高三数学二轮专题复习教案――立体几何
高三数学二轮复习:立体几何
专题四 立体几何
第1讲 空间几何体
[考情考向分析]
1.以三视图为载体,考查空间几何体面积、体积的计算. 2.考查空间几何体的侧面展开图及简单的组合体问题.
内容索引
热点分类突破 真题押题精练
热规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视 图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图 的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤 一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.
跟踪演练3 (1)(2018·咸阳模拟)在三棱锥P-ABC中,PA⊥平面ABC,
AB⊥BC,若AB=2,BC=3,PA=4,则该三棱锥的外接球的表面积为
A.13π C.25π
B.20π
√D.29π
解析 答案
(2)(2018·四川成都名校联考)已知一个圆锥的侧面积是底面积的2倍,
√ 记该圆锥的内切球的表面积为S1,外接球的表面积为S2,则SS12 等于
例3 (1)(2018·百校联盟联考)在三棱锥P-ABC中,△ABC和△PBC均为
边长为3的等边三角形,且PA=326 ,则三棱锥P-ABC外接球的体积为
13 13 A. 6 π
10 10 B. 3 π
√C.5
15 2π
55 D. 6 π
解析 答案
(2)(2018·衡水金卷信息卷)如图是某三棱锥的三视
跟踪演练1 (1)(2018·衡水模拟)已知一几何体的正(主)视图、侧(左)视 图如图所示,则该几何体的俯视图不可能是
√
解析 答案
(2)(2018·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱 A1B1的中点,用过点A,C,E的平面截正方体,则位于 截面以下部分的几何体的侧(左)视图为
2019届高三理科数学第二轮专题复习配套文档专题四 第3讲立体几何中的向量方法
第3讲立体几何中的向量方法[真题再现]1.(2018·课标Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC使点C到达点P的位置,且PF⊥BF。
(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解](1)证明:由已知可得BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD。
(2)解:如图,作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD。
以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H.xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,所以PE⊥PF.所以PH=错误!,EH=错误!.则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!.又错误!为平面ABFD的法向量,设DP与平面ABFD所成角为θ,则sin θ=错误!=错误!=错误!。
所以DP与平面ABFD所成角的正弦值为错误!.2.(2018·课标Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M。
P A-C为30°,求PC与平面P AM所成角的正弦值[解](1)证明:因为P A=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2错误!.如图,连接OB.因为AB=BC=错误!AC,所以△ABC为等腰直角三角形,且OB ⊥AC,OB=错误!AC=2。
由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,错误!的方向为x轴正方向,建立空间直角坐标系O。
xyz。
由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2错误!),错误!=(0,2,2错误!).取平面P AC的一个法向量错误!=(2,0,0).设M (a ,2-a,0)(0≤a ≤2),则错误!=(a ,4-a,0).设平面P AM 的法向量为n =(x ,y ,z ).由AP ,→·n =0,错误!·n =0得错误!可取y =错误!a ,得平面P AM 的一个法向量为n =(错误!(a -4),错误!a ,-a ),所以cos 错误!,n =错误!。
高三文科数学立体几何复习课教学设计
高三文科数学立体几何复习课教学设计作者:薛超群来源:《考试周刊》2012年第94期摘要:根据《数学课程标准》及现代认知心理学理论,本节课从介绍立体几何证明常见二十四招式前半部分开始,应用发现思维等寻找证明思路,在寻找证明思路的过程中,学生通过不同形式的自主学习、探究活动,体验数学发现和创造的历程.关键词:立体几何证明常见招式证明思维教学设计【教学目标】1.知识与技能:掌握立体几何证明常见二十四招式中的前半部分并能应用.2.过程与方法:能应用立体几何证明常见二十四招式中的前半部分解决证明问题;应用发现思维等寻找证明思路.3.情感态度与价值观:在寻找证明思路的过程中培养合作学习、共同探究的精神.【教学重点】掌握立体几何证明常见二十四招式中的前半部分并能应用.【教学难点】应用发现思维等寻找立体几何证明的思路.【教学方法】讲授法、发现法.【教学手段】多媒体.【教学流程】【教学过程】一、问题导学立体几何证明常见招式有哪些?看到等腰就劈断、看到中点找中点、看到垂直做垂直、电线杆和田埂、泥工师傅灌平台、吊瓶架两垂直、公理四传染病、透过竹签就垂直、三推一……招式简介:看到等腰就劈断:看到等腰三角形,连接顶点和底边中点.看到中点找中点:看到三角形一条边的中点,寻找另一边的中点并连接之.看到垂直作垂直:看到两个平面互相垂直,在其中一个平面内过一个点作垂直于两平面的交线的直线,则所作的直线与另一个平面垂直.电线杆和田埂:一条直线和一个平面垂直,则这条直线垂直于平面内的任一直线.泥工师傅灌平台:一个平面内两交线分别平行于另一个平面,则这另个平面平行.吊瓶架两垂直:一条直线垂直于一个平面内的两条交线,则这条直线与平面垂直.公理四传染病:两条直线都与第三条直线平行,则这两条直线平行.透过竹签就垂直:一个平面经过另一个平面的垂线,则这两个平面垂直.三推一:平面外的一条直线平行于一个平面内的一条直线,则平面外的直线与平面平行.设计意图:复习旧知识,自然引出新问题.二、讲授新课例1.在三棱锥A-BCD中,AD=AC,BC=BD,求证:AB⊥CD.分析:证明思路是什么?应用什么招式?要证明AB⊥CD,只需证明AB垂直于CD所在的平面.看到AD=AC,BC=BD,用“看到等腰就劈断” 招式.看到CD⊥AE,CD⊥BE,用“吊瓶架两垂直” 招式.看到CD⊥平面ABE,用“电线杆和田埂” 招式.证明:取CD中点E,连接AE、BE,∵AD=AC,∴CD⊥AE,同理CD⊥BE,∵AE∩BE=E,∴CD⊥平面ABE,∵AB?奂平面ABE,∴AB⊥CD.小结:这是年全国高考改编题,题目简洁明了,用三个招式就可以解决问题.例.正方体中ABCD-A■B■C■D■,AA■=2,E为棱AA■的中点.(Ⅰ)求证:AC■⊥B■D■;(Ⅱ)求证:AC■∥平面B■D■E.分析:证明思路是什么?应用什么招式?(Ⅰ)要证明B■D■⊥AC■,只需证明B■D■垂直于AC■所在的平面,用“吊瓶架两垂直” 招式.(Ⅱ)要证明AC■∥平面B■D■E,只需证明AC■平行于平面B■D■E内的一条直线,用“看到中点找中点”、“三推一” 招式.证明:(Ⅰ)连接AC■,交B■D■于点O,由正方体的性质可知AA■⊥平面AA■C■,∵AA■⊥B■D■,又A■C■⊥B■D■,∵AA■∩A■C■=A■,∴B■D■⊥平面AA■C■又AC■?奂平面AA■C■,∴B■D■⊥A■C■,即AC■⊥B■D■.(Ⅱ)连接EO,在△A■AC■中,A■E=EA,A■O=OC■,∴EO∥AC■,又EO?奂平面B■ED■,AC■?埭平面B■ED■,∴AC■∥平面B■D■E.小结:这是2012年宁德市高中毕业班单科质检(文)试题,题目精美,用三个招式就可以解决问题.例3.如图,已知AB⊥平面ACD,DE∥AB,AD=DE=2AB,△ACD为正三角形,且F是边CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.分析:证明思路是什么?应用什么招式?(Ⅰ)要证明AF∥平面BCE,只需证明AF平行于平面BCE内的一条直线,用“看到中点找中点”、“三推一”、“公理四传染病”招式.(Ⅱ)要证明平面BCE⊥平面CDE,只需证明平面BCE内的一条直线与平面CDE垂直,用“看到中点找中点”、“三推一”、“公理四传染病”、“透过竹签就垂直”招式.证明:(Ⅰ)取CE中点P,连接FP,BP,∵F为CD中点,∴FP∥DE,且FP=■DE.又AB∥DE,且AB=■DE,AB∥FP,且AB=FP,∴ABPF为平行四边形,∴AF∥BP.又∵AF?埭平面BCE,BP∥平面BCE,∴AF∥平面BCE.(Ⅱ)∵△ACD为正三角形,∴AF⊥CD,∵AB⊥平面ACD,DE∥AB,∴DE⊥平面ACD,∴DE⊥AF,又CD∩DE=D,∴AF⊥平面CDE,∵BP?奂平面BCE,∴平面BCE⊥平面CDE.小结:这是南平市届高三适应性考试数学(文)试题,题目精美,用五个招式就可以解决问题.设计意图:应用立体几何证明常见二十四招式中的前半部分解决证明问题.通过三道例题的讲解,由易到难,引导学生应用发现思维寻找证明思路,培养学生能力.三、课堂练习如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=■,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.求证:PO⊥平面ABCD.设计意图:初步巩固所学知识.四、课堂小结通过本节学习,要求大家掌握立体几何证明常见二十四招式中的前半部分并能应用,应用发现思维等寻找证明思路.设计意图:对本节课知识结构进行概括,使学生对知识横而成网、纵而成链,在招式应用方面能用一招一式解决问题,为下一步的招式相连做准备.五、课后作业年、年福建省高考(文)立体几何大题.设计意图:巩固所学知识.【设计说明】一、设计理念根据《数学课程标准》及现代认知心理学理论,本节课从介绍立体几何证明常见二十四招式前半部分开始,应用发现思维等寻找证明思路.在寻找证明思路的过程中,学生通过不同形式的自主学习、探究活动,体验数学发现和创造的历程.二、本节内容的地位作用立体几何证明常见二十四招式前半部分,是立体几何复习课的第一课时,在教学时可以复习旧知识,又可以对后面的立体几何证明起到承上启下的作用.三、教学诊断分析学生容易理解的内容.立体几何证明常见二十四招式中的前半部分.学生不容易理解的内容.应用立体几何证明常见二十四招式中的前半部分解决证明问题;应用发现思维等寻找证明思路.四、教学媒体的运用适当应用多媒体.【教学反思】学生学习数学的过程实际上是一个数学认知的过程,是学生在老师的指导下把教材知识转化成自己的数学认知结构的过程.本节课从介绍立体几何证明常见二十四招式前半部分开始,应用发现思维等寻找证明思路,在寻找证明思路的过程中,学生能力得到了提高.参考文献:[1]数学课程标准.北京:北京师范大学出版社,2007.。
2022版优化方案高考数学(浙江版·文科)二轮专题复习练习:专题4 立体几何第1讲 Word版含答案
[A卷]1.(2021·宁波市高三模拟) 用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B.由题意知,用平行于水平面的平面去截球所得的底面圆是看不见的,所以在俯视图中该部分应当是虚线圆,结合选项可知选B.2.下列命题中,错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台C.圆台的全部平行于底面的截面都是圆D.圆锥全部的轴截面都是全等的等腰三角形解析:选B.依据棱台的定义,用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.3.(2021·台州市高三调考)一个空间几何体的三视图如图所示,其体积为()A.16B.32C.48 D.96解析:选A.由题意作出直观图P-ABCD如图所示,则该几何体是一个四棱锥,底面是一个直角梯形,其面积为12×(2+4)×4=12,高为4,因此其体积V=13×12×4=16.4.(2021·高考全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2C.4 D.8解析:选B.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=12×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,所以(5π+4)r2=16+20π,所以r2=4,r=2,故选B.5.如图是一个体积为10的空间几何体的三视图,则图中x的值为()A.2 B.3C.4 D.5解析:选A.依据给定的三视图可知,该几何体对应的直观图是一个长方体和四棱锥的组合体,所以几何体的体积V=3×2×1+13×3×2×x=10,解得x=2.故选A.6. 如图,水平放置的三棱柱的侧棱长为1,且侧棱AA1⊥平面A1B1C1,正视图是边长为1的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为()A.2 3 B. 3C.32D.1解析:选C.由直观图、正视图以及俯视图可知,侧视图是宽为32,长为1的长方形,所以面积S=32×1=32.故选C.7.一平面截一球得到直径为2 5 cm的圆面,球心到这个平面的距离是2 cm,则该球的体积是() A.12πcm3B.36πcm3C.646πcm3D.108πcm3解析:选B.由于球心和截面圆心的连线垂直于截面,由勾股定理得,球半径R=22+(5)2=3,故球的体积为43πR3=36π(cm3).8.(2021·石家庄市第一次模拟)一个几何体的三视图如图所示,则该几何体的体积是()A.64B.72C.80D.112解析:选B.由三视图可知该几何体是一个组合体,下面是一个棱长为4的正方体;上面是一个三棱锥,三棱锥的高为3.故所求体积为43+13×12×4×4×3=72.9.已知某组合体的正视图与侧视图相同(其中AB=AC,四边形BCDE为矩形),则该组合体的俯视图可以是________(把正确的图的序号都填上).解析:几何体由四棱锥与四棱柱组成时,得①正确;几何体由四棱锥与圆柱组成时,得②正确;几何体由圆锥与圆柱组成时,得③正确;几何体由圆锥与四棱柱组成时,得④正确.答案:①②③④10.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10 cm,则圆锥的母线长为________ cm.解析:作出圆锥的轴截面如图,设SA=y,O′A′=x,利用平行线截线段成比例,得SA′∶SA=O′A′∶OA,则(y-10)∶y=x∶4x,解得y=403.所以圆锥的母线长为403cm.答案:40311.(2022·高考课标全国卷Ⅱ改编)正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为 3,D为BC中点,则三棱锥AB1DC1的体积为________.解析:由题意可知AD⊥BC,由面面垂直的性质定理可得AD⊥平面DB1C1,又AD=2sin 60°=3,所以V AB1DC1=13AD·S△B1DC1=13×3×12×2×3=1,故选C.答案:112.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥的侧面积为________,体积为________.解析:由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为22+12=5,所以S 侧=4×⎝⎛⎭⎫12×2×5=45,V=13×22×2=83.答案:458313.(2021·南昌市第一次模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为________.解析:依据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1. 答案:1∶114.如图是某空间几何体的三视图,则该几何体的体积为________.解析:由三视图可知,该几何体是棱长为2,2,1的长方体挖去一个半径为1的半球,所以长方体的体积为2×2×1=4,半球的体积为12×43π×13=2π3,所以该几何体的体积是4-2π3.答案:4-2π315.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1EDF的体积为________.解析:由于B 1C ∥平面ADD 1A 1,所以F 到平面ADD 1A 1的距离d 为定值1,△D 1DE 的面积为12D 1D ·AD =12,所以V D 1EDF =V F D 1DE =13S △D 1DE ·d =13×12×1=16.答案:16[B 卷]1.一个锥体的正视图和侧视图如图所示,下面选项中,不行能是该锥体的俯视图的是( )解析:选C.依据三视图中“正俯长一样,侧俯宽一样,正侧高一样”的规律,C 选项的侧视图宽为32,不符合题意,故选C.2.(2021·邢台市摸底考试)已知一个几何体的三视图是三个全等的边长为1的正方形,如图所示,则该几何体的体积为( )A.16 B.13 C.23D .56解析:选D.依题意得,题中的几何体是从棱长为1的正方体ABCD -A ′B ′C ′D ′中截去三棱锥A ′ABD 后剩余的部分,因此该几何体的体积等于13-13×⎝⎛⎭⎫12×12×1=56,故选D. 3.(2022·高考湖南卷)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B.由三视图可知该几何体是一个直三棱柱,如图所示.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大,故其半径r =12×(6+8-10)=2.因此选B.4.(2021·高考山东卷)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B .4π3 C.5π3D .2π 解析:选C.过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.5.(2021·郑州市第一次质量猜测)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A .32B .327C .64D .647解析:选C.依题意,题中的几何体是三棱锥P -ABC (如图所示), 其中底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC , BC =27,P A 2+y 2=102,(27)2+P A 2=x 2,因此xy =x 102-[x 2-(27)2]=x128-x 2≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64,故选C.6.(2021·山西省第三次四校联考)在半径为10的球面上有A ,B ,C 三点,假如AB =83,∠ACB =60°,则球心O 到平面ABC 的距离为( )A .2B .4C .6D .8解析:选C.设A ,B ,C 三点所在圆的半径为r ,圆心为P .由于∠ACB =60°,所以∠APB =120°.在等腰三角形ABP 中,AP =43sin 60°=8,所以r =8,所以球心O 到平面ABC 的距离为102-82=6,故选C.7.如图是一个几何体的三视图,则该几何体的表面积是( )A .5+ 3B .5+2 3C .4+2 2D .4+2 3解析:选A.该几何体的直观图如图.表面积S =1×1+12×1×1×2+2×12×(1+2)×1+12×6×2=5+3,所以选A.8.在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )A .AD ⊥平面PBC ,且三棱锥D -ABC 的体积为83B .BD ⊥平面P AC ,且三棱锥D -ABC 的体积为83C .AD ⊥平面PBC ,且三棱锥D -ABC 的体积为163D .BD ⊥平面P AC ,且三棱锥D -ABC 的体积为163解析:选C.由正视图可知,P A =AC ,且点D 为线段PC 的中点,所以AD ⊥PC .由侧视图可知,BC =4.由于P A ⊥平面ABC ,所以P A ⊥BC .又由于BC ⊥AC ,且AC ∩P A =A ,所以BC ⊥平面P AC ,所以BC ⊥AD .又由于AD ⊥PC ,且PC ∩BC =C ,所以可得AD ⊥平面PBC ,V D ABC =13×12×P A ×S △ABC =163.9.某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为________.解析:侧视图由一个矩形和一个等腰三角形构成,矩形的长为3,宽为2,面积为3×2=6.等腰三角形的底边为3,高为3,其面积为12×3×3=32,所以侧视图的面积为6+32=152.答案:15210.(2021·洛阳市高三班级统考)如图是某几何体的三视图,则该几何体的外接球的表面积为( )解析:由三视图知,该几何体可以由一个长方体截去一个角后得到,该长方体的长、宽、高分别为5、4、3,所以其外接球半径R 满足2R =42+32+52=52,所以该几何体的外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π.答案:50π 11.(2021·绍兴市高三诊断性测试)若某几何体的三视图如图所示,则该几何体的体积为________,最长的侧棱长为________.解析:依据三视图及有关数据还原该几何体,得该几何体是底面为直角梯形的四棱锥P -ABCD ,如图,过点P 作PH ⊥AD 于点H ,连接CH .底面面积S 1=(1+2)×12=32,V =13×32×1=12,最长的侧棱长为PB = 3.答案:12312.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 解析:设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32.由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,则h 1h 2=23,所以V 1V 2=πr 21h 1πr 22h 2=32.答案:3213.(2021·洛阳市统考)已知点A ,B ,C ,D 均在球O 上,AB =BC =6,AC =23,若三棱锥D -ABC 体积的最大值为3,则球O 的表面积为________.解析:由题意可得,∠ABC =π2,△ABC 的外接圆半径r =3,当三棱锥的体积最大时,V D ABC =13S △ABC ·h (h为D 到底面ABC 的距离),即3=13×12×6×6h ⇒h =3,即R +R 2-r 2=3(R 为外接球半径),解得R =2,所以球O 的表面积为4π×22=16π.答案:16π 14.(2021·杭州市联谊学校高三其次次联考)一个等腰直角三角形的三个顶点分别在正三棱柱ABC -A 1B 1C 1的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为________.解析:如图,在正三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,边长为2,△DEF 为等腰直角三角形,DF 为斜边,设DF 的长为x ,则DE =EF =22x ,作DG ⊥BB 1,GH ⊥CC 1,EI ⊥CC 1,垂足分别为G ,H ,I ,则EG =DE 2-DG 2=x 22-4,FI =EF 2-EI 2=x 22-4,FH =FI +HI =FI +EG=2x 22-4.连接DH ,在Rt △DHF 中,DF 2=DH 2+FH 2,即x 2=4+⎝⎛⎭⎫2x 22-42,解得x =23,即该三角形的斜边长为2 3.答案:2 3 15.(2021·浙江省名校新高考联盟第一次联考)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形,则BC =________,四棱锥F-OBED的体积为________.解析:取AO的中点M,连接CM,BM,由△OAB,△OAC是正三角形,OA=1,可知CM⊥AO,BM⊥AO,且BM=CM=32,又平面ABED⊥平面ACFD,所以CM⊥平面ABED,所以CM⊥BM,故BC=62.过点F作FQ⊥OD于点Q,由于平面ABED⊥平面ACFD,所以FQ⊥平面ABED,FQ就是四棱锥F-OBED的高.易知FQ=3,又S△OBE=12×1×2×32=32,S△OED=12×2×2×32=3,所以S四边形OBED=32+3=332,故V四棱锥F-OBED=13×332×3=32.答案:6232。
2012届高三数学文科二轮专题复习教案――立体几何
专题八 立体几何知识点1.空间几何体的三视图:正俯长对正,正左高平齐,左俯宽相等.2.空间几何体的侧面积、表面积、体积(1)直棱柱的侧面积S ch =侧.V Sh =柱体(2)正棱锥的周长为c ,斜高为h ',12S ch '=侧.13V Sh =锥体(3)正棱台的上、下底面的周长是c c ',,斜高是h ',1()2S c c h ''=+侧.1()3V S S S S h '=++台体 (4)圆柱母线的长为l ,底面半径为r ,2πS rl =侧,2πS r =底.圆柱的表面积222π2π2π()S S S rl r r r l =+=+=+侧底.2πV r h =圆柱(5)圆锥底面半径为r ,母线长为l,πS rl=侧,2πππ()S S S rl r r r l =+=+=+侧底.21π3V r h =圆锥(6)圆台的上、下底面半径分别为r r ',,母线长为l ,π()S r r l '=+侧.圆台的表面积2222π()πππ()S S S S r r l r r r r r l rl ''''=++=+++=+++侧上底下底.221π()3V r Rr R h =++圆台(7)球的表面积24πS R =.334R V π=3.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(2)公理2:过不在一条直线上的三点,有且只有一个平面。
(3)公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。
4. 直线与直线的位置关系(1)空间直线位置分三种:相交、平行、异面. (2)平行公理:平行于同一条直线的两条直线互相平行.(3)等角定理:如果一个角的两边和另一个角的两边分别平行那么这两个角相等或互补。
5. 直线与平面的位置关系.(1)空间直线与平面位置分三种:相交、平行、在平面内. (2)直线与平面平行判定定理:ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂ (3)直线和平面平行性质定理:m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα(4)直线与平面垂直判定定理:αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,推论:如果两条直线同垂直于一个平面,那么这两条直线平行. (5)直线与平面垂直的性质定理:m l m l ⊥⇒⎭⎬⎫⊂⊥αα6. 平面与平面的位置关系:(1)空间两个平面的位置关系:相交、平行.ml αlmβαABC αlm αlγmβαllαβ(2)平面平行判定定理:βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. (3)两个平面平行的性质定理:m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα αββα////l l ⇒⎭⎬⎫⊂(4)两个平面垂直性质判定:βαβα⊥⇒⎭⎬⎫⊂⊥l l(5)两个平面垂直性质定理:αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m , 7.空间距离,空间角(1)点到平面的距离的求解方法①直接求解法:从该点向平面引垂线,求垂线的长度 ②等体积代换法(2)空间角:①异面直线所成的角②直线和平面所成的角:直线和在平面的摄影所成的角 二面角例题1.(2008安徽文\理)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖例2 .下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ( )A .9πB .10π C .11π D .12π例3.如图,在四棱锥P-ABCD 中,PD⊥平面ABCD ,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900. (1)求证:PC⊥BC; (2)求点A 到平面PBC 的距离.例4.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,045ADC ∠=,1AD AC ==,O 为AC 中点,PO ⊥平面ABCD , 2PO =,M 为PD 中点.(Ⅰ)证明:PB //平面ACM(Ⅱ)证明:AD ⊥平面PAC ;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.DCABPMOmβαllβαlβαmP A B D C练习1.(2010浙江)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //2.(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )133.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )A.26B. 23C. 33D. 234.(湖北卷)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.38π B. 328πC. π28D. 332π 5.(2010全国卷)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A ) 34 (B) 54(C)74(D) 346.设图1是某几何体的三视图,则该几何体的体积为A .429+πB .1836+πC .1229+πD .1829+π7.几何体的三视图如图所示,则这个几何体的直观图可以是8.已知正方体ABCD-A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为 .9.(2011.上海)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 .10.如图,在四棱台111A B C D A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD,11AD=A B ,BAD=∠60°(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11CC A BD ∥平面.11.如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP,AD的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PAD正视图俯视图侧视图图1233FE ADPxyz NMABD C OP利用空间向量解立体几何一、用向量法解空间位置关系 1.平行关系线线平行⇔两线的方向向量平行线面平行⇔线的方向向量与面的法向量垂直 面面平行⇔两面的法向量平行 2.垂直关系线线垂直(共面与异面)⇔两线的方向向量垂直 线面垂直⇔线与面的法向量平行 面面垂直⇔两面的法向量垂直 三、用向量法解空间距离1.点点距离:点()111,,P x y z 与()222,,Q x y z 的距离为222212121()()()PQ x x y y z z =-+-+-2.点线距离:求点()00,P x y 到直线:l 0Ax By C ++=的距离:方法:在直线上取一点(),Q x y ,则向量PQ在法向量(),n A B =上的射影P Q n n⋅ =0022Ax By C A B+++即为点P 到l 的距离. 3.点面距离 :求点()00,P x y 到平面α的距离:方法:在平面α上去一点(),Q x y ,得向量PQ ,计算平面α的法向量n ,计算PQ在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角1.线线夹角(共面与异面)线线夹角⇔两线的方向向量的夹角或夹角的补角 2.线面夹角:求线面夹角的步骤:① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角;②再求其余角,即是线面的夹角. 3.面面夹角(二面角):若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.1.(2009北京卷)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.2.安徽卷(18)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
2023年高考数学二轮复习讲练测(新高考)专题08 立体几何解答题常考全归类(原卷版)
专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。
高三数学立体几何专题复习教案
(解题思想方法归纳)
问题一: 证明线线平行
1.证明两直线 、 平行,若直线 和直线 共面时,则可以用平面几何中常用的一些方法(如证明 和 是一个平行四边形的一组对边)证明它们无公共点。
在立体几何中一般还有以下几种思路:
①根据公理4
②根据“线面平行Байду номын сангаас的性质定理
③根据“线面垂直”的性质定理,若直线 和 都与平面 垂直,则 // 。
②利用中位法。如给出异面直线AB和CD,连接AC、AD、BC,然后再分别取这三条线段的中点E、F、G,连接EF、EG、FG得到△EFG,则∠FEG就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是△EFG中有一边GF的长度不容易求。
3.向量方法:
转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小)
2.向量方法:
①转化为证明向量共线。
②根据共面向量定理。
③证明向量与平面的法向量相互垂直。
问题三: 证明面面平行
1.传统几何方法:
①根据两个平面平行的定义
②根据两个平面平行的判定定理
③垂直于同一条直线的两个平面平行
④平行于同一平面的两个平面平行
2.思维过程:
线线平行 线面平行 面面平行
线线平行 线面垂直 面面平行
问题八: 求平面的斜线与平面所成角
1.传统几何方法:
①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。
②利用三面角定理(即最小角定理) 求 。
2.向量方法:设 为平面 的法向量,直线 与平面 所成的角为 ,则
问题九: 求二面角
1.作出二面角的平面角并通过解三角形计算。作平面角常用方法如下:
高三数学二轮复习教学案——立体几何(2)
高三数学二轮复习教学案——立体几何(2)班级__________姓名_____________学号_________【基础训练】1. 如图,正方体ABCD A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.2.三棱锥P -ABC 中,三条侧棱两两垂直,且长度都为1,点E 为BC 上一点,则截面PAE 面积的最小值为_____________.3、已知a 、b 、c 是三条不重合直线,α、β、γ是三个不重合的平面,下列命题:⑴a ∥c ,b ∥c ⇒a ∥b ;⑵a ∥γ,b ∥γ⇒a ∥b ;⑶c ∥α,c ∥β⇒α∥β;⑷γ∥α,β∥α⇒γ∥β;⑸a ∥c ,α∥c ⇒a ∥α;⑹a ∥γ,α∥γ⇒a ∥α。
其中正确的命题是 。
4、已知正方体ABCD -A'B'C'D',则该正方体的体积、四棱锥C'-ABCD 的体积以及该正方体的外接球的体积之比为 _________________.5.. 如图,四棱锥P -ABCD 的底面是边长为3的正方形,侧棱PA ⊥平面ABCD ,点E 在侧棱PC 上,且BE ⊥PC ,若6=BE ,则四棱锥P -ABCD 的体积为 _________ .6. 由曲线22x y =,2||=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足422≤+y x ,1)1(22≥-+y x ,1)1(22≥++y x 的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,则1V :2V = .【典型例题】7. 已知三棱锥P —ABC 中,PC ⊥底面ABC ,AB=BC ,D 、F 分别为AC 、PC 的中点,DE ⊥AP 于E .(1)求证:AP ⊥平面BDE ;(2)求证:平面BDE ⊥平面BDF ;(3)若AE ∶EP=1∶2,求截面BEF 分三棱锥P —ABC 所成两部分的体积比.8. 如图,四棱锥P -ABCD 中,底面ABCD 是一个边长为2的正方形,PA⊥平面ABCD ,且24=PC .M 是PC 的中点,在DM 上有点G ,过G 和AP作平面交平面BDM 于GH .(1)求四棱锥P -ABCD 的体积;(2)求证:AP ∥GH .9. 如图,在棱长均为4的三棱柱111ABC A B C -中,D 、1D分别是BC 和11B C 的中点. (1)求证:11A D ∥平面1AB D ;(2)若平面ABC ⊥平面11BCC B ,160B BC ∠= ,求三棱锥1B ABC -的体积.10. 如图一简单几何体的一个面ABC 内接于圆O ,G ,H 分别是AE ,BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(1)求证:GH //平面ACD ;(2)证明:平面ACD ⊥平面ADE ;(3)若AB =2,BC =1,23tan =∠EAB ,试求该几何体的体积V .。
2014高考二轮复习立体几何专题(普通班)
肥东锦弘中学2014届高三数学二轮复习专题立体几何(理科普通班)Ⅰ.空间几何体类型一. 空间几何体的结构特征A. 若Ω是长方体1111ABCD A B C D -被平面EFGH 截去几何体11EFGHB C 后得到的 几何体,其中E 为线段11A B 上异于1B 的点,F 为线段1BB 上异于1B 的点,且11//EH A D ,则下列结论中不正确的是( )A. //EH FGB.四边形EFGH 为矩形C. Ω是棱柱D.Ω是棱台 B. 下列语句正确的序号为 . ①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等; ③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似. 类型二. 直观图与三视图A. 右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是A.6πB.12πC. 18πD.24πB. 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为( ) (A )22(B )32(C )4(D )52C. 如图所示,''''D C B A 是一个水平放置的平面图形的斜二测画法直观图,已知''''D C B A 是一个直角梯形,''B A 平行与''D C ,''''D C D A ⊥,且''C B 与'y 轴平行,又21''=B A ,9''=D C ,12''=D A ,试解决以下问题:(1) 作出梯形''''D C B A 的原图形ABCD 的平面图形(保留作图痕迹);(2) 求梯形''''D C B A 的原图形ABCD 的面积.侧视图俯视图类型三. 几何体的表面积与体积A. 如图,已知球O 表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于___________.B. 如图,在四边形ABCD 中,90=∠DAB ,135=∠ADC .5=AB ,22=CD ,AD =2.若四边形ABCD 绕AD 旋转一周成为几何体. (1)画出该几何体的三视图; (2)求该几何体的表面积. 类型四. 表面距离A. 长方体1111D C B A ABCD -中,1AA 长为3, AB 长为2,AD 长为1,则在长方体的表面, 点A 到点1C 的最短距离为 .B. 如图所示,正三棱柱111C B A ABC -, 底面是边长 为2cm 的正三角形,高为5cm .一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点1A 的 最短路线长为 cm .Ⅱ.点、线、面位置关系类型一. 直线、平面平行的判定及其性质A.1.如图,在底面为平行四边形的四棱锥P ABCD -中, AB AC ⊥,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.求证://PB 平面AEC ;2.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,∠BCF=∠CEF=︒90, AD=3,EF=2.求证:AE//平面DCF.B. 1如图,圆锥顶点为P ,底面圆心为O ,其母线与底面所成的角为︒5.22,AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角是︒60(I )证明:平面PAB 与平面PCD 的交线平行于底面; (II )求COD ∠cos .2 右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =. (1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小类型二. 直线、平面垂直的判定及其性质 A. 点P 为ABC ∆所在平面外一点,PO ⊥平面ABC ,垂足为O ,若P A =PB =PC ,则点O 是ABC ∆的( )A.内心B.外心C.重心D.垂心 变:点P 为ABC ∆所在平面外一点,PO ⊥平面ABC ,垂足为O ,若P 到AB 、BC 、AC 的距离相等,则点O 是ABC ∆的( )A.内心B.外心C.重心D.垂心B. 1已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)C 1O ∥面11AB D ;(2 )1AC ⊥面11AB D 2 如图,在底面为直角梯形的四棱锥P ABCD -中,90AD BC ABC ∠=,∥°,PA ⊥平面ABCD.326PA AD AB BC ====,,.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)求二面角P BD A --的大小类型三. 二面角的求法总结1方法一 利用二面角平面角的定义求作平面角利用二面角平面角定义过棱上某一点做垂直于棱的平面,该平面与二面角的两个半平面的交线所成的平面角.例一 四棱锥P-ABCD,底面ABCD 为矩形,P A ⊥底面ABCD,PA=AB=6,E 为PB 的中点. Ⅰ求直线AD 与平面PBC 的距离.Ⅱ 若AD=3,求二面角A-EC-D 平面角的余弦值.PC BADED 1ODBAC 1B 1A 1C112方法二 利用三垂线法作平面角(两垂一连) ⑴ 善于利用图中已有的第一垂线例二 在多面体ABCDEF 中,四边形ABCD 为正方形,EF ∥AB,EF ⊥FB,AB=2EF,∠BFC=2π,BF=FC,H 为BC 的中点 求二面角B-DE-C 的大小. ⑵ 利用已有条件,作第一垂线例三 在正方体ABCD-1111D C B A 中棱长为1,M 为A 1A 的中点,求二面角M-B 1C -1B 的正切值.3方法三 利用线线角例四 在四棱锥P-ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD,AP=AB=2,BC=22,E,F 分别是AD,PC 的中点Ⅰ 证明PC ⊥平面BEFⅡ 求平面BEF 与平面BAP 夹角的大 4方法四 利用射影面积法求二面角大小例 在矩形ABCD 中,点E,F 分别在线段BA,AD 上,AE=BE=AF=32FD=4,沿直线EF 将三角形AEF 翻折成三角形A ’EF,使平面AEF ⊥平面BEF求二面角A-FD-C 的余弦值 方法五 空间向量类型四. 空间向量在立体几何中的运用A. 如图,在五棱锥P —ABCDE 中,P A ⊥平面ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,∠ABC =45°,ABBC =2AE =4,三角形P AB 是等腰三角形.(Ⅰ)求证:平面PCD ⊥平面P AC ;(Ⅱ)求直线PB 与平面PCD 所成角的大小; (Ⅲ)求四棱锥P —ACDE 的体积.B.如图,在四棱锥P-ABCD 中,P A ⊥面ABCD,AC ⊥AD,AB ⊥BC,∠BAC=45,PA=AD=2,AC=1 (1) 证明 PC ⊥AD(2)求二面角A-PC-D 的正弦值 (3)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30,求AEC类型五. 折叠问题A 如图,正ABC ∆的中线AF 与中位线DE 相交于点G ,已知MDE ∆是ADE ∆绕DE 旋转过程中的一个图形,下列命题中,真命题的序号 是 。
高三数学二轮专题复习27 空间角与空间距离
立体几何—空间角与空间距离专题综述空间角度与空间距离的推理、比较与计算,是高考考查的重点.求解方法既可以选择几何法,又可以选择向量法,在解决空间背景下及建系困难的几何体中的角与距离时,几何法更具优势,在解决简单几何体中的角与距离及探究性问题时,向量法更具优势.因此,选择合适的方法,确保快速解决问题.另外,两种方法都要求熟练准确的运算,且具有较高的直观想象、逻辑推理及数学运算的核心素养.专题探究探究1:综合法解决立体图形中角度和距离问题的思路:立体几何平面化→平面几何三角化→三角问题定理化.即把空间立体几何的问题转化为平面几何的问题,再把平面几何的问题转化为解三角形问题.答题思路一:综合法求解空间角(1)求异面直线成角的方法①平移:平移已有的平行线,或选择适当的点(线段的中点或端点),做平线性平移,或补形平移;② 证明:证明所作的角是异面直线所成的角或是其补角;③ 寻找:在立体图形中,寻找或作出含有此角的三角形,解三角形; ④ 取舍:因为异面直线所成角θ的取值范围是0,2π⎛⎤⎥⎝⎦,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.(2)求线面角的方法: (I )定义法:① 先确定斜线与平面,找到线面的交点A 为斜足;找线在面外的一点B ,过点B 向平面α做垂线,确定垂足O ;② 连结斜足A 与垂足O ,OA 为斜线AB 在面α内的投影;投影OA 与斜线AB 之间的夹角为线面角;③ 把投影OA 与斜线AB 归到三角形中进行求解. (2)间接法:设斜线PA 与平面α所成角为θ,则sin Ph PAθ=(P h 为点P 到平面α的距离),转化为求点P 到平面α的距离,可利用等积转化或借助其他点求距离. (3)求二面角的方法:l αβ--① 点A 为平面α内一点,过点A 作AO l ⊥于点O ; ② 证明过点A 的直线AB ⊥平面β于点B ,连接OB ,AB l l ⇒⊥⇒⊥平面AOB ,OB l ⇒⊥,⇒AOB ∠即为二面角l αβ--的平面角;③ 解Rt AOB ∆.答题思路二:综合法求解空间距离空间中的距离:平行平面间的距离、平行平面的直线到平面的距离、点到平面的距离⇒转化为点到平面的距离求点A 到平面α距离的方法: (1)直接法:① 求证过点A 的直线AB ⊥平面α于点B ,则线段AB 的长即为点A 到平面α的距离; ② 利用求三棱锥体积的等积转化思想进行求解; (2)间接法:转化为其他点到平面的距离① 直线AB 平面α,转化为求点B 到平面的距离;② ,A B ∈平面β,平面β平面α,转化为求点B 到平面的距离.(2021.福建省福州市月考试卷)如图,在棱长为2的正方体1111ABCD A B C D -中,下列结论正确的有( ) A.二面角11A CD D --的大小为045 B.异面直线11D B 与CD 所成的角为060 C. 直线11D B 与平面11A DCB 所成的角为030 D. 1D 到平面11A DCB 的距离为2【审题视点】以简单几何体或者空间位置背景下的多选题,选项中涉及求空间角、距离、体积的问题,若建系,运算量较大,可以优先选择综合法解题.【思维引导】将综合法求空间角和距离的方法,以“流程化”的形式,将需要寻找的点,或需要作出的辅助线呈现出来,即可锁定所求的角或线段长.综合法的关键是,“按步骤进行”.【规范解析】解:在棱长为2的正方体1111ABCD A B C D -中, 连接1AD 交1A D 于点O ,则11A D AD ⊥CD ⊥平面11ADD A1CD AD ∴⊥11,,A D CD D A D CD =⊂平面11A DCB 1AD ∴⊥平面11A DCB确定过点1D 垂直于平面11A DCB 的垂线1DD CD⊥11A DD ∴∠是二面角11ACD D --的平面角,又1145A DD ∠=,∴二面角11A CD D --的大小为045故A 正确11CD C D111B D C ∴∠是异面直线11D B 与CD 所成角或其补角又011145B D C ∠=∴异面直线11D B 与CD 所成角为045故B 错误01130OB D ∴∠=∴直线11D B 与平面11A DCB 所成的角为030故C 正确 方法一:1OD ⊥平面11A DCB∴1OD 的长即为点1D 到平面11A DCB 的距离 ∴点1D 到平面11A DCB方法二:三棱锥111D A B D -中111111D A B D B A D D V V --=1111111133D A B D B A D D h S h S ∆∆∴⋅⋅=⋅⋅11111112222122B A D DDA B Dh ShS∆∆⋅⋅⋅⋅∴===⋅∴点1D到平面11A DCB方法三:111111,C D A B A B ⊂平面11A DCB,11C D⊄平面11A DCB三棱锥111C A B C-中111111C A B C A C B CV V--=11111112222122A CB CCA B Ch ShS∆∆⋅⋅⋅⋅∴===⋅∴点1C到平面11A DCB,即点1D到平面11A DCB故D正确.【探究总结】求空间角和距离,不能单一的只利用空间向量法求解,对于一些简单的几何体,或者建系定坐标需花费较多时间的题目,选择用综合法求解会缩短解题时间.空间三大角中,二面角的求解较为困难,记住一点出发,作两垂线,连接两垂足,解三角形即可.1111111133C A B C A C B Ch S h S∆∆∴⋅⋅=⋅⋅(2021年全国新高考Ⅰ卷)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点. (1)证明:OA CD ⊥;(2)若OCD ∆是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.探究2:向量法利用空间向量求空间角与距离的思路:寻找从同一点出发的三条两两相互垂直的直线(条件不足需证明垂直)⇒建立空间直角坐标系⇒确定点的坐标⇒求出向量(方向向量或法向量)坐标 ⇒带入空间向量求角或距离的公式,求解. 答题思路三:向量法求解空间角与空间距离(1)求空间角① 设异面直线,m n 的方向向量分别为,m n ,则异面直线,m n 所成角的余弦值为cos ,m n m n m n⋅=; ② 设直线m平面A α=,直线m 的方向向量为m ,平面α的法向量为a ,则直线m 与平面α所成角的正弦值为cos ,m a m a m a⋅=; ③ 设平面α平面l β=,平面α,平面β的法向量分别为,a b ,则法向量,a b 夹角的余弦值为cos ,a b a b a b⋅=.(2)求点到平面的距离点P ∉平面α,点A ∉平面α,平面α的法向量为n ,则点P 到平面α的距离为PA n n⋅.强调:方向向量所成角的余弦值的绝对值分清所求角是二面角还是平面与平面所成角,对结果进行转化注意是角的正弦值(1)利用空间向量求解空间角或者空间距离①通过建立空间直角坐标系,利用向量的坐标运算进行;②利用空间向量基本定理表示向量,结合空间向量数量积,求角或距离.(2)求解空间角或者距离范围、最值的问题依然利用上述的求解思路,只是点的坐标含有参数,导致最终的结果是一个含参表达式.结合题干条件明确参数范围,转化为函数求范围、最值问题.AB=,(2021广东省佛山市期中考试)如图,已知矩形ABCD中,21∆沿AM折起,使得平面ADM⊥平面ABCM,AD=,M为DC的中点,将ADM连接BM.(1)求证:BM⊥平面ADM;--的余弦值;(2)求二面角A DM C-的体积为(3)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M ADE212【审题视点】题干条件中边长关系较多,联想到利用勾股定理或等腰三角形的三线合一的结论得出垂直结论,平面ADM⊥平面ABCM转化为线面垂直,故图形中垂直结论较多,第一问不难证明,同样容易建系求解后续两问.【思维引导】这是一道立体几何部分的常规题型,图形中垂直条件较多,不难证明BM⊥平面ADM,第一问的结论又为建系提供条件.题中需要求二面角的余弦值,及探究点E位置,用空间向量解决问题的思路更清晰一些.【规范解析】(1)证明:∵矩形ABCD 中,2AB =,1AD =,M 为DC 的中点2AM BM ∴==,222AM BM AB ∴+=AM BM ∴⊥平面ADM ⊥平面ABCM ,平面ADM平面ABCM AM =BM ⊂平面ABCM BM ∴⊥平面ADM(2)解:分别取,AM AB 的中点O 和N ,则ONBM ,ON ∴⊥平面ADM ,ON AM ON OD ∴⊥⊥ AD AM = OD AM ∴⊥建立如图所示空间直角坐标系 则2220,0,,,0,0,2,,0222D M C ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2222,0,,,,02222DM MC ⎛⎫⎛⎫∴=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设(),,m x y z =为平面CDM 的一个法向量, 则2202222022DM m x z MC m x y ⎧⋅=--=⎪⎪⎨⎪⋅=-+=⎪⎩令1x =,则1,1y z ==-,即()1,1,1m =- 又()0,1,0n =是平面ADM 的一个法向量,3cos ,3m n m n m n⋅==∴二面角A DM C --的余弦值为33建系:凑齐建系条件找点坐标,表示向量坐标,若直接表求向量的坐标难度大,可利用向量间的关系,间接表示求法向量,与坐标平面重合或者平行的平面可直接给出法向量结合图形,分析二面角的范围,对结果进行转化(3)由(2)得22,0,0,,2,022A B ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 22,2,22DB ⎛⎫∴=-- ⎪ ⎪⎝⎭设[],0,1DE DB λλ=∈22,2,22DE λλλ⎛⎫∴=-- ⎪ ⎪⎝⎭ 则222,2,222E λλλ⎛⎫=-- ⎪ ⎪⎝⎭2222,2,2222AE λλλ⎛⎫∴=--- ⎪ ⎪⎝⎭∴点E 到平面ADM 的距离2AE n d nλ⋅==则1223612M ADB ADM V S d λ-∆=⋅==解得12λ=,则E 为BD 的中点. 【探究总结】向量法解决问题的前提是合理建系(条件不足时,有必要的证明),写出点的坐标,求解二面角、点面距的前提是准确求出法向量.向量法本质是几何问题代数化,准确计算是保障.(2021浙江省期中考试)如图,在四棱柱1111ABCD A B C D -中,底面ABCD是等腰梯形, AB CD ,14,2AB BC CD D C ====, 1D C ⊥底面ABCD ,则( ) A.BC ⊥平面1ACDB.直线1DD 与底面ABCD 所成的角为4πC.平面11ABC D 与平面ABCD 所成锐二面角的余弦值为217过点E 的斜线的方向向量+平面的法向量,求点面距离专题升华对于空间角与空间距离的计算问题,综合法与向量法都需要掌握.综合法要求一作(作辅助线)、二证(证明作图的合理性,即平行垂直的依据)、三计算(利用平面几何的知识计算角或边长),注重考查空间想象能力(判别平行与垂直的位置关系),推理论证能力(平行与垂直关系的辅助线作图与论证),运算求解能力(利用余弦定理,计算三角形的内角与边长).空间向量法要求建立坐标系、写出点坐标、计算角的三角函数值与距离或选择空间向量基底表示其他向量, 利用空间向量数量积运算计算各种角的三角函数值与距离.两种方法针对不同的题型,各具优势,做题时选择合适的方法,快速准确的解题.【答案详解】 变式训练1 【解析】 解:(1)AB AD =,O 为BD 中点OA BD ∴⊥平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD OA ∴⊥平面BCDOA CD ∴⊥(2)作EF BD ⊥于F , 作EM BC ⊥于M ,连FM ,则EF OA OA ⊥平面BCD ,EF OAEF ∴⊥平面BCDEF BC ∴⊥平面BCD,EM BC EM EF E ⊥=BC ∴⊥平面EFMBC FM ∴⊥EMF ∴∠为二面角E BC D --的平面角, 即4EMF π∠=BO OD =,OCD ∆为正三角形BCD ∴∆为直角三角形2DE EA =1223FM BF ∴== 33122OA EF FM ∴===11131133326A BCD BCD V OA S -∆∴=⋅=⨯⨯⨯⨯= 变式训练2【解析】解:如图,易知1D C ⊥平面.ABCD BC ⊂平面ABCD1.BC D C ∴⊥在等腰梯形ABCD 中,过点C 作CG AB ⊥于点.G 则3AG =,1BG =,22213CG =-=, 所以22223(3)2 3.AC AG CG =+=+= 因此满足22216AC BC AB +==,所以.BC AC ⊥ 又1D C ,AC ⊂平面1AD C ,1D C AC C =, BC ∴⊥平面1AD C1D C ⊥平面ABCD14D DC π∴∠=,即直线1DD 与底面ABCD 所成的角为.4π 建立如图所示空间直角坐标系则(0,0,0)C ,(23,0,0)A ,(0,2,0)B ,1(0,0,2)D , (23,2,0)AB ∴=-,1(23,0,2).AD =-设平面11ABC D 的法向量(,,)n x y z =,由10,0,AB n AD n ⎧⋅=⎪⎨⋅=⎪⎩得2320,2320,x y x z ⎧-+=⎪⎨-+=⎪⎩ 取1x =,可得平面11ABC D 的一个法向量(1,3,3).n = 又1(0,0,2)CD =为平面ABCD 的一个法向量 设平面11ABC D 与平面ABCD 所成锐二面角为θ, 则11||2321cos ||||727CD n CD n θ⋅===,因此平面11ABC D 与平面ABCD 所成锐二面角的余弦值为7 故点C 到平面11ABC D 的距离为1||221||7CD n n ⋅= 故选.ABC。
高三立体几何专题复习
高考立体几何专题复习一.考试要求:〔1〕掌握平面的根本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
〔2〕了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念〔对于异面直线的距离,只要求会计算已给出公垂线时的距离〕。
〔3〕了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。
〔4〕了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。
掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。
〔5〕会用反证法证明简单的问题。
〔6〕了解多面体的概念,了解凸多面体的概念。
〔7〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
〔8〕了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
〔9〕了解正多面体的概念,了解多面体的欧拉公式。
〔10〕了解球的概念,掌握球的性质,掌握球的外表积、体积公式。
二.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的根底上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的根底上,掌握它们的求法(其根本方法是分别作出这些角,并将它们置于*个三角形通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步稳固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握根本的立体几何解题方法和常用解题技巧,开掘不同问题之间的在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和"说话要有根据〞的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.三.教学过程:〔Ⅰ〕根底知识详析高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考察的知识点在20个以. 选择填空题考核立几中的计算型问题, 而解答题着重考察立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着"多一点思考,少一点计算〞的开展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的容,因此在主体几何的总复习中,首先应从解决"平行与垂直〞的有关问题着手,通过较为根本问题,熟悉公理、定理的容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:〔1〕根据定义——证明两平面没有公共点;〔2〕判定定理——证明一个平面的两条相交直线都平行于另一个平面;〔3〕证明两平面同垂直于一条直线。
清泉州阳光实验学校高三数学复习讲义——立体几何基础知识
清泉州阳光实验学校必修二部分:(三)立体几何知识28.一个空间几何体的三视图包括:主视图、左视图、俯视图.29.一个几何体的三视图必须遵循三原那么:长相等、宽对正、齐.30.正棱柱是指底面是正多边形、侧棱垂直于底面的棱柱;正棱锥是指底面是正多边形、顶点在底面的投影是底面正多边形的中心;正棱台是指用平行于正棱锥底面的平面截去正棱锥后剩余的部分.31.对照教材理解圆柱、圆锥、圆台的概念.32.试画出一个倒立圆锥的三种视图:33.理解并掌握斜二测画法的步骤.34.理解“中心投影〞与“平行投影〞联络与区别.35.平面的根本概念及表示法:平面是无限延展的且没有厚薄,通常利用阿拉伯字母,,,, γβα或者者平面AC 、平面ABCD 等来表示.36.平面的根本性质〔4个公理及公理3的3个推论〕——数学语言、符号语言、图形语言:公理一:假设一条直线上有两个点在同一个平面内,那么这条直线上所有的点在此平面内。
即ααα⊂∈∈∈∈l B A l B l A 则直线且若,,,,公理二:假设两个平面有一个公一一共点,那么它们有且仅有一条公一一共直线,且它一定经过该公一一共点,即,,.A A l A l αβαβ∈∈=∈若平面平面则直线,且公理三:经过不在同一直线上的三点,有且仅有一个平面,即推论〔一〕:经过直线与直线外一点,有且仅有一个平面,即推论〔二〕:经过两条相交直线,有且仅有一个平面,即推论〔三〕:经过两条平行直线,有且仅有一个平面,即公理四:空间中,假设两条直线和同一条直线平行,那么这两条直线互相平行,即37.直线a 与b 没有公一一共点,可以记作//,a b a b 或与异面.,直线a 与b 不平行,可以记作,a b a b 与相交或与异面.。
38.异面直线的断定定理:经过平面内一点与平面外一点的连线,和平面内不经过该点的直线是异面直线,即,,,,A a A a B AB a ααα∈⊂∉∉若则直线与是异面直线.〔两在两不在〕39.两异面直线所成的角为α(02πα<<),过空间一定点P 与两异面直线都成β角的直线的条数判断:,0;(2)90,1;22(3),),222),2l l l l l ααββαπαπαββπαβπ<=--<<=-<<(1)若则直线的条数为若或则直线的条数为若则直线的条数为2;(4若则直线的条数为3;(5若则直线的条数为4;40.线面平行的性质定理是:假设直线与平面平行,过该直线的平面与平面相交,所得的交线与直线平行,即////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭.41.线面垂直的性质定理是:假设一条直线和一个平面垂直,那么这条直线垂直于平面内的任意一条直线,即l l g g αα⊥⎫⇒⊥⎬∀⊂⎭。
高中数学集合立体问题教案
高中数学集合立体问题教案
教学目标:
1. 了解集合与立体图形的关系。
2. 掌握求解集合中立体问题的方法。
教学重点:
1. 理解集合中立体问题的特点。
2. 熟练运用立体图形的性质解决问题。
教学难点:
1. 理解并应用集合中立体问题的数学概念。
2. 综合运用不同的数学知识解决复杂的立体问题。
教学过程:
一、引入
通过展示一些集合中的立体问题,引出本课的学习内容,并激发学生对立体问题的兴趣。
二、复习
复习集合的基本概念以及立体图形的性质,为后续学习做好铺垫。
三、探讨
1. 以一个具体的集合问题为例,让学生根据给定条件,尝试求解该问题。
2. 引导学生分析问题的关键点,并尝试建立相关的数学模型。
四、练习
1. 给学生一些集合中的立体问题,让他们在小组内讨论解决方法,并向全班展示答案。
2. 教师逐一点评学生们的解决方法,引导他们根据问题的特点选择合适的解题方法。
五、总结
回顾本节课的学习内容,强调集合与立体图形之间的关系,以及解决集合中立体问题的方法。
六、作业
布置一些相关的练习题目,让学生回家继续巩固所学知识。
教学反思:
本节课通过引入、复习、探讨、练习等环节,共同帮助学生理解集合中立体问题的解决方法,提高他们的数学思维能力和解决问题的能力。
在未来的教学实践中,可以适当增加一些立体问题的实际应用,帮助学生更好地理解数学知识的实际意义,提高学生的学习兴趣和动力。
第16讲 立体几何的翻折问题 讲义-2021-2022学年高三数学二轮复习专题
第15讲 立体几何中的翻折问题一、学习目标1. 掌握翻折问题的基本结论;2. 掌握翻折问题的基本处理策略.翻折问题的基本结论:ABC ∆中,BC AO ⊥,将ABC ∆沿着边BC 翻折到BC A '∆,在翻折的过程中有 ①BC OA ⊥,BC OA ⊥','AOA ∠是二面角'A BC A --的平面角; ②'A 在底面上的投影一定在直线''AA 上; ③'BA BA =,'CA CA =;④点A 的轨迹是以O 为圆心的圆,AC AB 、的轨迹是以BC 为旋转轴的两个圆锥侧面.二、典例分析例1.(1)如图,在正方形ABCD 中,点F E 、分别是BC AB 、的中点,点G 是EF 的中点,现在沿DF DE 、及EF 把这个正方形折成一个四面体,使C B A 、、三点重合,重合后的点记为P ,则在四面体DEF A -'中必有( )A.⊥PD 平面EF A 'B.⊥DG 平面PEFC.⊥PE 平面DEFD.PG ⊥平面DEF9.如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,翻折ABD △和ACD △,使得平面ABD ⊥平面ACD .下列结论错误的是( )A .BD AC ⊥B .ABC 是等边三角形 C .三棱锥D ABC -是正三棱锥D .平面ACD ⊥平面ABC【答案】(1)C ; (2)D. 变式:(1)已知正三角形ABC 的中线AF 与中位线DE 相交于点G ,ED A '∆是AED ∆绕DE 旋转过程中的一个图形,则下列结论错误的是( )A.动点'A 在平面ABC 上的射影在线段AF 上B.三棱锥FED A -'的体积有最大值C.恒有平面⊥GF A '平面BCEDD.异面直线E A '与BD 不可能互相垂直【答案】D(2)如图,在矩形ABCD 中,AD AB 2=,E 为AB 的中点,将ADE ∆沿直线DE 翻折成DE A '∆,若M 是线段C A 1的中点,则在ADE ∆翻折的过程中,下列命题正确的是( )A.BM 是定值B.M 的轨迹是一段圆弧C.//BF 平面DE A 'D.存在某个位置,使得C A DE 1⊥【答案】D例2.(1)已知矩形ABCD ,1,2AB BC ==ABD ∆沿矩形的对角线BD 所在的直线经翻折,在翻折过程中( )A.存在某个位置,使得直线AC 与BD 垂直B.存在某个位置,使得直线AB 与CD 垂直C.存在某个位置,使得直线AD 与BC 垂直D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直(2)如图,在菱形ABCD 中,︒=∠60BAD ,线段BD AD ,的中点分别为F E ,,现将ABD ∆沿对角线BD 翻折,则异面直线BE 与CF 所成角的取值范围是( )A.)3,6(ππ B.]2,6(ππ C.]2,3(ππ D.)32,3(ππ【答案】(1)B ; (2)C.. 变式:1.在正方形ABCD 中,点F E 、分别是AD BC 、的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在的直线进行翻折,在翻折的过程中,( ) A.点A 与点C 在某一位置可能重合 B.点A 与点C 的最大距离为AB 3 C.直线AB 与直线CD 可能垂直 D.直线AF 与直线CE 可能垂直【答案】D2.如图,在ABC Rt ∆中,1=AC ,x BC =,D 是斜边AB 的中点,将BCD ∆沿直线CD 翻折,若在翻折过程中存在某个位置,使得AD CB ⊥,则x 的取值范围是( ) A.]3,0( B.]2,22( C.]32,3( D.]4,2( 【答案】A例3.(1)如图,在长方形ABCD 中,3,1AB BC ==,E 为线段DC 上一动点,现将AED ∆沿AE 折起,使得点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成的轨迹的长度是__________.(2)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .【答案】(1)3π; (2))1,21(. 变式:1.在矩形ABCD 中,3=AB ,1=BC ,E 为DC 的三等分点(靠近C 处),F 为线段EC 上一动点(包括端点),现将AFD ∆沿AF 折起,使D 点在平面内的射影恰好落在边AB 上,则当F 运动时,二面角B AF D --的余弦值的取值范围是________.【答案】]41,91[例4.如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE ∆沿直线DE 翻折成'A DE ∆,使平面'A DE ⊥平面BCD ,F 为线段'A C 的中点。
高考高频点-立体几何球的切接之几何体外接球“球心”探究讲义-2023届高三数学二轮专题复习
几何体外接球“球心”探究外接球问题是立体几何的一个重点,也是高考考查的一个热点,简单多面体外接球问题是立体几何中的难点和高考重要的考点,此类问题实质是定球心求半径,确定球心位置是解决此类问题的关键,本专题我们来研究定球心的办法:预备知识:1.平面内的线段的垂直平分线:平面内到线段AB两端点距离相等的点在中垂线上,如下图,平面内经过AB中点垂直于AB的直线即为线段AB的中垂线2.多边形各顶点都在圆上的圆叫做多边形的外接圆,三角形的外接圆圆心是任意两边或三边的垂直平分线的交点,三角形外接圆圆心叫外心。
3.三角形外接圆半径求解需先求出三角形三条边垂直平分线的交点,再用两边的乘积除以第三边上的高,这样求出来是外接圆直径,然后再根据假设的方程代入即可得出。
4.正弦定理是解三角形的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a b c2 sin sin sinRA B C===5.空间内线段的中垂面:在空间内到两定点的距离相等的点在线段AB的中垂面上,如下图:在空间内过AB中点C作垂直于AB的平面即为线段AB的中垂面6.空间内到多边形各定点距离相等的点的轨迹:过多边形的外心作多边形所在平面的垂线即为点的轨迹。
如下为到三角形三点的距离相等的点的轨迹(直线)7.定义:在空间内如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个点就是该简单多面体的外接球的球心,距离即为球半径。
8.直棱柱的外接球的球心是上、下底面多边形外心连线的中点;(1)长方体或正方体的外接球的球心是其体对角线的中点;(2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)顶点在底面射影在多边形顶点的棱锥可构造成直棱柱寻找球心;可利用公式222h 2R r =+()(R 为球的半径,r 为底面多边形外接圆的半径,h 为直棱柱的高)求几何体外接球的半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l =+=+=+侧底.(4)正棱锥的侧面展开图是n 个全等的等腰三角形.如果正棱锥的周长为c ,斜高为h ',则它的侧面积12S ch '=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c ',,斜高是h ',那么它的侧面积是12S ch '=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r ',,母线长为l ,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和, 即2222π()πππ()S S S S r r l r r r r r l rl ''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍. 3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h ,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。
(2)平行投影:投射线相互平行的投影。
(3)三视图的位置关系与投影规律三视图的位置关系为:俯视图在主视图的下方、左视图在主视图的右方. 三视图之间的投影规律为:主、俯视图———长对正;主、左视图———高平齐;俯、左视图———宽相等. 5、直观图画法斜二测画法的规则:(1)在空间图形中取互相垂直的x 轴和y 轴,两轴交于O 点,再取z 轴,使xOz ∠=90°,且yOz ∠=90°.(2)画直观图时把它们画成对应的x '轴、y '轴和z '轴,它们相交于O ',并使x O y '''∠=45°,x O z '''∠=90°。
(3)已知图形中平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x '轴、y '轴和z '轴的线段.(4)已知图形中平行于x 轴和z 轴的线段,在直观图中长度相等;平行于y 轴的线段,长度取一半. 6.平面(1)对平面的理解平面是一个不加定义、只须理解的最基本的原始概念.立体几何中的平面是理想的、绝对平且无限延展的模型,平面是无大小、厚薄之分的.类似于我们以前学的直线,它可以无限延伸,它是不可度量的. (2)对公理的剖析(1)公理1的内容反映了直线与平面的位置关系,公理1的条件“线上不重合的两点在平面内”是公理的必要条件,结论是“线上所有点都在面内”.这个结论阐述了两个观点:一是整条直线在平面内;二是直线上所有点在平面内.其作用是:可判定直线是否在平面内、点是否在平面内.(2)公理2中的“有且只有一个”的含义要准确理解.这里的“有”是说图形存在,“只有一个”是说图形唯一,确定一个平面中的“确定”是“有且只有”的同义词,也是指存在性和唯一性这两方面.这个术语今后也会常常出现,要理解好.其作用是:一是确定平面;二是证明点、线共面.(3)公理3的内容反映了平面与平面的位置关系,它的条件简而言之是“两面共一点”,结论是“两面共一线,且过这一点,线唯一”.对于本公理应强调对于不重合的两个平面,只要它们有公共点,它们就是相交的位置关系,交集是一条直线.其作用是:其一它是判定两个平面是否相交的依据,只要两个平面有一个公共点,就可以判定这两个平面必相交于过这点的一条直线;其二它可以判定点在直线上,点是两个平面的公共点,线是这两个平面的公共交线,则这点在交线上.7. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。
(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.8. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.直线与平面垂直判定定理:如果一条直线和一个平面内的两条相交直线垂直,则这条直线与这个平面垂直。
推论:如果两条直线同垂直于一个平面,那么这两条直线平行.9. 平面平行与平面垂直.(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)(4)两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.10. 空间向量.(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.(2)空间向量基本定理:如果三个向量,,不共面,那么对空间任一向量,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1).(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a1,a2,a3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,∥)(,,332211R b a b a b a ∈===⇔λλλλ332211b a b a b a ==⇔。
0332211=++⇔⊥b a b a b a b a 。
222321a a a ++==(用到常用的向量模与向量之间的转化:=⋅=)OABCD空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<(a =123(,,)a a a ,b =123(,,)b b b )。