重庆市中考数学试题含答案2

合集下载

2022年重庆市中考数学试题(A卷)

2022年重庆市中考数学试题(A卷)

重庆市2022年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1试题的答案书写在答题卡上,不得在试题卷上直接作答;2作答前认真阅读答题卡上的注意事项;3作图(包括作辅助线)请一律用黑色2B 铅笔完成;4考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:拋物线y =ax 2+bx +c (a ≠0)的顶点坐标为-b 2a ,4ac -b 24a ,对称轴为x =-b2a.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的相反数是()A.-5B.5C.-15D.152.下列图形是轴对称图形的是()A.B.C.D.3.如图,直线AB ,CD 被直线CE 所截,AB ⎳CD ,∠C =50°,则∠1的度数为()A.40°B.50°C.130°D.150°1ABCDE 4.如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h (m )随飞行时间t (s )的变化情况,则这只蝴蝶飞行的最高高度约为()A.5mB.7mC.10mD.13m1235571013Ot/sh/m5.如图,△ABC 与△DEF 位似,点O 为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF 的周长是()A.4B.6C.9D.16AB CDEFO6.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图穼中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()⋯①②③④A.32B.34C.37D.417.估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是()A.200(1+x )2=242B.200(1-x )2=242C.200(1+2x )=242D.200(1-2x )=2429.如图,在正方形ABCD 中,AE 平分∠BAC 交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE =CE ,则∠CDF 的度数为()A.45°B.60°C.67.5°D.77.5°A BCDEF10.如图,AB 是⊙O 的切线,B 为切点,连接AO 交⊙O 于点C ,延长AO 交⊙O 于点D ,连接BD .若∠A =∠D ,且AC =3,则AB 的长度是()A.3B.4C.33D.42ABCDO11.若关于x 的一元一次不等式组x -1≥4x -13,5x -1<a的解集为x ≤-2,且关于y 的分式方程y -1y +1=a y +1-2的解是负整数,则所有满足条件的整数a 的值之和是()A.-26B.-24C.-15D.-1312.在多项式x -y -z -m -n 中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x -y )-(z -m -n )=x -y -z +m +n ,x -y -(z -m )-n =x -y -z +m -n ,⋯.下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:|-4|+(3-π)0=.14.有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是∙15.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若AB =2,∠BAD =60°,则图中阴影部分的面积为.(结果不取近似值)ABCDE F16.为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.计算:(1)(x +2)2+x (x -4);(2)a b -1 ÷a 2-b 22b.18.在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E 是AD 边上的一点,试说明△BCE 的面积与矩形ABCD 的面积之间的关系.他的思路是:首先过点E 作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E 作BC 的垂线EF ,垂足为F (只保留作图㾗迹).在△BAE 和△EFB 中,∵EF ⊥BC ,∴∠EFB =90°.又∠A =90°,∴①∵AD ⎳BC ,∴②又③∴△BAE ≌△EFB (AAS ).同理可得④∴S △BCE =S △EFB +S △EFC =12S 矩形ABFE +12S 矩形EFCD =12S 矩形ABCD 四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包拈辅助线),请将解答过程书写在对应的位置上.19.公司生产A 、B 两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A 、B 型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g ),并进行整理、描述和分析(除尘量用x 表示,共分为三个等级:合格80≤x <85,良好85≤x <95,优秀x ≥95),下面给出了部分信息:10台A 型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B 型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94型号平均数中位数众数方差“优秀”等级所占百分比A 9089a 26.640%B90b903030%抽取的A 、B 型扫地机器人除尘量统计表抽取的B 型扫地机器人除尘量扇形统计图优秀合格良好m%根据以上信息,解答下列问题:(1)填空:a =,b =,m =;(2)这个月公可生产B 型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).ABCDE20.已知一次函数y =kx +b (k ≠0)的图象与反比例函数y =4x的图象相交于点A (1,m ).B (n ,-2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx +b >4x的解集:(3)若点C 是点B 关于y 轴的对称点,连接AC ,BC ,求△ABC 的面积.654321654321654321654321Oxy20题图21.在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A 地30千米的B 地,已知甲前行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A 地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.22.如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)23.若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”.又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=c+d9,P(M)=|10(a-c)+(b-d)|3.当G(M),P(M)均是整数时,求出所有满足条件的M.ABCDE30°45°东南西北24.如图,在平面直角坐标系中,抛物线y =12x 2+bx +c 与直线AB 交于点A (0,-4),B (4,0).(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方拋物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作y 轴的平行线交x 轴于点D ,求PC +PD 的最大值及此时点P 的坐标;(3)在(2)中PC +PD 取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,M 为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N ,使得以点E ,F ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.xyABOxyA BOCDP备用图25.如图,在锐角△ABC 中,∠A =60°,点D ,E 分别是边AB,AC 上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB >AC ,且BD =CE ,∠BCD =∠CBE ,求∠CFE 的度数;(2)如图2,若AB =AC ,且BD =AE ,在平面内将线段AC 绕点C 顺时针方向旋转60°得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段BF ,CF ,CN 之间存在的数量关系,并证明你的猜想;(3)若AB =AC ,且BD =AE ,将△ABC 沿直线AB 翻折至△ABC 所在平面内得到△ABP ,点H 是AP 的中点,点K 是线段PF 上一点,将△PHK 沿直线HK 翻折至△PHK 所在平面内得到△QHK ,连接PQ .在点D ,E 运动过程中,当线段PF 取得最小值,且QK ⊥PF 时,请直接写出PQBC的值.ABCDEFABCDEFMNABC图1图2备用图。

重庆市中考数学阅读理解题(专题二)含答案

重庆市中考数学阅读理解题(专题二)含答案

学习必备欢迎下载重庆市2016中考数学阅读理解题(专题二)1、若x 1,x 2是关于x 的方程x 2+bx+c=0的两个实数根,且的两个实数根,且|x |x 1|+|x 2|=2|k||=2|k|((k 是整数),则称方程x 2+bx+c=0为“偶系二次方程”.如方程x 2﹣6x 6x﹣﹣27=027=0,,x 2﹣2x 2x﹣﹣8=08=0,,,x 2+6x +6x﹣﹣27=027=0,,x 2+4x+4=0+4x+4=0,,都是“偶系二次方程”.(1)判断方程x 2+x +x﹣﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx+c=0是“偶系二次方程”,并说明理由.2、阅读材料:若a ,b 都是非负实数,则a+b≥.当且仅当a=b 时,“=”成立.证明:∵()2≥0,∴a﹣+b≥0.∴a+b≥.当且仅当a=b 时,“=”成立.举例应用:已知x >0,求函数y=2x+的最小值.解:解:y=2x+y=2x+≥=4=4.当且仅当.当且仅当2x=,即x=1时,“=”成立.当x=1时,函数取得最小值,时,函数取得最小值,y y 最小=4=4..问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时7070~~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x 公里的速度匀速行驶,1小时的耗油量为y 升.(1)求y 关于x 的函数关系式(写出自变量x 的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).3、在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫我们不妨把横坐标和纵坐标相等的点叫“梦之点”“梦之点”,例如点(1,11,1)),(-2-2,,-2-2)),22(,),…都是“梦之点”,显然“梦之点”有无数个。

,…都是“梦之点”,显然“梦之点”有无数个。

2020年重庆市中考数学试题A卷(解析版)

2020年重庆市中考数学试题A卷(解析版)

重庆市2020年初中学业水平暨高中招生考试数学试题(A卷)一、选择题1.下列各数中,最小的数是()A. -3B. 0C. 1D. 2【答案】A【解析】【分析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.-<<<,【详解】∵3012∴最小的数是-3,故选:A.【点睛】本题考查有理数的大小比较,属于基础应用题,只需熟练掌握有理数的大小比较法则,即可完成.2.下列图形是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( )A. 32610⨯B. 32.610⨯C. 42.610⨯D. 50.2610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】42.62600010⨯=,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21【答案】B【解析】【分析】 根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数.【详解】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B .【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n 个图案中黑色三角形的个数为1+2+3+4+……+n .5.如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A. 40°B. 50°C. 60°D. 70° 【答案】D【解析】【分析】根据切线的性质可得90?OAB ∠=,再根据三角形内角和求出AOB ∠.【详解】∵AB 是O 的切线∴90?OAB ∠=∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.【点睛】本题考查切线的性质,由切线得到直角是解题的关键.6.下列计算中,正确的是( ) A. 235= B. 2222+= C. 236= D. 2323=【答案】C【解析】【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:A 23B .22不是同类二次根式,不能合并,此选项计算错误;C 23236=⨯=D .32不是同类二次根式,不能合并,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A. 3(1)12x x +=-B. 2(1)13x x +=-C. 2(1)63x x +=-D. 3(1)62x x +=-【答案】D【解析】【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质. 8.如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )5 B. 2 C. 4 D. 25【答案】D【解析】【分析】 把A 、C 的横纵坐标都乘以2得到D 、F 的坐标,然后利用两点间的距离公式计算线段DF 的长.【详解】解:∵以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,而A (1,2),C (3,1),∴D (2,4),F (6,2),∴DF =()()222642--+=25,故选:D .【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .9.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)A. 76.9mB. 82.1mC. 94.8mD. 112.6m【答案】B【解析】【分析】 构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .【详解】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt DEC 中,∵山坡CD 的坡度i =1:0.75,∴DE EC =10.75=43, 设DE =4x ,则EC =3x ,由勾股定理可得CD =5x ,又CD =45,即5x =45,∴x =9,∴EC =3x =27,DE =4x =36=FB ,∴BE=BC+EC=60+27=87=DF,在Rt ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.【点睛】本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.10.若关于x的一元一次不等式结3132xxx a-⎧≤+⎪⎨⎪≤⎩的解集为x a≤;且关于y的分式方程34122y a yy y--+=--有正整数解,则所有满足条件的整数a的值之积是()A. 7B. -14C. 28D. -56【答案】A【解析】【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【详解】解:解不等式3132xx-≤+,解得x≤7,∴不等式组整理的7 xx a≤⎧⎨≤⎩,由解集为x≤a,得到a≤7,分式方程去分母得:y−a+3y−4=y−2,即3y−2=a,解得:y=+23a,由y为正整数解且y≠2,得到a=1,7,1×7=7,故选:A.【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED ,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG 的面积为2,则点F 到BC 的距离为( )5 25 45 43 【答案】B【解析】【分析】 首先求出ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12•BD •h =12•BF •DF ,求出BD 即可解决问题. 【详解】解:∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4, 由翻折可知,ADB ≌ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°, ∴12•(AF +DF )•BF =4, ∴12•(3+DF )•2=4, ∴DF =1,∴DB 22BF DF +2212+5设点F 到BD 的距离为h , 则12•BD •h =12•BF •DF , ∴h 25, 故选:B .【点睛】本题考查翻折变换,三角形的面积,勾股定理二次根式的运算等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.12.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A. 6B. 12C. 18D. 24【答案】B【解析】【分析】 先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a ),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a ×k a=18,求解即可. 【详解】解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为(2a ,2k a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a ×k a=18, 解得k=12,故选:B .【点睛】本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.二、填空题13.计算:0(1)|2|π-+-=__________.【答案】3【解析】【分析】根据零指数幂及绝对值计算即可.【详解】0(1)|2|1+2=3π-+-=;故答案为3.【点睛】本题比较简单,考查含零指数幂的简单实数混合运算,熟记公式0(01)x x =≠是关键. 14.若多边形的内角和是外角和的2倍,则该多边形是_____边形.【答案】六【解析】【分析】设这个多边形的边数为n ,根据内角和公式和外角和公式,列出等式求解即可.【详解】设这个多边形的边数为n ,∴()21802360n-⋅︒=⨯︒,解得:6n=,故答案为:六.【点睛】本题考查了多边形的内角和与外角和,是基础知识要熟练掌握内角和公式和外角和公式.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.【答案】3 16【解析】【分析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=3 16.故答案为:3 16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)【答案】4π-【解析】【分析】根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积. 【详解】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2, ∴=22AC , ∵点O 是AC 的中点, ∴OA=2, ∴290(2)3602S ππ︒==︒扇形,∴S 2=4-ABCD S S π=-阴影扇形, 故答案为:4π-.【点睛】本题考查了求阴影部分面积,扇形面积公式,正方形的性质,解题的关键是观察图形得出S 2ABCD S S =-阴影扇形.17.A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.【答案】()4,160 【解析】 【分析】先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案.【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇 点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地 则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯= 即点E 的坐标为(4,160) 故答案为:(4,160).【点睛】本题考查了一次函数的实际应用,读懂函数图象是解题关键.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________. 【答案】18【解析】 【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案. 【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为25m ,设7月份外卖还需增加的营业额为x . ∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7, ∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a ,由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ , 解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208ax a a a a ==++, 故答案为:18. 【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.三、解答题19.计算:(1)2()(2)x y x x y ++-; (2)2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 【答案】(1)222x y +;(2)33m - 【解析】 【分析】(1)利用完全平方公式和整式乘法展开后合并同类型即可; (2)先把分子分母因式分解,然后按顺序计算即可; 【详解】(1)解:原式22222x xy y x xy =+++-222x y =+(2)解:原式23(3)3(3)(3)m m m m m m +-+=⋅++-23(3)3(3)(3)m m m m +=⋅++- 33m =-【点睛】本题考查整式的运算和分式的混合运算,熟记运算法则是解题的关键.20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息. 七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示: 年级 平均数 众数 中位数 8分及以上人数所占百分比七年级 7.5 a 7 45% 八年级 7.58bc八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?【答案】(1)7a =,7.5b =,50%c =;(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)估计参加此次测试活动成绩合格的人数有1080人 【解析】 【分析】(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a 的值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值; (2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论; (3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1200即可得出答案.【详解】解:(1)七年级20名学生的测试成绩的众数是:7, ∴7a =,由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, ∴7.5b =,八年级8分及以上人数有10人,所占百分比为:50% ∴50%c =,(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高; (3)七年级合格人数:18人, 八年级合格人数:18人,18181200100%108040+⨯⨯=人, 答:估计参加此次测试活动成绩合格的人数有1080人.【点睛】本题考查了平均数,众数,中位数,条形统计图等知识,熟练掌握平均数的求法,众数、中位数的概念是解决本题的关键.21.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠. (1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.【答案】(1)40ACB ∠=︒;(2)见解析 【解析】 【分析】(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.(2)证明()AEO CFO AAS 可得结论.【详解】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE , 40EAO,CA 平分DAE ∠,40DACEAO,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEOCFO,AOE COF ∠=∠,()AEOCFO AAS ,AE CF ∴=.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握相关的知识点.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题. (1)请把下表补充..完整,并在图中补全..该函数图象;(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( ) (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).【答案】(1)95-,95;(2)①× ②√ ③√;(3)x <−1或−0.3<x <1.8.【解析】 【分析】(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断; (3)根据图象求解即可. 【详解】解:(1)当x=-3时,2618911x y x -==++95=-, 当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形; 故答案为:×, ②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3; 故答案为:√ ,③观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<± 26211x x x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x =≈,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.【答案】(1)49不是“差一数”, 74是“差一数”,理由见解析;(2)314、329、344、359、374、389 【解析】 【分析】(1)直接根据“差一数”的定义计算即可;(2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”. 【详解】解:(1)∵49594÷=;493161÷=,∴49不是“差一数”, ∵745144÷=;743242÷=, ∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4, ∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399, ∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.【点睛】此题主要考查了带余数的除法运算,本题用逐步增加条件的方法依此找到满足条件的所有数是解决本题的关键.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A 、B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收人将增加20%9a ,求a 的值. 【答案】(1)A 品种去年平均亩产量是400、B 品种去年平均亩产量是500千克;(2)10. 【解析】 【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案; (2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩, 解得400500x y =⎧⎨=⎩.答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+⎪⎝⎭. 令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1 所以a %=0.1,所以a =10,答:a 的值为10.【点睛】本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.25.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.【答案】(1)241y x x =+-;(2)PAB △面积最大值为278;(3)存在,1234(12)(346)(346),(13)E E E E ---+----,,,,,,【解析】 【分析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解;(2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PABB A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可. 【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩ ∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-过点P 作x 轴得垂线与直线AB 交于点F设点()2,41P a a a +-,则(,1)F a a - 由铅垂定理可得1||2PAB B A S PF x x ∆=⋅- ()231412a a a =---+ ()2332a a =-- 23327228a ⎛⎫=-++ ⎪⎝⎭ ∴PAB △面积最大值为278(3)(3)抛物线的表达式为:y =x 2+4x−1=(x +2)2−5,则平移后的抛物线表达式为:y =x 2−5,联立上述两式并解得:14x y -⎧⎨-⎩==,故点C (−1,−4);设点D (−2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,−1)、(−1,−4);①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即−2+1=s 且m +3=t ①或−2−1=s 且m−3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =−1,t =2或−4(舍去−4),故点E (−1,2);联立②④并解得:s =-3,t =-4±6,故点E (-3,-46)或(-3,-6);②当BC 为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =−3,故点E (1,−3),综上,点E 的坐标为:(−1,2)或(346)--,,或(346)--,或(1,−3). ∴存在,1234(12)(346)(346),(13)E E E E ---+----,,,,,, 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.【答案】(1)证明见解析;(2)32BC =;(3)33CE +=【解析】【分析】 (1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,然后根据现有条件说明在Rt DCB △中,22225DE CD CE CD BD CD =++=,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC 中,推出222218254AG CG AC CD CD --=,即可得出答案; (3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,设PD 为a , 得出3BD a =,3AD BD a =,得出3a m a +=,解出a ,根据BD CE =即可得出答案.【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠,∵AB AC =,AD AE =,∴在ABD △和ACE △中BAD CAE AB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩,∴ABD ACE ∆≅∆,∴45ABD ACE ∠=∠=︒,∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE 中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒,∴AF DE ⊥,即Rt ADF 为等腰直角三角形, ∴22AF DF AD ==,∵CF DF =, ∴22CF AD =; (2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=, ∴454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,在Rt DCB △中,22225DE CD CE CD BD CD =+=+=,∵F 为DE 中点,∴152DE EF DE CD ===, 在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=,∴点A ,D ,C ,E 四点共圆,∵F 为DE 中点,∴F 为圆心,则CF AF =,在Rt AGC 中,∵CF AF =,∴F 为CG 中点,即CG 2CF 5CD ==,∴2222182542AG CG AC CD CD CD =-=-=, 即32BC AG =;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒,设PDa , ∴3BD a =,又3AD BD a =,∴3a m a +,=1)m aa=又BD CE∴CE.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,灵活运用所学知识是解本题的关键.。

2020年重庆市中考招生考试数学试题(B卷)(解析版)

2020年重庆市中考招生考试数学试题(B卷)(解析版)

A. 23 米
B. 24 米
C. 24.5 米
D. 25 米
2x 1 3x 2
10.若关于
x的一元一次不等式组x 2a Nhomakorabea1
的解集为 x≥5,且关于 y 的分式方程
y
y
2
2
a
y
1 有非负整数解,则符合条件的所有整数
a
的和为(

A. -1
B. -2
C. -3
D. 0
11.如图,在△ABC 中,AC= 2 2 ,∠ABC=45°,∠BAC=15°,将△ACB 沿直线 AC 翻折至△ABC 所在的平
上一动点,点 N 为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A, E,M,N 为顶点的四边形为平行四边形,若存在,直接写出点 N 的坐标;若不存在,请说明理由.
四、解答题(本大题 1 个小题,共 8 分) 26.△ABC 为等边三角形,AB=8,AD⊥BC 于点 D,E 为线段 AD 上一点,AE= 2 3 .以 AE 为边在直线 AD
4.如图,AB 是⊙O 的切线,A 为切点,连接 OA,OB,若∠B=35°,则∠AOB 的度数为( )
重庆市 2020 年初中学业水平暨高中招生考试数学试题(B 卷)
(全卷共四个大题,满分 150 分,考试时间 120 分钟)
参考公式:抛物线 y=ax2+bx+c(a≠0)的顶点坐标为( b ,4ac b2 ),对称轴公式为 x= b .
2a 4a
2a
一、选择题(本大题 12 个小题,每小题 4 分,共 48 分)
为 2510 元,第三时段返现金额比第一时段多 420 元,则第二时段返现金额为____元.

2023年重庆市中考数学试卷(B卷)含答案解析

2023年重庆市中考数学试卷(B卷)含答案解析

绝密★启用前2023年重庆市中考数学试卷(B卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 4的相反数是( )A. 14B. −14C. −4D. 42.四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.3.如图,直线a,b被直线c所截,若a//b,∠1=63°,则∠2的度数为( )A. 27°B. 53°C. 63°D. 117°4.如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.55. 反比例函数y=6的图象一定经过的点是( )xA. (−3,2)B. (2,−3)C. (−2,−4)D. (2,3)6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 267. 估计√ 5×(√ 6)的值应在( )√ 5A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间8. 如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A. 30°B. 40°C. 50°D. 60°9.如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为( )A. 2B. √ 3C. 1D. √ 210. 在多项式x−y−z−m−n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x−y−|z−m|−n=x−y−z+m−n,|x−y|−z−|m−n|=x−y−z−m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题(本大题共8小题,共32.0分)11. 计算:|−5|+(2−√ 3)0=______ .12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是______ .13. 若七边形的内角中有一个角为100°,则其余六个内角之和为______ .14. 如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为______ .15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .16.如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为______ (结果保留π).17. 若关于x的不等式组{x+23>x2+14x+a<x−1的解集为x<−2,且关于y的分式方程a+2y−1+y+21−y=2的解为正数,则所有满足条件的整数a的值之和为______ .18. 对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7−1=6,3−1=2,∴7311是“天真数”;四位数8421,∵8−1≠6,∴8421不是“天真数”,则最小的“天真数”为______ ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a−5,若P(M)Q(M)能被10整除,则满足条件的M的最大值为______ .三、解答题(本大题共8小题,共78.0分。

重庆市b卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

重庆市b卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

重庆市B卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.因式分解的应用(共2小题)1.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b >c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.2.(2021•重庆)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”.例如:m=3507,因为3+7=2×(5+0),所以3507是“共生数”;m=4135,因为4+5≠2×(1+3),所以4135不是“共生数”.(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记F(n)=.求满足F(n)各数位上的数字之和是偶数的所有n.二.一元二次方程的应用(共1小题)3.(2021•重庆)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份.为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低a%.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加a%,这两种小面的总销售额在4月的基础上增加a%.求a的值.三.分式方程的应用(共1小题)4.(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?四.反比例函数与一次函数的交点问题(共1小题)5.(2021•重庆)探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值:m= ,a= ,b= ;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: ;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式x+|﹣2x+6|+m>的解集.五.二次函数综合题(共3小题)6.(2023•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.7.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D的坐标的过程写出来.8.(2021•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A (﹣1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求△PAD面积的最大值.(3)在(2)的条件下,将抛物线y=ax2+bx﹣4(a≠0)沿射线AD平移4个单位,得到新的抛物线y1,点E为点P的对应点,点F为y1的对称轴上任意一点,在y1上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.六.作图—基本作图(共1小题)9.(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CFA中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴① .∵EF∥BC,∴② .又∵③ ,∴△ADC≌△CFA(AAS).同理可得:④ .S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.七.几何变换综合题(共3小题)10.(2023•重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.11.(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.12.(2021•重庆)在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH=BF;(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP+MP最小时,直接写出△DPN的面积.13.(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)重庆市B卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.因式分解的应用(共2小题)1.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b >c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.【答案】(1)357不是“和倍数”;441是9的“和倍数”;(2)732或372或516或156.【解答】解:(1)∵357÷(3+5+7)=357÷15=23……12,∴357不是“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”;(2)由题意得:a+b+c=12,a>b>c,由题意得:F(A)=,G(A)=,∴===,∵a+c=12﹣b,为整数,∴====7+(1﹣b),∵1<b<9,∴b=3,5,7,∴a+c=9,7,5,①当b=3,a+c=9时,(舍),,则A=732或372;②当b=5,a+c=7时,,则A=516或156;③当b=7,a+c=5时,此种情况没有符合的值;综上,满足条件的所有数A为:732或372或516或156.2.(2021•重庆)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”.例如:m=3507,因为3+7=2×(5+0),所以3507是“共生数”;m=4135,因为4+5≠2×(1+3),所以4135不是“共生数”.(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记F(n)=.求满足F(n)各数位上的数字之和是偶数的所有n.【答案】(1)5313是“共生数”,6437不是“共生数”;(2)2148或3069.【解答】解:(1)5313是“共生数”,6437不是“共生数”,∵5+3=2×(3+1),∴5313是“共生数”,∵6+7≠2×(3+4),∴6437不是“共生数”;(2)∵n是“共生数”,根据题意,个位上的数字要大于百位上的数字,设n的千位上的数字为a,则十位上的数字为2a,(1≤a≤4),设n的百位上的数字为b,∵个位和百位都是0﹣9的数字,∴个位上的数字为9﹣b,且9﹣b>b,∴0≤b≤4,∴n=1000a+100b+20a+9﹣b,∴F(n)==340a+33b+3,由于n是“共生数”,∴a+9﹣b=2×(2a+b),即a+b=3,可能的情况有:,当a=1,b=2时,n的值为1227,则F(n)的值为409,各数位上数字之和不是偶数,舍去,当a=2,b=1时,n的值为2148,则F(n)的值为716,各数位上数字之和是偶数,当a=3,b=0时,n的值为3069,则F(n)的值为1023,各数位上数字之和是偶数,∴n的值是2148或3069.二.一元二次方程的应用(共1小题)3.(2021•重庆)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份.为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低a%.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加a%,这两种小面的总销售额在4月的基础上增加a%.求a的值.【答案】(1)每份“堂食”小面的价格为7元,每份“生食”小面的价格为5元;(2)a=8.【解答】解:(1)设每份“堂食”小面的价格为x元,每份“生食”小面的价格为y元,根据题意得:,解得:,答:每份“堂食”小面的价格为7元,每份“生食”小面的价格为5元;(2)由题意得:4500×7+2500(1+a%)×5(1﹣a%)=(4500×7+2500×5)(1+ a%),设a%=m,则方程可化为:9×7+25(1+m)(1﹣m)=(9×7+25)(1+m),375m2﹣30m=0,m(25m﹣2)=0,解得:m1=0(舍),m2=,∴a=8.三.分式方程的应用(共1小题)4.(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)甲施工队增加人员后每天修建灌溉水渠100米;(2)乙施工队原来每天修建灌溉水渠90米.【解答】解:(1)设甲施工队增加人员后每天修建灌溉水渠x米,则原计划每天施工(x ﹣20)米,由题意可得:5(x﹣20)+2x=600,解得x=100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m米,则技术更新后每天修建水渠m(1+20%)=1.2m米,由题意可得:,解得m=90,经检验,m=90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.四.反比例函数与一次函数的交点问题(共1小题)5.(2021•重庆)探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值:m= ﹣2 ,a= 3 ,b= 4 ;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: 当x=3时函数有最小值y=1 ;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式x+|﹣2x+6|+m>的解集.【答案】(1)﹣2,3,4;(2)图象见解答过程,当x=3时函数有最小值y=1(答案不唯一);(3)x<0或x>4.【解答】解:(1)当x=0时,|6|+m=4,解得:m=﹣2,即函数解析式为:y=x+|﹣2x+6|﹣2,当x=1时,a=1+|﹣2+6|﹣2=3,当x=4时,b=4+|﹣2×4+6|﹣2=4,故答案为:﹣2,3,4;(2)图象如右图,根据图象可知当x=3时函数有最小值y=1;(3)根据当y=x+|﹣2x+6|﹣2的函数图象在函数y=的图象上方时,不等式x+|﹣2x+6|﹣2>成立,∴x<0或x>4.五.二次函数综合题(共3小题)6.(2023•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.【答案】(1)y=x2+x﹣3;(2)PD的最大值为:,此时点P(﹣2,﹣);(3)点Q的坐标为:(,)或(,5)或(,﹣1).【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=x2+x﹣3;(2)令y=x2+x﹣3=0,则x=﹣4或3,则点A(﹣4,0),由点A、C知,直线AC的表达式为:y=﹣x﹣3,过点P作y轴的平行线交AC于点H,则∠PHC=∠ACO,则tan∠PHC=tan∠ACO=,则sin∠PHC=,则PD=PH•sin∠PHC=PH,设点H(x,﹣x﹣3),则点P(x,x2+x﹣3),则PD=PH=(﹣x﹣3﹣x2﹣x+3)=﹣(x+2)2+,即PD的最大值为:,此时点P(﹣2,﹣);(3)平移后的抛物线的表达式为:y=(x﹣5)2+(x﹣5)﹣3=x2﹣x+2,则点F(0,2),设点Q(,m),则QF2=()2+(m﹣2)2,QE2=+(m+)2,EF2=9+,当QE=QF时,则()2+(m﹣2)2=+(m+)2,解得:m=,则点Q的坐标为(,);当QF=EF时,则()2+(m﹣2)2=9+,解得:m=5或﹣1,则点Q的坐标为:(,5)或(,﹣1);综上,点Q的坐标为:(,)或(,5)或(,﹣1).7.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D的坐标的过程写出来.【答案】(1)y=﹣;(2)最大值为,此时P(1,);(3)D(4,)或(4,﹣)或(4,).【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B (0,3).∴,∴.∴抛物线的函数表达式为y=﹣;(2)∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得,AB=5,∵PQ⊥OA,∴PQ∥OB,∴△AQM∽△AOB,∴MQ:AQ:AM=3:4:5,∴AM=,,∴PM+,∵B(0,3),A(4,0),∴l AB:y=﹣,∴设P(m,﹣),M(m,﹣),Q(m,0),∴PM+2MQ=﹣=﹣,∵﹣,∴开口向下,0<m<4,∴当m=1时,PM+的最大值为,此时P(1,);(3)由y=﹣知,对称轴x=,∴P'(2,),∵直线l:x=4,∴抛物线向右平移个单位,∴平移后抛物线解析式为y'=﹣,设D(4,t),C(c,﹣),①AP'与DC为对角线时,,∴,∴D(4,),②P'D与AC为对角线时,,∴,∴D(4,﹣),③AD与P'C为对角线时,,∴,∴D(4,),综上:D(4,)或(4,﹣)或(4,).8.(2021•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A (﹣1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求△PAD面积的最大值.(3)在(2)的条件下,将抛物线y=ax2+bx﹣4(a≠0)沿射线AD平移4个单位,得到新的抛物线y1,点E为点P的对应点,点F为y1的对称轴上任意一点,在y1上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.【答案】(1)y=x2﹣3x﹣4;(2)8;(3)G()或G()或G().【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣4得,∴,∴y=x2﹣3x﹣4,(2)当x=0时,y=﹣4,∴点C(0,﹣4),∵点D与点C关于直线l对称,且对称轴为直线x=,∴D(3,﹣4),∵A(﹣1,0),∴直线AD的函数关系式为:y=﹣x﹣1,设P(m,m2﹣3m﹣4),作PH∥y轴交直线AD于H,∴H(m,﹣m﹣1),∴PH=﹣m﹣1﹣(m2﹣3m﹣4)=﹣m2+2m+3,∴S△APD=S△APH+S△DPH==2(﹣m2+2m+3)=﹣2m2+4m+6,当m=﹣=1时,S△APD最大为8,(3)∵直线AD与x轴正方向夹角为45°,∴沿AD方向平移,实际可看成向右平移4个单位,再向下平移4个单位,∵P(1,﹣6),∴E(5,﹣10),抛物线y=x2﹣3x﹣4平移后y1=x2﹣11x+20,∴抛物线y1的对称轴为:直线x=,当DE为平行四边形的边时:若D平移到对称轴上F点,则G的横坐标为,代入y1=x2﹣11x+20得y=﹣,∴,若E平移到对称轴上F点,则G的横坐标为,代入y1=x2﹣11x+20得y=,∴,若DE为平行四边形的对角线时,若E平移到对称轴上F点,则G平移到D点,∴G的横坐标为,代入y1=x2﹣11x+20得y=﹣,∴∴G()或G()或G(),六.作图—基本作图(共1小题)9.(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CFA中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴① ∠ADC=∠F .∵EF∥BC,∴② ∠1=∠2 .又∵③ AC=AC ,∴△ADC≌△CFA(AAS).同理可得:④ △ADB≌△BEA(AAS) .S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.【答案】①∠ADC=∠F,②∠1=∠2,③AC=AC,④△ADB≌△BEA(AAS).【解答】证明:∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴∠ADC=∠F,∵EF∥BC,∴∠1=∠2,∵AC=AC,在△ADC与△CFA中,∴△ADC≌△CFA(AAS).同理可得:④△ADB≌△BEA(AAS),∴S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.故答案为:①∠ADC=∠F,②∠1=∠2,③AC=AC,④△ADB≌△BEA(AAS).七.几何变换综合题(共3小题)10.(2023•重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.【答案】(1)证明过程见解析;(2)证明过程见解析;(3)+2.【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,AC=BC,∵将CE绕点C顺时针旋转60°得到线段CF,∴CE=CF,∠ECF=60°,∵△ABC是等边三角形,∴∠BCA=∠ECF,∴∠BCE=∠ACF,∴△BCE≌△ACF(SAS),∴∠CBE=∠CAF;(2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,∵△ABC是等边三角形,∴AB=AC=BC,∵AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴EB=EC,又∵△BCE≌△ACF,∴AF=BE,CF=CE,∴AF=CF,∴F在AC的垂直平分线上,∵AB=BC,∴B在AC的垂直平分线上,∴BF垂直平分AC,∴AC⊥BF,AG=CG=AC,∴∠AGF=90°,又∵DG=AC=CG,∠ACD=60°,∴△DCG是等边三角形,∴∠CGD=∠CDG=60°,∴∠AGH=∠DGC=60°,∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,∴∠HKF=∠ADK=30°,∴∠FKG=∠KGF=30°,∴FG=FK,在Rt△CED与Rt△CGF中,,∴Rt△CED≌Rt△CFG,∴GF=ED,∴ED=FK,∴四边形EDFK是平行四边形,∴EH=HF;解法二:连接CH,证明∠CHE=90°,可得结论.(3)解:依题意,如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,∴∠EDG=30°,∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,∴∠PAE=∠QDE=60°,∴△ADR是等边三角形,∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,由(2)可得Rt△CED≌Rt△CFG,∴DE=GF,∴DE=DQ,∴GF=DQ,∵∠GBC=∠QDC=30°,∴GF∥DQ,∴四边形GDQF是平行四边形,∴QF=DG=AC=2,由(2)可知G是AC的中点,则GA=GD,∴∠GAD=∠GDA=30°,∴∠AGD=120°,∵折叠,∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,∴∠PGQ=360°﹣2∠AGD=120°,又PG=GE=GQ,∴PQ=PG=GQ,∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,∴GQ=GC=DC=1,∴PQ=,∴PQ+QF=+2.解法二:由两次翻折,推得∠PGQ=360°﹣240°=120°,则PQ=PG=EG,由QF=DG=2,推出PQ1+QF的最小值,只需要求出EG的最小值,当EG⊥AD时,EG的值最小,最小值为1,∴PQ+QF的最小值为+2.11.(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.【答案】(1)2;(2)证明见解答;(3)﹣.【解答】(1)解:如图1,连接CP,由旋转知,CF=CG,∠FCG=90°,∴△FCG为等腰直角三角形,∵点P是FG的中点,∴CP⊥FG,∵点D是BC的中点,∴DP=BC,在Rt△ABC中,AB=AC=2,∴BC=AB=4,∴DP=2;(2)证明:如图2,过点E作EH⊥AE交AD的延长线于H,∴∠AEH=90°,由旋转知,EG=EF,∠FEG=90°,∴∠FEG=∠AEH,∴∠AEG=∠HEF,∵AB=AC,点D是BC的中点,∴∠BAD=∠CAD=∠BAC=45°,∴∠H=90°﹣∠CAD=45°=∠CAD,∴AE=HE,∴△EGA≌△EFH(SAS),∴AG=FH,∠EAG=∠H=45°,∴∠EAG=∠BAD=45°,∵AB⊥AC,HE⊥AC,∴AB∥HE,∴∠AMF=∠HEF,∵△EGA≌△EFH,∴∠AEG=∠HEF,∵∠AGN=∠AEG,∴∠AGN=∠HEF,∴∠AGN=∠AMF,∵GN=MF,∴△AGN≌△AMF(AAS),∴AG=AM,∵AG=FH,∴AM=FH,∴AF+AM=AF+FH=AH=AE;(3)解:∵点E是AC的中点,∴AE=AC=,根据勾股定理得,BE==,由折叠知,BE=B'E=,∴点B'是以点E为圆心,为半径的圆上,由旋转知,EF=EG,∴点G在点A右侧过点A与AD垂直且等长的线段上,∴B'G的最小值为B'E﹣EG,要B'G最小,则EG最大,即EF最大,∵点F在AD上,∴点F在点A或点D时,EF最大,最大值为,∴线段B′G的长度的最小值﹣.12.(2021•重庆)在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH=BF;(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP+MP最小时,直接写出△DPN的面积.【答案】(1)①;②证明见解答过程;(2).【解答】解:(1)①过D作DH⊥GC于H,如图:∵线段EF绕点E逆时针旋转60°得到线段EG,点E与点B重合,且GF的延长线过点C,∴BG=BF,∠FBG=60°,∴△BGF是等边三角形,∴∠BFG=∠DFC=60°,BF=GF,∵等边△ABC,AB=6,BD⊥AC,∴∠DCF=180°﹣∠BDC﹣∠DFC=30°,∠DBC=∠ABC=30°,CD=AC=AB =3,∴∠BCG=∠ACB﹣∠DCF=30°,∴∠BCG=∠DBC,∴BF=CF,∴GF=CF,Rt△FDC中,CF===2,∴GF=2,Rt△CDH中,DH=CD•sin30°=,CH=CD•cos30°=,∴FH=CF﹣CH=,∴GH=GF+FH=,Rt△GHD中,DG==;②过E作EP⊥AB交BD于P,过H作MH⊥BC交BD于M,连接PG,作BP中点N,连接EN,如图:∵EF绕点E逆时针旋转60°得到线段EG,∴△EGF是等边三角形,∴∠EFG=∠EGF=∠GEF=60°,∠EFH=120°,EF=GF,∵△ABC是等边三角形,∴∠ABC=60°,∴∠ABC+∠EFH=180°,∴B、E、F、H共圆,∴∠FBH=∠FEH,而△ABC是等边三角形,BD⊥AC,∴∠DBC=∠ABD=30°,即∠FBH=30°,∴∠FEH=30°,∴∠FHE=180°﹣∠EFH﹣∠FEH=30°,∴EF=HF=GF①,∵EP⊥AB,∠ABD=30°,∴∠EPB=60°,∠EPF=120°,∴∠EPF+∠EGF=180°,∴E、P、F、G共圆,∴∠GPF=∠GEF=60°,∵MH⊥BC,∠DBC=30°,∴∠BMH=60°,∴∠BMH=∠GPF②,而∠GFP=∠HFM③,由①②③得△GFP≌△HFM(AAS),∴PF=FM,∵EP⊥AB,BP中点N,∠ABD=30°,∴EP=BP=BN=NP,∴PF+NP=FM+BN,∴NF=BM,Rt△MHB中,MH=BM,∴NF=MH,∴NF+BN=MH+EP,即BF=MH+EP,Rt△BEP中,EP=BE•tan30°=BE,Rt△MHB中,MH=BH•tan30°=BH,∴BF=BE+BH,∴BE+BH=BF;补充方法:构造等腰△BFM,使∠BFM=∠EFH=120°,且BF=MF,如图:∴∠FBM=∠FBH=30°,∴BM与BH共线,可证△BEF≌△MHF(SAS),∴BE+BH=HM+BH=BM,而∠BFM=120°,且BF=MF,可得BM=BF,∴BE+BH=BF;(2)以M为顶点,MP为一边,作∠PML=30°,ML交BD于G,过P作PH⊥ML于H,设MP交BD于K,如图:Rt△PMH中,HP=MP,∴NP+MP最小即是NP+HP最小,此时N、P、H共线,∵将线段EF绕点E顺时针旋转60°得到线段EP,∴F在射线QF上运动,则P在射线MP上运动,根据“瓜豆原理”,F为主动点,P是从动点,E为定点,∠FEP=60°,则F、P轨迹的夹角∠QKP=∠FEP=60°,∴∠BKM=60°,∵∠ABD=30°,∴∠BMK=90°,∵∠PML=30°,∴∠BML=60°,∴∠BML=∠A,∴ML∥AC,∴∠HNA=180°﹣∠PHM=90°,而BD⊥AC,∴∠BDC=∠HNA=∠PHM=90°,∴四边形GHND是矩形,∵等边△ABC中,AB=6,BD⊥AC,∴CD=3,又DN=2NC,∴DN=GH=2,∵等边△ABC中,AB=6,点E为AB中点时,点M为BE中点,∴BM=,BD=AB•sin A=6×sin60°=3,Rt△BGM中,MG=BM=,BG=BM•cos30°=,∴MH=MG+GH=,GD=BD﹣BG=,Rt△MHP中,HP=MH•tan30°=,∴PN=HN﹣HP=GD﹣HP=,∴S△DPN=PN•DN=.八.解直角三角形的应用-方向角问题(共1小题)13.(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)【答案】(1)1559米;(2)快艇能在5分钟内将该游客送上救援船.【解答】解:(1)如图,延长CB到D,则CD⊥AD于点D,根据题意可知:∠NAC=∠CAB=30°,BC=900米,BC∥AN,∴∠C=∠NAC=30°=∠BAD,∴AB=BC=900米,∵∠BAD=30°,∴BD=450米,∴AD=BD=450(米),∴AC=2AD=900≈1559(米)答:湖岸A与码头C的距离约为1559米;(2)设快艇在x分钟内将该游客送上救援船,∵救援船的平均速度为150米/分,快艇的平均速度为400米/分,∴150x+(400x﹣900)=1559,∴x≈4.5,答:快艇能在5分钟内将该游客送上救援船.。

2022年重庆市中考数学试题(a卷)

2022年重庆市中考数学试题(a卷)

2022年重庆市中考数学试题(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的相反数是()A.﹣5B.5C.﹣D.2.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°4.(4分)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m 5.(4分)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.166.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.417.(4分)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.(4分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(4分)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°10.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC =3,则AB的长度是()A.3B.4C.3D.411.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26B.﹣24C.﹣15D.﹣13 12.(4分)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z ﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:|﹣4|+(3﹣π)0=.14.(4分)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.15.(4分)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)16.(4分)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、答案题:(本大题2个小题,每小题8分,共16分)答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将答案过程书写在答题卡中对应的位置上.17.(8分)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.18.(8分)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.四、答案题:(本大题7个小题,每小题10分,共70分)答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将答案过程书写在对应的位置上.19.(10分)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,答案下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.(10分)已知一次函数y=kx+b(k≠0)的图象与反比例函数y =的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC 的面积.21.(10分)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.22.(10分)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)23.(10分)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P(M)均是整数时,求出所有满足条件的M.24.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD 的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N 的坐标的其中一种情况的过程.Ⅷ25.(10分)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF 的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC 所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.。

2024年重庆市中考数学试卷正式版含答案解析

2024年重庆市中考数学试卷正式版含答案解析

绝密★启用前2024年重庆市中考数学试卷(A卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列四个数中,最小的数是( )A. −2B. 0C. 3D. −122.下列四种化学仪器的示意图中,是轴对称图形的是( )A. B. C. D.3.已知点(−3,2)在反比例函数y=k(k≠0)的图象上,则k的值为( )xA. −3B. 3C. −6D. 64.如图,AB//CD,∠1=65°,则∠2的度数是( )A. 105°B. 115°C. 125°D. 135°5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A. 1:3B. 1:4C. 1:6D. 1:96.烷烃是一类由碳、氢元素组成的有机化合物质,如图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 267.已知m=√ 27−√ 3,则实数m的范围是( )A. 2<m<3B. 3<m<4C. 4<m<5D. 5<m<68.如图,在矩形ABCD中,分别以点A和C为圆心,AD长为半径画弧,两弧有且仅有一个公共点.若AD=4,则图中阴影部分的面积为( )A. 32−8πB. 16√ 3−4πC. 32−4πD. 16√ 3−8π9.如图,在正方形ABCD的边CD上有一点E,连接AE,把AE绕点E逆时的值为针旋转90°,得到FE,连接CF并延长与AB的延长线交于点G.则FGCE( )A. √ 2B. √ 3C. 3√ 22D. 3√ 3210.已知整式M:a n x n+a n−1x n−1+⋯+a1x+a0,其中n,a n−1,…,a0为自然数,a n为正整数,且n+a n+a n−1+⋯+a1+a0=5.下列说法:①满足条件的整式M中有5个单项式;②不存在任何一个n,使得满足条件的整式M有且仅有3个;③满足条件的整式M共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3第II卷(非选择题)二、填空题:本题共8小题,每小题4分,共32分。

2019年重庆市中考数学试卷(a卷)(附答案,解析)

2019年重庆市中考数学试卷(a卷)(附答案,解析)

2019年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)(2019•重庆)下列各数中,比1-小的数是()A.2B.1C.0D.2-2.(4分)(2019•重庆)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)(2019•重庆)如图,ABO CDODO=,2BO=,3CD=,则AB的长是()∆∆∽,若6A.2B.3C.4D.54.(4分)(2019•重庆)如图,AB是O的直径,AC是O的切线,A为切点,BC与O交于点D,连结OD.若50∠的度数为()∠=︒,则AODCA.40︒B.50︒C.80︒D.100︒5.(4分)(2019•重庆)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形6.(4分)(2019•重庆)估计1(2362)3+⨯的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间7.(4分)(2019•重庆)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 8.(4分)(2019•重庆)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =9.(4分)(2019•重庆)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线//BD x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E .若点(2,0)A ,(0,4)D ,则k 的值为( )A .16B .20C .32D .4010.(4分)(2019•重庆)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)1:2.4i =的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离26AC =米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角48AED ∠=︒(古树CD与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( ) (参考数据:sin480.73︒≈,cos480.67︒≈,tan 48 1.11)︒≈A .17.0米B .21.9米C .23.3米D .33.3米11.(4分)(2019•重庆)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩的解集是x a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .612.(4分)(2019•重庆)如图,在ABC ∆中,D 是AC 边上的中点,连结BD ,把BDC ∆沿BD 翻折,得到BDC '∆,DC '与AB 交于点E ,连结AC ',若2AD AC ='=,3BD =,则点D 到BC '的距离为( )A 33B .3217C 7D 13二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2019•重庆)计算:011(3)()2π--+= 14.(4分)(2019•重庆)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .15.(4分)(2019•重庆)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 .16.(4分)(2019•重庆)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,60ABC ∠=︒,2AB =,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留)π17.(4分)(2019•重庆)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 米.18.(4分)(2019•重庆)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)(2019•重庆)计算:(1)2()(2)x y y x y +-+(2)2949()22a a a a a --+÷-- 20.(10分)(2019•重庆)如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,连结AD ,BE 平分ABC ∠交AC 于点E ,过点E 作//EF BC 交AB 于点F .(1)若36C ∠=︒,求BAD ∠的度数;(2)求证:FB FE =.21.(10分)(2019•重庆)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100)x ,下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表 年级七年级 八年级 平均数92 92 中位数93 b 众数c 100 方差 5250.4 根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(90)x 的学生人数是多少?22.(10分)(2019•重庆)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数- “纯数”.定义;对于自然数n ,在计算(1)(2)n n n ++++时,各数位都不产生进位,则称这个自然数n 为“纯数”, 例如:32是”纯数”,因为计算323334++时,各数位都不产生进位;23不是“纯数”,因为计算232425++时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23.(10分)(2019•重庆)在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义(0)||(0)a a a a a ⎧=⎨-<⎩. 结合上面经历的学习过程,现在来解决下面的问题在函数|3|y kx b =-+中,当2x =时,4y =-;当0x =时,1y =-.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函132y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式1|3|32kx b x -+-的解集.24.(10分)(2019•重庆)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2%a ,每户物管费将会减少3%10a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6%a ,每户物管费将会减少1%4a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5%18a ,求a 的值. 25.(10分)(2019•重庆)如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM AE ⊥,垂足为E ,交CD 于点M ,AF BC ⊥,垂足为F ,BH AE ⊥,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP .(1)若24DP AP ==,17CP =,5CD =,求ACD ∆的面积.(2)若AE BN =,AN CE =,求证:22AD CM CE =+.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)(2019•重庆)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴交于点A ,B (点A 在点B 的左侧),交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN BD ⊥,交抛物线于点N (点N 在对称轴的右侧),过点N 作NH x ⊥轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求13HF FP PC ++的最小值; (2)在(1)中,当MN 取得最大值,13HF FP PC ++取得最小值时,把点P 2个单位得到点Q ,连结AQ ,把AOQ ∆绕点O 顺时针旋转一定的角度(0360)αα︒<<︒,得到△A OQ '',其中边A Q ''交坐标轴于点G .在旋转过程中,是否存在一点G ,使得Q Q OG ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.2019年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比1-小的数是()A.2B.1C.0D.2-【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:2102-<-<<,∴比1-小的数是2-,故选:D.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.3.(4分)如图,ABO CDO∆∆∽,若6BO=,3DO=,2CD=,则AB的长是()A.2B.3C.4D.5【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:ABO CDO∆∆∽,∴BO AB DO DC=,6BO=,3DO=,2CD=,∴632AB =,解得:4AB=.故选:C.4.(4分)如图,AB是O的直径,AC是O的切线,A为切点,BC与O交于点D,连结OD.若50C∠=︒,则AOD∠的度数为()A.40︒B.50︒C.80︒D.100︒【分析】由切线的性质得出90BAC∠=︒,求出40ABC∠=︒,由等腰三角形的性质得出40ODB ABC∠=∠=︒,再由三角形的外角性质即可得出结果.【解答】解:AC是O的切线,AB AC∴⊥,90BAC∴∠=︒,50C∠=︒,40ABC∴∠=︒,OD OB=,40ODB ABC∴∠=∠=︒,80AOD ODB ABC∴∠=∠+∠=︒;故选:C.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.6.(4分)估计()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:2=+2=+2=+4245<<,627∴<+,故选:C.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩.故选:A.8.(4分)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =【分析】根据题意一一计算即可判断.【解答】解:当1m =,1n =时,21213y m =+=+=,当1m =,0n =时,211y n =-=-,当1m =,2n =时,213y m =+=,当2m =,1n =时,211y n =-=,故选:D .9.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线//BD x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E .若点(2,0)A ,(0,4)D ,则k 的值为( )A .16B .20C .32D .40【分析】根据平行于x 轴的直线上任意两点纵坐标相同,可设(,4)B x .利用矩形的性质得出E 为BD 中点,90DAB ∠=︒.根据线段中点坐标公式得出1(2E x ,4). 由勾股定理得出222AD AB BD +=,列出方程2222224(2)4x x ++-+=,求出x ,得到E 点坐标,代入k y x=,利用待定系数法求出k .【解答】解://BD x 轴,(0,4)D , B ∴、D 两点纵坐标相同,都为4,∴可设(,4)B x .矩形ABCD 的对角线的交点为E ,E ∴为BD 中点,90DAB ∠=︒.1(2E x ∴,4). 90DAB ∠=︒,222AD AB BD ∴+=,(2,0)A ,(0,4)D ,(,4)B x ,2222224(2)4x x ∴++-+=,解得10x =,(5,4)E ∴.反比例函数(0,0)k y k x x=>>的图象经过点E , 5420k ∴=⨯=.故选:B .10.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)1:2.4i =的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离26AC =米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角48AED ∠=︒(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( )(参考数据:sin480.73︒≈,cos480.67︒≈,tan 48 1.11)︒≈A .17.0米B .21.9米C .23.3米D .33.3米【分析】如图,根据已知条件得到51:2.412CF AF ==,设5CF k =,12AF k =,根据勾股定理得到221326AC CF AF k =+==,求得10AF =,24CF =,得到62430EF =+=,根据三角函数的定义即可得到结论.【解答】解:如图,51:2.412CF AF ==, ∴设5CF k =,12AF k =,221326AC CF AF k ∴=+==,2k ∴=,10AF ∴=,24CF =,6AE =,62430EF ∴=+=,48DEF ∠=︒,tan 48 1.1130DF DF EF ∴︒===, 33.3DF ∴=,33.31023.3CD ∴=-=,答:古树CD 的高度约为23.3米,故选:C .11.(4分)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩的解集是x a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .6 【分析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩,再根据其解集是x a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可.【解答】解:由不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩得:5x a x ⎧⎨<⎩ 解集是x a ,5a ∴<;由关于y 的分式方程24111y a y y y---=--得241y a y y -+-=- 32a y +∴=, 有非负整数解,∴302a +, 3a ∴-,且3a =-,1a =-(舍,此时分式方程为增根),1a =,3a =它们的和为1.故选:B .12.(4分)如图,在ABC ∆中,D 是AC 边上的中点,连结BD ,把BDC ∆沿BD 翻折,得到BDC '∆,DC '与AB 交于点E ,连结AC ',若2AD AC ='=,3BD =,则点D 到BC '的距离为( )A 33B 321C 7D 13【分析】连接CC ',交BD 于点M ,过点D 作DH BC '⊥于点H ,由翻折知,BDC BDC '∆≅∆,BD 垂直平分CC ',证ADC '∆为等边三角形,利用解直角三角形求出1DM =,33C M DM '==2BM =,在Rt BMC '∆中,利用勾股定理求出BC '的长,在BDC '∆中利用面积法求出DH 的长.【解答】解:如图,连接CC ',交BD 于点M ,过点D 作DH BC '⊥于点H ,2AD AC ='=,D 是AC 边上的中点,2DC AD ∴==,由翻折知,BDC BDC '∆≅∆,BD 垂直平分CC ',2DC DC '∴==,BC BC '=,CM C M '=,2AD AC DC '∴='==,ADC '∴∆为等边三角形,60ADC AC D C AC '''∴∠=∠=∠=︒,DC DC '=,160302DCC DC C ''∴∠=∠=⨯︒=︒, 在Rt △C DM '中,30DC C '∠=︒,2DC '=,1DM ∴=,33C M DM '312BM BD DM ∴=-=-=,在Rt BMC '∆中,22222(3)7BC BM C M ''=++ 1122BDC S BC DH BD CM '∆'==,∴733DH =⨯,3217DH ∴=, 故选:B .二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:011(3)()2π--+= 3 【分析】根据零指数幂和负整数指数幂计算可得.【解答】解:原式123=+=,故答案为:3.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 72.5610⨯ .【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值是易错点,由于25600000有8位,所以可以确定817n =-=.【解答】解:725600000 2.5610=⨯.故答案为:72.5610⨯.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 15. 【分析】先画树状图展示所有30种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为61305=. 故答案为:15.16.(4分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,60ABC ∠=︒,2AB =,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 2233π- .(结果保留)π【分析】根据菱形的性质得到AC BD ⊥,1302ABO ABC ∠=∠=︒,120BAD BCD ∠=∠=︒,根据直角三角形的性质求出AC 、BD ,根据扇形面积公式、菱形面积公式计算即可.【解答】解:四边形ABCD 是菱形,AC BD ∴⊥,1302ABO ABC ∠=∠=︒,120BAD BCD ∠=∠=︒, 112AO AB ∴==, 由勾股定理得,223OB AB OA =-2AC ∴=,23BD =∴阴影部分的面积211201222322323603ππ⨯=⨯⨯⨯=, 故答案为:2233π. 17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 6000 米.【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【解答】解:由题意可得,甲的速度为:4000(1222)500÷--=米/分, 乙的速度为:400050025002100022+⨯-⨯=+米/分, 乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500(122)500250046000⨯--⨯+⨯=(米),故答案为:6000.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 3:20 .【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为()x y +,川香已种植面积13x 、贝母已种植面积14x ,黄连已种植面积512x 依题意列出方程组,用y 的代数式分别表示x 、y ,然后进行计算即可.【解答】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为()x y +,川香已种植面积13x 、贝母已种植面积14x ,黄连已种植面积512x 依题意可得,()5919121640191:3:43164x y x y x y y z x z ⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+= ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①② 由①得32x y =③, 将③代入②,38z y =,∴贝母的面积与该村种植这三种中药材的总面积之比3383202y z x y y y ===++, 故答案为3:20.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)2()(2)x y y x y +-+(2)2949()22a a a a a --+÷-- 【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)2()(2)x y y x y +-+22222x xy y xy y =++--2x =;(2)2949()22a a a a a --+÷-- (2)(94)22(3)(3)a a a a a a a -+--=-+- 2294(3)(3)a a a a a -+-=+- 2(3)(3)(3)a a a -=+- 33a a -=+. 20.(10分)如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,连结AD ,BE 平分ABC ∠交AC 于点E ,过点E 作//EF BC 交AB 于点F .(1)若36C ∠=︒,求BAD ∠的度数;(2)求证:FB FE =.【分析】(1)利用等腰三角形的三线合一的性质证明90ADB ∠=︒,再利用等腰三角形的性质求出ABC ∠即可解决问题.(2)只要证明FBE FEB ∠=∠即可解决问题.【解答】(1)解:AB AC =,C ABC ∴∠=∠,36C ∠=︒,36ABC ∴∠=︒,BD CD =,AB AC =,AD BC ∴⊥,90ADB ∴∠=︒,903654BAD ∴∠=︒-︒=︒.(2)证明:BE 平分ABC ∠, 12ABE CBE ABC ∴∠=∠=∠, //EF BC ,FEB CBE ∴∠=∠,FBE FEB ∴∠=∠,FB FE ∴=.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100)x ,下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级 七年级 八年级平均数92 92 中位数93 b 众数c 100 方差 5250.4 根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(90)x 的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)3(120%10%)1004010a =---⨯=, 八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,9494942b +∴==; 在七年级10名学生的竞赛成绩中99出现的次数最多,99c ∴=;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(90)x 的学生人数1372046820=⨯=人, 答:参加此次竞赛活动成绩优秀(90)x 的学生人数是468人.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数- “纯数”.定义;对于自然数n ,在计算(1)(2)n n n ++++时,各数位都不产生进位,则称这个自然数n 为“纯数”, 例如:32是”纯数”,因为计算323334++时,各数位都不产生进位;23不是“纯数”,因为计算232425++时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当2019n =时,12020n +=,22021n +=,个位是90110++=,需要进位,2019∴不是“纯数”; 当2020n =时,12021n +=,22022n +=,个位是0123++=,不需要进位,十位是2226++=,不需要进位,百位为0000++=,不需要进位,千位为2226++=,不需要进位,2020∴是“纯数”; (2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数是,只能是100,由上可得,不大于100的“纯数”的个数为39113++=,即不大于100的“纯数”的有13个.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义(0)||(0)a a a a a ⎧=⎨-<⎩. 结合上面经历的学习过程,现在来解决下面的问题在函数|3|y kxb =-+中,当2x =时,4y =-;当0x =时,1y =-.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函132y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式1|3|32kx b x -+-的解集.【分析】(1)根据在函数|3|y kx b =-+中,当2x =时,4y =-;当0x =时,1y =-,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质;(3)根据图象可以直接写出所求不等式的解集.【解答】解:(1)在函数|3|y kx b =-+中,当2x =时,4y =-;当0x =时,1y =-, ∴|23|4|3|1k b b -+=-⎧⎨-+=-⎩,得324k b ⎧=⎪⎨⎪=-⎩, ∴这个函数的表达式是3|3|42y x =--; (2)3|3|42y x =--, 37(2)231(2)2x x y x x ⎧-⎪⎪∴=⎨⎪--<⎪⎩, ∴函数372y x =-过点(2,4)-和点(4,1)-;函数312y x =--过点(0,1)-和点(2,2)-; 该函数的图象如右图所示,性质是当2x >时,y 随x 的增大而增大;(3)由函数图象可得,不等式1|3|32kx b x -+-的解集是14x .24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2%a,每户物管费将会减少3%10a;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6%a,每户物管费将会减少1%4a.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5%18a,求a的值.【分析】(1)设该小区有x套80平方米住宅,则50平方米住宅有2x套,根据物管费90000元,可列方程求解;(2)50平方米住宅有50040%200⨯=户参与活动一,80平方米住宅有25020%50⨯=户参与活动一;50平方米住宅每户所交物管费为3100(1%)10a-元,有200(12%)a+户参与活动二;80平方米住宅每户所交物管费为1160(1%)4a-元,有50(16%)a+户参与活动二.根据参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5%18a,列出方程求解即可.【解答】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50280)90000x x⨯+=,解得250x=答:该小区共有250套80平方米的住宅.(2)参与活动一:。

2021重庆市中考数学试题有答案(Word版)(共2套)

2021重庆市中考数学试题有答案(Word版)(共2套)

重庆市中考数学试题(一)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a --(,对称轴为2b x a=-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况 6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

若∠1=135°,则∠2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x == 9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D ,若∠AOC=80°,则∠ADB 的度数为( )6题图9题图A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。

2024年重庆市中考真题数学试卷(A卷)含答案解析

2024年重庆市中考真题数学试卷(A卷)含答案解析

2024年重庆市中考真题(A卷)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,最小的数是()A.2-B.0C.3D.1 2 -2.下列四种化学仪器的示意图中,是轴对称图形的是()A.B.C.D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C.3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .3-B .3C . 6-D .64.如图,AB CD ∥,165∠=︒,则2∠的度数是( )A .105︒B .115︒C .125︒D .135︒【答案】B【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠=∠=︒,由邻补角性质得23180∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵AB CD ∥,∴3165∠=∠=︒,∵23180∠+∠=︒,∴2115∠=︒,故选:B .5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A .1:3B .1:4C .1:6D .1:9【答案】D【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D .6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A .20B .22C .24D .26【答案】B【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7.已知m =m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π-B .4π-C .324π-D .8π-根据题意可得2AC AD =∵矩形ABCD ,∴AD BC =在Rt ABC △中,AB =9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )AB C D 由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA =∴D H ∠=∠,10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3【答案】D【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题11.计算:011(3)(2π--+= .12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .【答案】9【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为 .由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 .【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15.如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF = .【答案】3【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF = .DG = .∵以AB 为直径的O 与AC ∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是 .把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为 .三、解答题19.计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【详解】(1)根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE.(不写作法,保留作图痕迹)(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且⊥.求证:四边形AECF是菱形.EF AC证明:∵四边形ABCD是矩形,.∴AB CD∠=∠.∴①,OCF OAE∵点O是AC的中点,∴②.∴CFO AEO≅△△(AAS).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【详解】(1)解:如图所示,即为所求;(2)证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)(3)解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈,2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.∴90AEB CEB ∠=∠=︒,由题意可知:45GAB ∠=︒,∴45BAE ∠=︒,∴cos 40cos AE AB BAE =∠=⨯∴tan 202tan CE BE EBC =∠=25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.∴()4,0A -,设直线AC 的解析式为y =代入()4,0A -,得04m =-解得1m =,∴直线AC 的解析式为y =()当0y =时,046x =--,解得32x =-,∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ,∴OA OC =,∴45OAC OCA ∠=∠=︒,∵DR x ∥轴,26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.∵EFD BAC ∠∠=,BAC ∠∴60EFD ∠=︒∵1EFD BAD ∠=∠+∠=∠∴160α∠=︒-,∵,AB AC EFD BAC =∠=∠∴=45ABC ∠︒,由轴对称知EAB ∠=∠试题31设BAD BAE β∠=∠=,∴90DAC GAF ∠=∠=︒∴GAE EAF GAF ∠=∠-∠∵GE GA =,。

2022年重庆市中考数学试卷(A卷)及答案解析

2022年重庆市中考数学试卷(A卷)及答案解析

2022年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的相反数是()A.﹣5B.5C.﹣D.2.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°4.(4分)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m5.(4分)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.166.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.417.(4分)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.(4分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(4分)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°10.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O 于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3B.4C.3D.411.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26B.﹣24C.﹣15D.﹣1312.(4分)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:|﹣4|+(3﹣π)0=.14.(4分)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.15.(4分)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)16.(4分)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(8分)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.18.(8分)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E 作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.∴S△BCE四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.(10分)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.(10分)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.21.(10分)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.22.(10分)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C 的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)23.(10分)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P(M)均是整数时,求出所有满足条件的M.24.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.25.(10分)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.2022年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据两直线平行,同旁内角互补即可得出答案.【解答】解:∵AB∥CD,∴∠1+∠C=180°,∴∠1=180°﹣∠C=180°﹣50°=130°.故选:C.【点评】本题考查了平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.4.【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.【点评】本题考查了函数的图象,掌握函数的图象的最高点对应的函数值即为这只蝴蝶飞行的最高高度是解题的关键.5.【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF 的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.:C△DEF=2:3,∴C△ABC∵△ABC的周长为4,∴△DEF的周长是6,故选:B.【点评】本题考查位似变换,解答本题的关键是明确相似三角形的周长比等于相似比.6.【分析】根据图形的变化规律得出第n个图形中有4n+1个正方形即可.【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有4n+1个正方形是解题的关键.7.【分析】先计算出原式得6+,再根据无理数的估算可得答案.【解答】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.8.【分析】设该快递店揽件日平均增长率为x,关系式为:第三天揽件数=第一天揽件数×(1+揽件日平均增长率)2,把相关数值代入即可.【解答】解:设该快递店揽件日平均增长率为x,根据题意,可列方程:200(1+x)2=242,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.9.【分析】根据正方形的性质和全等三角形的判定和性质,可以得到∠ADF的度数,从而可以求得∠CDF的度数.【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.【点评】本题考查正方形的性质、全等三角形的判定与性质,解答本题的关键是求出∠ADF的度数.10.【分析】连接OB,则OB⊥AB,由勾股定理可知,AB2=OA2﹣OB2①,由OB和OD是半径,所以∠A=∠D=∠OBD,所以△OBD∽△BAD,AB=BD,可得BD2=OD•AD,所以OA2﹣OB2=OD•AD,设OD=x,则AD=2x+3,OB=x,OA=x+3,所以(x+3)2﹣x2=x(2x+3),求出x的值,即可求出OA和OB的长,进而求得AB的长.【解答】解:如图,连接OB,∵AB是⊙O的切线,B为切点,∴OB⊥AB,∴AB2=OA2﹣OB2,∵OB和OD是半径,∴∠D=∠OBD,∵∠A=∠D,∴∠A=∠D=∠OBD,∴△OBD∽△BAD,AB=BD,∴OD:BD=BD:AD,∴BD2=OD•AD,即OA2﹣OB2=OD•AD,设OD=x,∵AC=3,∴AD=2x+3,OB=x,OA=x+3,∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),∴OA=6,OB=3,∴AB2=OA2﹣OB2=27,∴AB=3,故选:C.【点评】本题主要考查圆的相关计算,涉及切线的定义,等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,得出△OBD∽△BAD是解题关键.11.【分析】解不等式组得出,结合题意得出a>﹣11,解分式方程得出y=,结合题意得出a=﹣8或﹣5,进而得出所有满足条件的整数a的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x≤﹣2,∴>﹣2,∴a>﹣11,解分式方程=﹣2得:y=,∵y是负整数且y≠﹣1,∴是负整数且≠﹣1,∴a=﹣8或﹣5,∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,故选:D.【点评】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.12.【分析】根据“加算操作”的定义可知,当只给x﹣y加括号时,和原式相等;因为不改变x,y的运算符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,因为z,m,n中只有加减两种运算,求出即可.【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.【点评】本题属于新定义问题,涉及整式的加减运算,加法原理与乘法原理的知识点和对加法原理的理解能力,利用原式中只有加减两种运算求解是解题关键.二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.【分析】根据绝对值的性质和零指数幂的性质计算即可.【解答】解:原式=4+1=5.故答案为:5.【点评】本题考查实数的运算,熟练掌握实数的运算法则是解题关键.14.【分析】根据题意列出图表得出所有等情况数和两次抽出的卡片上的字母相同的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:AB C A AA BA CA B AB BB CB CACBCCC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以抽取的两张卡片上的字母相同的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】根据菱形的性质求出对角线的长,进而求出菱形的面积,再根据扇形面积的计算方法求出扇形ADE 的面积,由S 阴影部分=S 菱形ABCD ﹣2S 扇形ADE 可得答案.【解答】解:如图,连接BD 交AC 于点O ,则AC ⊥BD ,∵四边形ABCD 是菱形,∠BAD =60°,∴∠BAC =∠ACD =30°,AB =BC =CD =DA =2,在Rt △AOB 中,AB =2,∠BAO =30°,∴BO =AB =1,AO =AB =,∴AC =2OA =2,BD =2BO =2,∴S 菱形ABCD =AC •BD =2,∴S 阴影部分=S 菱形ABCD ﹣2S 扇形ADE=2﹣=,故答案为:.【点评】本题考查扇形面积的计算,菱形的性质,掌握扇形面积的计算方法以及菱形的性质是正确解答的前提.16.【分析】分别设出甲乙丙三山的香樟数量、红枫数量及总量,根据甲乙两山红枫数量关系,得出甲乙丙三山香樟和红枫的数量(只含一个字母),进而根据“所花费用和预算费用相等”列出等式,从而求得香樟和红枫的单价之间关系,进一步求得结果.【解答】解:根据题意,如表格所设:香樟数量红枫数量总量甲4x5y﹣4x5y乙3x6y﹣3x6y丙9x7y﹣9x7y ∵甲、乙两山需红枫数量之比为2:3,∴,∴y=2x,故数量可如下表:香樟数量红枫数量总量甲4x6x10x乙3x9x12x丙9x5x14x 所以香樟的总量是16x,红枫的总量是20x,设香樟的单价为a,红枫的单价为b,由题意得,[16x•(1﹣6.25%)]•[a•(1﹣20%)]+20x•[b•(1+25%)]=16x•a+20x•b,∴12a+25b=16a+20b,∴4a=5b,设a=5k,b=4k,∴==,故答案为:.【点评】本题考查了用字母表示数,根据相等关系列方程进行化简等知识,解决问题的关键是设需要的量,列出关系式,进行数据处理.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.【分析】(1)先利用完全平方公式和单项式乘多项式法则计算,再合并同类项即可;(2)先计算括号内分式的减法,再将除法转化为乘法,继而约分即可.【解答】解:(1)原式=x2+4x+4+x2﹣4x=2x2+4;(2)原式=(﹣)÷=•=.【点评】本题主要考查分式的混合运算和整式的混合运算,解题的关键是掌握完全平方公式和单项式乘多项式法则及分式的混合运算顺序和运算法则.18.【分析】以C为圆心DE长为半径画弧交BC于F,连接CF,根据已知条件依次写出相应的解答过程即可.【解答】解:根据题意作图如下:由题知,在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD,∴S△BCE故答案为:①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE(AAS).【点评】本题主要考查全等三角形的判定和性质,熟练掌握三角形的判定和性质是解题的关键.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.【分析】(1)根据众数、中位数概念可求出a、b的值,由B型扫地机器人中“良好”等级占50%,“优秀”等级所占百分比为30%,可求出m的值;(2)用3000乘30%即可得答案;(3)比较A型、B型扫地机器人的除尘量平均数、众数可得答案.【解答】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数a=95,10台B型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占1﹣50%﹣30%=20%,即m=20,把B型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,∴b=90,故答案为:95,90,20;(2)该月B型扫地机器人“优秀”等级的台数3000×30%=900(台);(3)A型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A型号的扫地机器人除尘量的众数>B型号的扫地机器人除尘量的众数(理由不唯一).【点评】本题考查数据的整理,涉及众数、中位数、平均数、方差等,解题的关键是掌握数据收集与整理的相关概念.20.【分析】(1)根据反比例函数解析式求出A点和B点的坐标,然后用待定系数法求出一次函数的表达式即可;(2)根据图象直接得出不等式的解集即可;(3)根据对称求出C点坐标,根据A点、B点和C点坐标确定三角形的底和高,进而求出三角形的面积即可.【解答】解:(1)∵反比例函数y=的图象过点A(1,m),B(n,﹣2),∴,n=,解得m=4,n=﹣2,∴A(1,4),B(﹣2,﹣2),∵一次函数y=kx+b(k≠0)的图象过A点和B点,∴,解得,∴一次函数的表达式为y=2x+2,描点作图如下:(2)由(1)中的图象可得,不等式kx+b>的解集为:﹣2<x<0或x>1;(3)由题意作图如下:由图知△ABC中BC边上的高为6,BC=4,==12.∴S△ABC【点评】本题主要考查反比例函数和一次函数交点的问题,熟练掌握反比例函数的图象和性质,一次函数的图象和性质,三角形面积公式等知识是解题的关键.21.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.【点评】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出分式方程.22.【分析】(1)过D作DF⊥AE于F,由已知可得四边形ACDF是矩形,则DF=AC=200米,根据点D在点E的北偏东45°,即得DE=DF=200≈283(米);(2)由△DEF是等腰直角三角形,DE=283米,可得EF=DF=200米,而∠ABC=30°,即得AB=2AC=400米,BC==200米,又BD=100米,即可得经过点B到达点D路程为AB+BD=500米,CD=BC+BD=(200+100)米,从而可得经过点E到达点D路程为AE+DE=200﹣100+200≈529米,即可得答案.【解答】解:(1)过D作DF⊥AE于F,如图:由已知可得四边形ACDF是矩形,∴DF=AC=200米,∵点D在点E的北偏东45°,即∠DEF=45°,∴△DEF是等腰直角三角形,∴DE=DF=200≈283(米);(2)由(1)知△DEF是等腰直角三角形,DE=283米,∴EF=DF=200米,∵点B在点A的北偏东30°,即∠EAB=30°,∴∠ABC=30°,∵AC=200米,∴AB=2AC=400米,BC==200米,∵BD=100米,∴经过点B到达点D路程为AB+BD=400+100=500米,CD=BC+BD=(200+100)米,∴AF=CD=(200+100)米,∴AE=AF﹣EF=(200+100)﹣200=(200﹣100)米,∴经过点E到达点D路程为AE+DE=200﹣100+200≈529米,∵529>500,∴经过点B到达点D较近.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是掌握含30°、45°角的直角三角形三边的关系.23.【分析】(1)由“勾股和数”的定义可直接判断;(2)由题意可知,10a+b=c2+d2,且0<c2+d2<100,由G(M)为整数,可知c+d=9,再由P(M)为整数,可得c2+d2=81﹣2cd为3的倍数,由此可得出M的值.【解答】解:(1)∵22+22=8,8≠20,∴2022不是“勾股和数”,∵52+52=50,∴5055是“勾股和数”;(2)∵M为“勾股和数”,∴10a+b=c2+d2,∴0<c2+d2<100,∵G(M)为整数,为整数,∴c+d=9,∴P(M)==为整数,∴c2+d2=81﹣2cd为3的倍数,∴cd为3的倍数.∴①c=0,d=9或c=9,d=0,此时M=8109或8190;②c=3,d=6或c=6,d=3,此时M=4536或4563.【点评】本题以新定义为背景考查了因式分解的应用,考查了学生应用知识的能力,解题关键是要理解新定义,表示出“勾股和数”,能根据条件找出合适的“勾股和数”.24.【分析】(1)用待定系数法可得抛物线的函数表达式为y=x2﹣x﹣4;(2)设直线AB解析式为y=kx+t,把A(0,﹣4),B(4,0)代入可得直线AB解析式为y=x﹣4,设P(m,m2﹣m﹣4),则PD=﹣m2+m+4,可得C(m2﹣m,m2﹣m﹣4),PC=﹣m2+2m,则PC+PD=﹣m2+2m﹣m2+m+4=﹣m2+3m﹣4=﹣(m﹣)2+,利用二次函数性质可得PC+PD的最大值为,此时点P的坐标是(,﹣);(3)将抛物线y=x2﹣x﹣4向左平移5个单位得抛物线y=x2+4x+,对称轴是直线x=﹣4,即可得F(0,),E(﹣,﹣),设M(﹣4,n),N(r,r2+4r+),分三种情况:①当EF、MN为对角线时,EF、MN的中点重合,可得N(,);②当FM、EN为对角线时,FM、EN的中点重合,可得N(﹣,);③当FN、EM为对角线时,FN、EM的中点重合,可得N(﹣,).【解答】解:(1)把A(0,﹣4),B(4,0)代入y=x2+bx+c得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)设直线AB解析式为y=kx+t,把A(0,﹣4),B(4,0)代入得:,解得,∴直线AB解析式为y=x﹣4,设P(m,m2﹣m﹣4),则PD=﹣m2+m+4,在y=x﹣4中,令y=m2﹣m﹣4得x=m2﹣m,∴C(m2﹣m,m2﹣m﹣4),∴PC=m﹣(m2﹣m)=﹣m2+2m,∴PC+PD=﹣m2+2m﹣m2+m+4=﹣m2+3m+4=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PC+PD取最大值,此时m2﹣m﹣4=×()2﹣﹣4=﹣,∴P(,﹣);答:PC+PD的最大值为,此时点P的坐标是(,﹣);(3)∵将抛物线y=x2﹣x﹣4向左平移5个单位得抛物线y=(x+5)2﹣(x+5)﹣4=x2+4x+,∴新抛物线对称轴是直线x=﹣=﹣4,在y=x2+4x+中,令x=0得y=,∴F(0,),将P(,﹣)向左平移5个单位得E(﹣,﹣),设M(﹣4,n),N(r,r2+4r+),①当EF、MN为对角线时,EF、MN的中点重合,∴,解得r=,∴r2+4r+=×()2+4×+=,∴N(,);②当FM、EN为对角线时,FM、EN的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);③当FN、EM为对角线时,FN、EM的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);综上所述,N的坐标为:(,)或(﹣,)或(﹣,).【点评】本题考查二次函数的综合应用,涉及待定系数法,二次函数、一次函数图象上点坐标的特征,平行四边形的性质及应用等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.25.【分析】(1)如图1中,在射线CD上取一点K,使得CK=BE,证明△BCE≌△CBK (SAS),推出BK=CE,∠BEC=∠BKD,再证明∠ADF+∠AEF=180°,可得结论;(2)结论:BF+CF=2CN.首先证明∠BFC=120°.如图2﹣1中,延长CN到Q,使得NQ=CN,连接FQ,证明△CNM≌△QNF(SAS),推出FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,再证明△PFQ≌△PBC(SAS),推出PQ=PC,∠CPB=∠QPF=60°,推出△PCQ是等边三角形,可得结论;(3)由(2)可知∠BFC=120°,推出点F的运动轨迹为红色圆弧(如图3﹣1中),推出P,F,O三点共线时,PF的值最小,此时tan∠APK==,如图3﹣2中,过点H作HL⊥PK于点L,设HL=LK=2,PL=,PH=,KH=2,由等积法求出PQ,可得结论.【解答】解:(1)如图1中,在射线CD上取一点K,使得CK=BE,在△BCE和△CBK中,,∴△BCE≌△CBK(SAS),∴BK=CE,∠BEC=∠BKD,∵CE=BD,∴BD=BK,∴∠BKD=∠BDK=∠ADC=∠CEB,∵∠BEC+∠AEF=180°,∴∠ADF+∠AEF=180°,∴∠A+∠EFD=180°,∵∠A=60°,∴∠EFD=120°,∴∠CFE=180°﹣120°=60°;(2)结论:BF+CF=2CN.理由:如图2中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=CB,∠A=∠CBD=60°,∵AE=BD,∴△ABE≌△BCD(SAS),∴∠BCF=∠ABE,∴∠FBC+∠BCF=60°,∴∠BFC=120°,如图2﹣1中,延长CN到Q,使得NQ=CN,连接FQ,∵NM=NF,∠CNM=∠FNQ,CN=NQ,∴△CNM≌△QNF(SAS),∴FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,∴∠PBC+∠PCB=∠PCB+∠FCM=120°,∴∠PFQ=∠FCM=∠PBC,∵PB=PF,∴△PFQ≌△PBC(SAS),∴PQ=PC,∠CPB=∠QPF=60°,∴△PCQ是等边三角形,∴BF+CF=PC=QC=2CN.(3)由(2)可知∠BFC=120°,∴点F的运动轨迹为红色圆弧(如图3﹣1中),∴P,F,O三点共线时,PF的值最小,此时tan∠APK==,∴∠HPK>45°,∵QK⊥PF,∴∠PKH=∠QKH=45°,如图3﹣2中,过点H作HL⊥PK于点L,设PQ交KH题意点J,设HL=LK=2,PL=,PH=,KH=2,=•PK•HL=•KH•PJ,∵S△PHK∴PQ=2PJ=2×=2+∴==.【点评】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法解决问题,属于中考压轴题.。

重庆市中考数学标准测试卷含答案解析

重庆市中考数学标准测试卷含答案解析

重庆市中考数学标准测试卷一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a54.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>05.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°6.7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是357.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.409.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个11.观察图中菱形四个顶点所标的数字规律,可知数应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有(填写序号)16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是.17.已知正方形ABCD的边长为a,分别以B,D为圆心,以a为半径画弧,如图所示,则阴影部分的面积为.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=.三、解答题19.计算:(+1)0+(﹣1)+sin45°﹣()﹣1.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.重庆市中考数学标准测试卷参考答案与试题解析一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a5【考点】幂的乘方与积的乘方.【分析】根据积的乘方计算即可.【解答】解:(﹣a2)3=﹣a6,故选B.【点评】此题考查积的乘方,关键是根据法则进行计算.4.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>0【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式即可.【解答】解:根据二次根式有意义的条件可知,x,y满足≥0时,是二次根式.故选:C.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°【考点】平行线的判定与性质;垂线.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质求出∠BPF,即可求出∠2的度数.【解答】解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.【点评】本题考查了邻补角和平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.6.7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【考点】极差;加权平均数;中位数;众数.【分析】根据极差、众数、平均数和中位数的定义对每一项进行分析即可.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.【点评】本题考查了极差、众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;求极差的方法是用一组数据中的最大值减去最小值.7.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】新定义.【分析】根据规定5*(3x﹣1)可化成﹣,再根据解分式方程的步骤即可得出答案.【解答】解:根据题意得:﹣=2,解得:x=;经检验x=是原方程的解;故选B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.40【考点】矩形的性质.【分析】通过证得△AMN∽△DCM,对应边成比例即可求得.【解答】解:∵MN丄MC,tan∠MCN=,∴=,∵∠AMN+∠DMC=90°,∠AMN+∠ANM=90°,∴∠ANM=∠DMC,∵∠A=∠D=90°,∴△AMN∽△DCM,∴==,∵AN=2,∴MD=8,∵M为AD的中点,∴AM=8,∵△AMN∽△DCM,∴==,∴=,∴DC=32,∴AB=32.故选A.【点评】本题考查了矩形的性质,三角形相似的判定和性质以及解直角三角形等,证得三角形相似是解题的关键.9.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.【解答】解:∵A(4,0)、C(0,4),∴OA=AB=BC=OC=4,①当P由点A向点B运动,即0≤t≤4,S=OA•AP=2t;②当P由点A向点B运动,即4<t≤8,S=OA•AP=8;③当P由点A向点B运动,即8<t≤12,S=OA•AP=2(12﹣t)=﹣2t+24;结合图象可知,符合题意的是A.故选:A.【点评】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【专题】探究型.【分析】根据函数图象和题意,可以判断题目中①②③④的正确与否,从而解答本题,得到正确的选项.【解答】解:由题意和图象可知:x≤0时,N=y2,M=y1;0<x≤2时,N=y1,M=y2;x>2时,M=y1,N=y2∴当0<x<2时,N=y1,故①正确;由图象可知,N的值随x的增大而增大,x为全体实数,故②错误;因为二次函数的最大值为4,而M为y1,y2中的较小值,故M的最大值为4,故③正确;由图象和题意可知,N=2时,0<x<2,N=y1,故对应的x值只有一个,故④错误.由上可得,①③正确,②④错误.故选项A错误,选项B正确,选项C错误,选项D错误.故选B.【点评】本题考查二次函数和一次函数的图象的相关知识,关键是会看函数的图象,能弄懂题意,能找出所求问题需要的条件.11.观察图中菱形四个顶点所标的数字规律,可知数应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边【考点】规律型:图形的变化类.【分析】由题意可知:四个数字以下、左、上、右的顺序依次循环,由此用除以4根据余数判定得出答案即可.【解答】解:由已知图形可知,每四个数字一循环,∵÷4=503…3,∴在第504个图形上,余数是3,则与第一个图形中3的位置相同,即在左边.故选:C.【点评】此题考查图形的变化规律,找出数字循环的规律,利用规律解决问题.12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A .6B .9C .10D .12【考点】反比例函数图象上点的坐标特征.【分析】过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,得出四边形AFOD 是矩形,四边形OEBF 是矩形,得出S 矩形AFOD =3,S 矩形OEBF =k ,根据平行线分线段成比例定理证得AB=2OD ,即OE=3OD ,即可求得矩形OEBF 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【解答】解:过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,∵AB ∥x 轴,∴AF ⊥y 轴,∴四边形AFOD 是矩形,四边形OEBF 是矩形,∴AF=OD ,BF=OE ,∴AB=DE ,∵点A 在双曲线y=上,∴S 矩形AFOD =3,同理S 矩形OEBF =k ,∵AB ∥OD , ∴==,∴AB=2OD ,∴DE=2OD ,∴S 矩形OEBF =3S 矩形AFOD =9,∴k=9,故选B .【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.【考点】倒数.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:根据倒数的定义得:的倒数是.故答案为:.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.【考点】相似三角形的判定与性质.【分析】先根据DE∥BC得出△ADE∽△ACB,由相似三角形的性质求出两个相似三角形的面积比,进而求出的值.【解答】解:DE∥BC,∴△ADE∽△ABC,∴=()2=()2,∵AD=1,DB=2,∴,∴.故答案为:.【点评】本题主要考查了相似三角形的判定和性质,本题的关键是利用相似三角形的面积比等于相似比的平方求值.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有①③④(填写序号)【考点】正方形的性质;全等三角形的判定与性质;勾股定理;解直角三角形.【分析】根据正方形的性质得出BC=CD,∠ABC=∠BCD=90°,然后根据SAS证得△BMC≌△CND,得出∠MCB=∠NDC.进而即可证得∠DOC=90°,即DN⊥MC;根据勾股定理求得DN,然后根据NC•CD=ND•OC,求得OC=,OM=13﹣=,则OC≠OM,因为∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,得出∠OCD=∠DNC,所以sin∠OCD=sin∠DNC==;由△BMC≌△CND,=S△ODC.得出S△BMC=S△CND,求得S△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠BCD=90°,在△BMC和△CND中,,∴△BMC≌△CND,∴∠MCB=∠NDC.又∠MCN+∠MCD=90°,∴∠MCD+∠NDC=90°,∴∠DOC=90°,∴DN⊥MC,故①正确;在Rt△CDN中,∵CD=12,CN=5,∴DN==13.又∵∠BCD=90°,∠COD=90°∴NC•CD=ND•OC,∴OC=,OM=13﹣=,∴OC≠OM,故②错误;∵∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,∴∠OCD=∠DNC,∴sin∠OCD=sin∠DNC==,故③正确;∵△BMC≌△CND,∴S△BMC=S△CND=S△ODC,故④正确.S△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON综上,正确的结论是①③④.故答案为①③④.【点评】本题考查了正方形的性质,三角形全等的判定和性质,勾股定理的应用,解直角三角形以及三角形面积等,熟练掌握待定系数法是解题的关键.16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A 组“引体向上”的概率是.【考点】列表法与树状图法.【分析】分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,据题意画出树状图,然后由树状图即可求得所有等可能的结果;再利用概率公式求解即可求得答案.【解答】解:分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,画树状图得:∵共有9种等可能的结果,∴小明抽到A 组“引体向上”的概率=.故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.已知正方形ABCD 的边长为a ,分别以B ,D 为圆心,以a 为半径画弧,如图所示,则阴影部分的面积为 (π﹣1)a 2 .【考点】列代数式.【专题】计算题.【分析】根据圆的面积公式和利用S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD 进行计算.【解答】解:∵S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD ,∴S 阴影部分=2וπ•a 2﹣a 2=(π﹣1)a 2.故答案为(π﹣1)a2.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的根据是利用面积的和差计算阴影部分的面积.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=40°.【考点】圆周角定理.【分析】首先连接CD,由AD是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理,可得∠D=∠ABC=50°,继而求得答案.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.三、解答题19.计算:(+1)0+(﹣1)+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.【考点】解直角三角形;勾股定理.【分析】(1)过点A作AD⊥BC于D,根据已知条件可得出AD,再利用勾股定理得出CD,进而得出tanC;(2)在Rt△ABD中,利用勾股定理求出BD=8,结合CD的长度,即可得出BC的长.【解答】解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.【点评】本题考查了解直角三角形以及勾股定理,要熟练掌握好边角之间的关系.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=,y=1代入进行计算即可.【解答】解:原式=[﹣][﹣]=•=•=﹣,当x=,y=1是,原式=﹣=2﹣3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了200名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【考点】条形统计图;扇形统计图.【分析】(1)根据①种的人数除以①所占的百分比,可得答案;(2)④种情况的人数除以总人数乘以圆周角,可得答案,总人数乘以第③种情况所占的百分比,可得第③种情况的人数,根据总人数减去第①种情况的人数,减去第③种情况的人数,减法第④种情况的人数,可得第②中情况的人数;(3)根据概率的意义:④的人数除以总人数,可得答案.【解答】解:(1)2÷%=200(名);(2)④所在扇形的圆心角×360°=126°,③的人数200×9%=18人,②的人数200﹣18﹣2﹣70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p==,他属于第②种情况的概率为.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【考点】一次函数的应用.【分析】(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意列方程组得到300≤x≤800,总运费W=200×0.012+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),根据一次函数的性质得到W随想的增大而增大,于是得到当x=300时,W最小=2610元,【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W=2610元,最小∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.【点评】本题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)根据菱形的性质得到AC⊥BD,由于DH⊥AB于H,于是得到∠DHA=∠DOG=90°,推出△AGH∽△DGO,根据相似三角形的性质得到,于是得到结论;(2)根据已知条件得到∠DAB=60°,AB=AD=6,得到△ABD是等边三角形,根据菱形的性质得到AC⊥DB,OD=OB=BD=3,得到∠ODG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∵DH⊥AB于H,∴∠DHA=∠DOG=90°,∵∠AGH=∠DGO,∴△AGH∽△DGO,∴,∴AG•GO=HG•GD;(2)解:∵四边形ABCD是菱形,∠ABC=120°,∴∠DAB=60°,AB=AD=6,∴△ABD是等边三角形,∵AC⊥DB,OD=OB=BD=3,∵DH⊥AB,∴∠ODG=30°,∴OG=OD•tan30°=.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,熟记个性质定理是解题的关键.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将N点坐标代入即可求得;(2)由于A、B关于对称轴对称,所以相当于求AH+CH的最小值,根据两点之间线段最短,当A、H、C三点共线时AH+CH最小,即连接AC与对称轴的交点就是H,求出AC解析式,再与对称轴方程联立即可求得;(3)分两种情况:①作BF∥AC交抛物线于点F,先求出BF解析式,再与抛物线方程联立求出F 点坐标,再用两点间的距离公式表示出BF的长度,接着利用相似比例关系列出方程求解;②在x 轴下方作∠ABF=∠ABC=45°,同样先求出BF解析式,再求出F点坐标,进而表示出BF长度,最后利用相似比例关系列方程求解.算的过程中,可能有一种情况无解,舍去就是了.【解答】解:(1)∵抛物线y=﹣(x+2)(x﹣a)(a>0)过点N(6,一4),∴﹣4=,解得,a=4,即实数a的值为4;(2)∵a=4∴令y=0,得x1=﹣2,x2=4;令x=0,得y=2∴点A的坐标为(4,0),点B的坐标为(﹣2,0),点C的坐标为(0,2)∵点A和点B关于抛物线的对称轴x=对称,∴在抛物线的对称轴上找一点H,使得BH+CH最小,即AH+CH最小,连接AC,则AC与抛物线的对称轴x=1的交点即为所求如下图所示:设过点A(4,0),C(0,2)的直线解析式为:y=kx+b则解得k=,b=2∴y=令x=1代入y=,得y=∴点H的坐标为(1,)即点H的坐标为(1,)时,使得BH+CH最小;(3)①作BF∥AC交抛物线于点F,如图:则∠FBA=∠BAC,由y=﹣(x+2)(x﹣a)=﹣,令x=0,则y=2,∴C(0,2),又∵A(a,0),∴AC的解析式为y=,设BF的解析式为y=,∵BF过点B(﹣2,0),∴b=,∴BF的解析式为:y=,∴,解得:F(a+2,﹣2﹣),∴BF=∵△BFA∽△ABC,∴AB2=BF•AC,∴,化简整理得:16=0,不存在这种情形,即这种情况不存满足要求的F点;②∵B(﹣2,0),C(2,0),∴BC的解析式为y=x+2,∠ABC=45°,在x轴下方作∠ABF=∠ABC=45°,如图:∴BF⊥BC,∴BF的解析式为y=﹣x﹣2,∴,解得:F(2a,﹣2a﹣2),∴BF=,∵△BFA∽△BAC,∴AB2=BF•BC,∴,整理得:a2﹣4a﹣4=0,解得a=或a=(舍去),综上所述,a=时,以点B,A,F为顶点的三角形与△BAC相似.【点评】考查了二次函数综合题,解决二次函数问题应注意对称性的应用,若已知三点坐标,可设一般式;若已知顶点坐标,可设顶点式;若已知抛物线与x轴两交点坐标,可设两点式,从而简化运算,整个问题围绕二次函数展开,并将二次函数、三角形等多个问题紧密地结合在一起,无论是题设的给出还是思维方式的考查都很新颖.一道考题不仅考查了二次函数、三角形相似等初中数学中的重点内容,还考查了待定系数法等数学思想方法,这是中考试卷的创新题型和发展趋势,代数知识与几何知识得到了很好的整合,是一个典型的在知识网络交汇点处设计的热点试题.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【考点】四边形综合题.【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【解答】解:(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC=4.又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×4=16.。

2023年重庆市中考数学真题(A卷)(答案解析)

2023年重庆市中考数学真题(A卷)(答案解析)

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】A【解析】解:8的相反数是8-,故选A .2.【答案】D【解析】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .3.【答案】C【解析】解:A 选项,将1x =代入反比例函数4y x =-得到14y =-≠,故A 项不符合题意;B 选项,项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 选项,项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 选项,项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .4.【答案】B【解析】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .5.【答案】A【解析】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .6.【答案】B+=4=+∵2 2.5<<,∴45<<,∴849<+,故选:B .7.【答案】B【解析】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .8.【答案】C【解析】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .9.【答案】A【解析】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】1.5【解析】1023-+=11=1.52+.故答案为1.5.12.【答案】36°【解析】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.13.【答案】19【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.14.【答案】()2150111815x +=【解析】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.15.【答案】3【解析】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.16.【答案】25124π-【解析】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;17.【答案】4【解析】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.18.【答案】①.4312②.8165【解析】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a ab b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)21a -(2)11x +【解析】(1)解:原式2221a a a =-+-21a =-;(2)原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】(1)解:由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即72a =;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,则B 款智能玩具飞机运行时间合格的架次为:1040%4⨯=(架)则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面60份【解析】(1)解:设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解得,80x =,∴17090x -=,∴购买杂酱面80份,购买牛肉面90份;(2)解:设购买牛肉面a 份,则购买杂酱面1.5a 份,由题意知,1260120061.5a a+=,解得60a =,经检验,60a =是分式方程的解,∴购买牛肉面60份.23.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.24.【答案】(1)AD 的长度约为14千米(2)小明应该选择路线①,理由见解析【解析】(1)解:过点D 作DF AB ⊥于点F ,由题意可得:四边形BCDF 是矩形,∴10DF BC ==千米,∵点D 在点A 的北偏东45︒方向,∴45DAF DAN Ð=Ð=°,∴14sin 45DF AD ==°千米,答:AD 的长度约为14千米;(2)由题意可得:10BC =,14CD =,∴路线①的路程为:14102438AD DC BC ++=+=+(千米),∵10DF BC ==,45DAF DAN Ð=Ð=°,90DFA ∠=︒,∴DAF △为等腰直角三角形,∴10AF DF ==,∴101424AB AF BF AF DC =+=+=+=,由题意可得60EBS Ð=°,∴60E ∠=︒,∴tan 60AB AE ==°,sin 60AB BE ==°,所以路线②的路程为:42AE BE +=千米,∴路线①的路程<路线②的路程,故小明应该选择路线①.25.【答案】(1)213222y x x =-++(2)PDE △周长的最大值65105+,此时点()2,3P (3)以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛ ⎝⎭或137,22⎛⎫- ⎪ ⎪⎝⎭【解析】(1)把()1,3、()1,0A -代入22y ax bx =++得,3202a b a b =++⎧⎨=-+⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为213222y x x =-++;(2)延长PE 交x 轴于F,∵过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,∴DEP BCO ∠=∠,90PDE COB ∠=∠=︒,∴DPE OBC ,∴DPE PEOBC BC =周长周长 ,∴PEDPE OBC BC =⋅周长周长 ,∴当PE 最大时PDE △周长的最大∵抛物线的表达式为213222y x x =-++,∴()4,0B ,∴直线BC 解析式为122y x =-+,BC ==设213,222P m m m ⎛⎫-++ ⎪⎝⎭,则1,22E m m ⎛⎫-+ ⎪⎝⎭∴()222131112222222222PE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∴当2m =时2PE =最大,此时()2,3P ∵BOC周长为6OC OB BC ++=+,∴PDE △(651065++=,此时()2,3P ,即PDE △周长的最大值65105+,此时点()2,3P ;(3)∵将该抛物线沿射线CB方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,∴平移后的解析式为()()221317222142222y x x x =--+-+-=-+-,此抛物线对称轴为直线72x =,∴设7,2M n ⎛⎫ ⎪⎝⎭,(),N s t ∵()2,3P ,()1,0A -∴218PA =,()()22227923324PM n n ⎛⎫=-+-=+- ⎪⎝⎭,()22227811024AM n n ⎛⎫=++-=+ ⎪⎝⎭,当PA 为对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴PA 与MN 互相平分,且PM AM=∴()22981344n n +-=+,解得32n =-∵PA 中点坐标为2130,22-+⎛⎫ ⎪⎝⎭,MN 中点坐标为72,22s n t ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,∴7123s n t ⎧+=⎪⎨⎪+=⎩,解得5292s t ⎧=-⎪⎪⎨⎪=⎪⎩,此时59,22N ⎛⎫- ⎪⎝⎭;当PA 为边长且AM 和PN 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AM 与PN 互相平分,且PMPA =∴()293184n +-=,解得3732n =±∵PN 中点坐标为23,22s t ++⎛⎫ ⎪⎝⎭,AM 中点坐标为7102,22n ⎛⎫- ⎪+ ⎪ ⎪⎝⎭,∴721230s t n ⎧+=-⎪⎨⎪+=+⎩,解得122s t ⎧=⎪⎪⎨⎪=±⎪⎩,此时137,22N ⎛⎫ ⎪ ⎪⎝⎭或137,22N ⎛- ⎝⎭;同理,当PA 为边长且AN 和PM 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AN 和PM 互相平分,且AM PA =281184n +=,此方程无解;综上所述,以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛⎫ ⎪ ⎪⎝⎭或137,22⎛- ⎝⎭;26.【答案】(1)(2)见解析(3)435【解析】(1)解:在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,∴sin 32AC AB B ===,∵BD =,∴AD AB BD =-=(2)证明:如图所示,延长FB 使得FH FG =,连接EH ,∵F 是DE 的中点则DF FE =,FH FG =,GFD HFE ∠=∠,∴()SAS GFD HFE ≌,∴H G ∠=∠,∴EH GC ∥,∴60HEC ECD ∠=∠=︒∵DEC 是等边三角形,∴60DEC EDC ∠=∠=︒,∵60DEC DBC ==︒∠∠,∴,,,B C D E 四点共圆,∴EDB BCE ∠=∠,BEC BDC ∠=∠,∴6060BEH BEC BDC EDB ∠=︒-∠=︒-∠=∠,∵G BCE BDE H ∠=∠=∠=∠,∴H BEH ∠=∠,∴EB BH =,∴FH FG BF BH BF EB ==+=+;(3)解:如图所示,在CD 取得最小值的条件下,即CD AB ⊥,设4AB a =,则2BC a =,AC =,∴24AC BC a CD AB a⨯⨯===,12BD BC a ==,∵将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .∴BE BN=∴点N 在以B 为圆心,a 为半径的圆上运动,取AB 的中点S ,连接SP ,则SP 是ABN 的中位线,∴P 在半径为12a 的S 上运动,当CP 取最大值时,即,,P S C 三点共线时,此时如图,过点P 作PTAC ⊥于点T ,过点N 作NR AC ⊥于点R ,∵S 是AB 的中点,60ABC ∠=︒∴SC SB BC ==,∴BCS △是等边三角形,则60PCB ∠=︒,∴30PCA ACB BCP ∠=∠-∠=︒,∵2BC a =,4AB a =,∴2CS BC a ==,12PS a =∴52PC a =,15sin 24PT PC PCT PC a =⨯∠==,TC ==∵AC =,∴AT =,如图所示,连接PQ ,交NR 于点U ,则四边形PURT是矩形,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA==即PD 是ANR 的中位线,同理可得PT 是ANR 的中位线,∴54NU UR PT a ===,12PU AR AT ===∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,∴2120QCP BCP ∠=∠=︒∴PQ ===则UQ PQ PU =-=-=在Rt NUQ中,432NQ a =∴43432552a NQ CP a ==.。

【解析版】重庆市巴蜀中学中考数学二模试卷

【解析版】重庆市巴蜀中学中考数学二模试卷

重庆市巴蜀中学中考数学二模试卷一、选择题(本大题12个小题,每小题4分,共计48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.下列各数中,既不是正数也不是负数的数是()A.﹣1 B. 0 C. 1 D.2.计算2a+a的结果是()A. 3a2B. 2a2C. 3a D. 2a3.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.正六边形的内角和为()A. 1080°B. 900°C. 720°D. 540°5.在中,a的取值范围是()A. a≥0 B. a≤0 C. a>0 D. a<06.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁7.分式方程=的解为()A. x=﹣3 B. x=﹣1 C. x=1 D. x=38.如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为()A. 30°B. 45°C. 60°D. 90°9.如图,BC与⊙O相切于点C,BO的延长线交⊙O于点A,连结AC,若∠ACB=120°,则∠A 的度数等于()A. 30°B. 40°C. 50°D. 60°10.自从政府补贴为某农村学校购买了校车后,大大缩短了该校学生小明的上学时间.某天,小明先步行一段路程后,等了一会儿校车,然后坐上校车来到学校.设小明该天从家出发后所用的时间为t,与学校的距离为s.下面能反映s与t之间函数关系的大致图象是()A.B.C.D.11.下列图形都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆,…,则第⑦个图形中圆的个数为()A. 67 B. 92 C. 113 D. 12112.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A. 12 B. 9 C. 6 D. 4二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填在答题卡中对应的横线上.13.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为.14.计算:(﹣1)5﹣(﹣1)0+=.15.已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积比为.16.如图,直角△ABC中,∠A=90°,∠B=30°,AC=4,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分的面积是(结果保留π).17.现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的一元二次方程x2﹣2x+a﹣2=0有实数根,且关于x的分式方程+2=有解的概率为.18.如图,点P是正方形ABCD内一点,连接AP、BP、CP,若BP=,CP=,∠BPA=135°,则正方形ABCD的边长为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.20.我校艺术节期间,开展了“巴蜀好声音”歌唱比赛,在初赛中,学生处对初赛成绩做了统计分析,绘制成如下频数、频率分布表和频数分布直方图(如图),请你根据图表提供的信息,解答下列问题:分组74.5~79.5 79.5~84.5 84.5~89.589.5~94.5 94.5~100.5合计频数2 a 20 16 4 50频率0.04 0.16 0.40 0.32 b 1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)初赛成绩在94.5﹣100.5分的四位同学恰好是初一、初二、高一、高二年级各一位,学生处打算从中随机挑选两位同学谈一下决赛前的训练,请你用列表法或画树状图的方法求出所选两位同学恰好是一名初中和一名高中同学的概率.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.化简:(1)(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b).(2)(﹣1)÷.22.如图,某船以每小时36海里的速度向正东方向航行,在点A测得某岛C在北偏东60°方向上,航行半小时后到达点B测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.(1)说明点B是否在暗礁区域内;(2)若继续向东航行有无触礁的危险?请说明理由.23.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?24.对于非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x<n+,则<x>=n.如:<0>=<0.46>=0,<0.64>=<1.49>=1,<3.5>=<4.28>=4,…试解决下列问题:(1)填空:①<π>=(π为圆周率);②如果<2x﹣1>=3,则实数x的取值范围为;(2)试举例说明:当x=,y=时,<x+y>=<x>+<y>不恒成立;(3)求满足<x>=x的所有非负实数x的值.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.26.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和点B(1,2),与x轴的另一个交点为C.(1)求抛物线的函数表达式;(2)若点P为抛物线第四象限上的一个动点,连接BC,BP,CP,请求△BCP的面积的最大值;(3)若点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,连接BD.点F是OB的中点,点M是直线BD上的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请求出线段BM的长.重庆市巴蜀中学中考数学二模试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共计48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.下列各数中,既不是正数也不是负数的数是()A.﹣1 B. 0 C. 1 D.考点:实数.分析:既不是正数也不是负数的数只有0.解答:解:0既不是正数也不是负数.故选B.点评:本题考查了实数的知识,注意熟练掌握:既不是正数也不是负数的数只有0.2.计算2a+a的结果是()A. 3a2B. 2a2C. 3a D. 2a考点:合并同类项.分析:根据合并同类项的法则进行计算即可.解答:解:原式=(2+1)a=3a.故选C.点评:本题考查的是合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.3.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:轴对称图形;中心对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.点评:掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.4.正六边形的内角和为()A. 1080°B. 900°C. 720°D. 540°考点:多边形内角与外角.分析:多边形的内角和可以表示成(n﹣2)•180°,据此即可求解.解答:解:正六边形的内角和为(6﹣2)×180°=720°.故选C.点评:本题考查了多边形的内角和定理,理解定理是关键.5.在中,a的取值范围是()A. a≥0 B. a≤0 C. a>0 D. a<0考点:二次根式有意义的条件.分析:根据二次根式的性质:被开方数大于等于0,就可以求解.解答:解:a的范围是:a≥0.故选;A.点评:本题考查的知识点为:二次根式的被开方数是非负数.6.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁考点:方差.分析:根据方差是用来衡量一组数据波动大小的量,故由甲乙丙丁的方差可直接作出判断.解答:解:∵0.43<0.90<1.22<1.68,∴丙成绩最稳定,故选:C.点评:本题主要考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.分式方程=的解为()A. x=﹣3 B. x=﹣1 C. x=1 D. x=3考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故选D点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为()A. 30°B. 45°C. 60°D. 90°考点:平行线的性质.专题:探究型.分析:先根据两角互补的性质得出∠CFE的度数,再由平行线的性质即可得出结论.解答:解:∵∠DFE=135°,∴∠CFE=180°﹣135°=45°,∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.9.如图,BC与⊙O相切于点C,BO的延长线交⊙O于点A,连结AC,若∠ACB=120°,则∠A 的度数等于()A. 30°B. 40°C. 50°D. 60°考点:切线的性质.分析:如图,连接OC.根据切线的性质知∠OCB=90°,则易求∠A=∠ACO=120°﹣90°=30°.解答:解:如图,连接OC.∵BC与⊙O相切于点C,∴OC⊥BC,即∠OCB=90°.∵A=OC,∴∠A=∠ACO=∠ACB﹣∠OCB=120°﹣90°=30°.故选A.点评:本题考查了圆的切线性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.自从政府补贴为某农村学校购买了校车后,大大缩短了该校学生小明的上学时间.某天,小明先步行一段路程后,等了一会儿校车,然后坐上校车来到学校.设小明该天从家出发后所用的时间为t,与学校的距离为s.下面能反映s与t之间函数关系的大致图象是()A.B.C.D.考点:函数的图象.分析:分三段考虑,①刚开始距离学校最远,步行的过程,距离缓慢减小,②等校车的过程,距离不变,③坐校车去学校的过程,路程快速减小,结合选项进行判断即可.解答:解:①刚开始距离学校最远,步行的过程,距离缓慢减小;②等校车的过程,距离不变;③坐校车去学校的过程,路程快速减小;综上可得D选项的函数图象符合.故选D.点评:本题考查了函数的图象,解答本题的关键是仔细审题,明白每个过程距离的变化情况.11.下列图形都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆,…,则第⑦个图形中圆的个数为()A. 67 B. 92 C. 113 D. 121考点:规律型:图形的变化类.分析:第(1)个图形中最下面有1个圆,上面有一个圆;第(2)个图形中最下面有2个圆,上面有1+3+1个圆;第(3)个图形中最下面有3个圆,上面有1+3+5+3+1个圆,那么可得第(7)个图形最下面有7个圆,上面有1+3+5+7+9+11+13+11+9+7+5+3+1个圆,相加即可.解答:解:第(1)个图形中最下面有1个圆,上面有1个圆;第(2)个图形中最下面有2个圆,上面有1+3+1个圆;第(3)个图形中最下面有3个圆,上面有1+3+5+3+1个圆;…第(7)个图形最下面有8个圆,上面有1+3+5+7+9+11+13+15+13+11+9+7+5+3+1个圆,∴共有7+(1+3+5+7+9+11+13+11+9+7+5+3+1)=92,故选B.点评:考查图形的变换规律;根据图形的排列规律得到最下面圆的个数与图形的序号相同,上面圆的个数与n个连续奇数的和相关是解决本题的关键.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A. 12 B. 9 C. 6 D. 4考点:反比例函数系数k的几何意义.专题:压轴题.分析:△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.解答:解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.点评:本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填在答题卡中对应的横线上.13.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为 2.1×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将210000000用科学记数法表示为:2.1×108.故答案为:2.1×108.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算:(﹣1)5﹣(﹣1)0+=﹣5.考点:实数的运算;零指数幂.分析:首先分别求出(﹣1)5、(﹣1)0、的值各是多少;然后根据实数的运算顺序,从左向右依次计算,求出算式(﹣1)5﹣(﹣1)0+的值是多少即可.解答:解:(﹣1)5﹣(﹣1)0+=﹣1﹣1﹣3=﹣2﹣3=﹣5故答案为:﹣5.点评:(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.15.已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积比为9:16.考点:相似三角形的性质.分析:由△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,根据相似三角形的面积比等于相似比的平方,即可求得答案.解答:解:∵△ABC∽△DEF,△ABC与△DEF的相似比为3:4,∴△ABC与△DEF的面积比为9:16.故答案为:9:16.点评:此题考查了相似三角形的性质.此题比较简单,注意熟记定理是解此题的关键.16.如图,直角△ABC中,∠A=90°,∠B=30°,AC=4,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分的面积是4﹣π(结果保留π).考点:扇形面积的计算.分析:连结AD.根据图中阴影部分的面积=三角形ABC的面积﹣三角形ACD的面积﹣扇形ADE 的面积,列出算式即可求解.解答:解:连结AD.∵直角△ABC中,∠A=90°,∠B=30°,AC=4,∴∠C=60°,AB=4,∵AD=AC,∴三角形ACD是等边三角形,∴∠CAD=60°,∴∠DAE=30°,∴图中阴影部分的面积=4×4÷2﹣4×2÷2﹣=4﹣π.故答案为:4﹣π.点评:考查了扇形面积的计算,解题的关键是将不规则图形的面积计算转化为规则图形的面积计算.17.现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的一元二次方程x2﹣2x+a﹣2=0有实数根,且关于x的分式方程+2=有解的概率为.考点:概率公式;根的判别式;分式方程的解.分析:先由一元二次方程x2﹣2x+a﹣2=0有实数根,得出a的取值范围,求出分式方程的解为:x=,然后根据分式方程+2=有解,得到:2﹣a≠0且x≠2,求得:a≠2且a≠1,然后根据统计使分式方程有解情况数,最后根据概率公式进行计算即可.解答:解:∵一元二次方程x2﹣2x+a﹣2=0有实数根,∴4﹣4(a﹣2)≥0,∴a≤3,∴a=﹣1,0,1,2,3.∵关于x的分式方程+2=的解为:x=,且2﹣a≠0且x≠2,解得:a≠2且a≠1,∴a=﹣1,0,3,∴使得关于x的一元二次方程x2﹣2x+a﹣2=0有实数根,且关于x的分式方程+2=有解的概率为:,故答案为:.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2﹣2x+a﹣2=0有实数根和分式方程有解的情况数是解决本题的关键.18.如图,点P是正方形ABCD内一点,连接AP、BP、CP,若BP=,CP=,∠BPA=135°,则正方形ABCD的边长为.考点:旋转的性质;勾股定理的逆定理;正方形的性质.分析:将△ABP绕点B沿顺时针方向旋转90°到△BCQ的位置,连接PQ;先求出PQ的长,再求出∠PQC=90°,利用勾股定理求出QC的长,最后利用余弦定理求出BC的长.解答:解:如图,将△ABP绕点B沿顺时针方向旋转90°,到△BCQ的位置,连接PQ;则BQ=BP=,∠BQC=∠BPA=135°,则△PBQ是等腰直角三角形,即PQ=,故∠BQP=∠BPQ=45°,∠PQC=135°﹣45°=90°;由勾股定理得:QC===2,在△BQC中,∠BQC=135°,BQ=,CQ=2,由余弦定理可得:cos135°===﹣,解得:BC=,故答案为.点评:本题考查了旋转的性质,等腰直角三角形的判定,勾股定理以及余弦定理等知识,作辅助线构造出直角三角形是解题的关键.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.考点:全等三角形的判定与性质.专题:证明题.分析:由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.解答:证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.点评:此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.20.我校艺术节期间,开展了“巴蜀好声音”歌唱比赛,在初赛中,学生处对初赛成绩做了统计分析,绘制成如下频数、频率分布表和频数分布直方图(如图),请你根据图表提供的信息,解答下列问题:分组74.5~79.5 79.5~84.5 84.5~89.589.5~94.5 94.5~100.5合计频数2 a 20 16 4 50频率0.04 0.16 0.40 0.32 b 1(1)频数、频率分布表中a=8,b=0.08;(2)补全频数分布直方图;(3)初赛成绩在94.5﹣100.5分的四位同学恰好是初一、初二、高一、高二年级各一位,学生处打算从中随机挑选两位同学谈一下决赛前的训练,请你用列表法或画树状图的方法求出所选两位同学恰好是一名初中和一名高中同学的概率.考点:列表法与树状图法;频数(率)分布表;频数(率)分布直方图.分析:(1)总人数为50即可求出a的值和b的值;(2)根据(1)的结果即可补全频数直方图;(3)根据题意画出树状图或列表,再根据概率公式计算即可.解答:解:(1)a=50﹣2﹣20﹣16﹣4=8,b=4÷50=0.08故答案为:8,0.08;(2)补全频率分布直方图得:(3)列表得:初一初二高一高二初一初二初一高一初一高二初一初二初一初二高一初二高二初二高一初一高一初二高一高二初一高二初一高二初二高二高一高二P(初中高中)=.点评:此题考查了条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出进一步解题的有关信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.化简:(1)(a﹣2b)2﹣(2a+b)(b﹣2a)﹣4a(a﹣b).(2)(﹣1)÷.考点:分式的混合运算;整式的混合运算.专题:计算题.分析:(1)原式第一项利用完全平方公式化简,第二项利用平方差公式化简,第三项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=a2﹣4ab+4b2﹣b2+4a2﹣4a2+4ab=a2+3b2;(2)原式=•=•=﹣.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.如图,某船以每小时36海里的速度向正东方向航行,在点A测得某岛C在北偏东60°方向上,航行半小时后到达点B测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.(1)说明点B是否在暗礁区域内;(2)若继续向东航行有无触礁的危险?请说明理由.考点:解直角三角形的应用-方向角问题.专题:应用题.分析:(1)求点B是否在暗礁区域内,其实就是求CB的距离是否大于16,如果大于则不在暗礁区域内,反之则在.可通过构造直角三角形来求CB的长,作CD⊥AB于点D,CD是直角三角形ACD和CBD的公共直角边,可先求出CD的长,再求出CB的长;(2)本题实际上是问,C到AB的距离即CD是否大于16,如果大于则无触礁危险,反之则有,CD的值,(1)已经求出,只要进行比较即可.解答:解:(1)作CD⊥AB于点D,设BC为x,在Rt△BCD中∠CBD=60°,∴..在Rt△ACD中∠CAD=30°,∴.∴x=18.∴B点不在暗礁区域内;(2)∵,∵,∴若继续向东航行船有触礁的危险.点评:本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.23.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?考点:二元一次方程组的应用;一元一次不等式的应用.分析:(1)题中有两个等量关系:购买A种商品进价+购买B种商品进价=36000,出售甲种商品利润+出售乙种商品利润=6000,由此可以列出二元一次方程组解决问题.(2)根据不等关系:出售甲种商品利润+出售乙种商品利润≥8160,可以列出一元一次不等式解决问题.解答:解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.点评:本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价﹣进价.24.对于非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x<n+,则<x>=n.如:<0>=<0.46>=0,<0.64>=<1.49>=1,<3.5>=<4.28>=4,…试解决下列问题:(1)填空:①<π>=3(π为圆周率);②如果<2x﹣1>=3,则实数x的取值范围为;(2)试举例说明:当x=0.6,y=0.7时,<x+y>=<x>+<y>不恒成立;(3)求满足<x>=x的所有非负实数x的值.考点:一元一次不等式组的应用.专题:新定义.分析:(1)根据取近似值的方法确定x的取值范围即可,反过来也可确定未知数的值;(2)分0≤a<时和≤a<1时两种情况分类讨论即可;(3)据取近似值的方法确定x的取值范围即可.解答:解:(1)①3<π;②如果<2x﹣1>=3,可得;故答案为:3;;(2)说明:设x=n+a,其中n为x的整数部分(n为非负整数),a为x的小数部分(0≤a<1)分两种情况:(Ⅰ)当0≤a<时,有<x>=n∵x+y=(n+y)+a,这时(n+y)为(x+y)的整数部分,a为(x+y)的小数部分,∴<x+y>=n+y又<x>+y=n+y∴<x+y>=<x>+y.(Ⅱ)当≤a<1时,有<x>=n+1∵x+y=(n+y)+a这时(n+y)为(x+y)的整数部分,a为(x+y)的小数部分,∴<x+y>=n+y+1又<x>+y=n+1+y=n+y+1∴<x+y>=<x>+y.综上所述:<x+y>=<x>+y,此时x=0.6,y=0.7;故答案为:0.6;0.7;(3)设(k为非负整数),则x=,根据题意可得:,即﹣2≤k≤2,则k=0,1,2,x=0,.点评:本题考查了一元一次不等式的应用,关键是根据取近似值的方法确定x的取值范围.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.考点:几何变换综合题.分析:(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.解答:解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.。

2019重庆中考数学试卷(含答案)

2019重庆中考数学试卷(含答案)

重庆市2019年初中学业水平暨高中招生考试试卷数 学(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.认题的答案书写在答题卡上,不得在试题卷上直接作答; 2.作答前认真阅绪答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签牛笔完成; 4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()02≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22,对称轴为a b 2x -= 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为DC B A 、、、的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.下列各数中,比1-小的数是( )A .2B .1C .0D .-22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A .B .C .D .3.如图,△ABO ∽△CDO ,若6=BO ,3=DO ,2=CD ,则AB 的长是( )A .2B .3C .4D .54.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若︒=∠50C ,则∠AOD 的度数为( ) A.︒40B .︒50C .︒80D .︒1005.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形3题图4题图2题图C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形6.估计()123+623⨯的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩8.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,9.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数(0,0)ky k xx=>>的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.409题图8题图10题图12题图10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:24的山坡AB上发现有一棵占树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos8°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.若关于x的一元一次不等式组11(42)42 3122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△BDC',DC与AB交于点E,连结AC',若AD=AC=2,BD=3则点D到BC的距离为()A.233B.7213C.7D.13二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.计算:=+1-213-)()(π.14.今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.16题图17题图20题图18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1))2(2y x y y x +-+)( (2)292492--÷--+a a a a a )(20.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E作EF ∥BC 交AB 于点F .(1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF //AC 叫AD 的延长线于点F .求证:FB =FE .21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94八年抽取的学生竞赛成绩扇形统计图七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b纵数c100方差52 50.421题图根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.321-=x y 23.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面经历的学习过程,现在来解决下面的问题在函数b kx y +-=3中,当2=x 时,;4-=y 当0=x 时,.1y -=(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质; (3)已知函321y -=x 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.24.某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费. (1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加%2a ,每户物管费将会减少%103a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加%6a ,每户物管费将会减少%41a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%185a ,求a 的值.25.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 显AD 上一点,连接CP . (1)若DP =2AP =4,CP =17,CD =5,求△ACD 的面积. (2)若AE =BN ,AN =CE ,求证:AD =2CM +2CE .四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC的最小值;(2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个22单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度α(0°<α<360°),得到△AOQ,其中边AQ交坐标轴于点C在旋转过程中,是否存在一点G使得OGQQ''∠=∠?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2。

精品解析:2022年重庆市中考数学真题(B卷)(解析版)

精品解析:2022年重庆市中考数学真题(B卷)(解析版)
一、选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.
1. 的相反数是( )
A. B.2C. D.
【答案】B
【解析】
【分析】根据相反数的定义可得结果.
【详解】因为-2+2=0,所以-2的相反数是2,
【详解】解:连接 ,如图所示,
∵ ,
∴ ,
∵ ,
∴ ,
∴ ,
∵ 是 的切线,
∴ ,
∵ ,
∴ ,
在 中, , ,
∴ , ,
∵ , ,
∴ ,
故选D.
【点睛】本题考查了等腰三角形的性质、切线的性质、解直角三角形等知识点,正确作出辅助线是解答此题的关键.
11.关于x的分式方程 的解为正数,且关于y的不等式组 的解集为 ,则所有满足条件的整数a的值之和是( )
重庆市2022年初中学业水平暨高中招生考试
数学试卷(B卷)
(全卷共四个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答;
2.作答前认真阅读答题卡的注意事项;
3.作图(包括作辅助线)请一律用黑色2B铅笔完成;
参考公式:抛物线 ( )的顶点坐标为 ,对称轴为 .
【详解】解:在正方形 中,AO=BO,∠AOD=∠AOB=90°,∠CBO=45°,
∵ ,
∴△AOF≌△BOE(SAS),
∴∠OBE=∠OAF,
∵OE=OF,∠EOF=90°,
∴∠OEF=∠OFE=45°,
∵ ,
∴∠OAF=∠OEF-∠AFE=20°,
∴∠CBE=∠CBO+∠OBE=45°+20°=65°,

2022年重庆市渝中区中考数学二调试题及答案解析

2022年重庆市渝中区中考数学二调试题及答案解析

2022年重庆市渝中区中考数学二调试卷一、选择题(本大题共12小题,共48.0分。

在每小题列出的选项中,选出符合题目的一项)1. 在−2,−π,0,√2,22中,无理数的个数是( )7A. 2B. 3C. 4D. 52. 如图所示,该几何体的主视图是( )A.B.C.D.3. 计算(−2x3)2的结果是( )A. 4x5B. −4x5C. 4x6D. −4x64. 下列调查适合用全面调查的是( )A. 了解朝天门长江水域的水质情况B. 了解全国中学生周末体育锻炼的时间C. 调查某班级学生接种新冠疫苗的人数D. 调查某鞋厂生产的鞋底能承受的弯折次数5. 如图,点F,B,E,C在同一条直线上,△ABC≌△DEF,若∠A=36°,∠F=24°,则∠DEC 的度数为( )A. 50°B. 60°C. 65°D. 120°6. 计算√3(√3+2)−√12的结果是( )A. 2√3B. 3+2√3C. 3+√3D. 37. 如图,若半径为2cm的定滑轮边缘上一点A绕中心O逆时针转动150°(绳索与滑轮之间没有滑动),则重物上升的高度为( )A. 5πcmB. 10πcm3C. 5πcm3D. 5πcm68. 如图所示是我国现存最完整的古代计时工具——元代铜壶滴漏,该滴漏从上至下通过多级滴漏,使得上层“壶”中的水可以匀速滴入最下层的的圆柱形“壶“中,“壶“中漂浮的带有刻度的木箭随水面匀速缓缓上移,对准标尺就可以读出时辰.如果用x表示时间,用y表示木箭上升的高度,那么下列图象能表示y与x的函数关系的是( )A. B. C.D.9. 正整数1至300按一定的规律排列如表所示,若将表中三个涂黑的方框同时移动到表中其它的位置,使它们重新框出三个数,那么方框中三个数的和可能是( )A. 315B. 416C. 530D. 64410. 如图,D 是等边三角形ABC 的边AC 上一点,四边形CDEF 是平行四边形,点F 在BC 的延长线上,G 为BE 的中点.连接DG ,若AB =10,AD =DE =4,则DG 的长为( )A. 2B. 3C. 4D. 511. 若关于x 的不等式组{x−12+3≥2x+632x −3>m有解,且最多有3个整数解,关于x 的方程(m −1)x 2−2x +1=0有两个实数根,则所有符合条件的整数m 的和为( )A. −5B. −4C. −3D. −112. 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),B(−3,0),交y轴的正半轴于点C,对称轴交抛物线于点D,则下列结论:①x>−2时,y随x的增大而减小;②3b+2c=0;③当△BCD为直角三角形时,a的值有2个;④若点P为对称轴上的动点,则|PB−PC|的最大值为√9a2+4,其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共16.0分)13. 计算:|−3|−(1)0=______.214. 有四张背面完全相同的卡片,正面分别标有数字−3,−2,2,3.把这四张卡片背面朝上放在桌上,随机抽取一张不放回,再从剩余的卡片中随机抽取一张.若将第一次抽取的卡片上的数字记为m,第二次抽取的卡片上的数字记为n,则点(m,n)落在反比例函数y=6的图象x上的概率为______.15. 如图,菱形ABCD中,AB=2,DE⊥BC于点E,F为CD的中点,连接AE,AF,EF.若∠AFE=90°,则△AEF的外接圆半径为______.16. 北京冬奥会特许商品官方网站推出了冰墩墩手办、盲盒和钥匙扣等纪念品,并以零售和礼盒两种方式销售(礼盒售价为各产品零售价之和).其中甲种礼盒装有3个手办,2个盲盒,2个钥匙扣;乙种礼盒装有4个手办,1个盲盒,1个钥匙扣;丙种礼盒装有2个手办,4个盲盒,1个钥匙扣.甲种礼盒的售价比乙种礼盒的售价多110元,比丙种礼盒售价的2倍少800元,已知手办的单价不超过100元,且各产品的零售单价均为10的正整数倍,则盲盒的单价为______元.三、解答题(本大题共9小题,共86.0分。

2019年重庆(B)中考数学试题(解析版)

2019年重庆(B)中考数学试题(解析版)

重庆市2019年初中毕业水平暨高中招生考试数学试题(B 卷)考试时间:120分钟 满分:150分{题型:1-选择题}一、选择题:本大题共12 小题,每小题4分,合计48分.{题目}1.(2019年重庆B 卷)5的绝对值是A .5B .-5C .15D .-15{答案}A{解析}本题考查了绝对值的意义,利用了绝对值的性质是解题关键,一个正数的绝对值是它本身,所以5的绝对值是5,因此本题选A . {分值}4{章节: [1-1-2-4]绝对值} {考点: 绝对值的意义} {类别:常考题} {难度:1-最简单}{题目}2.(2019年重庆B 卷)如图是一个由5个相同正方体组成的立体图形,它的主视图是A .B .C .D .{答案}D{解析}本题考查了简单组合体的三视图,从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形可知:从正面看所得到的图形为D .因此本题选D . {分值}4{章节: [1-29-2]三视图}{考点: 简单组合体的三视图} {类别:常考题}{题目}3.(2019年重庆B 卷)下列命题是真命题的是 A .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为2∶3 B .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9 C .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为2∶3 D .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为4∶9{答案}B{解析}本题考查了相似三角形的性质,相似三角形周长的比等于相似比;相似三角形的面积比等于相似比的平方.因此在所给四个选项中只有B 是正确的,因此本题选B . {分值}4{章节: [1-27-1-2]相似三角形的性质}{考点:相似三角形周长的性质}{考点:相似三角形面积的性质} {类别:常考题} {难度:1-最简单} {题目}4.(2019年重庆B 卷)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为2题图A .60°B .50°C .40°D .30°{答案}B{解析}本题考查了切线的性质和直角三角形两直角互余,∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠B =50°,因此本题选B . {分值}4{章节: [1-24-2-2]直线和圆的位置关系}{考点:切线的性质}{考点:直角三角形两锐角互余} {类别:常考题} {难度:1-最简单}{题目}5.(2019年重庆B 卷)抛物线y =-3x 2+6x +2的对称轴是 A .直线x =2 B .直线x =-2 C .直线x =1 D .直线x =-1 {答案}C{解析}本题考查了二次函数的性质,∵y =-3x 2+6x +2=-3(x -1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x =1.因此本题选C . {分值}4{章节: [1-22-1-4]二次函数y =ax 2+bx +c 的图象和性质} {考点:二次函数y =ax 2+bx +c 的性质} {类别:常考题} {难度:1-最简单}{题目}6.(2019年重庆B 卷)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为 A .13 B .14 C .15 D .16 {答案}C{解析}本题考查了一元一次不等式的应用,设小玉答对了x 道题,依题意,可得10x -5(20-x )>120,解得,x >1423,∴小玉至少答对15道,因此本题选C . {分值}4{章节:[1-9-2]一元一次不等式}{考点:一元一次不等式的应用}{考点:一元一次不等式的整数解} {难度:2-简单}{题目}7.(2019年重庆BA .5和6之间B .6和7之间C .7和8之间D .8和9之间{答案}B{解析}本题考查了估算无理数的大小,正确进行二次根式的计算是解题关键.=6<7,因此本题选B . {分值}4{章节:[1-6-3]实数} {考点:无理数的估值} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}8.(2019年重庆B 卷)根据如图所示的计算程序计算函数y 的值,若输入x 的值是7,则输C4题图出y 的值是-2,若输入x 的值是-8,则输出y 的值是 A .5 B .10 C .19 D .21{答案}C{解析}本题考查了函数值的计算,由于输入x 的值是7时,输出y 的值是-2,则有-2=72b-+,解得b =3,因此当x <3时,y =-2x +3,所以当输入的x 的值是-8时,y =-2×(-8)+3=19,因此本题选C . {分值}4{章节:[1-19-1-1]变量与函数} {考点:函数值} {类别:易错题} {难度:2-简单}{题目}9.(2019年重庆B 卷)如图,在平面直角坐标系中,菱形OABC的边OA 在x 轴上,点A (10,0),sin ∠COA =45.若反比例函数y =kx(k >0,x >0)经过点C ,则k 的值等于A .10B .24C .48D .50 {答案}C{解析}本题考查了反比例函数的图像和性质,在这里根据A 点的坐标和菱形的性质求得点C 的坐标是解题的关键.由于点A 的坐标是(10,0),所以OA =OC =10,设C 点的坐标为(m ,n ),因为OC =10,sin ∠COA =45,则有4105n =,m 2+n 2=102,解得m =6,n =8,即C (6,8),由于C在反比例函数图像上,所以8=6k,解得k =48,因此本题选B .{分值}4{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的几何意义} {考点:菱形的性质} {考点:正弦}{考点:双曲线与几何图形的综合} {类别:常考题} {难度:2-简单}{题目}10.(2019年重庆B 卷)如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC =B C .在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)i =162.4,那么建筑物AB 的高度约为(参考数据sin27°≈0.45,cos 27°≈0.89,tan27°≈0.51) A .65.8米 B .71.8米 C .73.8米 D .119.8米8题图9题图{答案}B{解析}本题考查了解直角三角形的应用,涉及到了仰角、与坡度两类问题.延长EF 交AB 于点M ,过D 作BC 的垂线交BC 的延长线于点H ,如下图 则ME =BH =BC +CH ,BM =EH =ED +DH ,设DH =x (x >0),由于斜坡CD 的坡度(或坡比)i =1∶2.4,则有CH =2.4x , ∵CD =BC =52,∴x 2+(2.4x )2=522,解得x =20∴BM =EH =ED +DH =20+0.8=20.8(米) CH =2.4x =48(米)∴ME =BH =BC +CH =52+48=100(米) 在Rt △AME 中,由于∠AEM =∠AE F =27°, ∴AM =ME ·tan27°≈100×0.51≈51,∴AB =AM +BM ≈51+20.8≈71.8(米),因此本题选B . {分值}4{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的应用-坡度}{考点:解直角三角形的应用-仰角} {类别:常考题} {难度:2-简单}{题目}11.(2019年重庆B 卷)若数a 使关于x 的不等式组12(7)34625(1)xx x a x ⎧-≤-⎪⎨⎪->-⎩有且仅有三个整数解,且使关于y 的分式方程12311y ay y --=---的解为正数,则所有满足条件的整数a 的值之和是 A .-3B .-2C .-1D .1{答案}A{解析}本题考查了分式方程的解以及一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.12(7)34625(1)x x x a x ⎧-≤-⎪⎨⎪->-⎩①② 解不等式①得:x ≤3,解不等式②得:x >5211a+, ∴该不等式组的解集为:5211a+<x ≤3∵该不等式组有且仅有三个整数解,∴0<5211a+<1,解得-52<a <3,方程12311y ay y--=---的两边同乘以(y -1)得: M H1-2y +a =-3(y -1),解得y =2-a ,∵方程12311y ay y --=---的解为正数,且y ≠1,∴2-a >0,且2-a ≠1,即a <2且a ≠1又-52<a <3, ∴满足条件的整数a 为:-2,-1,0, 则所有满足条件的整数a 的值之和是-3, 因此本题选A . {分值}4{章节:[1-15-3]分式方程}{考点:分式方程的解}{考点:一元一次不等式组的整数解} {类别:易错题} {难度:2-简单}{题目}12.(2019年重庆B 卷)如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G .则四边形DFEG 的周长为 A .8 B .42 C .22+4 D .32+2{答案}D{解析}本题考查了平行四边形的判定与性质,三角形全等的判定,轴对称的性质,以及勾股定理等内容,准确求出DE 和EG 的长是解题的关键. ∵∠ABC =45°,AB =3,AD ⊥BC 于点D , ∴△ADB 是等腰直角三角形,即AD =BD , 又BE ⊥AC ,DG ⊥DE ,∴∠GBD =∠EAD ,∠GDB =∠EDA ∴△GBD ≌△EAD ,∴GD =ED , BG =AE =1∵DG ⊥DE ,∴∠DGE =∠DEG =45° ∵BE ⊥AC ,∴∠DEC =45°又△AED 沿直线AE 翻折至△ABC 所在的平面内,得△AEF , ∴ED =EF ,∠DEC =∠FEC ,即GD =EF ,∠FEC =45°, ∴∠DEF =∠DEC +∠FEC =90°,即DE ⊥EF , ∴GD ∥EF∴DFEG 是平行四边形,又AB =3,AE =1,BE ⊥AC 于点E , ∴BE 22AB AE -2, ∴EG =2-1,又DE ⊥EF ,ED =EF ,∴EF=2∴四边形DFEG 的周长=2(EG +EF )=+2, 因此本题选D . {分值}4{章节:[1-18-1-2]平行四边形的判定}{考点:一组对边平行且相等的四边形是平行四边形} {考点:平行四边形边的性质} {考点:勾股定理} {考点:轴对称的性质} {考点:几何选择压轴}{考点:全等三角形的判定ASA ,AAS } {类别:高度原创} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共 6小题,每小题4分,合计24分.{题目}13.(2019年重庆B卷)计算:0111)()2-+= .{答案}3{解析}本题考查了实数的运算、零指数幂、负整数指数幂.原式=1+2=3,因此本题应填3. {分值}4{章节:[1-6-3]实数}{考点:简单的实数运算}{考点:零次幂}{考点:负指数参与的运算} {类别:常考题} {难度:1-最简单}{题目}14.(2019年重庆B 卷)2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP 注册人数约1 180 000,参学覆盖率达71%,稳居全国前列.将数据1 180 000用科学记数法表示为 .{答案}1.18×106{解析}本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.1 180 000=1.18×106,因此本题应填:1.18×106. {分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}15.(2019年重庆B 卷)一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面,第二次出现的点数是第一次出现的点数的2倍的概率是 .{答案}112{解析}本题考查了概率的计算,掷二次骰子,共有36种情况,其中在骰子向上的一面,第二次出现的点数是第一次出现的点数的2倍的有3种,故在骰子向上的一面,第二次出现的点数是第一次出现的点数的2倍的概率是:336=112.因此本题应填:112.{分值}4{章节:[1-25-2]用列举法求概率}{考点:两步事件放回}{类别:常考题} {难度:2-简单} {题目}16.(2019年重庆B 卷)如图,四边形ABCD 是矩形,AB =4,AD16题图D=22,以点A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是.{答案}82-8{解析}本题考查了扇形面积的计算以及特殊角的三角函数值. 如答图,连接AE ,则AE =AB =4,∴cos ∠EAD =222AD AE ==,∴∠EAD =45°, ∴AD =ED =22,CE =4-22S 阴影=(S 梯形ABCE -S 扇形ABE )+(S 扇形AEF -S △ADE )=(2AB CE BC +⨯-245360πAB ⨯⨯)+(245360πAB ⨯⨯-12AD ED ⨯) =442222+-⨯-122222⨯⨯=82-8因此本题应填:82-8. {分值}4{章节:[1-24-4]弧长和扇形面积} {考点:扇形的面积}{考点:特殊角的三角函数值} {类别:常考题} {难度:3-中等难度}{题目}17.(2019年重庆B 卷)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流的时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.{答案}2080{解析}本题考查了距离时间图象,充分挖掘函数图象中隐含的等量关系是解题的关键. 设小明的速度是m 米/分,爸爸的速度是n 米/分,由图象可知,爸爸追上小明所用的时间为16-11=5分钟,爸爸跑5分钟的路程是小明走11分钟的ED AC路程,爸爸以原速跑回家时,小明以54m 米/分速度走向学校,两人5分钟共行了1380米,所以有51155513804n m n m =⎧⎪⎨+⨯=⎪⎩,解得m =80,n =176, 所以小明家到学校的距离是80×11+54×80×(23-11)=2080(米)因此本题应填:2080. {分值}4{章节:[1-19-1-2] 函数的图象} {考点:距离时间图象} {类别:常考题} {类别:易错题} {难度:3-中等难度}{题目}18.(2019年重庆B 卷)某磨具厂共有6个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 .{答案}1819{解析}本题考查了列代数式、分式以及等式的性质,设每个车间原有的产品数量为x ,第一车间每天生产的数量为y ,甲组检验员的人数为m ,乙组检验员的人数为n ,由于甲组用了6天时间将第一、二、三车间所有成品同时检验完,所以甲组检验员的速度为3366x ym+⨯,乙组先用2天将第四、五车间的所有成品同时检验完,此时乙组检验员的速度为322242x y yn ++⨯,又乙组再用了4天检验完第六车间的所有成品,此时乙组检验员的速度为8634x yn+⨯,由于每个检验员的检验速度一样,所以3366x y m +⨯=322242x y y n ++⨯=8634x y n +⨯,由3366x y m +⨯=322242x y yn ++⨯可得m n=6722x y x y++=21247x y x y ++,由322242x y yn ++⨯=8634x y n +⨯可得4x +7y =x +16y ,即x =3y ,将x =3y 带入m n =21247x y x y ++中,可得m n =1819,因此本题应填1819.{分值}4{章节:[1-15-1]分式} {考点:列代数式} {考点:等式的性质} {考点:代数填空压轴} {类别:高度原创}{难度:3-中等难度}{题型:3-解答题}三、解答题:本大题共 7小题,合计70分.{题目}19.(2019年重庆B 卷)计算:(1)(a +b )2+a (a -2b );(2)m -1+2269m m --÷223m m ++{解析}本题考查了分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法.. {答案}解: (1)(a +b )2+a (a -2b )=a 2+2ab +b 2+a 2-2ab =2a 2+b 2;(2)m -1+2269m m --÷223m m ++=m -1+2(3)(3)(3)m m m -+-×32(1)m m ++=m -1+11m +=2111m m -++=21m m +{分值}10{章节:[1-15-2-2]分式的加减} {难度:2-简单} {类别:常考题}{考点:分式的混合运算} {考点:完全平方公式} {考点:单项式乘以多项式} {考点:因式分解-提公因式法} {考点:因式分解-平方差}{题目}20.(2019年重庆B 卷)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D . (1)若∠C =42°,求∠BAD 的度数; (2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F , 求证:AE =FE .{解析}本题考查了等腰三角形的性质“等腰三角形三线合一”以及平行线的性质. {答案}解:(1)在△ABC 中,由于AB =AC ,AD ⊥BC 于点D .∴△ABC 是等腰三角形,且AD 为顶角∠BAC 的角平分线,∴∠BAD =12∠BAC , 又∠C =42°,∴∠BAC =180°-2∠C =96°,∴∠BAD =12∠BAC =48°;(2)由(1)可知,∠FAC =∠BAD =12∠BAC ,B20题图∵EF∥AC交AD的延长线于点F,∴∠AFE=∠FAC,∴∠AFE=∠BAD,∴AE=FE.{分值}10{章节:[1-13-2-1]等腰三角形}{难度:2-简单}{类别:常考题}{考点:三线合一}{考点:两直线平行内错角相等}{题目}21.(2019年重庆B卷)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30明学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1根据以上信息回答下列问题:(1)填空:a=,b=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.{解析}本题考查了频数直方图、用样本估计总体的思想、统计量的选择等知识,解题的关键是搞清楚频数、合格率等概念,属于基础题.{答案}解:(1)∵频数之和为30,∴3+4+a+7+8+3=30,解得a=5;1+2+b+7+12+4=30,解得b=4;将活动前、后被测查学生数据由小到大排列可知:活动前被测查学生视力样本数据的中位数是4.6 4.74.652+=,活动后被测查学生视力样本数据的众数是4.8;因此,各空依次填入:5;4;4.65;4.8(2)活动前该校学生的视力达标率=12430+×100%≈53.33%,活动前被测查学生视力频数分布直方图注:每组数据包括左端值,不包括右端值活动后被测查学生视力频数分布表七年级600名学生活动后视力达标的人数600×1630=320(人)(3)答案不唯一,能说明问题即可,比如:①视力4.8≤x<5.0之间活动前有8人,活动后只有12人,人数明显增加.说明视力保健活动的效果比较好.②活动前合格率1430×100%≈46.67%,活动后合格率53.33%,合格率显著提升.说明视力保健活动的效果比较好.{分值}10{章节:[1-10-2]直方图}{难度:3-中等难度}{类别:常考题}{考点:频数(率)分布直方图}{考点:中位数}{考点:众数}{考点:用样本估计总体}{考点:统计量的选择}{题目}22.(2019年重庆B卷)在数学学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式进行计算时个位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式进行计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”个数,并说明理由.{解析}本题考查了新定义的理解与分析,新定义中的“不产生进位”是分析的关键,即和不能大于10,在列举时要注意“不重不漏”.{答案}解:(1)依题意n+(n+1)+(n+2)<10,即n<2.3 ,所以个位上的数字只能取0,1,2,由于十位、百位、千位上的数字可以相同,因此可取值为0,1,2,3,又所求数字在1949~2019之间,因此千位只能取2,百位只能取0,十位可取0,1,个位可取0,1,2.因此满足条件的数有六个,即:2000,2001,2002,2010,2011,2012.(2)依题意n+(n+1)+(n+2)<10,即n<2.3 ,即个位可取0,1,2由于十位、百位上的数字可以相同,所以该数字小于103,即可取值为0,1,2,3又该纯数不大于100,因此该纯数可以是单一数字、两位数字或3位数字,当“纯数”为单一数字时,“纯数”为0,1,2;当“纯数”为两位数字时,“纯数”为10,11,12,20,21,22,30,31,32;当“纯数”为三位数字时,“纯数”为100;因此不大于100的“纯数”有13个.{分值}10{章节:[1-2-2]整式的加减}难度:3-中等难度}{类别:新定义}{考点:新定义}{考点:整式加减}{考点:整式加减的实际应用}{题目}23.(2019年重庆B卷)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如下图所示;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如右图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A、B 的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给平面坐标系内画出函数y=-2|x+3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.{解析}本题考查了绝对值函数,绝对值函数是轴对称图形,k>0时,函数有最低点,k<0时,函数有最高点.{答案}解:(1)点A的坐标(0,2),点B的坐标为(-2,0),函数y=-2|x+2|的对称轴是x =-2;(2)y=-2|x|的图象向上平移2个单位可得到函数y=-2|x|+2的图象;y=-2|x|的图象向左平移2个单位可得到函数y=-2|x+2|的图象;(3)函数y=-2|x+3|+1的图象如下图中的红色线条由于点(x1,y1)和(x2,y2)在该函数图象上,所以函数随x的增大而减小,∵x2>x1>3,∴y1>y2.{分值}10{章节:[1-19-2-2]一次函数}{难度:3-中等难度}{类别:北京作图}{类别:发现探究}{考点:一次函数的图象}{考点:一次函数的性质}{考点:一次函数图象与几何变换}{题目}24.(2019年重庆B卷)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场每月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为了提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调查与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,每个摊位的管理费将会减少3%10a;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少1%4a.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少5%18a,求a的值.{解析}本题考查了列代数式以及利用利用一元一次方程和一元二次方程解决实际问题.{答案}解:(1)设4平方米的摊位共有x 个,则2.5平方米的摊位有2x 个 . 依题意,得20×2.5×2x +20×4x =4500,即100x +80x =4500,解得x =25, 答:4平方米的摊位共有25个. (2)由(1)知,2.5平方米的摊位有50个,4平方米的摊位有25个, ∴参加活动一的2.5平方米摊位有50×40%=20个, 参加活动一的4平方米摊位有25×20%=5个, ∴参加活动二的2.5平方米摊位有20(1+2a %)个, 参加活动二的4平方米摊位有5(1+6a %)个, ∴2.5平方米摊位少收管理费20×2.5×3%10a ×20(1+2a %) 4平方米摊位少收管理费20×4×1%4a ×5(1+6a %)这部分商户减少的管理费〔20×2.5×20(1+2a %)+20×4×5(1+6a %)〕×5%18a ∴20×2.5×3%10a ×20(1+2a %)+20×4×1%4a ×5(1+6a %)=〔20×2.5×20(1+2a %)+20×4×5(1+6a %)〕×5%18a整理得2(a %)2-a %=0∴a %=12或a %=0(不合题意,舍去)由于a %=12,∴a =50{分值}10{章节:[1-21-4]实际问题与一元二次方程} {难度:3-中等难度} {类别:易错题}{考点:其他一元二次方程的应用问题} {考点:一元一次方程的应用(其他问题)} {考点:代数式求值}{题目}25.(2019年重庆B 卷)在□ABCD 中,BE 平分∠ABC 交AD 于点E . (1)如图1,若∠D =30°,ABABE 的面积; (2)如图2,过点A 作AF ⊥DC ,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且AB =AF .求证:ED -AG =F C .{解析}本题考查了三角形全等的判定与性质,线段和差的证明方法以及三角形面积的计算,解题的关键是将分散的条件通过作辅助线“作AK ⊥BE 交BE 于点K ,交DF 的延长线于点N ”使所证问题结论中的线段集中到一起.{答案}解:(1)如答图1,过点E 作AB 的垂线教BA 的延长线于点M25题图1 D25题图2 D在□ABCD 中,∵∠D =30°,∴∠ABC =30°, 又BE 平分∠ABC 交AD 于点E .∴∠ABE =∠CBE =∠AEB =12∠ABC =15°, ∴AE =ABMAE =∠ABE +∠AEB =30°∴ME =12AE,∴S △ABE =12AB ·ME =12=32.(2)如答图2,作AK ⊥BE 交BE 于点K ,交DF 的延长线于点N ,则∠NAF =∠GBA ,∵∠NAF =∠GBA ,AB =AF ,,∠BAG =∠AFN =90° ∴△ABG ≌△FAN∴AG =FN ,∠N =∠AGB ∵∠AGB =∠GAE +∠AEG∴∠AGB =∠GAE +∠KAG =∠KAE ∴∠KAE =∠N ∴DA =DN∵DE =DA -AE ,CN =DN -DC =DN -AB =DN -AE ∴DE =CN =FC +FN =FC +AG 即DE -AG =FC{分值}10{章节:[1-12-2]三角形全等的判定} {难度:4-较高难度} {类别:常考题}{考点:全等三角形的判定ASA ,AAS } {考点:全等三角形的性质}{考点:与线段和差倍分有关的问题} {考点:三角形的面积} {考点:几何综合}{题型:4-解答题}四、解答题:本大题共1小题,计8分.DB25题答图125题答图2DB{题目}26.(2019年重庆B 卷)在平面直角坐标系中,抛物线y2+x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q . (1)如图1,连接AC ,B C .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HKKG 的最小值及点H 的坐标.(2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线的顶点记为D ′,N 为直线DQ 上一点,连接D ′,C ,N ,△D ′CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.{解析}本题考查了二次函数综合题、一次函数的应用、锐角三角函数、对称的性质、等腰三角形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用轴对称的性质解决线段和的最短问题,学会用分类讨论的思想思考问题是解决问题的关键.{答案}解:(1)∵PE 平行于y 轴,PF ⊥BC ,∴∠FPE =∠OBC 为一定值,∴当PE 取得最大值时,EF ,PF 取得最大值,即△PEF 的周长也取得最大值。

2023年重庆市中考数学真题(A卷)(含答案解析)

2023年重庆市中考数学真题(A卷)(含答案解析)
17.
那么称这个四位数为“递减数”.例如:四位数 4129,∵ 41 12 29 ,∴4129 是“递减数”;
又如:四位数 5324,∵ 53 32 21 24 ,∴5324 不是“递减数”.若一个“递减数”为 a312 ,
则这个数为___________;若一个“递减数”的前三个数字组成的三位数 abc 与后三个数字
已知:如图,四边形 ABCD 是平行四边形, AC 是对角线, EF 垂直平分 AC ,垂足为
点 O.
求证: OE OF .
证明:∵四边形 ABCD 是平行四边形,
∴ DC ∥ AB .
∴ ECO ① .
∵ EF 垂直平分 AC ,
∴② .
又 EOC ___________③ .
∴ COE AOF ASA .
∴ OE OF .
小虹再进一步研究发现,过平行四边形对角线 AC 中点的直线与平行四边形一组对边相
交形成的线段均有此特征.请你依照题意完成下面命题:
过平行四边形对角线中点的直线 ④ .
20.为了解 A、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关
人员分别随机调查了 A、B 两款智能玩具飞机各 10 架,记录下它们运行的最长时间(分
组成的三位数 bcd 的和能被 9 整除,则满足条件的数的最大值是___________.
三、解答题
18.计算:
(1) a 2 a a 1 a 1 ;
(2)
x2
x

x
.
2
x 2x 1
x 1
19.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对
【详解】解:∵两个相似三角形周长的比为 1: 4 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市2011年初中毕业暨高中招生考试(改)
数学试题
(全卷共五个大题,满分150分,考试时间120分钟)
参考公式:抛物线的2
(0)y ax bx c a =++≠顶点坐标为2
4(,)24b ac b a a
--,对称轴公式为2b x a =-。

一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、
B 、
C 、
D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.
1.在-6,0,3,8这四个数中,最小的数是( )
A . -6
B .0
C .3
D . 8 2.计算()
2
3a
的结果是( )
A . a
B . a 5
C .a 6
D . 9
a
3.下列图形中,是中心对称图形的是( )
4. 如图,AB ∥CD ,︒=∠90C ,︒=∠60CAD ,则∠BAD 的度数等于( ) 5.下列调查中,适宜采用抽样方式的是( ) A . 调查我市中学生每天体育锻炼的时间 B . 调查某班学生对“五个重庆”的知晓率 C . 调查一架“歼20”隐形战机各零部件的质量 D . 调查广州亚运会100米参赛运动员兴奋剂的使用情况
6.如图,⊙O 是△ABC 的外接圆,∠OCB =400
,则∠A 的度数等于( )
A

B
C
D
A .60°
B . 50°
C .45°
D .40°
7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是( )
A .
B .
C .
D .
8.“五一”以来,随着枇杷的大量上市,某超市的枇杷每千克降价口元后,再打八折促销,现售价为b 元/千克,则原来的价格为( ) A.⎪⎭⎫ ⎝⎛
-
b a 45元/千克 B.⎪⎭⎫ ⎝

+b a 45元/千克 C.()b a 5+元/千克D.()b a 5-元/千克 9.为了建设社会主义新农村,我市积极推进“行政村通畅工程”。

张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按完成了两村之间的道路改造。

下面能反映该工程尚未改造的道路里程y (公里)与时间x (天)的函数关系的大致图象是( )
10.下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑥个图形中平行四边形的个数为( )
A .55
B . 42
C . 41
D . 29 11.如图,在菱形ABCD 中,D
E ⊥AB ,cos A=3
5
,BE=2, 则tan ∠DBE 的值( )
A
B
C
D
第11题图
A .
12 B .2
C
D
12.抛物线c bx ax y ++=2上部分点的横坐标x ,纵坐标y 的对应值如下表:
小明观察上表,得出下面结论:
①抛物线与x 轴有一个交点为(3,0);②在对称轴左侧,y 随x 增大而增大; ③抛物线的对称轴是直线2
1
=x ; ④函数c bx ax y ++=2的最大值为6.其中正确的结论有( )
A .1个
B .2个 C.3个 D .4个
二、填空题:(本大题6个小题,每小题4分,共24分)
13. 据第六次全国人口普查结果显示,重庆常住人口约为2880万人。

将数2880万用科学记数法表
示为 万.
14. 如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D、E两点,若AD :AB =
1:4,则△ADE 与△ABC 的面积比为 .
15.在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是 .
16. 在半径为4π
的圆中,45°
的圆心角所对的弧长等于 .
17.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程
11
222ax x x
-+=--有正整数解的概率为 . 18.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙咱盆景由10朵红花、18朵黄花
和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,由黄花一共用了 _________朵.
三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤) 19.()
(
)2
2011
13132π-⎛⎫
-+-⨯- ⎪⎝⎭
012=--x x .
22.某开发商要建一批住房,经调查了解,若甲、乙两个施工队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成. (1)甲、乙两队单独完成各需多少天?
(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选择一队单独施工,若要使开发商选择甲队支付的总费用不超过选择乙队支付的总费用,则甲队每天的施工费最多为多少元?【总费用=施工费+工程师食宿费】
23.为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
24. 如图,正方形ABCD 中,P 在对角线BD 上,E 在CB 的延长线上,且PE=PC ,过点P 作PF ⊥AE
于F ,直线PF 分别交AB 、CD 于G 、H , (1)求证: DH =AG+BE ;
(2)若BE=1,AB=3,求PE 的长.
H P
G F E D C B A
五、解答题:(本大题2个小题,第25题12分,第26小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.
25.在直角坐标系xoy 中,抛物线23y ax bx =++与x 轴交于A 、B 两点,交y 轴于点C ,过A 点
的直线与抛物线的另一交点为D (m ,3),与y 轴相较于点E ,点A 的坐标为(-1,0), tan ∠DAB=
1
2
,点P 是抛物线上的一点,且点P 在第一象限.
(1)求直线AD 和抛物线的解析式; (2)若PC ⊥CB ,求△PCB 的周长; (3)若PBC BOC S S ∆∆=,求点P 的坐标.
26.如图,矩形ABCD 中,AB=6,BC= O 是AB 的中点,点P 在AB 的延长线上,且BP=3.一
动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧。

设运动的时间为t 秒(t ≥0).
(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;
(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;
(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存大,求出对应的t 的值;若不存在,请说明理由.。

相关文档
最新文档