高等数学试卷12
大学期中考试高等数学试卷
一、选择题(每题5分,共25分)1. 下列函数中,属于奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^42. 函数f(x) = 2x^3 - 3x + 1在x=1处的导数是()A. 2B. 3C. 4D. 53. 下列极限中,属于无穷小的是()A. lim x→0 (sinx/x)B. lim x→0 (1/x)C. lim x→0 (x^2)D. lim x→0 (x^3)4. 函数f(x) = x^2 + 3x + 1在区间[-2, 1]上的最大值是()A. 1B. 2C. 3D. 45. 下列微分方程中,属于可分离变量的微分方程是()A. dy/dx = y^2B. dy/dx = 2xyC. dy/dx = x^2yD. dy/dx = 2y/x二、填空题(每题5分,共25分)6. 函数f(x) = x^3 - 3x + 2的导数为______。
7. lim x→0 (1 - cosx)/x^2 = ______。
8. 函数f(x) = 2x^3 - 3x + 1的极值点为______。
9. 函数f(x) = x^2 + 3x + 1的导数在x=1处的值是______。
10. 分离变量后,微分方程dy/dx = 2xy的解为______。
三、解答题(共50分)11. (10分)求函数f(x) = 3x^2 - 2x + 1在区间[-1, 2]上的最大值和最小值。
12. (10分)求函数f(x) = x^3 - 3x + 2的极值。
13. (10分)求极限lim x→0 (sinx/x)。
14. (10分)解微分方程dy/dx = 2xy。
15. (10分)证明:若函数f(x)在区间[a, b]上连续,且f(a) < 0,f(b) > 0,则至少存在一点c∈(a, b),使得f(c) = 0。
注意:本试卷共75分,考试时间为120分钟。
《大一高等数学》试卷(十份)
《大一高等数学》试卷(十份)《高等数学试卷》一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC.a,bD.a,b343.函数y2某2y21某y122的定义域是().某,y1某C.2222A.某,y1某y2B.某,y1某y22y2某,y1某2D2y224.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab05.函数z某3y33某y的极小值是().A.2B.2C.1D.16.设z某iny,则zy1,4=().A.22B.C.2D.2221收敛,则().pnn17.若p级数A.p1B.p1C.p1D.p1某n8.幂级数的收敛域为().n1nA.1,1B1,1C.1,1D.1,1某9.幂级数在收敛域内的和函数是().n02nA.1221B.C.D.1某2某1某2某10.微分方程某yylny0的通解为().A.yce某B.ye某C.yc某e某D.yec某二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zin某y的全微分是______________________________.2z3.设z某y3某y某y1,则_____________________________.某y3234.1的麦克劳林级数是___________________________.2某5.微分方程y4y4y0的通解为_________________________________.三.计算题(5分6)u1.设zeinv,而u某y,v某y,求zz,.某yzz,.某y2.已知隐函数zz某,y由方程某22y2z24某2z50确定,求3.计算inD某2y2d,其中D:2某2y242.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).5.求微分方程y3ye2某在y四.应用题(10分2)某00条件下的特解.1.要用铁板做一个体积为2m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线yf某上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点1,,求此曲线方程.313试卷3参考答案一.选择题CBCADACCBD二.填空题1.2某y2z60.2.co某yyd某某dy.3.6某2y9y21.4.n01n某n.2n12某5.yC1C2某e三.计算题1..zze某yyin某yco某y,e某y某in某yco某y.某y2.z2某z2y,.某z1yz13.4.20dind62.2163R.33某5.yee2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y12某.3《高数》试卷4(下)一.选择题(3分10)1.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152.设两平面方程分别为某2y2z10和某y50,则两平面的夹角为(A.6B.4C.3D.23.函数zarcin某2y2的定义域为().A.某,y0某2y21B.某,y0某2y21C.某,y0某2y22D.某,y0某2y224.点P1,2,1到平面某2y2z50的距离为().A.3B.4C.5D.65.函数z2某y3某22y2的极大值为().A.0B.1C.1D.126.设z某23某yy2,则z某1,2().A.6B.7C.8D.97.若几何级数arn是收敛的,则().n0A.r1B.r1C.r1D.r18.幂级数n1某n的收敛域为().n0A.1,1B.1,1C.1,1D.1,19.级数inna是(n1n4)..)A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程某yylny0的通解为().A.yec某B.yce某C.ye某D.yc某e某二.填空题(4分5)某3t1.直线l过点A2,2,1且与直线yt平行,则直线l的方程为z12t__________________________.2.函数ze的全微分为___________________________.3.曲面某yz2某24y2在点2,1,4处的切平面方程为_____________________________________.4.1的麦克劳林级数是______________________.21某某15.微分方程某dy3yd某0在y三.计算题(5分6)1条件下的特解为______________________________.1.设ai2jk,b2j3k,求ab.2.设zuvuv,而u某coy,v某iny,求22zz,.某yzz,.某y3.已知隐函数zz某,y由某33某yz2确定,求2222224.如图,求球面某yz4a与圆柱面某y2a某(a0)所围的几何体的体积.5.求微分方程y3y2y0的通解.四.应用题(10分2)1.试用二重积分计算由y某,y2某和某4所围图形的面积.2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律某某t.(提示:d某d2某t0v0)g.当时,有,某某02dtdt试卷4参考答案一.选择题CBABACCDBA.二.填空题1.某2y2z1.112某y2.eyd某某dy.3.8某8yz4.n2n1某.n04.5.y某.三.计算题1.8i3j2k.2.zz3某2inycoycoyiny,2某3inycoyinycoy某3in3yco3y某y.3.zyzz某z.,22某某yzy某yz3232a.3234.5.yC1e2某C2e某.四.应用题1.16.32.某12gtv0t某0.2《高数》试卷5(上)一、填空题(每小题3分,共24分)1.函数y19某2的定义域为________________________.in4某,某02.设函数f某某,则当a=_________时,f某在某0处连续.某0a,某213.函数f(某)2的无穷型间断点为________________.某3某2某4.设f(某)可导,yf(e),则y____________.某21_________________.5.lim2某2某某5某3in2某d某=______________.6.41某某211d某2tedt_______________________.7.d某08.yyy30是_______阶微分方程.二、求下列极限(每小题5分,共15分)某31e某11.lim;2.;lim23.lim1.某3某9某0in某某2某三、求下列导数或微分(每小题5分,共15分)某co某,求y(0).2.ye,求dy.某2dy3.设某ye某y,求.d某某1.y四、求下列积分(每小题5分,共15分)11.2in某d某.2.某ln(1某)d某.某3.10e2某d某某t五、(8分)求曲线在t处的切线与法线方程.2y1cot六、(8分)求由曲线y某21,直线y0,某0和某1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程y6y13y0的通解.八、(7分)求微分方程yye某满足初始条件y10的特解.某《高数》试卷5参考答案某某一.1.(3,3)2.a43.某24.ef(e)1某25.6.07.2某e8.二阶21二.1.原式=lim某0某某2.lim11某3某36112某1)]2e23.原式=lim[(1某2某三.1.y2,(某2)2y(0)122.dyin某eco某d某3.两边对某求写:y某ye某y(1y)e某yy某yyy'某e某y某某y四.1.原式=ln某2co某C某某2122.原式=ln(1某)d()ln(1某)某d[ln(1某)]222某1某2某211d某ln(1某)(某1)d某=ln(1某)221某221某22某21某2=ln(1某)[某ln(1某)]C222112某12某ed(2某)e3.原式=022dydyint,五.d某d某2101(e21)2t1.且当t2时,某2,y1切线:y1某2,即某y120法线:y1(某),即某y121132S(某1)d某(某某)六.03102043V某2dy(y1)dy11221(y2y)22112r32i七.特征方程:八.yer26r130ye3某(C1co2某C2in2某)某d某1(e某e某d某1d某C)[(某1)e某C]由y某11某0,C0某1某e某y《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为(d)45A、10B、20C、24D、222、设a=i+2j-k,b=2j+3k,则a与b的向量积为(c)A、i-j+2kB、8i-j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为(c)A、2B、3C、4D、54、函数z=某iny在点(1,)处的两个偏导数分别为(a)4A、22222222,,B、,,C、D、22222222zz,分别为()某yD、5、设某2+y2+z2=2R某,则A、某Ry某Ry某Ry,B、,C、,zzzzzz22某Ry,zz26、设圆心在原点,半径为R,面密度为某y的薄板的质量为()(面积A=R)A、R2AB、2R2AC、3R2AD、n12RA2某n7、级数(1)的收敛半径为()nn1A、2B、1C、1D、328、co某的麦克劳林级数为()2n2n某2n某2n1n某n某nA、(1)B、(1)C、(1)D、(1)(2n)!(2n)!(2n)!(2n1)!n0n1n0n0n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是()A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为()A、-2,-1B、2,1C、-2,1D、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L1:某=y=z与直线L2:直线L3:某1y3z的夹角为___________。
高等数学试卷及答案
2022级第一学期《高等数学》(高起本)在线作业练习交卷时间2022-07-01 09:45:29一、单选题(每题3分,共10道小题,总分值30分)1.(3分)A4B3C2D1纠错正确答案B您的答案是未作答回答错误展开2.(3分)ABCD正确答案D您的答案是未作答回答错误展开3.(3分)A0B11/22正确答案D您的答案是未作答回答错误展开4.(3分)A0B14C4D12正确答案B您的答案是未作答回答错误展开5.(3分)ABCD无间断点正确答案A您的答案是未作答回答错误展开6.(3分)ABCD正确答案C您的答案是未作答回答错误展开7.(3分)ABCD正确答案A您的答案是未作答回答错误展开8.(3分)A低阶B高阶C等价D同阶但不等价正确答案D您的答案是未作答回答错误展开9.(3分)A1234正确答案D您的答案是未作答回答错误展开10.(3分)ABCD正确答案C您的答案是未作答回答错误展开二、计算题(每题20分,共2道小题,总分值40分)1.(20分)考生答案:正确答案展开2.(20分)考生答案:正确答案展开三、综合题(每题20分,共1道小题,总分值20分)1.(20分)考生答案:正确答案展开四、简答题(每题5分,共2道小题,总分值10分)1.____(5分)考生答案:正确答案-3展开2.____(5分)考生答案:正确答案展开0分00:00:030/15题2022级第一学期《高等数学》(高起本)在线作业练习交卷时间2022-07-01 09:45:53一、单选题(每题3分,共10道小题,总分值30分)1.(3分)ABCD正确答案D您的答案是未作答回答错误展开2.(3分)A1B2C3D4正确答案D您的答案是未作答回答错误展开3.(3分)A4B3C2D1正确答案B您的答案是未作答回答错误展开4.(3分)A0B123正确答案C您的答案是未作答回答错误展开5.(3分)A低阶B高阶C等价D同阶但不等价正确答案D您的答案是未作答回答错误展开6.(3分)A1B2C-2D-1正确答案B您的答案是未作答回答错误展开7.(3分)ABCD正确答案A您的答案是未作答回答错误展开8.(3分)A0B14C4D12正确答案B您的答案是未作答回答错误展开9.(3分)ABCD正确答案A您的答案是未作答回答错误展开10.(3分)ABCD正确答案C您的答案是未作答回答错误展开二、计算题(每题20分,共2道小题,总分值40分)1.(20分)考生答案:正确答案展开2.(20分)考生答案:正确答案展开三、综合题(每题20分,共1道小题,总分值20分)1.(20分)考生答案:正确答案展开四、简答题(每题5分,共2道小题,总分值10分)1.____(5分)考生答案:正确答案y=2x展开2.____(5分)考生答案:正确答案3展开0分00:00:030/15题2022级第一学期《高等数学》(高起本)在线作业练习交卷时间2022-07-01 09:46:10一、单选题(每题3分,共10道小题,总分值30分)1.(3分)ABCD正确答案C您的答案是未作答回答错误展开2.(3分)ABCD正确答案A您的答案是未作答回答错误展开3.(3分)A0B14C4D12正确答案B您的答案是未作答回答错误展开4.(3分)A0B1C2D3正确答案C您的答案是未作答回答错误展开5.(3分)ABCD正确答案C您的答案是未作答回答错误展开6.(3分)ABCD正确答案A您的答案是未作答回答错误展开7.(3分)ABCD无间断点正确答案A您的答案是未作答回答错误展开8.(3分)ABCD正确答案D您的答案是未作答回答错误展开9.(3分)ABCD正确答案D您的答案是未作答回答错误展开10.(3分)A1B2C3D4正确答案D您的答案是未作答回答错误展开二、计算题(每题20分,共2道小题,总分值40分)1.(20分)考生答案:正确答案展开2.(20分)考生答案:正确答案展开三、综合题(每题20分,共1道小题,总分值20分)1.(20分)考生答案:正确答案展开四、简答题(每题5分,共2道小题,总分值10分)1.____(5分)考生答案:正确答案y=2x展开2.____(5分)考生答案:正确答案3展开0分00:00:050/15题2022级第一学期《高等数学》(高起本)在线作业练习交卷时间2022-07-01 09:46:27一、单选题(每题3分,共10道小题,总分值30分)1.(3分)ABCD正确答案C您的答案是未作答回答错误展开2.(3分)ABCD正确答案C您的答案是未作答回答错误展开3.(3分)A0B1C2D3正确答案C您的答案是未作答回答错误展开4.(3分)A1B2C-2D-1正确答案B您的答案是未作答回答错误展开5.(3分)ABCD正确答案A您的答案是未作答回答错误展开6.(3分)ABCD正确答案D您的答案是未作答回答错误展开7.(3分)A1B2C3D4正确答案D您的答案是未作答回答错误展开8.(3分)跳跃间断点可去间断点第二类间断点连续点正确答案A您的答案是未作答回答错误展开9.(3分)ABCD正确答案D您的答案是未作答回答错误展开10.(3分)A0B14C4D12正确答案B您的答案是未作答回答错误展开二、计算题(每题20分,共2道小题,总分值40分)1.(20分)考生答案:正确答案展开2.(20分)考生答案:正确答案展开三、综合题(每题20分,共1道小题,总分值20分)1.(20分)考生答案:正确答案展开1.____(5分)考生答案:正确答案2展开2.____(5分)考生答案:正确答案展开0分00:00:020/15题2022级第一学期《高等数学》(高起本)在线作业练习交卷时间2022-07-01 09:46:471.(3分)A1B2C3D4正确答案D您的答案是未作答回答错误展开2.(3分)A低阶B高阶C等价D同阶但不等价正确答案D您的答案是未作答回答错误展开3.(3分)A1B2C-2D-1正确答案B您的答案是未作答回答错误展开4.(3分)ABCD正确答案D您的答案是未作答回答错误展开5.(3分)A0B14C4D12正确答案B您的答案是未作答回答错误展开6.(3分)ABCD无间断点正确答案A您的答案是未作答回答错误展开7.(3分)跳跃间断点可去间断点第二类间断点连续点正确答案A您的答案是未作答回答错误展开8.(3分)ABCD正确答案A您的答案是未作答回答错误展开9.(3分)A4B3C2D1正确答案B您的答案是未作答回答错误展开10.(3分)ABCD正确答案D您的答案是未作答回答错误展开二、计算题(每题20分,共2道小题,总分值40分)1.(20分)考生答案:正确答案展开2.(20分)考生答案:正确答案展开三、综合题(每题20分,共1道小题,总分值20分)1.(20分)考生答案:正确答案展开四、简答题(每题5分,共2道小题,总分值10分)1.____(5分)考生答案:正确答案3展开2.____(5分)考生答案:正确答案2展开0分00:00:050/15题2022级第一学期《高等数学》(高起本)在线作业练习交卷时间2022-07-01 09:47:01一、单选题(每题3分,共10道小题,总分值30分)1.(3分)A1B2C3D4正确答案D您的答案是未作答回答错误展开2.(3分)ABCD正确答案D您的答案是未作答回答错误展开3.(3分)ABCD正确答案C您的答案是未作答回答错误展开4.(3分)A0B1C1/2D2正确答案D您的答案是未作答回答错误展开5.(3分)A1B2C-2D-1正确答案B您的答案是未作答回答错误展开6.(3分)A4B3C2D1正确答案B您的答案是未作答回答错误展开7.(3分)A跳跃间断点B可去间断点C第二类间断点D连续点正确答案A您的答案是未作答回答错误展开8.(3分)A低阶高阶等价同阶但不等价正确答案D您的答案是未作答回答错误展开9.(3分)ABCD正确答案A您的答案是未作答回答错误展开10.(3分)A0B14C4D12正确答案B您的答案是未作答回答错误展开二、计算题(每题20分,共2道小题,总分值40分)1.(20分)考生答案:正确答案展开2.(20分)考生答案:正确答案展开三、综合题(每题20分,共1道小题,总分值20分)1.(20分)考生答案:正确答案展开四、简答题(每题5分,共2道小题,总分值10分)1.____(5分)考生答案:正确答案3展开2.____(5分)考生答案:正确答案展开0分00:00:030/15题2022级第一学期《高等数学》(高起本)在线作业练习交卷时间2022-07-01 09:47:18一、单选题(每题3分,共10道小题,总分值30分)1.(3分)ABCD无间断点正确答案A您的答案是未作答回答错误展开2.(3分)A0B14C4D12正确答案B您的答案是未作答回答错误展开3.(3分)A1B2C3D4正确答案D您的答案是未作答回答错误展开4.(3分)ABCD正确答案A您的答案是未作答回答错误展开5.(3分)ABCD正确答案A您的答案是未作答回答错误展开6.(3分)ABCD正确答案C您的答案是未作答回答错误展开7.(3分)A4B3C2D1正确答案B您的答案是未作答回答错误展开8.(3分)A0B1C1/2D2正确答案D您的答案是未作答回答错误展开9.(3分)A0B1C2D3正确答案C您的答案是未作答回答错误展开10.(3分)ABCD正确答案C您的答案是未作答回答错误展开二、计算题(每题20分,共2道小题,总分值40分)1.(20分)考生答案:正确答案展开2.(20分)考生答案:正确答案展开三、综合题(每题20分,共1道小题,总分值20分)1.(20分)考生答案:正确答案展开四、简答题(每题5分,共2道小题,总分值10分)1.____(5分)考生答案:正确答案2展开2.____(5分)考生答案:正确答案3展开0分00:00:030/15题2022级第一学期《高等数学》(高起本)在线作业练习交卷时间2022-07-01 09:47:35一、单选题(每题3分,共10道小题,总分值30分)1.(3分)A0B1C2D3正确答案C您的答案是未作答回答错误展开2.(3分)A低阶B高阶C等价D同阶但不等价正确答案D您的答案是未作答回答错误展开3.(3分)ABCD正确答案A您的答案是未作答回答错误展开4.(3分)A4B3C2D1正确答案B您的答案是未作答回答错误展开5.(3分)ABCD正确答案D您的答案是未作答回答错误展开6.(3分)ABCD正确答案C您的答案是未作答回答错误展开7.(3分)ABCD正确答案C您的答案是未作答回答错误展开8.(3分)A1B2C34正确答案D您的答案是未作答回答错误展开9.(3分)A跳跃间断点B可去间断点C第二类间断点D连续点正确答案A您的答案是未作答回答错误展开10.(3分)ABCD无间断点正确答案A您的答案是未作答回答错误展开二、计算题(每题20分,共2道小题,总分值40分)1.(20分)考生答案:正确答案展开2.(20分)考生答案:正确答案展开三、综合题(每题20分,共1道小题,总分值20分)1.(20分)考生答案:正确答案展开四、简答题(每题5分,共2道小题,总分值10分)1.____(5分)考生答案:正确答案展开2.____(5分)考生答案:正确答案2展开0分00:00:04 0/15题。
高等数学考试试卷及答案
1. ( 单选题) 若函数 f(x) 在点 x0 处可导且,则曲线 y=f(x) 在点( x0, f(x0) )处的法线的斜率等于()(本题2.0分)A、B、C、D、学生答案:C标准答案:B解析:得分:02. ( 单选题) 函数f(x)=ln(x-5)的定义域为()。
(本题2.0分)A、x>5B、x<5C、D、学生答案:A标准答案:A解析:得分:23. ( 单选题)极限(本题2.0分)A、-2B、0C、 2D、 1学生答案:A标准答案:A解析:得分:24. ( 单选题) 设则(本题2.0分)A、B、C、D、学生答案:A标准答案:C解析:得分:05. ( 单选题) 设函数f(x)=(x+1)Cosx,则f(0)=( ).(本题2.0分)A、-1B、0C、 1D、无定义学生答案:C标准答案:C解析:得分:26. ( 单选题) (本题2.0分)A、B、C、D、学生答案:A标准答案:A解析:得分:27. ( 单选题) 若,则f(x)=()。
(本题2.0分)A、B、C、D、学生答案:B标准答案:A解析:得分:08. ( 单选题)微分方程是一阶线性齐次方程。
(本题2.0分)A、正确B、错误学生答案:B标准答案:B解析:得分:29. ( 单选题)设函数,其中是常数,则。
(本题2.0分)A、B、C、D、0学生答案:C标准答案:A解析:得分:010. ( 单选题)设函数f(x) 在点x=1 处可导,则()。
(本题2.0分)A、B、C、D、学生答案:D标准答案:D解析:得分:211. ( 单选题) 设函数,其中是常数,则。
(本题2.0分)A、B、C、D、0学生答案:C标准答案:A解析:得分:012. ( 单选题)极限(本题2.0分)A、 1B、-1C、0D、不存在学生答案:B标准答案:A解析:得分:013. ( 单选题) 不定积分(本题2.0分)A、正确B、错误学生答案:A标准答案:B解析:得分:014. ( 单选题) 已知极限,则 k = ()。
期末高等数学(上)试题及答案
第一学期期末高等数学试卷一、解答以下各题(本大题共 16 小题,总计 80 分 )1、(本小题 5 分)求极限limx 3 12 x 163 9x 212x 4x 22x2、 (本小题 5 分 )求x2 2dx. (1 x )3、(本小题 5 分)求极限 limarctan x arcsin1xx4、(本小题 5 分)求x d x.1 x5、 (本小题 5 分 )求 dx 21 t 2dt .dx6、 (本小题 5 分 )求 cot 6 x csc 4 x d x.7、(本小题 5 分)21 cos 1dx .求 1 x 2 x 8、 (本小题 5 分 )xe t cost 2y( x), 求dy.设确立了函数 y ye 2t sin tdx9、 (本小题 5 分 )3求 x 1x dx .10、 (本小题 5 分 )求函数 y 4 2 x x 2 的单一区间 11、 (本小题 5 分 )求 2sin x dx .sin 2 x0 812、 (本小题 5 分 )设 x t) e kt(3cos t4 sint ,求 dx .()13、 (本小题 5 分 )设函数 yy x 由方程 y 2ln y 2x 6 所确立 , 求 dy .( )dx14、 (本小题 5 分 )求函数 yexe x的极值215、 (本小题 5 分 )求极限 lim( x1)2(2x 1)2 ( 3x 1) 2(10x 1)2x16、 (本小题 5 分 )(10x 1)(11x 1)求cos2x d x. sin xcos x 1二、解答以下各题(本大题共 2 小题,总计 14 分 )1、(本小题 7 分)某农场需建一个面积为 512平方米的矩形的晒谷场 ,一边可用本来的石条围 沿,另三边需砌新石条围沿 ,问晒谷场的长和宽各为 多少时 ,才能使资料最省 .2、(本小题 7 分)求由曲线 yx 2 和 y x 3 所围成的平面图形绕 ox 轴旋转所得的旋转体的 体积 .28三、解答以下各题 (本大题6分 )设 f (x)x(x 1)( x 2)( x 3), 证明 f ( x) 0有且仅有三个实根 .一学期期末高数考试 (答案 )一、解答以下各题(本大题共 16 小题,总计 77 分 )1、(本小题 3 分)解:原式lim 3x 2 12218x 12x 2 6x6xlimx 212 x 1822、(本小题 3 分)xd x(1 x 2 )21 d(1 x2 ) 2(1x 2 ) 2112 1 x 2c.3、(本小题 3 分)因为 arctan x2而 limarcsinx故 limarctan x arcsin1xx4、(本小题 3 分)x d x1 x1 x 1 d x 1 xd xd x1 xx ln 1 x c.5、(本小题 3 分)原式2 x 1 x 46、(本小题 4 分)cot 6 x csc 4 x d xcot 6 x(1cot 2 x) d(cot x)1 0x1cot 7 x 1cot 9x c.797、 (本小题 4 分 )211原式1 cos d ()x x1 sin2 118、 (本小题 4分 )解:dy e2t (2 sin t cost)dx e t (cos t 22t sin t 2 )e t (2 sin t cost)(cost 22t sin t 2 ) 9、 (本小题 4分 )令 1 x u2原式 2 (u4u2 ) du12( u5u3) 12531161510、 (本小题 5 分 )函数定义域 (,)y 2 2 x2(1x)当 x 1, y 0当x,y函数单一增区间为,1 10当x,y函数的单一减区间为1,1011、 (本小题5 分 )原式2d cos x09cos2x13cosx 2lncosx 0631ln 2612、 (本小题 6 分 )dx x (t) dte kt(43k ) cos t ( 4k 3 ) sin t dt13、 (本小题 6 分 )2yy2y6x5yy 3yx5 y2114、 (本小题 6 分 )定义域 (,), 且连续y2e x (e2 x1)2驻点: x1 ln 12 2因为 y2e xe x故函数有极小值 ,, y( 1ln 1 ) 2215、 (本小题 8 分 ) 22(1 1 ) 2 ( 2 1 )2 ( 3 1 ) 2(10 1 ) 2原式lim x x xxx(10 1)(11 1)10 11 21x x 6 10 117216、 (本小题 10 分)解 :cos2x dxcos2x dx1 sin x cos x11sin 2xd(12sin 2x 1)2 11sin 2x1 2sin 2xcln 12二、解答以下各题(本大题共 2 小题,总计 13 分 )1、 (本小题 5 分 )设晒谷场宽为 x, 则长为512米 ,新砌石条围沿的总长为x L2x512(x0)xL2512 独一驻点x 16x 2L10240 即 x 16 为极小值点x 3故晒谷场宽为 16米 , 长为51232米时 , 可使新砌石条围沿16所用资料最省2、(本小题 8 分)解:x 2x 3 , 22x3x 1,.28x0 x 148V x4 x 2 ) 2 (x 3 2dx 4 x 4x 6() 0()dx28464(11 x 541 1 x 7 ) 4 564 7 044 ( 11 ) 51257 35三、解答以下各题 (本大题10分)证明 : f (x)在 ( , ) 连续 , 可导 , 进而在 [ 0,3]; 连续 , 可导 .又 f (0) f (1) f (2) f (3) 0则分别在 [0,1],[ 1,2],[2,3] 上对 f ( x) 应用罗尔定理得, 起码存在1 (0,1),2(1,2), 3(2,3)使 f ( 1 ) f (2 ) f (3 ) 0即 f (x) 0起码有三个实根 , 又f (x) 0,是三次方程,它至多有三个实根,由上述 f ( x) 有且仅有三个实根参照答案一。
普通高校专升本高等数学填空题专项强化真题试卷12(题后含答案及解析)
普通高校专升本高等数学填空题专项强化真题试卷12(题后含答案及解析)题型有:1.1.已知函数f(x)在x=0的某邻域内连续,且f(0)=0,f’(0)=1,则极限=_______.正确答案:22.广义积分=_______.正确答案:解析:3.若函数f(x)的定义域为[0,2],则的定义域为_______.正确答案:解析:4.曲面x2一2y2+z2一4x+2z=6在点(0,1,2)处的切平面方程为_________.正确答案:2x+2y一3z+4=0解析:令F(x,y,z)=x2—2y2+z2—4x+2z一6,则Fx=2x一4,Fy=一4y,Fz=2z+2,Fx(0,1,2)=一4,Fy(0,1,2)=一4,Fz(0,1,2)=6所以切面方程为:一4(x—0)+(一4)(y一1)+6(z一2)=0.整理得:2x+2y一3z+4=0.5.过点(1,1,1)且与向量a={1,1,0}和b={一1,0,1)都垂直的直线方程为_________.正确答案:解析:设所求直线方向向量为(x,y,z),则由题意可求得x=1,y=-1,z=1,所以(1,一1,1)为直线方向向量.又因为过点(1,1,1),所以直线方程为6.函数的全微分dz=______.正确答案:解析:7.L是以(0,0),(1,0),(0,1)为顶点的三角形区域的正向边界,则∮Lxydx +x2dy=______。
正确答案:解析:考查格林公式8.正确答案:0解析:9.函数f(x)=x2-x-2在区间[0,2]上使用拉格朗日中值定理时,结论中的ξ=_______.正确答案:1解析:由拉格朗日中值定理,知f’(ξ)==1,f’(x)=2x-1,当x=1时,有f’(1)=1,故ξ=1.10.正确答案:11.设L为三个顶点分别为(0,0),(1,0)和(0,1)的三角形边界,L的方向为逆时针方向,则∮L(xy2-y3)dx+(x2y-3xy2)dy=_______.正确答案:0解析:,由格林公式得,该曲线积分为0.12.设函数y=xe-x,则曲线的拐点为_______.正确答案:(2,2e-2)13.设函数z=xy,则dz=___________.正确答案:yxy-1dx+xylnxdy14.矩阵的秩R(A)=__________.正确答案:2解析:因为故R(A)=2.15.设函数f(x)在点x0处可导,那么,=___________.正确答案:2f(x0)f’(x0)解析:有f(x)在x0处可导知,f(x)在x0处连续,从而有16.函数z=xy+x2siny,则=_______正确答案:1+2xcosy解析:因z=xy+x2siny,则=y+2xsiny,则=1+2xcosy17.函数(x)=x-的单调减少区间是________正确答案:(0,)解析:因为f’(x)=1-,令f’(x)=1-<0,得0<x<18.已知三阶行列式则a=__________.正确答案:2解析:本题考察的是三阶行列式的计算.19.已知由方程y+2一xey=0确定的函数y=y(x),则=______________.正确答案:解析:20.微分方程xy’=ylny的通解为y=________.正确答案:e2x解析:分离变量得:,lnlny=lnx+lnc∴y=ecx21.-(x+1)]=___________.正确答案:2解析:-(x+1)]===2 22.积分=___________.正确答案:2e2+2解析:令x=t2,dx=2tdt23.若函数f(x)=xe2x,则∫xf’’dx=___________.正确答案:2x2e2x+C解析:∫xf’’(x)dx=∫xdf’(x)=xf’(x)一∫f’(x)dx=xf’(x)一f(x)+C,f(x)=xe2x,f’(x)=e2x+2xe2x=e2x(2x+1),∫xf’’(x)dx=xe2x(2x+1)-xe2x+C=2x2e2x+C.24.极限=_______.正确答案:e一2.解析:=e一2.25.已知向量a=(1,0,2),b=(4,一3,一2),则(2a一b).(a+2b)=________.正确答案:一48.解析:a=(1,0,2),b=(4,一3,一2),2a一b=(一2,3,6),a+2b=(9,一6,一2),∴(2a一b).(a+2b)=(一2)×9+3×(一6)+6×(一2)=一48.。
专升本高等数学二(解答题)模拟试卷12(题后含答案及解析)
专升本高等数学二(解答题)模拟试卷12(题后含答案及解析) 题型有:1.1.若函数f(x)=在x=0处连续,求a.正确答案:由=一1.又因f(0)=a,所以当a=一1时,f(x)在x=0连续.涉及知识点:函数、极限与连续2.设f(x)=3x,g(x)=x3,求f’[g’(x)].正确答案:因为f’(x)=3xln3,g’(x)=3x2,所以f’[g’(x)]=f’(3x2)=33x2ln3.涉及知识点:一元函数微分学3.求函数y=的导数.正确答案:等式两边取对数得lny=,两边对x求导得,所以y’=.涉及知识点:一元函数微分学4.设z=z(x,y)由下列方程确定,求dz。
正确答案:涉及知识点:多元函数微分学5.设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1)使得ξf’(ξ)+kf(ξ)=f’(ξ).正确答案:xf’(x)+kf(x)=f’(x),整理得,(x一1)f’(x)=一kf(x),分离变量得,两边积分得lnf(x)=一kln(1一x)+C1,整理得lnf(x)(1一x)k=C1,即f(x)(1一x)k=C,所以设F(x)=f(x)(1一x)k,F(x)在[0,1]上连续,在(0,1)内可导,又F(0)=0,F(1)=0,则F(x)在[0,1]上满足罗尔定理,故存在一点ξ∈(0,1),使得F’(ξ)=0,即ξf’(ξ)+kf(ξ)=f’(ξ).涉及知识点:一元函数微分学6.正确答案:涉及知识点:函数、极限和连续7.正确答案:涉及知识点:函数、极限和连续8.计算(xey+x2y2)dxdy,其中D是由y=x2,y=4x2,y=1围成.正确答案:因D关于y轴对称,且xey是关于x的奇函数,x2y2是关于x 的偶函数,则I=xeydxdy+x2y2dxdy=0+x2y2dxdy,I=2∫01dy x2y2dx=2∫01y2dy=.涉及知识点:多元函数积分学9.计算二重积分,其中D是由y2=2x,x=1所围成的平面区域.正确答案:如图5—8所示,D={(x,y)|≤x≤1},所以,涉及知识点:多元函数积分学10.求函数单调区间和极值:正确答案:涉及知识点:一元函数微分学11.根据a的取值情况,讨论级数的敛散性.正确答案:涉及知识点:无穷级数12.求下列函数的偏导数:正确答案:涉及知识点:多元函数微分学13.求下列函数在给定的偏导数:正确答案:涉及知识点:多元函数微分学14.正确答案:涉及知识点:综合15.正确答案:涉及知识点:综合。
高数期中试题及解答
⾼数期中试题及解答武汉⼤学电信学院2009-2010学年第⼆学期⾼等数学期中考试试卷1.(6分)求过点(2,1,3)M 且与直线11321x y z+-==-垂直相交的直线⽅程。
2.(6分)给出平⾯lx my nz p ++=与⼆次曲⾯2221Ax By Cz ++=相切的条件并说明理由。
3.(12分)设函数arctan ,)(0,0),(,)0,(,)(0,0),y x y f x y x y ì??1??=í??=,问在原点(0,0)处:(1)偏导数是否存在?(2)偏导数是否连续?(3)是否可微?均说明理由。
4.(6分)设()z xy xF u =+,其中F 为可微函数,且yu x=,试证明:z zxy z xy x y抖+=+抖。
5.(6分)设⽅程(,)z xy f xz yz +=确定可微函数(,)z z x y =,求zx。
6.(9分)设函数(,)u x y 满⾜0xx yy u u -=且(,2)u x x x =,2(,2)x u x x x =,求(,2)xx u x x ,(,2)xy u x x ,(,2)yy u x x 。
7.(8分)已知点(1,0,1)P -与(3,1,2)Q ,在平⾯212x y z -+=上求⼀点M ,使得PM MQ +最⼩。
8.(6分)设D 是矩形域:0xp#,0y p #,计算⼆重积分max{,}sin sin d d Dx y x y x y 蝌。
=+++蝌?,其中W 是由平⾯1x y z ++=与三个坐标⾯所围成的空间区域。
10.(6分)设空间区域222:1x y z W ++?,0z 3,求2()x z dxdydz W+蝌?。
11.(6分)计算dDI x y =蝌,其中D 是由曲线4236x y xy 骣÷?+=?÷桫在第⼀象限中所围成的区域。
12.(6分)设(,)f x y 为连续函数,且(,)(,)f x y f y x =,证明:1100(,)(1,1)x x dx f x y dy dx f x y dy =--蝌蝌。
高等数学下期末试题(七套附答案)
高等数学(下)试卷-、填空题(每空3分,共15分)1 1z 二-(1) ___________________________________________________________ 函数 .x yX - y的定义域为 _____________________________________________________z = arcta n 》—=(2) 已知函数x ,贝y 汉 _____________________22y、 [dW 2 f (x, y )dx (3 )交换积分次序, '0 ' y = ___________________(4) 已知L 是连接(0,1)>(1,0)两点的直线段,则L(x y)ds 二 __________(5) __________________________________________________________________ 已知微分方程 y : 2y • -3y = 0,则其通解为 ____________________________________二、选择题(每空3分,共15分)zSz(1)A. x 3y 2z 1 = 0设直线 L 为 2x-y "Oz ,3",平面二为4x-2y • z -2=0L 平行于二 (2) ( 设 ) A . dxdy C. L 垂直于兀是由方程xyz• x yz =、2确定,则在点B. L 在二上B dx + 72dyC^dx + ddy,则( )D. L 与二斜交(1,0^1)处的 dz二(3)已知l ■■是由曲面4z^25(x 2 y 2)及平面 在柱面坐标系下化成三次积分为()2二 2 3 5 [d 。
[ r dr 「dzA $0 』0 』0z = 5所围成的闭区域,将 D.dx-V2dy2 2(x y )dvQB. 2二4 35d 「0r dr .0dz… 2 3r drJ 0』0C.5 5 dz r2D.2 25d 「°rdr _dz(4)已知幕级数 -,则其收敛半径A. 2B. 1(5)微分方程y ;3y ' 2y =3x -2e x 的特解 C. 2y”的形式为y=D.B (ax+b)xe x(ax b) ce xA.D (ax +b) +cxe x三、计算题(每题8分,共48分) x -1 y _2 z _3 x 2 求过直线L 1:10 Ty-1 C.1、 且平行于直线L2:2z11的平面方程\ I x 2dxdyD2、已知z = f(xy2,x2y),求,::y2 23、设D二{(x,y)x y M},利用极坐标求4、求函数f(x,y)二e2x(x y2 2y)的极值"x = t —si nt5、计算曲线积分L (2xy 3sinX*彼-e)dy其中L为摆线yd cost从点0(°, 0)到A(二,2)的一段弧6、求微分方程xy * y = xe x满足yT的特解四•解答题(共22分)2xzdydz+ yzdzdx—z dxdy1、利用高斯公式计算住n J3的敛散性,若收敛,判别是绝对收敛还是条件收敛;O0n瓦nx(2)在X,(-11)求幕级数n4高等数学(下)试卷二- •填空题(每空3分,共15分)J4x_y2z = 2 ~(1) ______________________________________________ 函数In(1 - x -y )的定义域为_____________________________________________________________ ;(2) 已知函数z二e xy,则在(Z 1)处的全微分dz=___________________ ;e In x亠 1 dx「f (x, y)dy(3 )交换积分次序,'1 0= __________________ ;2(4 )已知L是抛物线y = X上点0( 0 , 0与点B( 1 , 1之间的一段弧,则L : yds =-------------------- ?(5)已知微分方程y “ - 2y ' y = 0,则其通解为_____________________________ .二•选择题(每空3分,共15分)x y 3z = 0(1)设直线L为x-y-z^O ,平面二为x-y-zJ",则L与二的夹角为( );兀兀兀A. 0B. 2C. 3D. 43 小是由方程z_3xyz_a:z(2 ) 严X 1 3确定,则汶(设);yz yz xz xy2 2 2 2其中V由圆锥面z - X2y2与上半球面z二〔2 -x? - /所围成的立体表面的外侧(10 ) □0■- ( _1)2、( 1)判别级数心(&)的和函数(6)A. xy _ zB. z_xy C. xy-zD.z—xy(3)微分方程y -5/ 6^xe2x的特解y的形式为y ();2、°°ITn 」 n,"2sin 飞1、( 1) ( 6 )判别级数n生 3的敛散性,若收敛,判别是绝对收敛还是条件收敛;inz —(2) ( 4 )在区间(一1,1)内求幕级数n^ n的和函数.ii2xdydz ydzdx zdxdy(12 )利用高斯公式计算二 ,'为抛物面z = X 2 • y 2 ( 8 z 乞的下侧A. (ax +b)e 2xB. (ax +b)xe 2xC. (ax +b) +ce 2x (4)已知丨■■是由球面 三次积分为(2-a 2dr 2sin d r drA 02:-;[d T 『d ®『rdr2 2 2 2xy z =a 所围成的闭区域,将 );D. (ax + b) + cxe 2x...dvQ在球面坐标系下化成B.2adr 2d 「 rdrD.a2r dr(5)已知幕级数Q0Zn 42n 1x n2n,则其收敛半径 B. 1二(C. 2D. 2(每题8分,共 48 分)6、7、 且与两平面二1 :x 2z =1 和.z■:y:z已知 z 二 f(sin xc°sy,e x y),求::x , 设 D 二{(x, y) X 2 y 2乞 1,0 乞 y 乞 X}, 8、求函数f (x, y)二 L 为沿上半圆周y6、求微分方程四.解答题(共22分)二2: y-3z =2平行的直线方程. y11arctan dxdy 利用极坐标计算 Dx.2 2 X5y-6x 10y 6的极值.c 知叭夂栽八于斗瞥 I (e x siny —2y)dx + (e x c°sy — 2)dy 其中9、利用格林公式计算 L ,其中2 2 2 (x-a) y =a,y _0、从 A(2a,0)到。
高等数学试卷(精选多套题 含答案)
高等数学试卷一一、选择题(本题共5小题,每小题3分,共15分) 1、若函数xx x f =)(,则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( ). A 、1ln(0)x x +→ B 、ln (1)x x → C 、cos (0)x x → D 、22(2)4x x x -→- 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、函数)(x f 在0x x =处连续是)(x f 在0x x =处可导的( ).A 、必要但非充分条件B 、充分但非必要条件C 、充分必要条件D 、既非充分又非必要条件5、下列无穷积分收敛的是( ).A 、⎰+∞sin xdx B 、dx ex⎰+∞-02 C 、dx x ⎰+∞1D 、dx x⎰+∞01二、填空题(本题共5小题,每小题3分,共15分)6、当k= 时,2,0(),xe xf x x k x ⎧≤⎪=⎨+>⎪⎩在0=x 处连续.7、设x x y ln +=,则_______________dxdy=. 8、曲线x e y x-=在点(0,1)处的切线方程是 .9、若⎰+=C x dx x f 2sin )(,C 为常数,则()____________f x =.10、定积分dx x xx ⎰-+554231sin =____________.三、计算题(本题共6小题,每小题6分,共36分) 11、求极限 xx x 2sin 24lim-+→.12、求极限 2cos 12limxt x e dtx -→⎰.13、设)1ln(25x x e y +++=,求dy .14、设函数)(x f y =由参数方程⎩⎨⎧=+=ty t x arctan )1ln(2所确定,求dy dx 和22dx yd .15、求不定积分212sin 3dx x x ⎛⎫+ ⎪⎝⎭⎰. 16、设,0()1,01x e x f x x x⎧<⎪=⎨≥⎪+⎩,求20(1)f x dx -⎰.四、证明题(本题共2小题,每小题8分,共16分) 17、证明:dx x x nm)1(10-⎰=dx x x m n )1(1-⎰ (N n m ∈,).18、利用拉格朗日中值定理证明不等式:当0a b <<时,ln b a b b ab a a--<<. 五、应用题(本题共2小题,第19小题8分,第20小题10分,共18分)19、要造一圆柱形油罐,体积为V ,问底半径r 和高h 各等于多少时,才能使表面积最小? 20、设曲线2x y =与2y x =所围成的平面图形为A ,求 (1)平面图形A 的面积;(2)平面图形A 绕y 轴旋转所产生的旋转体的体积.高等数学试卷二一、 填空题(每小题3分,本题共15分)1、.______)31(lim 2=+→xx x 。
武汉理工大学高等数学期末考试试卷(含答案)
武汉理工大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1.曲线在点处切线的方程为().
A、
B、
C、
D、
【答案】C
2.函数是微分方程的解.
A、正确
B、不正确
【答案】B
3.设函数,则().
A、
B、
C、
D、
【答案】C
4.().
A、
B、
C、
D、
【答案】C
5.函数的单调减少区间是().A、
B、
C、
D、
【答案】D
6.极限().
A、
B、
C、
D、
【答案】B
7.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
8.极限.
A、正确
B、不正确
【答案】A
9..
A、正确
B、不正确
【答案】A
10.设,则.
A、正确
B、不正确
【答案】A
11.设函数,则().
A、
B、
C、
D、
【答案】D
12.设函数,则导数.
A、正确
B、不正确
【答案】B
13.曲线在点处切线的方程为().
A、
B、
C、
D、
【答案】A
一、一选择题
14.函数在点处连续.
A、正确
B、不正确
【答案】A
15.是偶函数.
A、正确
B、不正确
【答案】A。
高等数学试题(含答案)
7.解.特征方程为 k 2 k 0 ,得到特征根 k1 0, k2 1,
故对应的齐次方程的通解为 y c1 c2ex ,
由观察法,可知非齐次方程的特解是 y 1 e x , 2
因而,所求方程的通解为
y
c1
c2ex
1 2
e x ,其中 c1 , c2
第4页,共12页
报考学校:______________________报考专业:______________________姓名:
准考证号:
-------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------
是任意常数.
………..1 分 ………..3 分 ………..5 分
……….6 分
8.解.因为 ln1 x x x 2 x3 x 4 1n x n1 (1 x 1) ,
234
n 1
….3 分
所以 x 2 ln1 x x 2 (x x 2 x3 x 4 1n x n1 )
1
1.解法一(1). S e e x dx
0
ex e x 1 e e 1 1 . 0
1
(2).V e2 e2x dx
0
e2 x 1 e2x 1
2 0
e2
1 2
e2
1
2
e2 1
1
解法二.(1) S e e x dx
桂林理工大学高等数学期末考试试卷(含答案)
桂林理工大学高等数学期末考试试卷(含答案)
一、高等数学选择题
1.由曲线,直线,轴及所围成的平面图形的面积为.
A、正确
B、不正确
【答案】A
2.函数是微分方程的解.
A、正确
B、不正确
【答案】B
3.不定积分,其中为任意常数.
A、正确
B、不正确
【答案】B
4.函数的图形如图示,则函数的单调减少区间为
( ).
A、
B、
C、
D、
【答案】D
5.极限().
A、
B、
C、
D、
【答案】C
6.不定积分().
A、
B、
C、
D、
【答案】D
7.是偶函数.
A、正确
B、不正确
【答案】B
8.不定积分.
A、正确
B、不正确
【答案】A
9.设函数,则().A、
B、
C、
D、
【答案】D
10.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
11.是微分方程.
A、正确
B、不正确
【答案】A
12.不定积分.
A、正确
B、不正确
【答案】A
二、二选择题
13.设函数,则().
A、
B、
C、
D、
【答案】B
14.微分方程的通解是().A、
B、
C、
D、
【答案】C
15.不定积分.
A、
B、
C、
D、
【答案】B。
医用高等数学高数试卷
《 高 等 数 学》 试 卷 (1)一.是非判断题 (本大题共10题,每题2分,共20分。
)1.函数sinln(x y e =是初等函数. ( A )A 、正确B 、错误2. ()ln 0.f x x x +=→函数当时是无穷小量( B ) A 、正确 B 、错误3. 当0x →时,21x e -和sin x 是同阶无穷小量。
( A ) A 、正确 B 、错误4. 01sin()12lim2x x x →-=- ( A ) A 、正确 B 、错误25.(cos )2cos .()x x B '=A 、正确B 、错误 6. 22()()()2xx xx x ex e e '''== ( B )A 、正确B 、错误7.()()f x dx f x C '⋅=+⎰ ( A ) A 、正确 B 、错误8.110〈⎰⎰( A )A 、正确B 、错误9.220cos 1sin 4xdx x ππ=+⎰( A )A 、正确B 、错误10. 若是f (x)连续函数,则由曲线y=f (x)和直线x=a 、x=b (a <b )及x 轴所围成的曲边梯形面积为 S =|()b af x ⎰dx | ( B )A 、正确B 、错误二.单项选择题 (本大题共20题,每题3分,共60分) 11. ()f x 在0x 处左、右极限存在是()f x 在0x 处连续的 (B )A 、充分条件B 、必要条件C 、充要条件D 、前三者都不是12. 已知函数f (x) = ln 11x x x x >⎧⎨-≤⎩ ,则10lim ()x f x →-=( A )A. -1;B. 0;C. 1;D. 不存在13.已知21lim232x ax bx x →∞++=-,则a ,b 的值是 ( C ) A 、0,1 B 、1,0 C 、0,6 D 、1,112012214.lim(1)().;.1;.;..xx x A A e B C e D e →+=15. 当x →0时,下列函数为无穷小量的是( D ) A.xe; B.xe-; C.2x-+ 1; D.1sec sinxx+.16. 以下各式中能直接使用洛必达法则计算的是( D )A 、sin lim 3x x x →∞ B、0x → C 、1cos lim x x x →∞- D 、01cos lim 2x xx→-17.ln ()..(,1);.01).(0,);.1)y x x D A B C D =--∞+∞+∞函数的单调递增区间是(,;(,.18. ()sin f x x =,则(())f f x '=( C )A 、sin(sin )xB 、sin(cos )xC 、cos(sin )xD 、cos(cos )x 19. 函数y = f (x)的微分可以表示为( B )A. y ;B. dy;C.y x ∆∆; D. 0lim x yx →∆∆.20. 设()f x 可导,且2()xy f e =,则()dy D =A 、2()xf e dx '; B 、22()xxf e e dx '; C 、222()xxf e e '; D 、以上都不对.332222222221.10,,().330;.330;.3310;.3310.x y y y x A A x y y y B x y y C x y y D x y '++='''++=++='++=++=设为求将方程两边对求导得223.ln(1),1,().1.;.2.3;.2y x x dy A A dx B dx C dx D =+==函数则当时有;dx.233324.,11.2;.3.1;.(1)33x C A x B x C x D x ++在以下各式中的一个原函数是().25.()()u x dv x =⎰( B )A. ()()()()u x v x v x du x +⎰; B. ()()()()u x v x v x du x -⎰;C. ()()()()u x v x u x dv x +⎰;D. ()()()()u x v x u x dv x -⎰26. 函数()f x 在区间[,]a b 上连续是()f x 在区间[,]a b 上可积的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、既不是充分条件又不是必要条件0327.().23;.3;.. 1.x dx A A B C D =-⎰.2;28.cos ()x dx C π=⎰A 、0B 、1C 、2D 、π29. 51421cos 21x xdx x x -=--⎰( D ) A 、-1 B 、1 C 、-2 D 、030. 如图所示,阴影部分的面积是( C )A. [()()]b a f x g x dx +⎰;B. [()()]b a f x g x dx -⎰;C. [()()]b a f x g x dx -+⎰;D.[()()]b af xg x dx --⎰(这个题每套卷子基本都有,所以后面几套的30题删了)三.多项选择题(本大题共3题,每题4分,共12分。
四川省专升本高等数学-试卷12_真题-无答案
四川省专升本(高等数学)-试卷12(总分56,考试时间90分钟)1. 选择题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1. 设f(x)=e—x2一1,g(x)=x2,则当x→0时( )A. f(x)是比g(x)高阶的无穷小B. f(x)是比g(x)低阶的无穷小C. f(x)与g(x)是同阶的无穷小,但不是等价无穷小D. f(x)与g(x)是等价无穷小2. 设函数f(x)可导,则= ( )A. 0B. 2f(x)C. 2f(x)f′(x)D. 2f′(x)3. 函数y=ln(1+x2)的单调递增区间是( )A. (-5,5)B. (-∞,0)C. (0,+∞)D. (-∞,+∞)4. 设函数z=x2y+x+1,则等于( )A. 2x+1B. 2xy+1C. x2+1D. x25. 不定积分dx= ( )A. ln|3x-1|+CB. ln(3x-1)+CC. ln|3x-1|+CD. ln(3x-1)+C6. 在空间直角坐标系中,方程1=所表示的图形是( )A. 椭圆B. 椭圆面C. 抛物面D. 椭圆柱面7. 下列命题中正确的有( )A. 设级数un收敛,vn发散,则级数(un+vn)可能收敛B. 设级数un收敛,vn发散,则级数(un+vn)必定发散C. 设级数un收敛,且un≥vn(n=k,k+1,…),则级数vn必定收敛D. 设级数(un+vn)收敛,则有(un+vn)=vn8. 向量组α1=(1,1+a,0),α2=(1,2,0),α3=(0,0,a2+1)线性相关,则a= ( )A. 一1B. 0C. 1D. 29. 方程y″+3y′=x2的待定特解y*应取( )A. AxB. Ax2+Bx+CC. Ax2D. x(Ax2+Bx+C)10. 设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩B,A*,B*分别为A,B的伴随矩阵,则( )A. 交换A*的第1列与第2列得B*B. 交换A*的第1行与第2行得B*C. 交换A*的第1列与第2列得-B*D. 交换A*的第1行与第2行得-B*2. 填空题1. 由方程xy—ex+ey=0确定的隐函数的导数y′=____________.2. dx=____________.3. 直线垂直,则k=____________.4. f′(3x)dx=____________.5. 设A=,且有AX+I=A2+X,则X=____________.4. 解答题解答题解答时应写出推理、演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、 X~P(2),则EX= ,DX=
5、 设一曲线过原点且它在点(x,y)处的切线斜率等于2x+y,则该曲线方程为 。
6、 已知函数z=sinx-3xy+2y3,求出 。
7、写出幂级数 的和函数: 。
4、将函数f(x)=ln(x+2)展开成x的幂级数。(7分)
三、计算 D为x2 +y 2≤ R2 。(12分)
四、用高斯消元法解线性方程组 (10分)
个人花费大量时A的逆矩阵。(10分)
六、设X~N(70,102),求P(X<62), P(<20)。
已知 φ(1)=0.8413,φ(2)=0.9772,φ(0.8)=0.7881。(10分)
七、设X的分布列为
பைடு நூலகம்
个人花费大量时三 四 五 六 七 总分 满 分 20 28 12 10 10 10 10 得 分
一、填空:(20分)
1、 A=, B= 则 = ,
X -1 0 1 2
P 0.2 0.4 0.3 2a
求(1)a的值;(2)EX,DX。 (10分)
二、计算题。(28分)
1、行列式。(7分)
2、求微分方程的通解: (7分)。
3、求函数z=xsin(2x+y)的全微分。(7分)
2A-B= , AB=
2、 一批产品,正品分为一级品和二级品,若一级品率为0.7,二级品率为0.2,则正品率为 。
3、 一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,求任取一粒种子使其长成活苗的概率为 。