过点 的直线与 轴正半轴和抛物线的交点分别为 , , BO =3AO =3B y C D .BC =3CD(1)求 , 的值;b c (2)求直线 的函数解析式;BD 22.如图,抛物线y=-x 2+bx+c 的图像过点A(-1,0)、C(0,3),顶点为M 。

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题一、单选题1.在平面直角坐标系中,已知点M ,N 的坐标分别为,若抛物线(−1,3),(3,3)与线段MN 只有一个公共点,则的取值范围是( )y =x 2−2mx +m 2−m +2m A .或B .或−1⩽m <07−17<m⩽7+17−1⩽m <0m >7−17C .或D .m <07−172<m⩽7+172−1⩽m⩽7+1722.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .3.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以 cm/s 的速度沿AB 方向运2动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC CB 方向运动到点B .设△APQ 的→面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A.B.C.D.4.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数y=的图象与两坐标轴所围成的图形最接近的面积是( )14(x−4)2A.5B.C.4D.17﹣4π2255.已知如图,抛物线y=-x2-2x+3交x轴于A、B两点,顶点为C,CH⊥AB交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ时,此时CP的长为()A.B.C.D.4522521692096.如图,抛物线y=ax2+2ax-3a(a>0)与x轴交于A,B顶点为点D,把抛物线在x轴下方部分关于点B作中心对称,顶点对应D’,点A对应点C,连接DD’,CD’,DC,当△CDD’是直角三角形时,a的值为( )A . ,B . ,C . ,D . , 12321332133312337.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE﹣ED﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是()A .AE=6cmB .sin∠EBC =45C .当0<t≤10时,D .当t=12s 时,△PBQ 是等腰三角形y =25t 28.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . cm 2B . cm 2C . cm 2D . cm 2332392327239.如图, 在平面直角坐标系中放置 , 点 .现将 沿Rt △ABC ,∠ABC =90∘A(3,4)△ABC x 轴的正方向无滑动翻转,依次得到 连续翻转 14 次, 则经过 △A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3… 三顶点的抛物线解析式为( )△A 14B 14C 14A .B .y =−35(x−51)(x−55)y =−512(x−51)(x−55)C .D .y =−35(x−55)(x−60)y =−512(x−55)(x−60)10.用一根长为50 cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为( )A .y =-x 2+50x B .y =x 2-50x C .y =-x 2+25xD .y =-2x 2+2511.如图,点E ,F ,G ,H 分别是正方形ABCD 边AB ,BC ,CD ,DA 上的点,且AE =BF =CG =DH.设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能为( )A .B .C .D .12.已知一个直角三角形的两边长分别为a 和5,第三边长是抛物线y=x²-10x+21与x 轴交点间的距离,则a 的值为( )4141A.3B.C.3或D.不能确定二、填空题ABCD BC=8,AB=6E CD C,D CE13.如图,矩形中,,点为边上一动点(不与重合)、以CEFG CE:CG=3:4BF,ОOE OE为边向外作矩形,且,连接点是线段BF的中点.连接,则的最小值为 .A(3,3)B(0,2)A y=x2+bx−9AB14.如图,已知点,点,点在二次函数的图象上,作射线AB A45°C C,再将射线绕点按逆时针方向旋转,交二次函数图象于点,则点的坐标为 15.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为 .16.在综合实践活动中,同学们借助如图所示的直角墙角(两边足够长),用24m长的篱笆围成一个矩形花园ABCD,则矩形花园ABCD的最大面积为 m2.17.用一段长为的篱笆围成一个一边靠墙的矩形养鸡场,若墙长,则这个养鸡场最大面积24m 10m 为  .m 218.在第一象限内作射线OC ,与x 轴的夹角为60°,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H ,在抛物线y=x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 三、综合题19.如图,为美化校园环境,某校计划在一块长方形空地上修建一个长方形花圃.已知AB=20m ,BC=30m ,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为 米,花圃的面x 积为 ( ).S m 2(1)求 关于 的函数关系式;S x (2)如果通道所占面积是184 ,求出此时通道的宽 的值;m 2x (3)已知某园林公司修建通道每平方米的造价为40元,花圃每平方米的造价是60元,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过花圃宽的 ,则通道宽为13多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?20.如图,在平面直角坐标系xOy 中,点A 是反比例函数y= (x >0,m >1)图象上一点,m 3−m 2x 点A 的横坐标为m ,点B (0,﹣m )是y 轴负半轴上的一点,连接AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使得AD=AC ,过点A 作AE 平行于x 轴,过点D 作y 轴平行线交AE 于点E .(1)当m=3时,求点A 的坐标;(2)DE=  ,设点D 的坐标为(x ,y ),求y 关于x 的函数关系式和自变量的取值范围;(3)连接BD ,过点A 作BD 的平行线,与(2)中的函数图象交于点F ,当m 为何值时,以A 、B 、D 、F 为顶点的四边形是平行四边形?21.如图,矩形ABCD 的四个顶点在正△EFG 的边上,已知正△EFG 的边长为2,记矩形ABCD 的面积为S ,边长AB 为x 。

2023年九年级数学中考专题培优训练实际问题与二次函数 应用题【含答案】

2023年九年级数学中考专题培优训练实际问题与二次函数 应用题【含答案】

2023年九年级数学中考专题培优训练实际问题与二次函数应用题1.某商场销售一批拜年服,平均每天可售出40件,每件盈利60元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件拜年服每降价1元,商场平均每天可多售出2件,(1)写出商场每天的利润W元与每件拜年服降价x元之间的函数关系式.(不要求写出自变量的取值范围).(2)若商场平均每天销售这种拜年服的盈利要达到3000元,则每件拜年服应降价多少元?(3)每件拜年服降价多少元时,商场每天盈利最多?最多盈利为多少元?2.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块长方形区域,而且这三块长方形区域的面积相等.设BC的长为m x,矩形区域ABCD的面积为2m y(1)由图中三个长方形面积相等,得到长方形AEFD面积是长方形BCFE面积的倍.故AE长是BE长度倍.(2)用含x的代数式表示y,并求出自变量x的取值范围;(3)当x为何值时,y有最大值?最大值是多少?3.超市销售某种商品,如果每件利润为40元(市场管理部门规定,该商品每件利润不能超过60元),每天可售出50件,根据市场调查发现,销售单价每增加2元,每天销售量会减少1件,设销售单价增加x元,每天售出y件.(1)请直接写出y与x之间的函数表达式,并注明自变量x的取值范围.(2)当x为多少时,超市每天销售这种商品可获利润2250元?(3)设超市每天销售这种商品可获利w元,当x为多少时w最大,最大值是多少?4.万德隆超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本价.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为3375元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?5.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;②当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?6.小强经营的网店以特色小吃为主,其中一品牌茶饼的进价为6元/袋,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:袋)与线下的售价x(单位:元/袋,1016≤≤,且x为整数)满足一次函数的关系,部分数据如下表所示.xx(元/袋)1011121314y(袋)10090807060(1)求y与x的函数关系式.(2)若线上的售价始终比线下的售价每袋便宜1元,且线上的月销量固定为60袋.问当x为多少时,线上和线下的月利润总和达到最大?并求出此时的最大利润.7.冬至吃汤圆是我国南方的一项传统民俗,既代表着团圆,又寓意着添岁.为了迎接冬至的来临,瑞安市某商家向广大市民出售肉馅汤圆,已知该汤圆的成本价为20元/盒,经调查发现:在一段时间内,该商品的日销售量y(盒)与售价x(元/盒)成一次函数关系.其对应关系如下表:售价(元/盒)253035日销售量(盒)110a90(1)根据以上信息,填空:表中a的值是___,y关于x的函数关系式是___;(2)若根据市场的定价规则,该汤圆的售价不得高于40元/盒,求售价为多少时,日销售利润w最大,最大利润是多少?(3)在(1)的条件下,为了增加店铺的人气,商家决定搞促销活动.顾客每购买一盒肉馅汤圆可以获得m元的现金奖励0m ,商家想在日销售量不少于60盒的基础上,日销售最大利润为1650元,求出此时m的值.8.“燃情冰雪,一起向未来”,北京冬奥会于2022年2月4日如约而至,某商家看准商机,进行冬奥会吉祥物“冰墩墩”纪念品的销售,每个纪念品进价40元.当销售单价定为46元时,每天可售出400个,由于销售火爆,商家决定提价销售.经市场调研发现,销售单价每上涨1元,每天销量减少10个,且规定利润率不得高于50%.设每天销售量为y个,销售单价为x元.(1)求当每个纪念品的销售单价是多少元时,商家每天获利4800元;(2)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w元最大?最大利润是多少元?9.某小区计划新建A、B两型停车位共50个,已知新建1个A型停车位和1个B型停车位共需32万元;新建3个A型停车位和2个B型停车位共需76万元,预销售过程中发现:A型停车位的销售单价yA(单位:万元)与其销量xA(单位:个)有如下关系:yA=﹣xA+40,B型停车位的销售单价yB(单位:万元)与其销量xB(单位:个)有如下关系:yB=﹣xB+80,且两种车位全部预售出.(1)该小区新建1个A型停车位和1个B型停车位各需多少万元?(2)若B型停车位的销售单价至少比A型停车位贵10万元,求预售完后B型停车位的总利润比A型停车位的总利润至少多多少万元?(3)现小区进行促销,决定把B型停车位每个降低m(m为正整数)万元,结果发现当xA≤18时,销售总利润随x的增大而增大,直接写出m的最小值.10.2022年北京冬奥会举办期间,冬奥会吉祥物“冰墩墩”深受广大人民的喜爱.某特许零售店“冰墩墩”的销售日益火爆.每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元.(1)直接写出y与x之间的函数关系式和自变量x的取值范围;(2)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w元最大?最大利润是多少元?(3)该店主热心公益事业,决定从每天的利润中捐出200元给希望工程,为了保证捐款后每天剩余利润不低于2200元,求销售单价x的范围.11.某超市经销一种商品,每千克成本为50元,试经销发现,该种商品的每天销售量y(件数)与销售单价x(元/件)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/556070…件)销售量y(件)706040…(1)求y(件)与x(元/件)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)销售过程中要求卖出的商品数不少于50件,问销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?12.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间天x(天)1≤x<99≤x<15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x13.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W (元)与x (天)之间的函数关系式;(2)求x 为何值时,日销售利润为900元?(3)直接写出哪一天销售这种水果的利润最大?最大日销售利润为多少元?14.为了充分发挥科技导向作用,某公司计划建立总量为x (单位:万条100x ≥)的行业数据库,经过调研发现;运行总成本y (单位1万元)由基础成本、技术成本、维护成本三部分组成,其中基础成本保持不变为500万元,技术成本与x 成正比例,维护成本与x 的平方成正比例,运行中得到如下数据,x (单位:万条)200300y (单位:万元)700860(1)求y 与x 之间的函数关系式,(2)该公司为了实现数据共享,计划吸收会员,每名会员需交纳会员费30万元,已知会员数Q 与x 之间的关系式为Q mx n =+,且600x =时,1000Q =,且此时公司的利润W (单位:万元)最大,求m 、n 的值(利润=会员费-运行总成本).15.某地积极响应国家乡村振兴的号召,决定成立草莓产销合作社,负责对农户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y (万元)与产量x (吨)之间的关系如图所示(0<x ≤100).已知草莓的产销投入总成本p (万元)与产量x (吨)之间满足p =x +1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式.(2)为提高农户种植草莓的积极性,合作社决定按每吨0.3万元的标准奖励种植户,为确保合作社所获利润w(万元)不低于55万元,产量至少要达到多少吨?16.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每件文具的利润不低于25元且不高于29元.请比较哪种方案的最大利润更高,并说明理由.17.某电商准备销售甲,乙两种特色商品,已知每件甲商品的进价比每件乙商品的进价多20元,用5000元购进甲型商品的数量与用4500元购进乙商品的数量相等.甲,乙两种商品的销售单价分别为在其进价基础上增加60%和50%.(1)求甲、乙两种商品每件进价分别为多少元?(2)该电商平均每天卖出甲商品200件,乙商品100件,经调查发现,甲,乙两种商品销售单价都降低1元,这两种商品每天都可多销售2件,为了使每天获取更大的利润,该电商决定把甲,乙两种商品的销售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲,乙两种商品获取的总利润最大?18.受境外疫情的影响,让跨省旅游成为障碍,本地游成为“新宠”.素有“香格里拉”之称的黄林古村在春节期间更是受到游客的青睐.古村内某民宿有50个房间供游客居住.当每个房间的定价为210元时,每天都住满.市场调查表明每间房价在350元到520元之间(含350元,520元)浮动时,每提高10元,日均入住客房减少1间,但对有游客入住的房间,需对每个房间每天支出30元的各种费用.设每个房间每天的定价提高x元.(1)求房间每天的入住量y(间)关于x(元)的函数关系式;(2)求该民宿客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间每天的定价提高多少元时,w有最大值?(3)由于疫情影响,入住房间不能超过30个,当每个房间每天的定价多少元时,该民宿客房部每天的利润w最大,并求出最大值.19.某文具店计划在40天内销售一种成本为15元本的笔记本,该种笔记本的日销售量p(本)和销售天数x(单位:天,1≤x≤40,且x为正整数)之间满足一次函数关系,且其图象经过点(10,40),(40.10),当1≤x≤20时,销售单价q(元)和销售天数x(天)之间的部分对应值如表所示.销售天数x/天12345678...销售单价q/元30.53131.53232.53333.534...当21≤x≤40时,销售单价q(元)和销售天数x(天)之间满足52520 qx=+(1)求销售到第几天时,该种笔记本的销售单价为45元(2)求出日销售量P与销售天数x的函数解析式(3)设该文具店第x天获得的利润为y元,请求出y关于x的函数解析式(4)在这40天中,该文具店第几天能够获利870元?20.某宾馆共有80个房间可供顾客居住.宾馆负责人根据前几年的经验作出预测:今年5月份,该宾馆每天的房间空闲数y(间)与每天的定价x(元/间)之间满足某个一次函数关系,且部分数据如表所示.每天的定价x(元/间)208228268…每天的房间空闲数y(间)101525…(1)该宾馆将每天的定价x(元/间)确定为多少时,所有的房间恰好被全部订完?(2)如果宾馆每天的日常运营成本为5000元,另外,对有顾客居住的房间,宾馆每天每间还需支出28元的各种费用,那么单纯从利润角度考虑,宾馆应将房间定价确定为多少时,才能获得最大利润?并请求出每天的最大利润.参考答案:1.(1)W =−2x 2+80x +240(2)30元(3)每件衬衫应降价20元时,商场平均每天盈利最多,每天最多盈利3200元2.(1)2,2(2)2330(040)4y x x x =-+<<(3)x =20时,y 有最大值,最大值为2300m .3.(1)y =﹣12x +50(0<x ≤20)(2)10(3)当x 为20时w 最大,最大值是2400元4.(1)y 与x 的函数关系式为5550y x =-+;(2)当该商品每月销售利润为3375,为使顾客获得更多实惠,销售单价应定为65元;(3)为了每月所获利润最大,该商品销售单价应定为80元.5.(1)1盆盆景的利润为140元,1盆花卉的利润为20元(2)①W 1=-2x 2+40x +7000,W 2=1000-20x ;②当x =5时,W 取得最大值,Wmax =80506.(1)10200y x =-+(2)当x 为16时,线上和线下的月利润总和达到最大,此时的最大利润为940元7.(1)100,y =-2x +160(20<x <80)(2)售价取40时有最大利润,最大利润1600元(3)m =2.5.8.(1)当每个纪念品的销售单价是56元时,商家每天获利4800元;(2)当x =60时,符合题意,且利润最大,且最大利润为5200元9.(1)该小区新建1个A 型停车位需12万元,新建1个B 型停车位需20万元(2)620万元(3)410.(1)y =﹣10x +740(44≤x ≤52)(2)将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润w 元最大,最大利润是2640元(3)为了保证捐款后每天剩余利润不低于2200元,销售单价x 的范围是50≤x ≤5211.(1)y =-2x +180;(2)60元或80元.(3)当销售单价定为65元/千克时,才能使当天的销售利润最大,最大利润是750元12.(1)10%(2)第9天时销售利润最大13.(1)()214565030221≤≤-+=+x x x W ;(2)当x 为20或25时,日销售利润为900元;(3)第22或23天销售这种水果的利润最大,最大日销售利润为903元.14.(1)20.0020.6500y x x =++(2)110m =,940n =15.(1)y =2.4(030)0.01 2.7(3070)2(70100)x x x x ≤≤⎧⎪-+<≤⎨⎪<≤⎩(2)产量至少要达到80吨16.(1)w =﹣10x 2+700x ﹣10000(2)当单价为35元时,该文具每天的利润最大(3)A 方案利润更高,理由见解析17.(1)一件甲,乙商品的进价分别为200元和180元(2)1518.(1)5010x y =-;(2)2132900010w x x =-++,每天定价提高160元时,w 有最大值;(3)每个房间每天的定价410元时,该民宿客房部每天的利润w 最大,最大值为11400元19.(1)21(2)p =-x +50(3)y =2110750(120)2262505275(2140)x x x x x x⎧-++⎪⎪⎨⎪--⎪⎩ (4)2120.(1)168(2)宾馆应将房间定价确定为256或260元。

中考数学培优知识点总结

中考数学培优知识点总结

中考数学培优知识点总结一、整数1. 整数概念及种类2. 整数的加减乘除3. 整数的比较及大小关系4. 整数的应用题二、分数1. 分数的概念及种类2. 分数的加减乘除及化简3. 分数的大小比较4. 分数的应用题三、小数1. 小数的概念及种类2. 小数的加减乘除及化简3. 小数和分数的互换4. 小数的大小比较5. 小数的应用题四、代数1. 代数的概念及基本运算规则2. 一元一次方程及应用3. 一元一次不等式及应用4. 一元一次方程组及应用5. 二元一次方程及应用6. 一元一次方程的解法7. 代数的应用题五、平面图形1. 直线和射线的概念及性质2. 角的概念及种类3. 三角形的分类及性质4. 四边形的分类及性质5. 多边形的分类及性质6. 圆的概念及性质7. 平面图形的周长和面积六、空间图形1. 空间图形的概念及分类2. 三视图及其应用3. 空间图形的表面积及体积4. 空间图形的应用题七、函数1. 函数的概念及表示2. 函数的性质及概念3. 一次函数及其图像4. 二次函数及其图像5. 函数图像的性质6. 函数的应用题八、统计与概率1. 统计的基本概念及方法2. 统计图的表示及分析3. 概率的基本概念及计算4. 概率问题的应用题九、空间几何1. 空间图形的平面图形投影2. 空间几何体的三视图及其应用3. 空间几何体的表面积及体积4. 空间几何体的应用题十、常用逻辑1. 命题与命题的连接词2. 命题的简化与否定3. 命题的充分条件和必要条件4. 命题的等价变换5. 命题的推理法则6. 逻辑推理题的应用以上是中考数学培优的知识点总结,希望对大家备考中学数学有所帮助。

2023年九年级中考数学专题培优训练实际问题与二次函数【含答案】

2023年九年级中考数学专题培优训练实际问题与二次函数【含答案】

2023年九年级中考数学专题培优训练实际问题与二次函数一、单选题1.图,已知18AB =,点C 在线段AB 上,且6AC =,以AC 为一边向上作等边ACD ,再以CD 为直角边向右作Rt DCE ,使90DCE ∠=︒,F 为斜边DE 的中点,连接BF ,随着CE 边长的变化,BF 长也在改变,则BF 长的最小值为()A .10B .9C .8D .62.方形ABCD 中,AD =4,点E 为AB 边上一动点(不与点B 重合),将△ADE 绕点D 逆时针旋转90°得到△DCF ,过E 作EG //DF 交BC 于点G ,则GC 的最小值为()A .2BC .D .33.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如表:下列结论不正确的是()t 01234567…h8141820201814…A .足球距离地面的最大高度超过20mB .足球飞行路线的对称轴是直线92t =C .点(10,0)在该抛物线上D .足球被踢出57s s :时,距离地面的高度逐渐下降.4.在矩形ABCD 中,动点P 从A 出发,沿A D C →→运动,速度为1m/s ,同时动点Q从点A 出发,以相同的速度沿路线A B C →→运动,设点P 的运动时间为(s)t ,CPQ 的面积为2(m )S ,S 与t 的函数关系的图象如图所示,则CPQ 面积的最大值是()A .3B .6C .9D .185.如图,用一段长为18米的篱笆围成一个一边靠墙(墙长不限)的矩形花园,设该矩形花园的一边长为m x ,另一边的长为m y ,矩形的面积为2m S .当x 在一定范围内变化时,y 和S 都随x 的变化而变化,那么y 与x .S 与x 满足的函数关系分别是()A .一次函数关系,二次函数关系B .反比例函数关系,二次函数关系C .一次函数关系,反比例函数关系D .反比例函数关系,一次函数关系6.如图,某大门的形状是一抛物线形建筑,大门的地面宽8m ,在两侧距地面3.5m 高处有两个挂单位名牌匾用的铁环,两铁环的水平距离是6m .若按图所示建立平面直角坐标系,则抛物线的解析式是().(建筑物厚度忽略不计)A .2182y x =-+B .2172y x =-+C .2182y x =+D .2172y x =+7.在中考体育训练期间,小学对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系式为y =-2110x +35x +85,由此可知小宇此次实心球训练的成绩为()A .83米B .2米C .8米D .10米8.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,6AC =,8BD =,动点P 从点B 出发,沿着B A D →→在菱形ABCD 的边AB ,AD 上运动,运动到点D 停止.点'P 是点P 关于BD 的对称点,连接'PP 交BD 于点M ,若(08)BM x x =<<,'DPP 的面积为y ,下列图象能正确反映y 与x 的函数关系的()A .B .C .D .二、填空题9.教练对小明投掷实心球的训练录像进行了技术分析,发现实心球在行进过程中高度y (m )与水平距离x (m )之间的关系为()224225y x =--+,由此可知小明此次投掷的成绩是________m .10.如图,一名男生推铅球,铅球行进高度(m)y 与水平距离(m)x 之间的关系是2820y x x =-++,则他将铅球推出的距离是____m .11.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽______________m .12.高速公路上行驶的汽车急刹车时的滑行距离(m)s 与时间(s)t 的函数关系式为2305s t t =-,遇到紧急情况时,司机急刹车,则汽车最多要滑行_____m ,才能停下来.13.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是2122s t t =-,则汽车从开始刹车到完全停下这段时间的最后2秒前行了________米.14.如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标系,作出函数213y x =与213y x =-的图象,则阴影部分的面积是______.15.飞机着陆后滑行的距离s (单位:m )关于滑行时间t (单位:s )的函数解析式是21202S t t -=,则飞机着陆滑行到停止,最后6s 滑行的路程_____m .16.设计师以2248=+y x x -的图形为灵感设计杯子如图所示,若43AB DE =,=,则杯子的高CE =_____.三、解答题17.在某场篮球比赛中,一位运动员在距篮下7m ,三分线外跳起投篮,球运行的路线大致是抛物线,当球运行的水平距离为4m 时,达到最大高度3.86m ,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m .(1)建立如图所示的平面直角坐标系,求抛物线的表达式;(2)该运动员身高1.84m ,在这次跳投中,球在头顶上方0.3m 处出手,问:球出手时,她跳离地面的高度是多少?18.如图,学校要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙(外墙足够长),其余三边用竹篱笆围成.其中AD AB ≥(即长不小于宽),设矩形的宽AB 的长为x 米,矩形ABCD 面积为y 平方米.(1)若矩形ABCD 的面积150平方米,求宽AB 的长;(2)求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)矩形地块的宽为多少时,矩形ABCD 面积最大,并求出最大面积.19.双手头上前掷实心球是锻炼青少年上肢力量和全身协调性的一个项目,实心球出手后飞行的路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,某校一名学生在投掷实心球时,从出手到落地的过程中,实心球的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2132.84y x x =-++(1)求该同学投掷实心球时,实心球在空中飞行时竖直高度的最大值;(2)判断并说明,该同学此次投掷实心球的水平距离能否超过10米.20.某商家出售一种商品的成本价为20元/千克,市场调查发现,该商品每天的销售量y (千克)与销售价x (元/千克)有如下关系:280y x =-+.设这种商品每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该商品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种商品的销售价不高于每千克28元,该商家想要每天获得150元的销售利润,销售价应定为每千克多少元?答案第1页,共1页参考答案:1.B 2.D 3.C 4.C 5.A 6.A 7.C 8.D 9.910.1011.12.4513.814.815.1816.1117.(1)20.09 3.86y x =-+(2)0.28m18.(1)宽AB 的长为5米(2)y 与x 的函数关系式为2240y x x =-+,自变量x 的取值范围为4003x <≤(3)当矩形地块的宽为10米时,矩形ABCD 面积最大,最大面积为200平方米19.(1)258(2)不能超过10米20.(1)221201600w x x =-+-(2)该商品销售价定为每干克30元时,每天的销售利润最大,最大利润是200元(3)该商家想要每天获得150元的销售利润,销售价应定为每千克25元。

最新中考培优 函数综合练习(含答案)

最新中考培优  函数综合练习(含答案)

中考培优 函数综合练习(含答案)一、单选题1. 函数b kx y +=的图象如图所示,当y>0时,x 的取值范围是( )A 、 x>1B 、 x>2C 、 x<1D 、 x<22. 已知二次函数()2,0y ax bx c a =++≠ 的图象如图,则下列说法:①0c = ;②该抛物线的对称轴是直线1x =-; ③当1x =时,2y a =; ④()20,1am bm a m ++>≠-.其中正确的个数是( )A.1B.2C.3D.43. 二次函数()2,0y ax bx c a =++≠的图象如图所示,则下列结论中正确的是( )A .0a >B .当13x -<<时,0y >C .0c <D .当1x ≥时,y 随x 的增大而增大4. 如果函数()0,2≠-=k kx y 的图象不经过第一象限,那么函数xky =的图象一定在( ) A.第一、二象限 B.第三、四象限 C.第一、三象限 D.第二、四象限5. 已知点()x x P ,,则点P 一定()。

A. 在第一象限B. 在第一或第四象限C. 在x 轴上方D. 不在x 轴下方6. 如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线b ax y +=的图象不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限y x 21O -2xyO-11xyO7. 已知二次函数()2,0y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-,下列结论中正确的只有( )①0abc < ②20a b += ③0a b c -+> ④420a b c -+<A.①②B.①④C.③④D. ②④8. 正比例函数()0y kx k =≠的图象在第二四象限,则一次函数y x k =+的图象大致是( )9. 甲、乙两地相距S 千米,某人走完全程所用的时间t (时)与他的速度v (千米/时)满足vSt =,在这个变化过程中,下列判断中错误的是 ( ) A .S 是变量 B .t 是变量 C .v 是变量 D .S 是常量10. 二次函数222--=x x y 与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个11. 已知二次函数2y ax bx c =++的图像如图所示,对称轴是直线1x =.下列结论:①0abc >, ②20a b +=, ③240b ac <-,④420a b c ++>, 其中正确的是( ) A.①③ B.只有② C.②④ D.③④12. 已知关于x 的方程()0,0≠=+a b ax 的解为x=﹣2,点(1,3)是抛物线()0,2≠++=a c bx ax y 上的一个点,则下列四个点中一定在该抛物线上的是( )-1xyOx=1xyOA.(2,3)B.(0,3)C.(﹣1,3)D.(﹣3,3)二、填空题13.如图,一次函数的图象与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折后得到△ACB,若C的坐标为33,22⎛⎫ ⎪⎪⎝⎭,则该一次函数的解析式为14.若直线bxy+=2与两坐标轴围成的三角形的面积是9,则b=_____ .15.已知正比例函数kxy=,当自变量x的值为-4时,函数值y=20,则比例系数k= 。

初三《二次函数的应用》培优专题练习含答案

初三《二次函数的应用》培优专题练习含答案

于都中学初三《二次函数的应用》培优专题练习 班级:__________ 姓名:__________ 学号:__________1、有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正确水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过 6.76米 米时,就会影响过往船只的顺利航行。

2、如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB =36m ,D ,E 为桥拱底部的两点,且DE ∥AB ,点E 到直线AB 的距离为7m ,则DE 的长为_________m . 【答案】483、如图,AB 是自动喷灌设备的水管,点A 在地面,点B 高出地面1.5米.在B处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头B 与水流最高点C 的连线与水平线成45°角,水流的最高点C 与喷头B 高出2米,在如图的坐标系中,水流的落地点D 到点A 的距离是_________ 米.解析式为22113y -(2) 3.5-2222x x x =-+=++,水流落点D 到A 点的距离为:米72+ 4、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. 降价后,应将售价定为________元,才能使所获销售利润最大,为____________元。

5、科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不温度x /℃ …… -4 -2 0 2 4 4.5 ……植物每天高度增长量y /mm …… 41 49 49 41 25 19.75 ……数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.解:(1)y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数.(2)由(1),得4922+--=x x y ,∴()5012++-=x y , 即当温度为-1℃时,这种植物每天高度增长量最大.(3)46<<-x .6、某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万。

初三数学培优卷二次函数部分

初三数学培优卷二次函数部分

初三数学培优卷二次函数部分分析培优★★★二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与某轴的交点,与y轴的交点.2★★二次函数y=a某+b某+c(a,b,c是常数,a≠0)一般式:y=a某2+b某+c,三个点顶点式:y=a(某-h)2+k,顶点坐标对称轴顶点坐标(-b4ac2a,b24a).顶点坐标(h,k)★★★abc作用分析│a│的大小决定了开口的宽窄,│a│越大,开口越小,│a│越小,开口越大,a,b的符号共同决定了对称轴的位置,当b=0时,对称轴某=0,即对称轴为y轴,当a,b同号时,对称轴某=-b2a<0,即对称轴在y轴左侧,当a,b异号时,对称轴某=-b2a>0,即对称轴在y轴右侧,(左同右异y轴为0)c的符号决定了抛物线与y轴交点的位置,c=0时,抛物线经过原点,c>0时,与y轴交于正半轴;c<0时,与y轴交于负半轴,以上a,b,c的符号与图像的位置是共同作用的,也可以互相推出.交点式:y=a(某-某1)(某-某2),(有交点的情况)与某轴的两个交点坐标某1,某2对称轴为h某1某221.二次函数解析式及定义型问题(顶点式中考要点)1.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是y(某1)22则原二次函数的解析式为2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y=-2某2相同,这个函数解析式为________。

3.如果函数y(k3)某k23k2k某1是二次函数,则k的值是______4.(08绍兴)已知点(某1,y1),(某2,y2)均在抛物线y某21上,下列说法中正确的是()A.若y1y2,则某1某2B.若某1某2,则y1y2C.若0某1某2,则y1y2D.若某1某20,则y1y25.(兰州10)抛物线y某2b某c图像向右平移2个单位再向下平移3个单位,所得图像的解析式为y某22某3,则b、c的值为A.b=2,c=2B.b=2,c=0C.b=-2,c=-1D.b=-3,c=2★6.抛物线y(m1)某2(m23m4)某5以Y轴为对称轴则。

2023年九年级中考数学专题培优训练:一次函数【含答案】

2023年九年级中考数学专题培优训练:一次函数【含答案】

2023年九年级中考数学专题培优训练:一次函数一、选择题1.若函数y=(2-m)x |m|-1是关于x 的正比例函数,则常数m 的值等于( )A.±2B.﹣2C.±D.﹣332.下列函数中,是一次函数的有( )①y=x ;②y=3x +1;③y=;④y=kx -2.124x A.1个 B.2个 C.3个 D.4个3.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( )A.M(2,-3),N(-4,6)B.M(-2,3),N(4,6)C.M(-2,-3),N(4,-6)D.M(2,3),N(-4,6)4.若式子y =+(k -1)0有意义,则一次函数y =(k -1)x +1-k 的图象可能k -1是( )5.一次函数y =kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是( )A.0<y 1<y 2B.y 1<0<y 2C.y 1<y 2<0D.y 2<0<y 17.对于函数y =-2x +1,下列结论正确的是( )A.它的图象必经过点(-1,2)B.它的图象经过第一、二、三象限C.当x >1时,y <0D.y 的值随x 值的增大而增大8.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )A.①②③B.仅有①②C.仅有①③D.仅有②③二、填空题9.已知关于x 的方程ax -5=7的解为x =1,则直线y =ax -12与x 轴的交点坐标为________.10.已知点(3,5)在直线y =ax +b(a ,b 为常数,且a≠0)上,则的值为 .ab -511.如图,直线y=-2x+3与x 轴、y 轴分别交于点A ,B ,将这条直线向左平移与x 轴、y 轴分别交于点C ,D .若AB=BD ,则点C 的坐标是__________.12.已知直线y =x-3与y =2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.13.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解为 ,当x 时,kx +b <0.14.如图,点A1、A2、A3…在直线y=x上,点C1,C2,C3…在直线y=2x上,以它们为顶点依次构造第一个正方形A1C1A2B1,第二个正方形A2C2A3B2…,若A2的横坐标是1,则B3的坐标是 ,第n个正方形的面积是 .三、解答题15.小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数表达式,并写出自变量x的取值范围.16.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式;(不要求写出定义域)(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.17.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.18.如图,直线y=﹣2x+8与两坐标轴分别交于P、Q两点,在线段PQ上有一点A,过A点分别作两坐标轴的垂线,垂足分别为B、C.(1)若矩形ABOC的面积为5,求A点坐标.(2)若点A在线段PQ上移动,求矩形ABOC面积的最大值.参考答案1.B2.B3.A4.A.5.A6.B7.C8.A9.答案为:(1,0).10.答案为:-.1311.答案为:(﹣,0).3212.答案为:58x y =-⎧⎨=-⎩13.答案为:x =﹣3,x <﹣3.14.答案为:(4,2),22n﹣4.15.解:(1)从AB 可以看出:两人从相距30 km 的两地从出发到相遇用了1 h 的时间,则v 小王+v 小李=30 km/h ,小王用了3 h 走完了30 km 的全程,∴v 小王=10 km/h ,∴v 小李=20 km/h.(2)由图可知点C 的坐标为(1.5,15).设线段BC 所表示的y 与x 之间的函数表达式为y =kx +b(k≠0),则将B(1,0),C(1.5,15)分别代入,得解得∴线段BC 所表示的y 与x 之间的函数表达式为y =30x﹣30(1≤x≤1.5).16.解:(1)设y =kx +b ,则有解得{b =400,100k +b =900,){k =5,b =400,)∴y=5x +400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400,∴选择乙公司的服务,每月的绿化养护费用较少.17.解:(1)①∵直线y =-2x +1过点B ,点B 的横坐标为-1,∴y=2+1=3,∴B(-1,3),∵直线y =kx +4过B 点,∴3=-k +4,解得:k =1;②∵k=1,∴一次函数解析式为:y =x +4,∴A(0,4),∵y=-2x +1,∴C(0,1),∴AC=4-1=3,∴△ABC 的面积为×1×3=.1232(2)∵直线y =kx +4(k≠0)与x 轴交于点E(x 0,0),-2<x 0<-1,∴当x 0=-2,则E(-2,0),代入y =kx +4得:0=-2k +4,解得:k =2,当x 0=-1,则E(-1,0),代入y =kx +4得:0=-k +4,解得:k =4,故k 的取值范围是:2<k <418.解:(1)设A(x ,﹣2x+8),∵矩形ABOC 的面积为5,∴x(﹣2x+8)=5,解得:x 1=2+,x 2=2-,6262∴y 1=4﹣,y 2=4+,66即A 点的坐标是(2+,4﹣)或(2-,4+);626626(2)设A(x ,﹣2x+8),矩形ABOC 面积是S ,则S =x(﹣2x+8)=﹣2(x﹣2)2+8,∵a=﹣2<0,∴有最大值,当x =2时,S 的最大值是8,即矩形ABOC 的最大值是8.。

初三培优二次函数辅导专题训练及答案解析

初三培优二次函数辅导专题训练及答案解析

初三培优二次函数辅导专题训练及答案解析一、二次函数1.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。

(2)点B的坐标为:(4,4)。

(3)存在;理由见解析;【解析】【分析】(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。

(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。

(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。

【详解】解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。

∴这个二次函数的解析式为y=x2﹣3x。

(2)如图,过点B做BD⊥x轴于点D,令x 2﹣3x=0,解得:x=0或3。

∴AO=3。

∵△AOB 的面积等于6,∴12AO•BD=6。

∴BD=4。

∵点B 在函数y=x 2﹣3x 的图象上,∴4=x 2﹣3x ,解得:x=4或x=﹣1(舍去)。

又∵顶点坐标为:( 1.5,﹣2.25),且2.25<4,∴x 轴下方不存在B 点。

∴点B 的坐标为:(4,4)。

(3)存在。

∵点B 的坐标为:(4,4),∴∠BOD=45°,22BO 442=+=。

若∠POB=90°,则∠POD=45°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学核心题精典专题三函数应用题
一、兴趣导入规划成功:
【为人处世】远离那些有“毒”的朋友(演讲与口才2013-02)。

二、名师导航解题指导
实际应用试题取材新颖,立意巧妙,立足于考查阅读能力与数学建模能力,该类型试题的命题制具有以下特点:1、提供的情景材料心,提出的问题新;2、住重考查分析、解决问题的能力。

由于实际应用类试题在取材上贴近时政热点,贴近生活实际,题型丰富多彩,涉及知识面广,因此该试题常常成为中考压轴题;高考压轴题:1、以几何为背景的应用类试题;2、以代数为背景的应用类试题;3、以统计为背景的应用类试题。

解答实际应用类试题的一般步骤为:①读懂题目,包括对题意的整体解释和局部理解,能够全面分析关系,领悟实质;
②建立数学模型,将实际问题抽象为数学问题,从各种关系中找出最关键的数量关系,将这些关系用有关的量及数字、符号表示出来;③求解数学模型,根据建立的数学模型,选择合适的方法,设计合理简捷的运算途径,求出数学问题的解;④检验,既要检验所得结果是否适合数学模型,又要判断所得结果是否符合实际问题的要求。

三、精准预测精讲精练
例1、小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家。

图中描述了小明在散步过程中的路程s(米)与散步所用时间t(分)之间的函数关系。

请你由图具体说明小明散步的情况。

(1)小明看报用了多少分钟?离家多少米远就返回?
(2)求小明返回家时y与x之间的函数关系式;
(3)小明离开家几分钟后,他爸爸沿小明走的路去找小明?遇到小明时他爸爸用了几分钟?
例2、2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预定10张下表种比赛项目的门票.
(1)若全部资金用来预定男篮门票和乒乓球门票,问他可以定男篮门票和乒乓球门票各多少张?
(2)若现在有资金8000元允许的范围内和总票数不变的前提下,他想预定下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?
比赛项目票价(元/场)
男篮1000
足球800
乒乓球500
【练习1】某球迷协会组织36名球迷拟租乘汽车观看球赛,可租用的清楚有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空座,也不超载。

(1)请你给出不同的租车方案,至少三种。

(2)若8个座位的车子租金是300元每天,4个座位的车子租金是200元每天,请你设计费用最少的方案,并说明理由。

【练习2】、某高科技公司根据市场需求,计划生产A、B两种型号的医疗器械,其部分信息如下:
信息一:A、B两种型号的医疔器械共生产80台.
信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.
信息三:A、B两种医疗器械的生产成本和售价如下表:
型号 A B
成本(万元/ 台)20 25
售价(万元/ 台)24 30
(1)该公司对此两种医疗器械有哪几种生产方案?哪种生产方案能获得最大利润?
(2)根据市场调查,每台A型医疗器械的售价将会提高a万元(a>0).每台B型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?(注:利润=售价-成本)
例3、某商店销售A、B两种品牌的彩色电视机,已知A、B两种彩电的进价分别为2000元、1600元,一月份A、B两种彩电的销价每台为2700元、2100元,月利润为1.2万元。

为了增加利润,二月份营销人员提供了两套销售策略:
策略一:A种每台降价100元,B种每台降价80元,估计销售量分别增长30%、40%
策略二:A种每台降价150元,B种每台降价80元,估计销售量都增长50%
请研究下列问题:
1、若设一月份A、B两种彩电销售量分别为x台和y台,写出y与x的关系式,并求出A种彩电销售的台数最多可能是多少?
2、二月份的这种政策能否增加利润?
3、二月份该商店应该采用上述两种销售政策中的哪一种,方能使商店所获得的利润较多?说明理由。

【练习3】、下表所示为装运甲,乙,丙三种蔬菜的重量及利润,某汽运公司计划装运甲、乙、丙三种蔬菜到位外地销售(每辆汽车按规定满载,并且每辆汽车只能安装一种蔬菜)
(1)若8辆汽车装运乙丙两种蔬菜11吨至A地销售,问装运乙丙两种蔬菜的汽车各多少辆?
甲乙丙
每辆汽车能装载的吨数 2 1 1.5
每吨蔬菜可以获得利润(百元) 5 2 4
(2)用20辆汽车装运甲乙丙三种蔬菜共36吨至B地销售(每种蔬菜不少于一车),如何安排装运,可使公司获得最大利润?最大利润是多少?
例4、如图,四边形OABC 是面积为4的正方形,函数Y=k/X(X>0)的图象经过点B 。

(1)求k 的值;
(2)将正方形OABC 分别沿直线AB,BC 翻折,得到正方形MABC',NA'BC.设MC',NA'分别与函数Y=k/x(x>0)的图象交于点E,F ,求线段EF 所在直线的解析式
【练习4】已知反比例函数x k 1
y 与一次函数y=x k 2+b 图象相交于A(-2,4)B(4,-2)。

(1)求21k k ,,b 的值;(2)求AOB 的面积。

例5.在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上边,OC在y轴的正半轴上,且AB=1,OB=3,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD(此时点E在y轴上)。

点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax²+bx+c过点A、E、D、求抛物线的函数表达式。

【练习5】在抛物线y=2x-2x-3与x轴相交于A,B两点,与y轴相交于C点。

(1)求抛物线的顶点坐标;
(2)设直线y= -x+3与y轴的交点是D,在线段BD上任取一点E(不与B、D重合),经过A、B、E三点的圆交直线BC于点F,试着判断三角形AEF的形状,并说明理由;
【练习6,2009,成都中考】某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:
11Q 302
x =+ (1≤x≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x≤30,且x 为整数).
(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销
售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. 注:销售利润=销售收入一购进成本.
四、总结反思 纠错感悟(与标准的差距越来越小,就是进步)
题号
错误分析 正解或答案 所属知识点 总结反思
【预告:第四讲,识图与证明】。

相关文档
最新文档