Aerospace Systems & Avionics 航空与航空电子设备课件
美国全球定位系统(GPS)俄罗斯格洛纳斯(GLONASS)欧洲伽利略(GALILEO)系统中国北斗卫
美国全球定位系统(GPS)俄罗斯格洛纳斯(GLONASS)欧洲伽利略(GALILEO)系统中国北斗卫星导航系统
第七章 2009-2012年国内领先企业竞争力分析第一节美国天宝
一企业概况
二产品系列
第二节瑞士徕卡
一企业概况
二产品系列
第三节日本拓普康
一企业概况
二产品系列
第四节广州中海达
一企业概况
二产品系列
三企业运营
第五节广州南方测绘
一企业概况
二产品系列
三企业运营
第六节上海华测导航
一企业概况
二产品系列
第七节北京合众思壮
一企业概况
二产品系列
三企业运营
第八节美国劳雷
一企业概况
二产品系列
第九节青岛领海
广州亿程交通信息有限公司
深圳市易流科技有限公司
广东中安保经营管理有限公司
厦门卫星定位应用有限公司
深圳市赛格导航科技股份有限公司北京中交兴路信息技术有限公司
21 / 21。
黑翼飞行模拟器用户手册说明书
IntroductionThe Blackwing BW 635RG is an ultralight two-seater aeroplane designed for recreational flying and training purposes. It features a sleek and modern design, with a composite airframe and a low-wing configuration. The Blackwing has a cruising speed of up to 120 knots and a range of approximately 700 nautical miles, making it suitable for both short and long-distance flights. The cockpit is equipped with state-of-the-art avionics, including a glass cockpit display and an autopilot system. The Blackwing is also known for its superior handling and stability, making it a popular choice among flying enthusiasts and flight schools. The BW 635RG is powered by the venerable Rotax 915 iS engine.Development Credits:Mal Cartwright Product LeadRuss White3D Modelling, Interior and Exterior TexturingJack Lavigne IntegrationHarry Stringer AnimationPropAir Flight Model and SystemsJordan Gough ManualWith special thanks to our Beta Testers:Rob Abernathy John BurgessNick Cooper John DowMatt McGee Darryl WightmanTable of ContentsIntroduction (2)Development Credits: (2)With special thanks to our Beta Testers: (2)Table of Contents (3)Notes on Hardware (4)Overview (5)Aircraft Limitations (6)Airspeed Limitations (6)Engine Limitations (6)Operating Conditions (6)Fuel (7)Other Limitations (7)Emergency Procedures (8)Engine Failure on the Take-off Roll (8)Engine Failure after Take-off (8)Glide Performance (8)Emergency Landing (9)Spin Recovery (9)Normal Procedures (10)Before Starting Engine (10)Starting Engine (10)Before Taxiing (11)Taxiing (11)Engine Runup (11)Before Take-off (11)Take-Off (12)Initial Climb (12)Cruise Climb (12)Cruise (12)Landing (13)Balked Landing (13)After Landing (13)Securing Aircraft (14)Basic Performance (15)Stall Speeds (15)Take-Off Performance (15)Landing Performance (16)Systems Description (17)Instrument Panel Layout (17)Switch Logic and Electrical System (18)Master Switch (18)Fuel Pump Switch (19)LAND/TAXI Switch (19)Strobe/Nav Switch (19)Electrical System Diagram (20)Engine (21)Propeller (21)Fuel (21)Notes on HardwareDue to the unusual 3-position switches in this aircraft, conventional hardware 2position toggle switches (eg. strobe or nav light switches) cannot be translated tothe single 3-position switch which combine these.Additionally, as this aircraft utilises a single level power control (throttle), conventional throttle/prop/mixture hardware may interfere with the function of this system, and not work as intended. It is recommended to place your propeller and mixture levers in the IDLE position, and not move them while the engine is running.OverviewThe Orbx BW 635RG has been developed using official documentation and Computer Aided Design (CAD) resources from Blackwing Sweden. As a result, the aeroplane has been created through masterful modelling, texturing, systems integration, and flight model development.Figure 1 – Aircraft 3-viewAircraft DimensionsLength 6.6m Height 2.2m Wingspan8.4mWeightsBasic Empty Weight 375kg Maximum Take-off Weight 600kg Maximum Fuel Capacity (Litres)130LThe content in this manual and the operation of the BW 635RG in Microsoft Flight Simulator strictly must not be used as reference material in any form for operating the real aircraft.Aircraft LimitationsAirspeed LimitationsAirspeed Description Airspeed (KIAS) RemarksVne Never Exceed Speed 157 Must not exceed this speed in any operation.Va Manoeuvring Speed 109 If full or abrupt control deflection is made, the airframe may be overstressed.Vfe1 Max flap extended speed20 degrees90 Maximum speed for flaps 20°Vfe2 Max flap extended speed35-45 degrees 70 Maximum speed for flaps 35-45°Vlo Maximum landing gearoperating speed 70Do not extended or retract the landing gearabove this speed.Vle Maximum landing gear extended speed 90 Do not exceed this speed with the landing gearalready down.Vs0 Stall speed flaps/gearextended 38 Stall speed with gear down/flaps >0° and in level flight at MTOWVs1 Stall speed clean 49 Stall speed flaps retracted, gear up and in level flight at MTOWEngine LimitationsEngineEngine Manufacturer Rotax Engine Model Rotax 915 iSMaximum Power Take-off (Max 5 min.) 141 hp Continuous 135 hpMaximum RPM Take-off (Max 5 min.) 5800 Continuous 5500Critical Altitude 15000ft AMSL Maximum OperatingAltitude23000ft AMSL Operating ConditionsAerobatic manoeuvres, flight in IFR conditionsand flights in icing conditions are prohibited inthis aircraft.FuelFuel TanksLeft Right Litres US Gal Litres US GalTotal Fuel in Tank 67.5 17.8 62.5 16.5Unusable Fuel 2.5 0.7 2.5 0.7 Total Useable Fuel in Tanks 66.5 17.6 61.5 16.2Other LimitationsMaximum demonstrated crosswind for the BW 635RG is 20 knots.Emergency ProceduresNote: The following procedures have been modified to be suitable for simulation. It does not cover emergencies that are a) not simulated and b) not reasonable. Checklist items from the real procedures have been omitted and these procedures must not under any circumstances be used for training purposes.Engine Failure on the Take-off RollThrottle: IDLEIgnition: OFFFuel Pump: MAIN (DOWN POS)Brakes: APPLYWhen stopped: SECURE AIRCRAFTEngine Failure after Take-offNose: IMMEDIATELY LOWERAirspeed: 65 KNOTSLanding Area: DETERMINE WITHIN 30° OF NOSEFlaps: USE AS REQUIREDLanding Gear: USE DESCRETIONFuel Selector: OFFIgnition: OFFMaster Switch: OFFGlide PerformanceThe BW 635RG, the approximate performance for a glide is 65 KIAS which willgive approximately a 545ft/min rate of descent in the clean configuration.Glide performance will degrade significantly on extension of flaps and landinggear.Emergency LandingAirspeed: 65 KIASField: PICK BEST OPTIONLanding Gear: USE DISCRETION DEPENDING ON FIELD TYPEFlaps: AS REQUIREDFuel Selector: OFFIgnition: OFFFuel Pump: MAIN (down)Master Switch: OFF BEFORE LANDINGSpin RecoveryThrottle: IDLEControl Stick: AILERON NEUTRALRudder: FULL OPPOSITE TO DIRECTION OF ROTATIONControl Stick: POSITIVELY FORWARD OF NEUTRALRudder: NEUTRAL WHEN ROTATION STOPSControl Stick: SMOOTHLY PULL OUT OF DIVEWARNING:INTENTIONAL SPINS ARE NOT APPROVED INTHIS AIRCRAFT.Normal ProceduresNote: The pre-flight inspection portion of the normal procedures has been removed due to impracticality in the simulator.Before Starting EngineIgnition: OFFMaster Switch: OFF (down)Backup Battery: OFF/AUTO (down)Landing Gear Lever: DOWNCircuit Breakers: INCanopy CLOSED (CLICKING THE LATCHON THE INSIDE LEFT SIDEWALL.) Starting EngineParking Brake: HOLD TOE BRAKES AND ENGAGE PARKINGBRAKEMaster Switch: ENGINE START (middle position)Fuel Selector: SETFuel Gauge: CHECKFuel Pump: BOTH (up)Ignition: BOTHNav Lights: STROBE (middle position)Throttle: SET ½-1 INCH OPENIgnition: STARTOil Pressure: GREEN WITHIN 10 SECWarnings: NONEBefore TaxiingMaster Switch: NORMAL OPERATION (up)Altimeter: SETAvionics: SETParking Brake: DISENGAGETaxiingInstruments: CHECKED (COMPASS/HSI/BALL/ATT) Engine RunupParking Brake: ENGAGERPM: 2500 RPMFuel Pump: CYCLE, CHECK FUEL PRESSUREIdle: CHECK IDLE 1800 +/- 100 RPM Before Take-offCanopy: CLOSED AND LOCKEDFlaps: 1 STAGE (20°)Elevator Trim: SET FOR TAKE-OFFEngine Instruments: NORMALLanding Light: ON (up)Controls: FULL FREE AND CORRECT MOVEMENTParking Brake: DISENGAGETake-OffThrottle: FULLControls: NEUTRAL45 Knots: ROTATEAccelerate: NOSE ON HORIZON, ACCEL TO 80 KIASPositive Rate of Climb: GEAR UPLanding Light: OFF (down)Flaps: RETRACT ABOVE 500’ AGLInitial ClimbThrottle: MAX CONTINUOUS (5500 RPM)Airspeed: 90 KIASFuel Pump: MAIN (down) ABOVE 500’ AGL Cruise ClimbThrottle: MAX CONTINUOUS (5500 RPM)Airspeed: 130 KIASCruiseThrottle: 55-75% PowerAirspeed: 120-157 KIAS (<130 KIAS IN TURB)LandingFuel: QTY CHECKEDFuel Selector: FULLEST TANKFuel Pump: BOTH (up position)Airspeed: 90 KIASFlaps: EXTEND FLAP 1 <90 KIASDownwind Airspeed: 65 KIASLanding Gear: DOWN @ 65 KIAS; CHECK 3 GREENLanding Light: ON (up position)Base Leg: EXTEND FLAP 2 < 65 KIASFinal Approach Airspeed: 60 KIASBalked LandingThrottle: SMOOTHLY INCREASEAirspeed: 60 KIASTrim: COURSE TRIM TO RELIEVE PRESSUREFlaps: RETRACT TO POSITION 1 (20°)Gear: UPTrim: TRIM FOR CLIMBAfter LandingFlaps: RETRACTExterior Lights: AS REQ’DFuel Pump: MAIN (down)Securing AircraftParking Brake: ENGAGEDThrottle: IDLESwitches: ALL OFF EXCEPT ACL AND MASTERIgnition: OFFNav Lights: OFF (down)Master Switch: OFFBasic PerformanceStall SpeedsMTOW 600kg | CG 32% MAC | Power Idle | Level FlightFlap Position Stall Speed (KIAS) 0° 49 20° 44 35° 39 45°38Take-Off PerformanceMTOW | ISA CONDITIONS | SEA LEVEL | FLAPS 1 (20°) | MTOW (600kg)Cruise PerformanceRunway Surface Ground RollOver 50ft Obstacleft mft mPaved Runway328 100 656 200 Unpaved (Grass) Runway 361110689208Pressure Altitude Power (%) TAS Fuel Flow LPH MAP (inHg) Endurance(hr)Range (nm) 500055 161 19.7 30 5.8 941 65 170 23.3 34.1 4.9 827 7517826.937.44.1738Landing PerformanceMTOW | ISA CONDITIONS | FLAPS 2 (35°) | MTOW (600kg) | Speed 1.3 x VsoRunway Surface Ground Roll Over 50ft Obstacle ft m ft mPaved Runway 525 160 951 290 Unpaved (Grass) Runway 558 170 984 300Systems Description Instrument Panel LayoutSwitch Logic and Electrical SystemThe electrical switches in the BW 635RG are 3-position switches. These are generally known as “DOWN”, “MIDDLE” and “UP”. They are briefly explained below.Master SwitchThe MASTER switch functions in a unique way, with the following switch logic:1.When the MASTER switch is DOWN, all battery power is off. There will beno electrical power provided to the aircraft.•Note: The engine CANNOT be shut down when the master switch isoff. Electrical power must be present for the engine to turn off.2.When the MASTER switch is in the MIDDLE (Engine Start) position, limitedsystem functionality will be present. The backup battery will be activatedand power the following systems:•Primary Flight Display•Compass•AHRS (Attitude Heading Reference System)•Radio3.When the MASTER switch is UP (Normal Operation), full electrical supplywill be provided to the aircraft. The following systems will be powered on: •Note: the engine CANNOT be started with the MASTER switch in theUP position. If the engine won’t start, check the switch is in theMIDDLE position•Multi-Function Display•Transponder•Autopilot•Audio panel•STBY instruments•Pitot Heat•Main battery is disconnected from running engine. Alternatorprovides power.See Section NORMAL PROCEDURES for positioning of the MASTER switch.Fuel Pump SwitchThe Fuel Pump switch also has some advanced logic to it, due to two fuel pumpsbeing present, however, to put it simply, it operates in the following way:1.In the DOWN position, the main fuel pump is in use.2.In the MIDDLE position, the auxiliary fuel pump is in use.3.In the UP position, both fuel pumps will be on.LAND/TAXI SwitchThe LAND/TAXI switch powers the Taxi and Landing lights. It operates in the following logic:1.In the DOWN position, both lights will be OFF.2.In the MIDDLE position, the taxi light will switch on when the landinggear is extended.3.In the UP position, the Landing Light will switch on when the landinggear is extended.Strobe/Nav SwitchThe Strobe/Nav switch powers the Navigation (Red/Green) and Strobe (flashingwhite) lights. It operates in the following logic:1.In the DOWN position, both lights will be OFF.2.In the MIDDLE position, the STROBE light will be on.3.In the UP position, both the strobe and Nav lights will be on.Electrical System DiagramThe BW 635RG’s electrical system is modelled in the following way in Microsoft Flight Simulator.Because the starter system is connected to the BACKUP BUS, this means you cannot start the engine with the MASTER switch in the UP position, due to the BACKUP BUS being disconnected from the circuit once the MAIN BAT BUS is powered.Page 21 of 21User Guide v1.0 –RevisionEngineThe BW 635RG is powered by the Rotax 915iS. The Rotax 915iS is a four-stroke, four-cylinder, fuel-injected, turbocharged aircraft engine with a maximum power output of141 horsepower. The engine utilizes electronic fuel injection (EFI) technology toprovide precise fuel delivery and improved fuel efficiency. It also features a modernliquid-cooling system and a dual electronic ignition system for reliable performance.The Rotax 915iS engine has a maximum operating RPM of 5,200, with a recommended continuous operation range of 5,000 RPM or less.PropellerThe propeller is a 3-blade wood-composite design, which is hydraulically adjustable for operation at various pitch angles, controlled independently of the pilot. The propeller is linked to the engine through an electronically controlled governor, where RPM isadjusted in accordance with the position of the throttle control. This pitch curve cannot be adjusted in flight, however is designed to ensure maximum performance in allphases of flight.FuelBoth wings have fuel tanks, which are fed to the engine via electric fuel pumps. Fuelsystem information is fed via sensors to the Garmin avionics suite and can be viewedon the displays inside the cockpit.AIRPLANE WEIGHTSBasic Empty Weight……………………….…375 KgMaximum Takeoff Weight…………………..600 KgMaximum Fuel Weight………………………...95 Kg Maximum Landing Weight………………….600 Kg TANK USABLE FUEL LEFT WING TANK67.5 litres 17.8 US Gallons RIGHT WING TANK62.5 litres 16.5 US Gallons TOTAL 130 litres34.3 US GallonsFUEL CAPACITY AIRSPEEDS Never Exceed Speed ……….…………….173 KIAS Max Structural Cruising Speed…………..156 KIAS Maneuvering Speed MTOW……………….109 KIAS Initial Climb………………………………………80 KIASBest Angle Climb……………………………….75 KIASBest Rate of Climb……………………………..90 KIASMax Flap Ext 20°……………………..............90 KIASMax Flap Ext 35-45°……………………………70 KIASMax Landing Gear Operation……………….70 KIASMax Landing Gear Extended………………..90 KIASPlanned Cruise TAS………………………….130 KIASFinal Approach Speed………………………..60 KIAS POWERPLANT LIMITATIONSENGINE LIMITS (RPM)Take-off (5 Minutes)………....5800 RPM Max Continuous……………….5500 RPMALTITUDE LIMITSMaximum Operating Altitude………………23 000ftFor Microsoft Flight Simulator Use Only0-12023 Orbx Simulation Systems Pty. Ltd BW 635RG QUICK REFERENCESHEETIssued: 21 Apr 2023Revised: 21 Apr 20230-2PROCEDURESBEFORE STARTING ENGINEPreflight Inspection………………………….COMPLETECrew Briefing………………………………….COMPLETEIgnition…………………………………………………….OFFMaster Switch…………………………………………..OFFBackup Battery …..…………………………….OFF/AUTOLanding Gear Lever………………………………..DOWNCircuit Breakers…………………………………………..IN Canopy………………………………………………CLOSED STARTING ENGINEArea……………………………………………………..CLEARParking Brake……………….HOLD TOE BRAKES ANDENGAGEMaster Switch …..……………….ENGINE START (MID)Fuel Selector…………………………………………….SETFuel Pump………………………………………BOTH (UP)Ignition………………………………………………….BOTHExternal Lights……………………………………..AS REQThrottle ………………………..………..Τ12-1 INCH OPENIgnition………………………………………………….START AFTER START Oil Pressure.…………………………………………RISING Master Switch ……………………………..NORMAL (UP)Radios………………………………………………………SET Altimeter…………………………………………………..SET ATIS and Clearance…………………………..OBTAINEDBEFORE TAXIBrakes/Park Brake ………………………….DISENGAGEFlight Instruments……………………………..CHECKEDCompass…………………………………………CHECKED BEFORE TAKEOFFCanopy/Harnesses………………………………SECURE Flaps…………………………………….……1 STAGE (20°)Trim ..……………………………………SET FOR TAKEOFF Flight Instruments………………………………………SET Engine Instruments………………CHECKED NORMAL Avionics…………………………………………………….SET External Lights………………………………………AS REQ Flight Controls…………..FULL, FREE AND CORRECT Takeoff Safety Brief………………………….DELIVERED TAKEOFFBrakes/Park Brake………………………….DISENGAGEPower…………SMOOTHLY INCREASE TO MAXIMUM45 knots………………………………………………ROTATEAccelerate……….…NOSE ON HORIZON, TO 80 KTSPositive Rate of Climb………………………….GEAR UPLanding Light.……………………………….OFF (DOWN)Flaps ………………………..RETRACT ABOVE 500’ AGLMEMORY ITEMS 2023 Orbx Simulation Systems Pty. Ltd ENGINE RUN UP Parking Brake ……………………………………..ENGAGE Engine Instruments……………………………CHECKED Engine RPM…………………………………SET 2500 RPM Fuel Pump…………………………………………….CYCLE Idle …………………..…..CHECK IDLE 1800 ±100RPM Navigation Equipment …..…………………………….SETFor Microsoft Flight Simulator Use OnlyIssued: 21 Apr 2023Revised: 21 Apr 2023AFTER TAKEOFF Engine Instruments……………………..WITHIN LIMITS Climb Speed…………………………………………90 KIAS Fuel Pump………….MAIN (DOWN ) ABOVE 500’ AGL0-3CRUISEPower….……………………………………….SET 55-75%Airspeed…..……….120-157KTS (<130KTS IN TURB.)DESCENTAltimeter…………………………………………………..SETFuel Selector………………………………FULLEST TANKPower Lever………………….AS REQUIRED FOR RODApproach Brief………………………………PLETE BEFORE LANDINGBrakes……………………………………………………..OFFFuel ………….………………………………QTY CHECKEDFuel Selector………………………………FULLEST TANK Fuel Pump……….………………………………BOTH (UP)LANDINGDOWNWINDAirspeed….………………………………………….90 KIASFlaps….………………………………………STAGE 1 (20°)Airspeed………….………………………………….65 KIASLanding Gear…..…………………….DOWN @ 65 KIASCHECK 3 GREENLanding Light………………………………………ON (UP)BASEFlaps…………………………… STAGE 2 (35°) < 65 KIASFINALAirspeed………….………………………………….60 KIASTouchdown ……………………….MAIN WHEELS FIRSTStick………………………………………………FULL BACK Brakes…………………………………………………..APPLYAFTER LANDING Flaps………………………………………………..RETRACT Landing Lights…………………………………………..OFFFuel Pump….………………………………MAIN (DOWN)SHUTDOWNParking Brake ……………………………………..ENGAGE Throttle……………………………………………………IDLE Switches….………………………….OFF EXCL. MASTERIgnition..…………………………………………………..OFFLights….……………………………………….OFF (DOWN)Master Switch..……………………………..OFF (DOWN)MEMORY ITEMS 2023 Orbx Simulation Systems Pty. Ltd For Microsoft Flight Simulator Use OnlyPROCEDURESIssued: 21 Apr 2023Revised: 21 Apr 2023。
航空航天相关英语词汇
航空航天相关英语词汇English: Aerospace engineering is the discipline that studies the design and development of aircraft and spacecraft. It involves a wide range of fields, including aerodynamics, structures, propulsion systems, control systems, materials science and engineering, and manufacturing processes. Aerospace engineers work on a variety of projects, from designing new aircraft or spacecraft to improving existing ones, as well as developing new technologies that can be used in aerospace applications. Some of the most common applications of aerospace engineering include the development of commercial airliners, military aircraft, rockets and missiles, and spacecraft for scientific research or exploration.Other important areas of study in aerospace engineering include space missions, atmospheric entry and re-entry, and the physical properties of fluids at high speeds and altitudes. In order to work in this field, it is usually necessary to have a degree in aerospace engineering or a related field, such as mechanical engineering or materials science. Additionally, many aerospace engineers will need to complete specialized training and certifications in areas such asaerospace systems testing, safety and reliability, and systems engineering.Chinese Translation: 航空航天工程学是研究飞行器和航天器的设计和开发的学科,涉及广泛的领域,包括空气动力学、结构、推进系统、控制系统、材料科学和工程以及制造工艺。
民用飞机飞控系统重要适航要求
飞控系统应具有较强的抗干扰能力,避免外部干 扰对飞机稳定性的影响。
可靠性要求
高可靠性设计
飞控系统应采用高可靠性设计,确保在长时间运行过程中能够保 持较高的可靠性。
故障预测与健康管理
飞控系统应具备故障预测与健康管理功能,及时发现并处理潜在 的故障,保证飞机的安全运行。
维修与维护
飞控系统应易于维修与维护,确保在出现故障时能够及时修复, 提高系统的可靠性。
硬件安全性评估
对飞控系统硬件进行安全性评估,包括其可靠性、容 错性能等。
软件安全性评估
对飞控系统软件进行安全性评估,包括其抵御攻击的 能力、鲁棒性等。
04
飞控系统验证和确认
验证方法
硬件和软件测试
对飞控系统的硬件和软件进行测试,确保其功 能正常、性能稳定。
模拟器测试
在地面模拟器上对飞控系统进行测试,模拟各 种飞行条件下的操作和响应。
入先进的算法和传感器技术,可以实现更加精准的飞行控制,提高飞行
效率和安全性。
02
增强自主性
随着自主飞行技术的发展,未来飞控系统将更加自主化。通过引入先进
的自主飞行算法和决策支持系统,可以减少人工干预,降低飞行错误和
事故风险。
03
安全性与效率的平衡
随着飞机设计的发展,未来飞控系统需要在保证安全性的同时,提高运
故障安全设计
系统应采用故障安全设计,当关键部件出现故障时,应能够自动切 换到备份系统或安全模式。
飞行员接口
自动飞行控制系统的界面应清晰、直观,便于飞行员操作和监控。
显示系统适航要求
清晰度与可读性
显示系统的图像应清晰 、色彩鲜艳,易于阅读 和理解。
符号与标记
显示系统应使用标准的 航空符号和标记,以便 飞行员快速识别相关信 息。
Progress in structural materialsfor aerospace systems
1359-6454/$30.00 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.actamat.2003.08.023
5776
J.C. Williams, E.A. Starke, Jr. / Acta Materialia 51 (2003) 5775–5799
choices available to the designer are more numerous. In this paper we will attempt to describe, in qualitative terms, the evolution of structural materials for application in aerospace systems and automotive products and the role of materials in creating customer value. Environmental impact also has several associated dimensions, including emissions of the product, effluent created during product manufacture and disposal/recycling capability. A recent trend in the transportation industry is to improve customer value through creation of products that incorporate advanced structural materials and benefit from new manufacturing technologies. The objective is to create value by improving performance, reducing ownership costs, extending the system life and reducing environmental impact. Improved performance, as determined by materials, typically translates into higher structural efficiency, resulting in reduced product weight. Structural efficiency is the combined result of materials capability and design methodology. For example a stiffness limited component may incorporate a higher modulus material using the same des that increases the section modulus or both. Honeycomb construction used in aircraft is an example of an increased section modulus design. The decision to introduce such a design impacts material selection because not all materials can be fabricated into honeycomb. Moreover, in recent years, honeycomb construction has fallen from favor because of the propensity for corrosion in the core when moisture is allowed to enter. This simple example illustrates the interaction between materials selection, manufacturability, design methods and ultimate product acceptance. Performance also must be normalized by damage tolerance because of the need for reliability. Improved reliability adds value through increased availability of the product to perform its intended function. Due to the increased number of design constraints driven by the growing number of product requirements and the greater range of structural materials now available, the designer is faced with complex choices for selecting a material to meet the requirements for a particular system. The outcome of competition between various classes of materials may also be associated with
航空专业术语 缩写 英汉
AVIATION GLOSSARY A-E--ATIS Airport Terminal Information Service机场终端信息服务ATIS Automated(automatic)Terminal Information Service自动终端情报服务ATM Air Traffic Management空中交通管理ATN Aeronautical Telecommunications Network航空电信网ATNP(ICAO)Aeronautical Telecommunication Network Panel (国际民航组织)航空电信网专家组ATO Actual Time Over实际经过时间ATRK Along-Track Error沿航线误差ATS Air Traffic Services空中交通服务ATSC Air Traffic Services Communication空中交通服务通信ATT Attitude姿态AUSSAT Australian Satellite澳大利亚卫星AUTODIN Automated Digital Network自动化数字网络AUTOVON Automatic Voice Network自动化话音网络AUX Auxiliary辅助AVOL Aerodrome Visibility Operational Level机场能见度运行等级AVPAC Aviation VHF Packet Communications航空甚高频分组通信AVS Aviation Standards航空标准AWANS Aviation Weather And NOTAM System航空气象和航行通告系统AWOP(ICAO)All Weather Operations Panel(国际民航组织)全天候运行专家组AWOS Automated Weather Observing System自动化气象观测系统AWP Aviation Weather Processor航空气象处理器AWS Aviation Weather Service航空气象服务AZ Azimuth transmitter方位台BBARO Barometric气压BAZ Back Azimuth后方位,背航道BER Basic Encoding Rules基本编码规则BER Bit Error Rate误码率BIT Built-In-Test机内测试BITE Built-In-Test Equipment机内测试设备BOP Bit Oriented Protocol面向位的协议BPS bits per second每秒传送位数;每秒比特数BPSK Biphase Shift Keying两相相移键控BRITE Bright Radar Indicator Tower Equipment塔台高亮度雷达显示设备BRL Bearing Range Line方位距离线BSU Beam Steering Unit天线方位控制组件BUEC Backup Emergency Communications备用紧急通信C通信C-Band Approx.5,000MHz C波段C/A(CA)Code Course Acquisition Code粗获码(民用的)C/I Carrier-to-Interference Ratio信号干扰比C/N Carrier-to-Noise Ratio信噪比CA Conflict Alert冲突告警CA GPS Course-Acquisition Code粗捕获码(民用码)CA/MSAW Conflict Alert/Minimum Safe Altitude Warning冲突告警/最低安全高度警告CAA Civil Aviation Administration,Civil Aeronautical Authority,Civil Aviation Authority民航局CAAC General Administration of Civil Aviation of China中国民用航空总局CAASD Center for Advanced Aviation System Development(The MITRE Corporation)(MITRE公司)高级航行系统开发中心CAB Civil Aeronautical Bureau民航局CARF Central Altitude Reservation Function中央飞行高度保留功能CARs Civil Air Regulations民用航空规则CASITAF CNS/ATM implementation task force新航行系统实施特别工作组CAT Category仪表着陆等级CATⅠCategoryⅠ一类仪表着陆CATⅡCategoryⅡ二类仪表着陆CATⅢa CategoryⅢa三类a级仪表着陆CATⅢb CategoryⅢb三类b级仪表着陆CATⅢc CategoryⅢc三类c级仪表着陆CATC Civil Aviation Training Center民航培训中心CATMAC Co-operative Air Traffic Management Concept空中交通管理合作方案CBA Cost/Benefit Analysis成本效益分析C-BAND The frequency range between4000and8000MHz4000到8000MHz频段CBI Computer Based Instruction计算机基本指令CBT Computer-Based Training计算机辅助训练CC Connection Confirm联接确认CCA Continental Control Area大陆管制区CCC蜂窝式CNS概念CCD Consolidated Cab Display综合机舱显示器CCIR International Radio Consultative Committee国际无线电咨询委员会CCITT International Telegraph and Telephone Consultative Committee国际电报电话咨询委员会CCP Contingency Command Post应急指挥站CCWS Common controller workstation通用管制员工作站CD Common Digitizer通用数字化仪设备CDC Computer Display Channel计算机显示通道CDI Course Deviation Indicator偏航指示器CDM Code division multiplex码分复用CDM Continuous Delta Modulation连续增量调制CDMA Code Division Multiple Access码分多址CDT Controlled Departure Times管制离场时间CDTI Cockpit Display of Traffic Information驾驶舱交通信息显示CDU Control Display Unit控制显示组件CEP Circular error probability圆概率误差CERAC Combined Center Radar Approach Control雷达进近管制联合中心CFCC Central Flow Control Computer中央流量管制计算机CFCF Central Flow Control Facility中央流量管制设施(功能) CFDPS Compact Flight Data Processing System小型飞行数据处理系统CFWP Central Flow Weather Processor中央流量气象处理机CFWSU Central Flow Weather Service Unit中央流量气象服务单元(组件)CHI Computer Human Interface机人接口CIDIN Common ICAO Data Interchange Network国际民航组织公用数据交换网CIS Cooperative independent surveillance合作式独立监视CLAM Cleared Level Adherence Monitoring放行高度保持监视CLB Climb爬升CLK Clock时钟CLNP Connectionless Network Protocol无连接网络规程(协议)CLR Clear清除CMC Central Maintenance Computer中央维护计算机CMD Command命令CMS Cabin Management System机舱管理系统CMU Communications Management Unit通信管理单元CNDB Customized Navigation Database用户导航数据库CNS Consolidated NOTAM System综合航行通告系统CNS/ATM Communication Navigation,Surveillance/AirTraffic Management通信导航监视/空中交通管理CODEC Coder/Decoder编码器/解码器COM/MET/OPS Communication/Meteorology/Operations通信/气象/运行COMLO Compass Locator罗盘定位器;罗盘示位信标COMM Communication通信COMP Compressor压缩器COMSEC Communications Security通信保安CON Continuous连续CONUS Continental,Contiguous,or Conterminous United States美国大陆本部(四十八州)COP Change Over Point转换点COP Character Oriented Protocol面向字符协议COTS Commercial Off-the-Shelf商业货架产品供应CPDLC Controller Pilot Data Link Communications管制员驾驶员数据链通信CPFSK Continuous Phase Frequency Shift Keying连续相位频移键控CR Connection Request联接申请CRA Conflict Resolution Advisory冲突解脱咨询CRC Cyclic Redundant Check循环冗余校验CRCO Central Route Charges Office中央航路收征费办公室CRM C Reference Model C参考模式CRM Collision Risk Modeling碰撞危险模型CRM Crew Resource Management机组人员安排CRT Cathode Ray Tube阴极射线管CRZ Cruise巡航CSA Standard Accurate Channel标准精度通道CSE Course Setting Error航线设定误差CSMA Carrier Sense Multiple Access(datalink protocol)载波侦听多址访问C/SOIT Communication/Surveillance Operational Implementation Team通信监视运行实施小组(美国)CTA Calculated Time of Arrival计算到达时间CTA Control Area管制区CTAS Central Tracon Automation System中央终端雷达进近管制自动系统CTL Control控制CTMO Central traffic Management Organization中央交通流量管理组织CTMO Centralized Traffic Management Organization中央交通管理组织CTOL Conventional Take Off and Landing常规起飞着陆CTR Control zone管制地带CTS Control Tracking Station控制跟踪站CU Control Unit控制单元C§W Control and Warning控制和告警CW Carrier Wave载波CWI Continuous Wave Interference连续波干扰CWP Central Weather Processor中央气象处理器CWSU Center Weather Service Unit中央气象服务单元DD/A Digital-to-Analog数/模转换DABS Discrete Addressable Beacon System离散寻址信标系统DADC Digital Air Data Computer数字大气数据计算机D-ATIS Digital Automatic Terminal Information Service数字自动终端信息服务DA Decision Addressing beacon system决断寻址信标系统DA Demand Assignment按需分配DA/H Decision Altitude(Height)决断高度DARC Direct Access Radar Channel直接存取雷达信道DARP Dynamic Air Route Planning动态航线计划DARPS Dynamic Aircraft(Air)Route Planning Study动态飞机航线计划研究DC Departure Clearance离场放行许可DC Direct Current直流(电)DCC Display Channel Complex显示通道组合DCIU Data Control Interface Unit数据控制接口单元DCL Departure Clearance Delivery起飞许可传送DCPC Direct Controller Pilot Communication管制员驾驶员直接通信DES Data Encryption Standard数据加密标准DF Direction Finder测向器DFCS Digital Flight Control System数字飞行控制系统DFDAU Digital Flight Data Acquisition Unit数字飞行数据采集单元DGCA Director-General Civil Aviation民航局长DGNSS Differential Global Navigation Satellite System差分全球导航卫星系统DGPS Differential Global Positioning System差分全球定位系统DH Decision Height决断高度DIP Diplexer双工器DL Data Link数据链DLAC Data Link Applications Coding数据链应用编码DLAS Differential GNSS Instrument Approach System差分GNSS仪表进近系统DLK data link数据链DLORT FAA Data Link Operational Requirements Team FAA数据链运行要求工作组DMAP ICAO Data Link Mobile Applications Panel(proposed)国际民航组织数据链移动应用专家组(建议)DME Distance Measuring Equipment测距设备DME/N Distance Measuring Equipment/Normal标准测距设备DME/P Distance Measuring Equipment/Precision精密测距设备DMU Data Management Unit数据管理单元DO(DOC)Document记录(文件)DOD Department of Defense(美国)国防部DOP Dilution of Precision精度扩散因子DOT Department of Transportation(美国)运输部DOTS Dynamic Ocean Tracking System动态海洋跟踪系统DP Disconnect Request分离拆线请求DPF Data Processing Function数据处理功能D8PSK Differential Eight-Phase Shift Keying差分8相移键控DPSK Differential Phase Shift Keying差分相移键控DRMS Distance Root Mean Square距离均方根值DRN Document Release Notice文件发放通告DSB-AM Double Sideband Amplitude双边带调幅DSDU Data Signal Display Unit数据信号显示单元DSP Departure Sequencing Program起飞排序计划;离港排序计划DT Data数据DTE Data Terminal Equipment数据终端设备DT&E Development Test and Evaluation开发测试和评估DTF Data Test Facility数据检测设备DTG待飞距离DTN Data Transport Network数据传输网络DUAT Direct User Access Terminal用户直接存取终端DVOR Doppler Very high frequency Omni-directional Range多普勒甚高频全向信标EEANPG European Air Navigation Planning Group欧洲航行规划小组E-DARC Enhanced Direct Access Radar Channel增强的直接存取雷达信道EARTS En route Automated Radar Tracking System航路自动化雷达跟踪系统EASIE Enhanced ATM and Mode S Implementation in Europe欧洲S模式和增强的空中交通管理实施项目EATCHIP European ATC Harmonization Implementation Program 欧洲空中交通管制协调实施计划EATMS European Air Traffic Management System欧洲空中交通管理系统ECAC European Civil Aviation Conference欧洲民航会议ECEF地心地固坐标EDCT Estimated Departure Clearance Time预计离港起飞放行时间EET Estimated Elapsed Time预计经过时间EFAS En route Flight Advisory Service航路飞行咨询服务EFAS Extended Final Approach Segment扩展最后进近段EFIS Electronic Flight Instrument System电子飞行仪表系统EFC Expect Further Clearance预期进一步放行许可EFIS Electronic Flight Information System电子飞行情报系统EGNOS European global navigation overlay system欧洲全球导航重迭系统EHSI Electronic Horizontal Situation Indicator电子平面状态显示器EIRP Equivalent Isotropic Radiate Power等效各向同性辐射功率EISA Extended Industry Standard Architecture扩展的工业标准结构EL Elevation Transmitter仰角台ELOD En route sector Load航路扇区负载管制飞机数量ELT Emergency Locator Transmitter紧急示位发射机EMC Electromagnetic Compatibility电磁兼容EMI Electromagnetic Interference电磁干扰ENRI Electronic Navigation Research Institute(日本)电子导航研究所EOF Emergency Operations Facility应急运行设施EPA Environmental Protection Agency环境保护署ER Error误差ERL Environmental Research Laboratories环境研究实验室ERM En Route Metering航路计量管制ERN Earth Referenced Navigation大地参考导航ERP Effective Radiated Power有效幅射功率ES End System终端系统ESA European Space Agency欧洲航天局ESCAN Electronic Scanning(radar antenna)ESMMC Enhanced SMMC增强的系统维护监视台ESP En route Spacing Program航路间隔计划EST Estimated message预计信息ETA Estimated Time of Arrival预计到达时间ETB Estimated Time of Boundary预计边界时间ETD Estimated Time of Departure预计离港时间ETG Enhanced Target Generator增强的显示目标产生器ETN Estimated Time of Entry预计进入时间ETO Estimated Time Over预计飞越时间ETSI European Telecommunications Standards Institute欧洲电信标准学会EU European Union欧洲联盟EURATN European ATN欧洲航空电信网EUROCAE European Organization for Civil Aviation Electronics欧洲民用航空电子学组织EUROCONTROL European Organization for the Safety of Air Navigation欧洲航行安全组织(欧安局)EVS Enhanced Vision System增强视景系统EWAS En-route Weather Advisory Service航路气象咨询服务FF&E Facilities and Equipment设施和设备F,E&D Facilities,Engineering,and Development设施、工程和开发FAA Federal Aviation Administration(美国)联邦航空局FAATC FAA Technical Center(美国)联邦航空局技术中心FAF Final Approach Fix最终进近坐标FANS ICAO Future Air Navigation Systems(国际民航组织)未来航行系统FANS Special Committee on Future Air Navigation Systems未来航行系统特别委员会FANS(Phase II)Special Committee for the Monitor-ing and Co-ordination of Develop-ment and Transition Planningfor the Future Air Navigation System未来航行系统监督、协调发展与过渡规划专门委员会FAR Federal Aviation Regulation联邦航空条例FAS Final Approach Segment最后进近段FASID Facilities And Services Implementation Document设施和服务实施文件FCC Flight Communication Center飞行通信中心FCC Federal Communication Commission联邦通信委员会FCC Flight Control Computer飞行控制计算机FDAU Flight Data Acquisition Unit飞行数据收集单元FDDI Fiber Distributed Data Interface光纤分布数据接口FDEP Flight Data Entry and Printout飞行数据输入和输出FDI Fault Detection and Isolation故障检测和隔离FDIO Flight Data Input/Output飞行数据输入/输出FDM Frequency Division Multiplex频分复用FDMA Frequency Division Multiple Access频分多址FDP Flight Data Processor飞行数据处理器FDPS Flight Data Processing System飞行数据处理系统FDR Flight Data Recorder飞行数据记录仪FEATS Future European ATS System Concept未来欧洲空中交通服务系统方案FEATS ICAO Future European Air Traffic Management System 国际民航组织未来欧洲空中交通管理系统FEC Forward Error Correction前向纠错FGC Flight Guidance Computer飞行引导计算机FGCC Federal Geodetic Control Committee联邦大地测量管理委员会FI Flight Inspection飞机校验FIC Flight Information Center飞行信息中心FIFO First In-First Out先入先出FIFO Flight Inspection Field Office飞行检查现场办事处FIR Flight Information Region飞行情报区FIS Flight Information Services飞行情报服务FISA Automatic Flight Information Service自动飞行信息服务FL Flight Level飞行高度层FLIR Forward Looking Infra-red Detection前视红外线探测FM Frequency Modulation调频FMC Flight Management Computer飞行管理计算机FMEA Failure Mode Effects Analysis故障模式效果分析FMS Flight Management System飞行管理系统FMS Frequency Management System频率管理系统FMSG Frequency Management Study Group频率管理研究组FMU Flight Management Unit飞行管理组件FMU Flow Management Unit流量管理单元FOC Full Operation Capability全运行能力FOM Figure of Merit性能指数FPA Flight Path Angle航迹倾角FPD Flight Plan Data飞行计划数据FPS Military Primary Radar军用一次雷达FREQ Frequency频率FRP Federal Radio navigation Plan联邦无线电导航计划(美国)FS Functional Statement功能描述FSAS Flight Service Automation System飞行服务自动化系统FSDPS Flight Service Data Processing System飞行服务数据处理系统FSK Frequency Shift Keying频移键控FSP Flight Strip Printer飞行进程单打印机FSS Flight Service Station飞行服务站FSTN Federal Security Telephone Network联邦政府保安电话网络FT Functional Test功能测试FTE Flight Technical Error飞行技术误差FY Fiscal Year财政年度;会计年度GGA General Aviation通用航空GA Ground annta地面天线Gatelink Datalink for packed aircraft网关数据链路GADS Generic Aircraft Display System通用航空器显示系统GAIT Ground-based Augmentation and Integrity Technique陆基增强和完好性技术GAO Government Accounting Office(联邦)政府会计署GBA Geostationary broadcast area静止卫星广播区域GCAS Ground Collision Avoidance System地面防撞系统GCS Ground Controlled Approach地面控制系统GDLP Ground Data Link Processor地面数据链处理器GDOP Geometic Dilution of Position位置几何扩散因子GDOP Geometry Dilution of Precision精度几何扩散因子GEO Geostationary静地的GEO Geostationary Earth Orbit相对地球静止轨道静止卫星GES Ground Earth Station地面地球站GFE Government-Furnished Equipment政府提供的设备GHz Giga hertz千兆赫兹GIB GNSS integrity broadcast全球导航卫星系统完好性数据广播GIC GNSS Integrity Channel全球卫星导航系统完好性通道GICB Ground-initiated Comm-B地面启动的B类通信GIRU Ground Interrogator Receiver Unit地面应答机接收单元GIS Geographical Information System地理信息系统GLONASS Global Orbit Navigation Satellite System全球轨道导航卫星系统(俄罗斯)GLS GPS Landing System GPS着陆系统GM Guidance Material指导材料GMC Ground Movement Control地面活动管制GMSK Gaussian Minimum Shift KeyingGMT Greenwich Mean Time格林威治时间GNAS General NAS综合国家空域系统GND Ground地GNE Gross Navigational Error总导航误差GNR Global Navigation Receiver全球导航接收机GNSS Global Navigation Satellite System全球导航卫星系统GNSSP ICAO Global Navigation Satellite Systems Panel国际民航组织全球卫星导航系统专家组GPSSU Global Positioning System Sensor Unit全球定位系统(GPS)传感器组件GOES Geostationary Operational Environmental Satellite静地运行环境卫星GOS Grade of Service服务等级GOSEP Government Open Systems Interconnection Profile政府开放系统互联结构GOSIP Government Open systems Implementation Profile政府开放系统实施结构GP Glide-Path下滑道GPIP Glide-Path Intercept Point下滑道截获点GPIWP Glide Path Intercept Waypoint滑行道切入点GPO/GPI General Purpose Output/General Purpose Input通用输出/通用输入GPS Global Positioning System全球定位系统GPWS Ground Proximity Warming System近地告警系统GREPECAS Caribean/South American Planning and Implementation Regional Group加勒比/南美洲计划和实施区域小组GRS Ground-Reference Station地面基准站GRS80Geodetic-Reference System-80大地基准系统-80GS(G/S)Glide Slope下滑坡度GS Ground Speed地速GSA General Services Administration综合服务管理局(联邦政府下属)GSL General Support Laboratory综合保障实验室GSM Global System(or Mobile)Communication全球通信系统GWS Graphic Weather Service图形气象服务HH Homing radio beacon归航无线电信标HARN High Accuracy Reference Network高精度参考网HAT Height Above Touchdown高于接地点的高度HCI Human Computer Interface人机接口HDD Head Down Display下视显示器HDG Heading航向HDOP Horizontal Dilution Of Precision精度水平扩散因子HEMP High Altitude Electromagnetic Pulse高空电磁脉冲HEO High Elliptical Orbit高椭圆率轨道HF High Frequency(3-30MHz)高频HFDL High Frequency Data Link高频数据链HGA High Gain Antenna高增益天线HIRF High Intensity Radiated Fields高强度辐射场HIWAS Hazardous In-flight Weather Advisory Service飞行时遇危险天气的咨询服务HMI Human Machine Interface人机接口HPA high power amplifier高功率放大器HPF Horizontal Position Fix Error水平位置坐标误差HSI Horizontal Situation Indicator水平位置指示器HUD Head-up Display平视显示仪HUI Head up DisplayHVAC Heating,Ventilating,And air Conditioning加热,通风和空调Hybird GNSS/ILS Precision Approach/Landing based on combination of GNSS localizer and ILS glide path基于GNSS 航向和ILS下滑道组合的精密进近/着陆系统Hz Hertz赫兹IIA5International Alopabet5国际字母表第5号码IACA International Air Carrier Association国际航空公司协会IACSP International Aeronautical Communication Service Provider国际航空通信业务提供者IAF Initial Approach Fix初始进近点(坐标)IAG International Association of Geodetical国际测地协会IAIN International Association of Institutes of Navigation国际导航学会联合会IAOPA International Council of Aircraft Owner and Pilot Associations航空器企业主和驾驶员协会国际委员会IAP Instrument Approach Procedure仪表进近程序IAR Intersection of Air Routes航路交叉点IAS Indicated Air Speed指示空速IASC Inter Area Speech Circuit区域间话音线路IATA International Air Transport Association国际航空运输协会IBAC International Business Aviation Council国际商业航空委员会ICAO International Civil Aviation Organization国际民航组织ICCAI(A)International Co-ordination Council of Aerospace Industries Associations国际宇航工业联合会合作委员会ICD Interface Control Document接口控制文件ICO Interim Circle Orbit中高度圆轨道ICSS Integrated Communications Switching System综合通信转换系统ID Identifier(Identification)标识码(编码、识别标志)ID Instrument Departure仪表离场IDSG ICAO Internet Working Standards Drafting Group国际民航组织网间标准起草小组IEEE Institute of Electrical and Electronic Engineers电气和电子工程师学会IF Intermediate approach Fix中间进近定位点IFALPA International Federation of Airline Pilots Associations航空公司驾驶员协会国际联合会IFATCA International Federation of Air TrafficControllers'Associations空中交通管制员协会国际联合会IFCN Interfacility Flow Control Network设施(单位)间流量管制网络IFF敌我识别器IFM Integrated Flow Management综合流量管理IFR Instrument Flight Rules仪表飞行规则IFRB International Frequency Registration Board国际频率注册委员会IFSS International Flight Service Station国际飞行服务站IBM International Business Machines(美国)国际商用机器公司ILA International Law Association国际法律协会ILS Instrument Landing System仪表着陆系统IMA Integrated Modular Avionics集成化模块式航空电子设备IMAWP Initial Missed Approach Waypoint起始复飞航路点IMC Instrument Meteorological Conditions仪表气象条件IMCS Interim MCS过渡性监控/管制软件IMO International Maritime Organization国际海事组织IMS Integrity Monitoring System完好性监视系统IN Information Need信息需求INMARSAT International Marine Satellite Organization国际移动卫星组织(原名国际海事卫星组织)INS Inertial Navigation System惯性导航系统INS Insert插入INTNET Integrated Data Communications Network集成化数据通信网络I/O input/output输入/输出IOACG Informal Indian Ocean Air Traffic Services Coordinating Group非正式印度洋空中交通服务协调小组IOC Initial Operational Capability初始运行能力IOD GPS Issue of Data全球定位系统数据发布ION Institute of Navigation导航学会IOR Indian Ocean Region印度洋区域IOT§E Initial Operational Test and Evaluation初始运行测试和评估IP Internetwork Protocol网络间协议IPACG Informal Pacific Air Traffic Control Coordination Group非正式太平洋空中交通管制协调小组IRS Inertial Reference System惯性参考系统ISA International Standard Atmosphere国际标准大气ISDN Integrated Service Digital Network综合业务数字网络ISNS国际卫星导航服务ISO International Organization for Standardization国际标准化组织ISPACG Informal South Pacific ATS Co-Ordination Group非正式南太平洋空中交通服务协调小组ISSS Initial Sector Suite Subsystem起始扇区管制席位分系统ITU International Telecommunication Union国际电信联盟ITWS Integrated Terminal Weather Service综合终端气象服务IVAD Integrate Voice and Data综合话音和数据(通信数据链)IVRS Interim Voice Response System过渡性话音响应系统IWP Interim Working Party临时工作组JAWS Joint Airport Weather Studies联合机场气象研究JCAB Japan Civil Aviation Bureau日本民航局JAWS Joint Airport Weather Studies联合机场气象研究JPO Joint GPS Planning Office联合GPS规划办公室JSS Joint Surveillance System联合监视系统Kbps Kilo bits per second千位每秒KDP Key Decision Point关键性决定点kHz Kilohertz千赫KLAAS Kinematics Local Area Augmentation System动态地面局域增强系统KLADGNSS Kinematics Local Area Differential GNSS动态地局域差分GNSSkW Kilowatt千瓦kWh Kilowatt hour千瓦小时LL11575.42MHz L-Band carrier L1频率L21227.6MHz L-Band carrier L2频率LAAS Local Area Augmentation System局域增强系统LACAC Latin American Civil Aviation Commission拉丁美洲民航委员会LADGNSS Local Area Differential GNSS局域差分全球卫星导航系统LADS局域差分系统LAN Local Area Network局域网LAT/LONG Latitude/LongitudeLat/Long Reference Waypoint经/纬度经/纬度参考点L-Band Approx1,500MHz L波段(1500兆赫附近频段)LCD Liquid Crystal Display液晶显示LCN Local Communications Network局域通信网络LDGPS Local Differential GPS本地差分GPSLEO Low Earth Orbit近地轨道、低高度轨道LGA Low Gain Antenna低增益天线LCN Local Communications NetworkLLWSA(S)Low Level Wind Shear Alert System低空风切变报警系统LMM Locator Middle Marker航向中指点标LNA Low Noise Amplifier低噪音放大器LNAV Lateral Navigation侧向导航LOC Localize Transmitter(Localizer)航向台发信机LOM Locator Outer Marker航向外指点标LON Longitude经度LORAN-C Long Range Navigation System罗兰-C导航系统LPC Linear Predicative Coding线性预测编码LRR Long Range Radar远程雷达LRU Line Replaceable Unit在线替换部件LSB Least Significant Bit最低有效位LVA Large Vertical Aperture大垂直孔径MMALSR Medium-intensity Approach Lighting System with Runway alignment indicator lights中级亮度进近照明系统,并有跑道对准线显示灯MAP Missed Approach Point复飞点MAR Minimally Attended Radar需低度护理的雷达MASPS Minimum Aeronautical System Standards最低航空系统标准MASPS Minimum Aircraft(Aviation)System Performance Specification(Standards)最小飞机(航空)系统性能标准扩展频谱MAWP Missed Approached WaypointMB Market Beacon指点标MBI Message Block Identifier信息块指示器mbps、Mbit/s mega bits per second兆位每秒MCA Minimum Crossing Altitude最低穿越高度MCC Maintenance Control Center维护控制中心MCDU Multifunction Control Display Unit多功能控制显示单元MCI Mode C intruder装有C模式应答器的入侵飞机MCS Master Control Station主控站MCS Monitoring/Control Software监控/管制软件MDA Minimum Descent Altitude最低下降高度MDT Maintenance Data Terminal维护数据终端MEA Minimum En-route Altitude最低航路高度MED Manual Entry Device人工输入器MET Meteorology气象METAR Meteorological Report of Aerodrome Conditions机场条件气象报告MFCP Multifunction Control Display Panel多功能控制显示面板MFDU Multifunction Display Unit多功能显示单元MHz Megahertz兆赫MIDANPIRG Middle East Air Navigation Planning and Implementation Regional Group中东地区航行规划<请合法使用í?t>实施小组MIFR Master International Frequency Registration国际频率注册管理站(员)MIL Military军方MKR Marker指点标MLS Microwave Landing System微波着陆系统MMALS Multi-Mode Approach and Landing System多模式进近和着陆系统MMI Man-Machine Interface人机接口MMR Multi-Mode Receiver多模式接收机MMS Maintenance Management System维护管理系统MMW Millimeter Wave毫米波MNPS Minimum Navigation Performance Specification最低导航性能规范MNPSA MNPS airspace最低导航性能规范空域MNT Mach Number Technique马赫数技术MOCA Minimum Obstruction Clearance Altitudes最低超障净空高度Mode S specific services S模式特定业务MODEM Modulator-Demodulator调制解调器MOPR Minimum Operational Performance Requirements最低运行性能要求MOPS Minimum Operational Performance Standards最低运行性能规范MORA Minimum Off-Route Altitude<请合法使用软件>低偏离航路高度MOS Metal-Oxide Semiconductor金属-氧化物半导体MOU Memorandum Of Understanding备忘录MPS Maintenance Processor Subsystem维护处理机分系统MRA Minimum Reception Altitude最低接受高度MRT Multi-Radar Tracking多雷达跟踪MRT-VU Multi-Radar Tracking using Variable Update采用变化更新的多雷达跟踪MSA Minimum Sector Altitude最低扇区高度MSAT移动业务卫星系统(美国的)MSAW Minimum Safe Altitude Warning最低安全高度警告MSCP Mobile Satellite Service Provider移动卫星业务提供者MSE Mean Square Error均方误差MSK Minimum Shift Keying最小移频键控MSL Mean Sea Level平均海平面MSP Mode S specific protocol S模式特别协议(规程)MSU Mode Select Unit模式选择单元MTBA Mean Time Between Alarm(Warning)平均告警间隔时间MTBF Mean Time Between Failure平均故障间隔时间MTBO Mean Time Between Outage平均故障停工间隔时间MTBR Mean Time Between Repairs平均故障修复间隔时间MTBUR Mean Time Between Unit Replacements平均更换故障单元间隔时间MTBW Mean Time Between Warning平均告警间隔时间MTD Maintenance Terminal Display维护终端显示器MTI Moving Target Indicator活动目标指示器MTM Module Test and Maintenance模块测试和维护MTMIU Module Test and Maintenance Bus Interface Unit模块测试和维护总线接口单元MTN MEGA Transport Network MEGA运输网络MTSAT Multi-Functional Transport Satellite多功能传送卫星(日本)MTTDA Mean Time To Dispatch Alert平均签派告警时间MTTF Mean Time To Failure平均故障时间MTTM Mean Time To Maintenance平均维护时间MTTR Mean Time to Repair维平均修时间MTTR Mean Time to Restore平均恢复时间MU Management Unit管理单元MUS Minimum Use Specification最低应用规格MUX Multiplexer复用器MN Multisensor Navigation多传感器导航MUX Multiplexer多工器,复用器MWARA Major World Air Route Area世界主要航路区MWO Meteorological Watch Office气象观测台NN Navigation导航NA Not Applicable不可用NACK Negative Acknowledgment出错通知NAD North American Datum北美数据(基准)NADIN National Airspace Data Interchange Network国家空域数据交换网NAGU咨询报告NAILS National Airspace Integrated Logistics Support国家空域综合后勤保障NAPA国家公共管理科学院(美国)Nanosecond One billionth of a second十亿分之一秒NAR National Airspace Review国家空域审议NARACS National Radio Communications System国家无线电通信系统NAS National Airspace System国家空域系统NASA National Aeronautics and Space Administration国家航空和宇航局(美国)NASNET National Airspace System Network国家空域系统网络NASP National Airport System Plan国家航空港系统计划NASPALS NAS Precision Approach and Landing System国家空域系统进近和着陆系统NAT North Atlantic北大西洋地区NAT ADSG North Atlantic Automatic Dependent Surveillance Development Group北大西洋自动相关监视开发小组NAT ATS North Atlantic Air Traffic Services北大西洋空中交通服务NAT SPG North Atlantic Systems Planning Group北大西洋系统规划组NATCOM National Communications Center,Kansas City, Missouri国家通信中心(位于密苏里州堪萨斯城)NATS National Air Traffic Service国家空中交通服务NAV NavigationNAVAID Navigational Aid导航设施NAVAID Radio Aid to Navigation无线电助(导)收设备NAVD North American Vertical Datum北美垂直向数据NCA National Control Authority国家指挥当局NAWP National Aviation Weather Processor国家航空气象处理机NCC Network Control Center网络控制中心NCD No-Computed Data无算出数据NCIU NEXRAD communications interface unit改进型气象雷达通信接口单元NCP Network Control processor网络控制处理器NCS Network Coordinating Station网络协调台NDB Nondirectional Radio Beacon无方向信标NEAN North European ADS-B Network北欧ADS-B网络NEOF National Emergency Operations Facilities国家应急指挥设施NEXRAD Next Generation Weather Radar改进型气象雷达;下一代气象雷达NGRS National Geodetic Reference System国家测地参考系统NGS National Geodetic Survey国家测地勘察NICS NAS Interfacility Communications System国家空域系统设施间的通信系统NIST National Institute of Standards and Technology国家标准和技术研究所NLES导航岸站NM(NMI)Nautical Mile海里,节NMC National Meteorological Center国家气象中心(美国) NMCE Network Monitoring and Control Equipment网络监控设备NMDPS Network Management Data Process System网络管理数据处理系统NMS Navigation Management System导航管理系统NOAA National Oceanic and Atmospheric Administration国家海洋和大气局(美国)NOPAC North Pacific北太平洋NOTAM Notice to Airmen航行通告NPA Non-Precision Approach非精密进近NPDU Network Protocol Data Unit网络协议数据单元NPLAS National Plan of Integrated Airport Systems国家综合航空港系统的计划NRC National Research Committee国家科学研究委员会(美国的)NSAP Network Service Access Point网络服务访问点NSB National Secure Bureau国家保安局(美国的)NSC Network Service Centre网络服务中心NSDU Network Service Data Unit网络服务数据单元NSE Navigation System Error导航系统误差NSSF NAS Simulation Support Facility国家空域系统的仿真保障设施NTLA National Telecommunications Information Agency国家电信资料署(美国)NTSB National Transportation Safety Board国家运输安全委员会(美国)NWS National Weather Service国家气象服务(美国)OO&M Operation and Maintenance运行和维修O.R.Operational Requirement运营要求OACC Oceanic Area Control Center海洋区域管制中心OAS Obstacle Assessment Surface障碍物评价面OAS Oceanic Automation System海洋自动化系统OCA Obstacle Clearance Altitude超障净高度OCA Oceanic Control Area海洋管制区OCH Obstacle Clearance Height超障高OCM Oceanic Clearance Message海洋放行许可信息OCP ICAO Obstacle Clearance Panel国际民航组织超障净空专家组OCS运行控制系统OCS Obstacle Clearance Surface超障面ODALS Omnidirectional Approach Lighting System全向进近灯光系统ODAPS Oceanic Display and Planning System远洋飞行显示和规划系统ODF Oceanic Development Facility海洋开发设施ODIAC Operational Development of Initial Air-ground data Communications早期空-地数据通信运行开发ODL Oceanic Data Link海洋数据链OEM Original Equipment Manufacturer原始设备制造商OFDPS Offshore Flight Data Processing System近海飞行数据处理系统OLAN Onboard Local Area Network机载局域网OLDI On-line Data Interchange联机数据交换OMB Office of Management and Budget国家管理和预算局(美国) OMEGA A navigation system that uses two high-powered transmitter grounds stations to broadcast a continuous wave signal.奥米加导航系统ODALS Omnidirectional Approach Lighting System全向进近灯光系统OOOI Out-Off-On-In滑出-起飞-接地-停靠门位OP Operational运行OP SUP Operational Supervisor运营监督OPMT Operations Planning Management Team运营规划管理小组OPTUS Name of one of Australia's Telecommunications Providers澳大利亚电信业务提供者之一的名字OR Operational Requirements运行要求ORD Operational Readiness Demonstration运行准备就绪示范ORI Orientation面向OSHA Occupational Safety and Health Administration职业安全和卫生局(美国)OSI Open Systems Interconnection开放系统互联OSST FAA Oceanic Separation Standard Team联邦航空局海洋间隔标准小组(美国)OTA Office of Technology Assessment技术评估办公室(美国) OTC Overseas Telecommunications Company海外通信公司OTS Organized Track Structure编组航迹系统P-Code Precision Code(精)P-码oxy Oxygen氧气PP精密码(军用码)PA Preassignment Arrangement预先分配PAC Pacific太平洋PACOTS Pacific Organized Track System太平洋组织的跟踪系统PANS Procedures for air navigation services空中航行服务程序PANS-OPS Procedures for Air Navigation Services-Aircraft Operations航行服务-航空器运营程序PANS/RAC Procedures for Air Navigation Services-Rules of the Air Traffic空中导航服务程序,空中交通服务规则PAPI Precision Approach Path Indicator精密进近航道指示器PAR Precision Approach Radar精密进近雷达PATWAS Pilots Automatic Telephone Weather Answering Service驾驶员电话询问气象的自动回答服务PCA Positive Control Area绝对管制区PCC Pilot Controller Communication驾驶员管制员通信PCFL Pre-Cleared Flight Level预放行高度PCI Protocol Control Information协议控制信息PCM Pulse Code Modulation脉码调制P-Code The GPS precision code GPS精密码(军用码)PCS Power Conditioning System电力调节系统PDC Pre-Departure Clearance起飞前放行许可P-DME Precision Distance Measuring Equipment精密测距仪PDN Public Data Network公共数据网PDOP Position Dilution of Precision位置精度扩散因子PEDI Planning,Education,Demonstration and Implementation规划、教育、演示和实施PER Packed Encoding Rules分组编码规则PET Pacific Engineering Trials太平洋工程试验PF Position Fix Error位置固定误差PFCS Primary Flight Control System主要飞行控制系统PFE Path Following Error路径跟踪误差PFL Planned Flight Level计划飞行高度PHARE Program for Harmonized ATM Research in EUROCONTROL 欧安局空中交通管理研究协调计划PIAC Peak Instantaneous Aircraft Count瞬时峰值飞机数目PIREP Pilot Report驾驶员报告PL Psuedolite伪卫星PN Pseudo-noise伪噪音PNCS Performance Navigation Computer System导航计算机系统性能POB Persons On Board机上人员POC Proof Of Concept概念验证POR Pacific Ocean Region太平洋区域PPS Precise Positioning Service精密定位服务PR Psuedo-Range伪距离。
空中领航学(E06)
在紧急情况下,迅速做出正确的领航决策,如改变航线、紧急降落等,确保机组人员和乘客的安全。
紧急情况下的领航决策
领航误差与纠正方法
领航误差
在飞行过程中,由于各种原因可能导致领航误差,如定位误差、计算误差等。
纠正方法
采取有效措施纠正领航误差,如使用精确的导航设备、进行复核校准等,确保航行的准确性。
卫星定位系统(GPS)领航
惯性导航系统(INS)领航
惯性导航系统(INS)领航是指利用陀螺仪和加速度计等惯性传感器,通过测量飞机的加速度和角速度等参数,推算出飞机位置、航向和高度等参数的领航方式。
02
INS领航具有自主性、隐蔽性和连续性等优点,因此在军事领域得到广泛应用。它不依赖外部信号,因此具有较高的抗干扰能力和生存能力。
特点
定义与特点
领航是航空器安全航行的关键环节,准确的领航可以避免飞行冲突,降低事故风险。
安全保障
经济性
航班正点率
合理的航线规划和飞行管理能够降低航空器的油耗和维修成本,提高经济效益。
准确的领航可以确保航班按时起飞、降落,提高航班正点率,提升航空服务质量。
03
02
01
空中领航学的重要性
03
未来展望03ຫໍສະໝຸດ INS领航的缺点是定位误差随时间积累,因此需要与其他导航系统相结合,进行位置修正和校准。
01
雷达领航是指利用地面雷达站或机载雷达,通过发射电磁波并接收目标反射回来的回波信号,确定飞机位置、航向和高度等参数的领航方式。
雷达领航的缺点是受地形和建筑物遮挡的影响较大,因此在使用时需要考虑地形和建筑物的高度和分布情况。此外,雷达信号也容易受到干扰和反射的影响。
天气系统
气象学基础
航空航天工程及其组成部分 Aerospace engineering 英语作文论文
航空航天工程及其组成部分Aerospace engineering and its component areasHello friends how are you? Hope you all are doing great in your respective fields. Today with the help of this article I am going to spread information on the topicAerospace engineering and its component areas. This article will be of great help for all those who are doing aerospace engineering or going to enroll themselves in this. But before directly jumping on the topic of aerospace engineering, it is important to look at different branches of engineering. All these branches have some rolein aerospace engineering. So having a small knowledge of them will help in understanding aerospace engineering more.Different Branches of EngineeringMechanical engineeringIt is a branch of engineering which deals with manufacturing, inspection, machine maintenance. This area of engineering includes vehicles, construction and farm machines and a variety of devices and tools.Electrical engineeringIt includes design, testing, manufacturing, monitoring of electrical and electronic devices and systems. These systems are microscopiccircuits, transmission system, and power generators.Civil engineeringIt involves construction, design, inspection of large construction and infrastructure projects. Large projects involve highways, bridges, dams, airports, railroads, etc.Aerospace engineeringIt includes designing, manufacturing, and testing of aircraft, and spacecraft. It also involves parts like airframes, power plants, guidance systems.Nuclear engineeringIt involves manufacturing design, operations, and process involving control and detection of nuclear radiation. It includes particle accelerators and reactors. Engineers in this field also monitor harmful radiation that can do potential damage to human lives.Biomedical engineeringThis area involves equipment designed for the medical purpose. Here engineers work in close association with doctors. This helps in understanding the requirements and learning about diseases helps in creating better types of equipment for human health.Chemical engineeringEngineers work in chemical industries. They take care of processes for refining raw materials and processing chemicals. This will help in the creation of valuable chemical items.Computer engineeringIt is designing hardware components of computers, networks, and computer software.Environmental engineeringEnvironmental engineers take measures to prevent pollution from the environment. They create plans to tackle air, water, soil pollution. Environmental engineers also monitor natural disasters.I hope now you have got a basic understanding of what work engineers do in the above-mentioned branches. Now I am going to provide important information on Aerospace engineering. This branch of engineering is gaining popularity nowadays. There is a lot of scope and handsome salary packages in Aerospace engineering. So let’s read further to gain an in-depth understanding of this branch of engineering. Have a look on sections which I have discussed below:●What is Aerospace Engineering?●Component areas of aerospace engineering●What does an aerospace engineer do?●Future after a college degree in Aerospace engineering●How to Become an Aerospace Engineer●Important Qualities for Aerospace Engineers What is Aerospace Engineering?Aerospace engineering is a branch of engineering which involves the construction and development of aircraft and spacecraft. Aerospace engineering has two major branches namely, Astronautical engineering and aeronautical engineering. This branch of engineering is a part of mechanical engineering. Engineers in this field gain knowledge and understanding related to rockets, spaceships, satellites, airplanes, fighter jets, etc. Astronautical branch of aerospace engineering is also sometimes known as Rocket science. According to U.S Bureau of Labor Statistics Aeronautical engineers work on the design ofthe aircraft that fly in Earth’s atmosphere and Astronautical engineers work on the science and technology of spacecraft.Component areas of aerospace engineeringAerospace engineering is not a small subject; it has various component areas lets look at them one by one:AstrodynamicsIt is a study of orbital mechanics. It involves the prediction of orbital elements.Fluid mechanicsFluid mechanics involve the study of fluid movement around the aircraft or spacecraft. Itinvolves the flow of air on wings, wind tunnels. This area helps in better understanding of take-off and landing of the aircraft.Statics and dynamicsIn statics and dynamics, engineers study different forces acting on an aircraft in the air and on land, movement of the aircraft and mechanical systems of an aircraft.MathematicsAs you know math has a vital role in all forms of engineering and so does in aerospace engineering. Advance level of math and physics is involved in aerospace engineering.Electro-technologyIt deals with the study of electronics in space engineering.PropulsionIt includes the study of energy used in moving the spacecraft/aircraft in space or in the air. It involves a thorough study of internal combustion engines, turbomachinery, propellers, etc.Structure of an aircraftIt is the study of aircraft design. It involves the physical configuration of an aircraft that experiences different forces during the flight. Aerospace engineers focus on making lightweight aircraft in order to provide a good flight experience.Material scienceThis field is related to the structures. Aerospace engineers also learn about the materials used in the aircraft. This area involves the invention of new materials and modification and enhancements in the present ones.AeroelasticityIt is the study of aerodynamic forces acting on a plane and flexibility of the structure. It causes flutter, divergence in a plane.AvionicsIt is programming of computer systems in an aircraft.Flight testExecution of flight test programs to get a better idea of performance and handling of the aircraft to ensure whether aircraft is meeting the certification needs and how much it is safe.Work of an aerospace engineerWork with aerospace industriesAerospace engineers work with companies manufacturing aircraft and spacecraft. Their work is to make satellites, aircraft, spacecraft, and ballistic missiles. Besides this, they also work on prototypes to make sure whether aircraft are working as per the requirements and safety standards or not. Engineers also make components like engine, landing gears, wings,control systems, and various instruments used in an aircraft. They also work upon the destructive and non-destructive testing of aircraft, its functionality, how much it is reliable, and durability of aircraft in a longer run.Work on different concepts of aerodynamicsAerospace engineers in today’s world are still working on the basic aerodynamics and have knowledge of piston engines, and jets. Astronautical engineers work on different concepts such as the propulsion system of spacecraft, liquid fuel rockets, and ion drives. They also work on the life support system specifically as space missions involving humans requires air, water, food, waste product handling. These were the tasks an Astronautical engineer also does.Work in metal industriesIn space engineering knowledge of physics, mathematics and material science is a must. Professionals in this field work with metal alloys, polymers, ceramics, and composites. Understanding these things helps the engineer to know well the disastrous situation that may arise and how to tackle them efficiently.Work-based on CADNowadays aerospace engineers are also taking help from computer-aided design system (CAD). Cad helps in the quick modification of designs of aircraft and 3D visualization of assembled parts. Computer simulation also helps in performing virtual testing of engines, control surfaces, wings,and aircraft under all atmospheric temperature and conditions.Future after a college degree in Aerospace engineeringWhen a student completes his/her degree program in aerospace engineering, he/she directly gets hired by aerospace industries. They offer the job of designing and developing aircraft. The scope is broad in aerospace engineering, and this field consists of the various organization like aerospace contractors, academia and airlines, propulsion industries. They can also work in the research field, development, marketing, and many more.List of few careers in aerospace engineeringAfter possessing a degree in aerospace engineering, you will give yourself a bunch of opportunities. There are many fields that will get open for you after completing your higher educatio n in aerospace engineering. Let’s have a look at them one by one to know about them in detail.Commercial aerospace engineersCommercial aerospace engineers build designs that withstand the changing environment, planes which are fuel efficient. They bring innovative ideas so that they can fulfill the growing demands of passengers and reduce the CO2 effect on the environment. Big companies invest a large amount in developing new aircraft, for the design of the aircraft, and technical advancements.Spacecraft DesignersSpacecraft designers work in order to achieve new designs of spacecraft. They build safe designs for commercial as well as ballistic aircraft. There is a high risk involved in this work, therefore, the first work over supercomputer simulations.Inspection departmentOne cannot take any chance on and off the ground when it comes to the passengers. Senior engineers become inspectors and compliance officer their job is to keep a check over the aircraft structures to make it safe for flight. The work of an inspector is both in government organizations as well as in private companies.Many aerospace companies hire inspectors to find the faults or violations in crafts.Mechanical engineersThe work of mechanical engineers is to design tools and machines which are used in aircraft. They can make the main systems and rocket propulsions engine or warning sensors.DraftersWork of drafter is to create technical drawings and specification sheets. These sheets are used by production and manufacturing companies to build aircraft. The drawings should be detailed and include every area of aircraft.How to Become an Aerospace EngineerIf you want to be an aerospace engineer, then you must have bachelors’ degree in aerospaceengineering or any other field of engineering which is related to aerospace. To those who want to work in defense aerospace, they need clearance from security agencies.Education for Aerospace EngineersIf you are in high school then must take a course which includes subjects like chemistry, physics, advanced math and programming. For becoming an entry-level aerospace engineer, you need to possess a bachelor’s degree. To grab the job of a senior aerospace engineer, you should go for a master’s degree in this field. This will create better job options for you in the future.Students have to go through classroom teaching sessions, laboratory sessions, and field studies in propulsion, stability, controls, mechanics, andaerodynamics. There are universities that offer internships to students to provide the required exposure and experience.Some university offers a five-year program which helps students to get bachelors and master’s degree on completing the course successfully. Masters degree also allows an engineer to go for research and development area of aerospace engineering.Important Qualities for Aerospace EngineersAnalytical skillsThey should have good technical skills so that they can identify faulty elements in an aircraft and form a new alternative to correct theproblems in order to enhance the performance of the aircraft.Business skillsWork done by aerospace engineers should meet the standards of the federal government. To satisfy the standards of the federal government, one must know standard business practices and knowledge of commercial law. Along with this if you have basic knowledge of project management, then it would be good.Critical-thinking skillsAerospace engineers must be able to produce designs satisfying government standards. They should be able to understand why a specific design does not go well. For that, they shouldhave critical thinking skills in order to put up the right questions at the right time.Math skillsEngineers should be able to use trigonometry, calculus and advanced math for design purpose and analyzing the problems.Problem-solving skillsA problem can arise at any time and at any place in aerospace engineering, it can be minor or major. Therefore an engineer should be able to provide the best possible solution to solve the problems related to aircraft. Good problems solving skills will provide more safety and fuel efficiency.Writing skillsA good writing skill will be an additional bonus. An engineer should be able to provide clear details of the designs so that creators can understand easily without any problems.ConclusionLet’s finish this article by having a short recall of all the things which we have discussed in this article related to aerospace engineering. The beginning of the article is with a brief explanation of aerospace engineering and two divisions of this field, i.e. Astronautical engineering and aeronautical engineering. The second section talks about the component areas of aerospace engineering. There are many component areas in this field, but I have listed 11 main areas ofaerospace engineering. Thirdly you can see what work an aerospace engineer will do. Then you can see what future you have with aerospace engineering. This will help you to learn things you will face after becoming an aerospace engineer. After that, I have guided you with the ways to become an aerospace engineer. And lastly, you can see important qualities and aerospace engineer must possess.I hope you guys had a good time reading this article and gained good knowledge related to aerospace engineering.。
太空发射系统
挑战者号航天飞机灾难是由于助推器在发射过程中损坏,并且人员无法逃离而产生的。航天飞机的助推器一 旦启动,航天员们便无法逃逸。而如果当时采用普通火箭,则航天员们可以启动逃逸塔逃离。
2015年7月,太空发射系统火箭设计方案已完成并进入评估阶段,即将开始实施全尺寸建造,最终版本的 “太空发射系统”将成为体积最大、动力最强的火箭。
太空发射系统于2019年建造完成,即将在2020年开启人类探索太空的新纪元。 届时,“太空发射系统”将 把“猎户座”号太空船送入太空,首个目的地为月球,最终目的地是火星。
太空发射系统
一种从航天飞机演变而来的超重型运载火箭
01 研制历程
03 发展沿革 05 技术特点
目录
02 研制背景 04 研发资金 06 发射动态
基本信息
太空发射系统又叫空间发射系统(Space Launch System,简称SLS)。是一种从航天飞机演变而来的超重 型运载火箭,由美国国家航空暨太空总署设计,主要目的是维持星座计划的进行以及取代已经退役的航天飞机 (Space Transportation System,简称 STS)。第一阶段以70到110吨的星座计划载人任务为主,之后会发展 出130吨的货舱型载荷任务。最终的运载能力将达到143吨,甚至有可能达到165吨。整体而言,太空发射系统与 土星五号非常相近。号称史上最强运载火箭系统。
谢谢观看
2011年9月14日,美国国家航空航天局确定新一代太空发射系统的设计,并说明美国可以将宇航员运送到更 远的地方,并且做为人类太空探测的基石。 2015年3月11日,美国国家航空航天局(NASA)进行了新型运载火 箭“太空发射系统”的助推器任务,整个试射过程进展顺利,没有任何瑕疵。试射任务于当地时间3月11日下午3 时30分进行,整个过程持续126秒,这架耗资360万美元(约合人民币2254万)的运载火箭发射时会产生2500℃的 高温。当SLS系统正式发射时,它将使用两个助推器帮助其成功发射。
《航天航空英语词汇》
《航天航空英语词汇》编辑:理想谭一、飞行器类1. aircraft:飞机(中文解释:一种能够在空中飞行的交通工具,包括客机、货机、战斗机等各种类型。
)2. spacecraft:航天器(中文解释:用于在太空飞行的飞行器,如卫星、宇宙飞船、空间站等。
)3. satellite:卫星(中文解释:围绕行星运行的天体或人造物体,可用于通信、导航、气象观测等多种用途。
)4. rocket:火箭(中文解释:一种能够依靠自身动力进入太空的飞行器,通常由推进剂、发动机、控制系统等组成。
)5. spaceship:宇宙飞船(中文解释:用于载人或载物进行太空飞行的航天器,具备生命支持系统、推进系统等。
)二、部件类1. engine:发动机(中文解释:为飞行器提供动力的装置,可分为喷气发动机、火箭发动机等不同类型。
)2. wing:机翼(中文解释:飞机的主要升力部件,通常呈扁平状,安装在机身两侧。
)3. fuselage:机身(中文解释:飞行器的主体结构部分,用于容纳机组人员、乘客、货物等。
)4. tail:尾翼(中文解释:飞行器尾部的控制和稳定部件,包括垂直尾翼和水平尾翼。
)5. cockpit:驾驶舱(中文解释:飞行员操纵飞行器的地方,通常配备各种仪表和控制设备。
)三、飞行相关类1. takeoff:起飞(中文解释:飞行器从地面开始上升的过程,需要足够的速度和升力。
)2. landing:着陆(中文解释:飞行器从空中降落到地面的过程,需要精确的控制和合适的跑道条件。
)3. flight:飞行(中文解释:飞行器在空中的运动,包括巡航、上升、下降等不同阶段。
)4. altitude:高度(中文解释:飞行器距离地面的垂直距离,通常以英尺或米为单位。
)5. speed:速度(中文解释:飞行器运动的快慢程度,通常以节、英里/小时或公里/小时为单位。
)四、航天任务类1. launch:发射(中文解释:将航天器送入太空的过程,需要强大的推力和精确的控制。
美国新一代航空运输系统简介.pdf
美国新一代航空运输系统简介胡君一、美国新一代航空运输系统(NGATS)的背景美国目前的航空运输系统不能满足21世纪的发展需要,如果不迅速采取行动,航空运输的问题将更加严重,并将影响美国的经济发展和在航空领域的国际领先地位,这是美国若干研究得出的结论。
有关报告说,目前只是在奥黑尔这样的一些机场发生了拥挤,还不是全国性的。
美国的一些预测认为,在20年内,美国的旅客、货物和飞行量将会增长2~3倍。
FAA预计,到2020年时,将有更多的机场发生拥挤,届时,8个大区和19个机场都需要更大的容量,另外还有23个机场也有可能需要扩建。
如果再考虑低成本航空公司使用较小型飞机、大型航空公司增加国内航班、以及轻型喷气飞机、通用飞机等,天空会非常拥挤。
如果不进行改变,美国每年的亏损将达到300亿美元。
向新一代航空运输系统的转变是一个巨大的改变,是根本性的,按照目前的基础设施和结构是无法承受的。
因此FAA和国会提出了向新一代航空运输系统转变这个挑战,并建议国家和私有部门进行史无前例的合作,来转变美国的航空运输系统。
这个转变包括新技术的开发和应用,也包括组织结构和运作形式的变化。
二、立法《世纪航空再授权法案》颁布于2003年12月,确定运输部部长在联邦航空局内成立新一代航空运输系统(NGATS)联合计划与发展办公室(JPDO),任务是为NGATS制定和实施综合计划,同时监督和协调相关研究和技术开发计划和项目,以及项目和计划的优先顺序。
JPDO由FAA和国家航空航天局(NASA)共同领导和管理,人员来自NASA、FAA、运输部以及商务部、国防部、国土保安部和白宫科学技术办公室。
法案还确定运输部部长要成立一个高级决策委员会,该委员会由参加JPDO 的各机构领导人组成,运输部部长任主席。
高级决策委员会(SPC)监督JPDO的工作并为其提供政策指导,同时为“关于转变国家航空运输系统满足未来需求的总体目标和战略方针”提出建议。
高级决策委员会还肩负为未来航空运输系统确定资源需求和立法的重任。
不为人知的中国航天SpaceOS操作系统-未来将民用
不为人知的中国航天SpaceOS操作系统未来将民用说起微软的Windows;苹果的Mac OS以及谷歌的Android;相信大家都不会陌生;它们都是操作系统;即对计算机的各种资源进行管理的软件;是计算机能够运行的灵魂;美国的一些航天器上用的就是VxWorks操作系统..但是;如果问起我国航天器上的计算机用的是什么操作系统;也许很少有人知道..事实上;中国航天科技集团公司五院从2001年就开始研发星载计算机特有的操作系统——SpaceOS;并在2006年首飞成功..此次的嫦娥三号探月任务控制计算机使用的是经过升级和改进后的第二代星载计算机操作系统SpaceOS2..该系统首次亮相应用;就吸引了众多关注的目光..中国航天要有自己的操作系统尽管与普通家用的操作系统设计原理相似;但“上天”的操作系统为了适应恶劣太空环境;对安全性、可靠性等要求要苛刻许多..地面使用的计算机死机了可以重启;坏了还可以换新的;但飞行器上的计算机开机了通常就不会再关闭或重启..在轨运行时间较长的卫星寿命可达十几年;这也就意味着计算机程序要同步运行十几年不出现问题..更重要的是;对于航天这样的事关国家安全的关键领域;“拿来主义”是很危险的..而要研发自己的操作系统;相关核心技术国外严密封锁;想要借用也没有可能..在星载计算机操作系统投入使用以前;中国的卫星通常都采用程序控制的方式来完成指令..这种“傻瓜”式的运行模式非常简单;但也非常机械;它要求技术人员在地面设计好卫星要进行的每一个动作;严格按照时序编写程序..形象地说;就是如果设定卫星的任务为“吃饭—喝水—睡觉”;卫星上天之后只能按照这个顺序重复动作;想要先喝水后吃饭是做不到的..由于卫星的运行轨道相对封闭和确定;程序控制虽然机械繁琐;也能够满足任务要求..但随着我国在轨任务越来越复杂;对计算机软件管理提出了越来越高的要求..研发中国自己的星载计算机操作系统势在必行..没有借鉴;就从零开始慢慢摸索..独立自主创新;成为了摆在研发团队面前唯一道路..两代SpaceOS的华丽蜕变2006年;SpaceOS1成功在轨运行..那时的操作系统功能简单;只做到了多种资源的管理和任务调度;却没有任务间的通信和动态内存管理等更为复杂的功能..3年以后;嫦娥三号立项;巡视器要实现月面行走..相比卫星轨道;月球是一个开放的空间;环境恶劣、不确定因素多、控制复杂..这种任务对航天器智能性和自主性的要求很高;而这恰恰是操作系统的绝佳用武之地..此时功能简单的SpaceOS1已无法满足任务要求;科研人员开始着手进行第二代产品的攻关..经过2年研发;SpaceOS2正式推出;在很多方面都实现了质的飞跃;并成功应用到了嫦娥三号巡视器的中心控制计算机上..在任务调度和内存管理方面;SpaceOS2可以同时管理几十个任务;与原来5个任务相比;提高了一个量级;同时可以做到快速、有序存储..月球车在月面行走时;要一边不停地拍摄月面环境;一边快速保存和处理这些信息..如果此时突然遇到一个坑;操作系统必须在最短的时间内作出判断并反应;否则就有可能掉进坑里..目前;研究人员设计的内存管理方法和调度方法;从功能、效率上来讲;已经可以和国际上最先进的类似产品相媲美..而如果说到最具有我国特色和竞争力的技术;就不得不提到三机容错..一般卫星上会有两台计算机冷备份;一台工作时另一台不工作;如果工作的计算机出现了故障或问题;就立刻切换到另一台..但切换的过程中;不可避免的会有一些因计算机启动等带来的秒级的时间差..为了实现真正的无缝切换;嫦娥三号上第一次实现了三机热备份;即三个计算机同时工作;处理同样的任务;有可能其中一台计算机给出的计算结果是错的;那么三机容错就要发现哪台计算机有错;并最终给出正确的结果..从双机冷备份到三机热备份;看上去似乎只增加了一台计算机;但带来的难度和工作量却是呈指数级增长的..研发人员坦言;那种压力来自于知道应该实现什么目标;但对怎么实现毫无头绪..那时做梦都在思考这些问题;有些难关甚至是在梦里攻克的..未来或可发展为民用目前;这个只有十几个人组成的年轻团队正在进行SpaceOS3的研发工作;第三代产品的技术将更加先进和前沿..例如研制高性能多核计算机;让运算速度和处理能力大幅度提升;还有目前操作系统领域最前沿的技术——形式化验证;即从建模和证明的角度来验证设计领域软硬件的正确性;如果这一技术得以突破;将改变航天目前通过大量测试来验证设计正确性的方法;从根本上确保设计的无差错和高可靠..SpaceOS操作系统能否发展民用当被问及这个问题时;研发人员表示;航天操作系统技术本身是可以转为民用的..但由于航天精品化和个性定制的特点;不够产品化和通用化;距推广成熟的民用产品还有一定距离..目前;SpaceOS操作系统正在考虑航天系统内的推广应用;未来还将逐步拓展到其他领域..也许有一天;我们每个人的手机上;都可以使用到“中国航天”品牌的操作系统了..江雪莹。
航空系统知识外文文献翻译、中英文翻译、外文翻译
航空系统知识外文文献翻译、中英文翻译、外文翻译本文档为航空领域的知识外文文献的翻译,共包括3个部分:中英文翻译、外文翻译和原文。
中英文翻译航空系统概述航空系统被定义为由地面和空中部分组成的系统,其目的是将运输工具(如飞机和无人机)从出发点到到达点,并确保安全、高效和快速的操作。
航空系统可分为三个主要部分:- 地面设备:机场建设、设施、与航空设备设置相协调的设备、道路及停车场等。
- 空中设备:飞机、航空器及这些设备上的组成部分。
- 空中交通控制系统:包括由飞行控制人员、飞行调度员、地面运营任务处理员及气象人员等组成的团队,主要负责保障航空器在起飞和降落过程中的安全。
航空枢纽全球范围内,有许多航空枢纽使得物流在各个领域进行,比如国家经济、会议、旅游等方面。
航空枢纽是一个交通集散地,为当地经济、社会和旅游业的发展与提高都有很大的帮助。
航空枢纽涉及的关键因素包括航线网络、航空公司的选址决策、地理位置等。
外文翻译Air Traffic Control System Manager's Guide- 著者:The Federal Aviation Administration(美国联邦航空管理局)本书为FAA的一本手册,涵盖了现代空中交通控制系统的各个方面。
读者可从中了解到现代空中交通管制的各种组成部分及其功能,包括航空路线、飞行器、雷达和通信设备等。
原文本文档原文为英文文献,主要介绍了航空系统的概述和航空枢纽的相关内容,其中还介绍了一本名为《空中交通控制系统经理指南》的手册。
通过中英文翻译和外文翻译的呈现,读者能够了解航空领域的相关知识和术语,为相关领域的学习和工作提供一定的辅助。
航空航天工程师的飞行器系统工程
航空航天工程师的飞行器系统工程航空航天工程师是一门专业,涉及到许多关键领域,其中之一就是飞行器系统工程。
作为航空航天工程师,他们负责设计、开发和改进各种类型的飞行器,在其整个生命周期中实施系统工程。
一、飞行器系统工程概述飞行器系统工程是一种系统分析和设计方法,用于开发并集成飞行器的系统组成部分。
它涉及到对各个子系统的研究、设计和开发,并确保它们在整体系统中相互配合。
这些子系统包括但不限于飞行控制、动力系统、通信系统、导航系统和载荷系统等。
二、飞行器系统工程的主要步骤1. 需求分析在飞行器系统工程中,首先需要进行需求分析。
这意味着工程师们需要与客户和利益相关者一起明确飞行器系统的功能、性能和特定要求。
这些要求可以包括机载电子设备、通信要求、飞行性能和乘客舒适度等。
2. 概念设计在需求分析之后,工程师们将进行概念设计阶段。
这个阶段的目标是生成多个候选设计方案,并评估它们的可行性和性能。
在此过程中,工程师们需要考虑飞行器的结构、材料、动力系统和制造工艺等。
3. 详细设计一旦确定了最佳的概念设计方案,接下来是详细设计阶段。
在这个阶段,工程师们会制定出详细的设计规范,并以此作为指导进行子系统设计。
这些规范可以包括尺寸要求、材料标准、系统集成规范等。
4. 系统建造和测试一旦所有子系统的设计和开发工作完成,就会进入飞行器的实际建造和测试阶段。
这涉及到组装和集成各个子系统,并进行各种测试和验证工作,以确保飞行器符合设计规范和性能要求。
5. 运营和维护飞行器系统工程并不止于建造飞行器,在实际运营过程中也需要进行维护和改进。
这包括对飞行器的定期检查、维修、升级和改进,以确保其始终保持正常运行,并满足客户的需求。
三、飞行器系统工程的挑战和发展方向在飞行器系统工程中,工程师们会面临一些挑战。
首先是技术挑战,包括解决飞行器设计中的复杂性和多学科性的问题。
其次是安全挑战,需要确保飞行器在各种环境和情况下的安全运行。
最后是可持续性挑战,需要考虑飞行器的能源效率和环境友好性。
巴航工业商务机:空中的梦幻家园
巴航工业商务机:空中的梦幻家园EDEN如果家的定义是舒适放松和无拘无束,那巴航工业商务机堪称飞行的空中家园。
在浩瀚星空中穿行,与晨昏和彩虹为伴,在万米高空酣眠,在这梦幻的空中私邸背后,是巴航工业商务机团队的努力和汗水。
轩敞的机舱空间从一开始,巴航工业工程师们即致力于创造轩敞的机舱空间,为后续的内饰设计提供可能。
以中型公务机莱格赛500为例,客舱高度达1.83米,且铺设水平地板,客人可在机舱内自由行走;而超大型公务机世袭1000E有同级别飞机最大的步入式行李舱,客人可在飞行途中随意出入,取用行李物品。
家的舒适度即便在空中也不能打任何折扣。
以莱格赛500为例,座椅不仅能完全放倒,还设有腰部支撑、加热与按摩功能;每个座椅旁都设有弦窗,增加客舱采光,让空间更加温馨舒适。
莱格塞500用户大卫·扎拉在试乘莱格赛500后,就这样描述自己的体验:“如同无法通过只言片语来形容人一样,也无法通过数字来描述莱格赛500及其客舱。
真正重要的是乘客在客舱中的感受,而莱格赛500乘坐体验真是美轮美奂。
如果可以用一款香水来描述这种意境,我想香水的名字应该是‘梦幻”。
巴航工业商务机品牌管理及内饰设计副总裁Jay Beever介绍说,对于客户来说,最激动的时刻除了接收飞机的那一刻,便是按自己的意愿装点自己飞机的过程。
而大多数客户都要求使用与其家中、车内或办公室内类似的材质;最常见的要求包括需要Wi-Fi网络、高清娱乐功能等等。
为了将家的舒适便利带到空中,巴航工业商务机内饰团队也在不断开拓创新。
以莱格赛500为例,可从机外排污的真空抽水马桶在同级别商务机中独树一帜;而超大型商务机世袭1000E可以提供5个独立客舱区域和步入式淋浴房,工作疲劳时,乘客走入浴室,即可让千头万绪随流水冲走。
作为繁忙的商务精英,即使在旅途中也要处理公司事务。
而巴航工业商务机上设有卫星通讯系统,高速Wi-Fi,传真、打印等办公功能让主人虽身处万米高空,仍能运筹帷幄决胜千里之外。
FLOW AEROSPACE SYSTEMS,LLC企业信用报告-天眼查
5.1 被执行人信息
截止 2018 年 11 月 30 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5.2 失信信息
截止 2018 年 11 月 30 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
4.4 企业业务
截止 2018 年 11 月 30 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5
4.5 竞品信息
截止 2018 年 11 月 30 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
10 万美元
状态 法定代表人
存续(在 STANLEY EDME 营、开 业、在 册)
投资数额(万 元)
10
4
四、企业发展
4.1 融资历史
截止 2018 年 11 月 30 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5.5 行政处罚
截止 2018 年 11 月 30 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
航空英语词汇
载人飞船manned spaceship/ spacecraft载人航天manned space flight载人航天计划manned space program航天飞机space shuttle无人飞船unmanned spaceship / spacecraft 试验太空船Experimental Spacecraft神舟号Shenzhou (Divine Vessel)多级火箭multistage rocket太空舱capsule返回式卫星recoverable satellite通信卫星communication satellite遥感卫星remote sensing satellite运载火箭carrier rocket; rocket launcher 长征二号 F运载火箭Long March II F carrier rocket 有效载荷能力payload capability近地轨道low Earth orbit气象卫星weather satellite;meteorological satellite太阳同步轨道卫星satellite in Sun-synchronous orbit 同步轨道卫星geosynchronous satellite轨道舱orbital module返回舱re-entry module推进舱propelling module指令舱command module服务舱service module登月舱lunar module发射台launch pad紧急供氧装置emergency oxygen apparatus空间物理探测space physics exploration国际空间站International Space Station太阳能电池板solar panel太空升降舱space elevator哈勃太空望远镜Hubble Space Telescope月球车lunar rover外太空outer space; deep space银河系Milky Way阿波罗号宇宙飞船Apollo美国航空航天管理局NASA(The National Aeronautics and Space Administration)飞机部件hatch 舱口aeroengine, air engine 航空发动机navigation light 航行灯fuselage, body 机身nose 机头wing 机翼aileron 副翼wing flap 襟翼tail plane 水平尾翼starboard wing 右翼port wing 左翼pilot’s cockpit 驾驶舱parachute 降落伞passenger cabin 客舱propeller 螺旋桨pressurized cabin 密封舱undercarriage 起落架undercarriage wheel 起落架轮elevator 升降舵radio navigation device 无线电导航设备radio directive device 无线电定向设备luggage compartment 行李舱(fuel) tank 油箱auxiliary (fuel) tank 副油箱main (fuel) tank 主油箱autopilot 自动驾驶仪航空缩写词$ Dollar,Hexadecimal Address 元 ,16 进制的3D Three Dimensional 三维3D Three Dimensional (Lat,Long,Alt)三维 ( 横、纵和垂向 )3Q YUNNAN AIRLINES 云南航空公司3U SICHUAN AIRLINES 四川航空公司4D Four Dimensional 四维4D Four Dimensional (Lat,Long,Alt,Time) 四维(横、纵、垂向和时间 ) A Area 区域A Aero 航空的 , 飞行的 , 空中的A Air 空气A Alternate 备用的A Amber 琥珀色A Amber 琥珀色A Ampere 安培A Ampere 安培A Ampere (s)安培A Angstrom 埃 ( 波长 )A Annual 年度A Approach lighting 进近灯A Areas 地区,区域A Arrive, Arrival 到达A R As Required 按需A&AEE Aeronautical and Aircraft Experimental Establishment 航空与飞机实验研究院( 英)A&CO Assembly and Checkout 装配与检验A&E Airframe and Engine Qualified Engineer 机体与发动机合格工程师A&E Architectural and Engineering 建筑和工程A&E Architecture and Engineering 结构和工程A&F Accident and Indemnity 失事及损失赔偿A& Airframe & Powerplant 机身与动力装置A&R Automation and Robotics 自动化与机器人A—OK All OK 都很好 , 工作状态全都正常A。
伴你飞翔内部构造
伴你飞翔内部构造1. 引言伴你飞翔是一家专注于航空旅行的公司,致力于为客户提供高品质的航空服务。
为了保证客户的安全和舒适,伴你飞翔在内部构造方面进行了全面而深入的规划和设计。
本文将详细介绍伴你飞翔内部构造的各个方面,包括机队管理、机上设施、服务人员培训等。
2. 机队管理伴你飞翔拥有一支高素质的机队管理团队,他们负责监督和管理公司的所有航空器。
机队管理团队主要包括以下几个方面:•航空器选购:根据市场需求和客户需求,机队管理团队会定期进行航空器选购计划。
他们会考虑诸如飞行性能、燃油效率、安全性等因素,并与厂家进行充分沟通和协商,确保选购到符合公司要求的航空器。
•航空器维护:机队管理团队会制定严格的维护计划,确保每架航空器都能按时进行例行维护和检修。
他们会与维修团队密切合作,及时处理航空器的故障和问题,确保航班的正常进行。
•航空器调度:机队管理团队负责航班的调度工作,包括航班计划制定、机组人员安排、飞行路线规划等。
他们会根据客户需求和市场情况,合理安排航班时间和机型,以提供最佳的服务。
3. 机上设施伴你飞翔注重为客户提供高品质的机上设施,以确保他们在飞行过程中享受到舒适和便利。
以下是伴你飞翔常见的机上设施:•宽敞座椅:伴你飞翔的座椅设计宽敞舒适,提供足够的腿部空间和靠背角度调节功能。
座椅覆盖材料采用高品质皮革或布料,并配备柔软的头枕和腰靠。
•娱乐系统:每个座位都配备了个人娱乐系统,客户可以通过触摸屏选择电影、音乐、电视节目等娱乐内容。
此外,还提供Wi-Fi连接,客户可以在飞行中与外界保持联系。
•餐饮服务:伴你飞翔提供多样化的餐饮服务,根据航班时长和客户需求提供不同等级的餐食。
客户可以享用精心准备的美食,包括正餐、小吃和饮品。
4. 服务人员培训为了确保客户得到优质的服务体验,伴你飞翔注重对服务人员进行全面的培训。
以下是伴你飞翔服务人员培训的主要内容:•客户服务技巧:服务人员接受专业培训,学习如何与客户进行有效沟通、解决问题和提供帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Winter 2009 EEE381B Introduction - 4
1.1.1
Air superiority
CF188 Hornet
Eurofighter Typhoon
Winter 2009
EEE381B
Introduction - 14
1.3 Ground attack
Role : Assist tactical troops on the ground
Accurate identification of targets among friendly forces Designate targets by laser Attack fixed and moving targets Close air support (CAS), commanded from the ground
Winter 2009
EEE381B
Introduction - 15
1.3.1
Ground attack
Winter 2009
EEE381B
Introduction - 16
1.3.2
Ground attack
Winter 2009
EEE381B
Introduction - 17
1.3.3
Ground attack
Winter 2009
EEE381B
Introduction - 6
1.1.1
1960 :
Short history of avionics
Integrated electronic warfare systems Automated weapon release systems Terrain following radar Head-up-display (HUD) Digital mission computers
Winter 2009
EEE381B
Introduction - 25
1.5.3
Roles:
Maritime patrol
Exclusive economic zone protection
Oil and gas rig patrols Fishery protection Pollution detection
Winter 2009
EEE381B
Introduction - 7
1.1.2
A typical system
Winter 2009
EEE381B
Introduction - 8
1.1.3
Functional integration
Winter 2009
EEE381B
Introduction - 9
1.6.3
Battlefield surveillance
E-8 JSTARS
Raytheon ASTOR
Winter 2009
EEE381B
Introduction - 33
1.7 Airborne early warning
Role : Early detection of airborne attack
Short history of avionics
1940s : many WWII related developments:
VHF communications Identification friend or foe (IFF) Gyroscopic compass Attitude and heading reference systems Airborne intercept radar Electronic warfare Long-range precision radio navigation 2-axis autopilot
High altitude Long mission duration Look-down / look up radar with a 360º scan capability Airborne command post “Network enabled operations”
Strategic bomber
B-52
Winter 2009
EEE381B
B-2
Introduction - 22
1.5 Maritime patrol
Roles:
Anti-surface warfare
Reconnaissance Naval attack Targeting Intelligence Communication relay
Winter 2009
EEE381B
Introduction - 29
1.6 Battlefield surveillance
Role : battlefield scenario information
Relay strategic and tactical real-time battlefield intelligence Radar observation of ground targets and movements
Winter 2009
EEE381B
Introduction - 11
1.2.1
Air superiority
Winter 2009
EEE381B
Introduction - 12
1.2.2
Air superiority
Winter 2009
EEE381B
Ir 2009
EEE381B
Introduction - 24
1.5.2
Roles:
Maritime patrol
Search and rescue
Search for survivors Air-drop survival equipment Scene-of-action commander Escort rescue helicopter Escort vessels in distress
Winter 2009
EEE381B
Introduction - 23
1.5.1
Roles:
Maritime patrol
Anti-submarine warfare
Aerial support for convoys Reconnaissance and intelligence Track submarine targets Restricting enemy submarine operations Support friendly submarines
Manned aircraft Uninhabited aircraft (UAV) Missiles Other weapon systems
Winter 2009
EEE381B
Introduction - 3
1.1.1
Short history of avionics
1910s – first experiments with radio and autopilot 1930s – first electronic aides such as:
Winter 2009
EEE381B
Introduction - 27
1.5.5
Maritime patrol
Winter 2009
EEE381B
Introduction - 28
1.5.6
Maritime patrol
CP-140 Aurora
Sikorsky H92 (CH-148 Cyclone)
Winter 2009
EEE381B
Introduction - 10
1.2 Air superiority
Role: control access to the aerial battle space
Rapid deployment Engage beyond visual range Close combat (dogfight) Extreme agility (carefree handling) Navigational accuracy Identification and prioritization of targets Accurate weapon aiming Part of a tactical communication network
Border protection
Illegal immigration Illegal arms dealing Anti-terrorism Illegal drug activities
Winter 2009
EEE381B
Introduction - 26
1.5.4
Maritime patrol
Winter 2009
EEE381B
Introduction - 30
1.6.1
Battlefield surveillance
Winter 2009
EEE381B
Introduction - 31
1.6.2
Battlefield surveillance
Winter 2009
EEE381B
Introduction - 32
Military Roles
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
Air superiority Ground attack Strategic bomber Maritime patrol Battlefield surveillance Airborne early warning Electronic warfare Photographic reconnaissance Air-to-air refuelling Troup / materiel transport Uninhabited aerial vehicle (UAV) Training