2020年中考数学重点题型突破易错点:5-1《图形的轴对称,平移与旋转》试题及答案-精品
2020-2021初中数学图形的平移,对称与旋转的易错题汇编及答案解析
2020-2021初中数学图形的平移,对称与旋转的易错题汇编及答案解析一、选择题1.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.2.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.3.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A .线段BE 的长度B .线段EC 的长度 C .线段CF 的长度D .A D 、两点之向的距离【答案】B【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF 是△ABC 平移得到∴A 和D 、B 和E 、C 和F 分别是对应点∴平移距离为:线段AD 、BE 、CF 的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.4.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B .2C .3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.5.在Rt △ABC 中,∠BAC =90°,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在C ′的位置,C ′D 交AB 于点Q ,则BQ AQ的值为( ) ABC.2 D.2【答案】A【解析】【分析】 根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD =DC =BD ,AC =AC′,∠ADC =∠ADC ′=45°,CD =C′D ,进而求出∠C 、∠B 的度数,求出其他角的度数,可得AQ =AC ,将BQ AQ 转化为BQ AC ,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A 作AE ⊥BC ,垂足为E ,∵∠ADC =45°,∴△ADE 是等腰直角三角形,即AE =DE=2AD , 在Rt △ABC 中,∵∠BAC =90°,AD 是△ABC 的中线,∴AD =CD =BD ,由折叠得:AC =AC ′,∠ADC =∠ADC ′=45°,CD =C ′D ,∴∠CDC ′=45°+45°=90°,∴∠DAC =∠DCA =(180°﹣45°)÷2=67.5°=∠C ′AD ,∴∠B =90°﹣∠C =∠CAE =22.5°,∠BQD =90°﹣∠B =∠C ′QA =67.5°,∴AC ′=AQ =AC ,由△AEC ∽△BDQ 得:BQ AC =BD AE , ∴BQ AQ =BQ AC =AD AE =2AE AE=2. 故选:A .【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.6.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A .120°B .108°C .72°D .36° 【答案】B【解析】【分析】 根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,DAC C 54∠∠==︒,利用三角形内角和定理求出ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出BED BAD ADF 108∠∠∠=+=︒.【详解】∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,∴C 90B 54∠∠=︒-=︒.∵AD 是斜边BC 上的中线,∴AD BD CD ==,∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,∴ADC=180DAC C 72∠∠∠︒--=︒.∵将△ACD 沿AD 对折,使点C 落在点F 处,∴ADF ADC 72∠∠==︒,∴BED BAD ADF 108∠∠∠=+=︒.故选B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.7.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】C【解析】【分析】试题解析:选项A 既不是轴对称图形,也不是中心对称图形,故该该选项错误; 选项B 既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D 是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!8.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )A.30°B.60°C.72°D.90°【答案】C【解析】【分析】紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【详解】解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,故选:C.【点睛】正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 10.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.11.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】根据轴对称图形的定义,只有选项A是轴对称图形,其他不是.故选:A【点睛】考核知识点:轴对称图形.理解定义是关键.12.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【答案】C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.13.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.14.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.15.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三AOB角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形【答案】D【解析】【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D.【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.16.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.17.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.故选:B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.18.下列说法中正确的是()①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形③线段不是轴对称图形④矩形是轴对称图形A.①②③④ B.①②③ C.②④ D.②③④【答案】C【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C.19.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()A.21:10 B.10:21C.10:51 D.12:01【答案】C【解析】【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C.【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.20.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q 分别是BD,AB上的动点,则AP+PQ的最小值为()A.4 B.2C.2 D.2【答案】D【解析】【分析】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,P′Q′=P′H,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴2.故选:D.【点睛】考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.。
(易错题精选)初中数学图形的平移,对称与旋转的知识点训练及答案
(易错题精选)初中数学图形的平移,对称与旋转的知识点训练及答案一、选择题1.如图,在R t △ABC 中,∠ACB=90°,∠B=60°,BC=2,∠A ′B ′C ′可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为( )A .43B .6C .33D .3【答案】B【解析】【分析】【详解】 试题分析:∵在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,∴AB=A ′B ′=4,AC=A′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠B ′AC=30°,∴AB ′=B ′C=2,∴AA ′=2+4=6.故选B .考点:1、旋转的性质;2、直角三角形的性质2.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.3.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,∴S阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.4.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.【详解】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握5.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【答案】B【解析】【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【详解】A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此故选B .6.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(2,3)--B .33(2,2)---C .3(3,2)--D .(3,3)- 【答案】D【解析】【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,∴OM=2+1=3,∴'B 的坐标为(3)-.故选:D.本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重本题考查了轴对称图形的概念合.10.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5 B.4 C.6 D.7【答案】D【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.故选:D.12.如图在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将∆沿射线AO平移,平移后点A'的横坐标为B'的坐标为()OABA .(63,2)-B .(63,23)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:3y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.13.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是( )A .3B .4C .5D .6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,再根据菱形的性质求出E′F 的长度即可.【详解】解:如图∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴AB=2234+=5,作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,∵AC 是∠DAB 的平分线,E 是AB 的中点,∴E ′在AD 上,且E′是AD 的中点,∵AD=AB ,∴AE=AE ′,∵F 是BC 的中点,∴E ′F=AB=5.故选C .14.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.15.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.故选:D.19.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.20.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).。
(易错题精选)初中数学图形的平移,对称与旋转的真题汇编附答案解析
(易错题精选)初中数学图形的平移,对称与旋转的真题汇编附答案解析一、选择题1.在下列图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、既是轴对称图形,又是中心对称图形,故本选项正确;B 、是轴对称图形,不是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项错误;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误, 故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.3.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A .120°B .108°C .72°D .36°【答案】B【解析】【分析】根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,DAC C 54∠∠==︒,利用三角形内角和定理求出ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出BED BAD ADF 108∠∠∠=+=︒.【详解】∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,∴C 90B 54∠∠=︒-=︒.∵AD 是斜边BC 上的中线,∴AD BD CD ==,∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,∴ADC=180DAC C 72∠∠∠︒--=︒.∵将△ACD 沿AD 对折,使点C 落在点F 处,∴ADF ADC 72∠∠==︒,∴BED BAD ADF 108∠∠∠=+=︒.故选B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.4.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】C【解析】【分析】试题解析:选项A 既不是轴对称图形,也不是中心对称图形,故该该选项错误; 选项B 既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D 是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!5.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.7.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.8.下列说法正确的是( )A .平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【答案】B【解析】【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【详解】A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选B.9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )A.30°B.60°C.72°D.90°【答案】C【解析】【分析】紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【详解】解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,故选:C.【点睛】正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.10.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,若将线段AB平移至A1B1,则a+b的值为( )A.﹣3 B.3 C.﹣2 D.0【答案】A【解析】【分析】根据点的平移规律即点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.13.如图所示的网格中各有不同的图案,不能通过平移得到的是()A.B.C.D.【答案】C【解析】【分析】根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.【详解】A、可以通过平移得到,不符合题意;B、可以通过平移得到,不符合题意;C、不可以通过平移得到,符合题意;D、可以通过平移得到,不符合题意.【点睛】本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.14.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .4【答案】A【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1=13.故选A.考点: 1.旋转;2.勾股定理.15.如图,ABC V 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-.现将ABC V 绕点A 顺时针旋转90︒,则旋转后点C 的坐标是( )A .()3,3B .()2,1C .()4,1--D .()2,3【答案】B【解析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如下图,绘制出CA 绕点A 顺时针旋转90°的图形由图可得:点C 对应点的坐标为(2,1)故选:B【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.16.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.17.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.18.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.19.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5 B.4 C.6 D.7【答案】D【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.故选:D.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 20.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.。
2020-2021初中数学图形的平移,对称与旋转的易错题汇编附答案解析(1)
2020-2021初中数学图形的平移,对称与旋转的易错题汇编附答案解析(1)一、选择题1.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.2.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A .(30)B .(3,0)C .(4035233D .(30) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===,结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=, ∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.3.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图【答案】C【解析】 【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.4.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是( )A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)【答案】C【解析】【分析】根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.【详解】解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,故选:C.【点睛】此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.5.如图,在平面直角坐标系中,AOB∆的顶点B在第一象限,点A在y轴的正半轴上,2AO AB==,120OAB∠=o,将AOB∠绕点O逆时针旋转90o,点B的对应点'B的坐标是()A.3(23)2--B.33(2222---C.3(3,22--D.(3)-【答案】D【解析】【分析】过点'B作x轴的垂线,垂足为M,通过条件求出'B M,MO的长即可得到'B的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、是轴对称图形,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选B .7.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.8.如图,若将线段AB 平移至A 1B 1,则a+b 的值为( )A .﹣3B .3C .﹣2D .0【答案】A【解析】【分析】 根据点的平移规律即点A 平移到A 1得到平移的规律,再按此规律平移B 点得到B 1,从而得到B 1点的坐标,于是可求出a 、b 的值,然后计算a+b 即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A 1(a ,﹣1),点B(2,0)向左平移1个单位,得到点B 1(1,b),∴线段AB 向下平移2个单位,向左平移1个单位得到线段A 1B 1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.9.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60︒得到线段AQ,连接BQ.若6PC=,则四边形APBQ的面积为()PA=,8PB=,10A.2493++D.48183 +B.483+C.243【答案】A【解析】【分析】连结PQ,先根据等边三角形的性质和旋转的性质证明△APQ为等边三角形,则P Q=AP=6,再证明△APC≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式求出面积,最后利用S四边形APBQ=S△BPQ+S△APQ即可解答.【详解】解:如图,连结PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,∵在△APC和△ABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ∴△APC≌△AQB,∴PC=QB=10,在△BPQ中, PB2=82=64,PQ2=62=36,BQ2=102=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∴∠BPQ=90°,∴S 四边形APBQ =S △BPQ +S △APQ =12×6×8+34×62=24+93 故答案为A ..【点睛】本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.10.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:3k = 即直线OA 的解析式为:3y x = 将点A '的横坐标为34y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.11.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有( )A .3个B .4个C .5个D .2个【答案】A【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.故选:A.12.如图,ABC V 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-.现将ABC V 绕点A 顺时针旋转90︒,则旋转后点C 的坐标是( )A .()3,3B .()2,1C .()4,1--D .()2,3【答案】B【解析】【分析】 在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如下图,绘制出CA 绕点A 顺时针旋转90°的图形由图可得:点C 对应点的坐标为(2,1)故选:B【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.13.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .32B .5C .4D 31【答案】B【解析】【分析】【详解】 由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO -∠CAO=90°.在等腰Rt △ABC 中,AB=6,则AC=BC=32同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .14.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°,∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-,解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.15.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.16.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.17.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1 图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A 到BC 上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是( )A .①②B .②③C .②④D .③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 18.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )A.70°B.80°C.84°D.86°【答案】B【解析】【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键. 19.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.20.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.。
2020年中考数学专题:轴对称、 图形的平移和旋转
∵在 Rt△ABO 中,∠OBA=90°,A(4,4), ∴AB=OB=4,∠AOB=45°, ∵ = ,点 D 为 OB 的中点,
∴BC=3,OD=BD=2, ∴D(0,2),C(4,3), 作 D 关于直线 OA 的对称点 E,连接 EC 交 OA 于 P, 则此时,四边形 PDBC 周长最小,E(0,2), ∵直线 OA 的解析式为 y=x, 设直线 EC 的解析式为 y=kx+b,
【例题 1】下列图形中,是轴对称图形的是( )
【答案】D 【解析】观察图形,选项 D 中图形是轴对称图形,有 3 条对称轴,其他图形都不是轴对称图形.故选 D.
【例题 2】(2019•湖南邵阳)一次函数 y1=k1x+b1 的图象 l1 如图所示,将直线 l1 向下平移若干个单位后得直 线 l2,l2 的函数表达式为 y2=k2x+b2.下列说法中错误的是( )
∴
,
解得:
,
∴直线 EC 的解析式为 y= x+2,
解
得,
,
∴P( , ), 故选:C.
11.如图,在△OAB 中,顶点 O(0,0),A(﹣3,4),B(3,4),将△OAB 与正方形 ABCD 组成的图形绕 点 O 顺时针旋转,每次旋转 90°,则第 70 次旋转结束时,点 D 的坐标为( )
【解析】由点 A(2,1)平移后 A1(﹣2,2)可得坐标的变化规律是:左移 4 个单位,上移 1 个单位,
பைடு நூலகம்
∴点 B 的对应点 B1 的坐标(﹣1,0).
8.如图,△A'B'C'是由△ABC 经过平移得到的,△A'B'C 还可以看作是△ABC 经过怎样的图形变化得到?下列
中考数学专题复习卷:轴对称、平移与旋转(含解析)
轴对称、平移与旋转一、选择题1.以下图形中必定是轴对称图形的是()A. B. C. D.【答案】 D【分析】 A 、 40°的直角三角形不是轴对称图形,故不切合题意;B、两个角是直角的四边形不必定是轴对称图形,故不切合题意;C、平行四边形是中心对称图形不是轴对称图形,故不切合题意;D、矩形是轴对称图形,有两条对称轴,故切合题意,故答案为: D.【剖析】把一个图形沿着一条直线折叠,直线两旁的部分能完整重合的图形就是轴对称图形;依据轴对称图形的定义,再一一判断即可。
2.以下图形中,是轴对称图形但不是中心对称图形的是(A. 正三角形B. 菱形)C. 直角梯形D. 正六边形【答案】C【分析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A切合题意; B.菱形既是轴对称图形,又是中心对称图形,故错误, B 不切合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误, C 不切合题意;D. 正六边形既是轴对称图形,又是中心对称图形,故错误, D 不切合题意;故答案为: A.【剖析】依据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x+l向左平移 1 个单位长度,再向下平移 2 个单位长度,所获得的抛物线为() .A. y=-5(x+1)-1B. y=-5(x-1)-1C. y=-5(x+1)+3D. y=-5(x-1)+3【答案】A【分析】:将抛物线y=-5x+l向左平移 1 个单位长度,获得的抛物线分析式为:y=-5 ( x+1 )2+1再向下平移 2 个单位长度获得的抛物线为:y=-5(x-1)+1-2即 y=-5(x+1)-1故答案为:A【剖析】依据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m 个单位,再向左或向右平移n 个单位即获得y=a( x±n)2±m。
依据平移规则即可得出平移后的抛物线的分析式。
(易错题精选)初中数学图形的平移,对称与旋转的解析含答案
(易错题精选)初中数学图形的平移,对称与旋转的解析含答案一、选择题1.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B .2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴BD= 22AB AD +=2211+=2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.2.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B 2C 3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒ ∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.3.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】 由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得【详解】AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.4.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C .【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.5.如图,△ABC 绕点A 逆时针旋转使得点C 落在BC 边上的点F 处,则以下结论:①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确的结论有( )A .4个B .3个C .2个D .1个【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC ≌△AEF ,∴AC=AF ,EF=BC ,①③正确,∠EAF=∠BAC ,即∠EAB+∠BAF=∠BAF+∠FAC ,∴∠EAB=∠FAC ,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.6.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.7.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】 解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.8.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、是轴对称图形,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选B .11.下列图形中,不是轴对称图形的是( )A .有两个内角相等的三角形B .有一个内角为45°的直角三角形C .有两个内角分别为50°和80°的三角形D .有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形. 故选:D.12.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【解析】【分析】先利用平移的性质求出AD、CF,进而完成解答.【详解】解:将△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,又∵△ABC的周长等于9,∴四边形ABFD的周长等于9+1+1=11.故答案为C.【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.13.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.14.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()A .1B .2C .3D .22【答案】C【解析】【分析】根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.17.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.故选:B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.18.下列说法中正确的是()①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形③线段不是轴对称图形④矩形是轴对称图形A.①②③④ B.①②③ C.②④ D.②③④【答案】C【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C.19.下列图形中,是轴对称图形不是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;而在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断求出答案即可.【详解】A:是轴对称图形,但不是中心对称图形,符合题意;B:是轴对称图形,也是中心对称图形,不符合题意;C:是中心对称图形,但不是轴对称图形,不符合题意;D:是轴对称图形,也是中心对称图形,不符合题意;故选:A.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.20.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.。
(易错题精选)初中数学图形的平移,对称与旋转的真题汇编及解析
(易错题精选)初中数学图形的平移,对称与旋转的真题汇编及解析一、选择题1.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如图,在边长为1522的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=55的点P的个数是()A.0 B.4 C.8 D.16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD 1522,∴AC=1522×2=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=222210555EC CM+=+=,∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.3.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A.1个 B.2个 C.3个 D.4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C.【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.4.在平面直角坐标系中,把点(5,2)P-先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P (-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A .【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .等边三角形B .干行四边形C .正六边形D .圆【答案】A【解析】【分析】【详解】解: A 、是轴对称图形,不是中心对称图形,符合题意;B 、不是轴对称图形,是中心对称图形,不合题意;C 、是轴对称图形,也是中心对称图形,不合题意;D 、是轴对称图形,也是中心对称图形,不合题意.故选A .【点睛】本题考查中心对称图形;轴对称图形.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.7.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q 分别是BD,AB上的动点,则AP+PQ的最小值为()A.4 B.42C.2 D.22【答案】D【解析】【分析】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,P′Q′=P′H,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴AH=BH=22.故选:D .【点睛】考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.8.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )A .(5,3)B .(﹣1,﹣2)C .(﹣1,﹣1)D .(0,﹣1)【答案】C【解析】【分析】根据点A 、点A 的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】∵A (1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B (2,1)的对应点的坐标为(﹣1,﹣1),故选C .【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣7b -,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c 7b -=0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,圆柱形玻璃杯高为8cm,底面周长为48cm,在杯内壁离杯底3cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm且与蜂蜜相对的A处,则蚂蚁从外壁A处走到内壁B处,至少爬多少厘米才能吃到蜂蜜()A.24 B.25 C.3713D.382【答案】B【分析】将圆柱形玻璃杯的侧面展开图为矩形MNPQ ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ ,则E 、F 分别是MQ ,NP 的中点,AM=2cm ,BF=3cm ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离.过点B 作BC ⊥MN 于点C ,则BC=ME=24cm ,A′C=8+2-3=7cm , ∴在Rt∆A′BC 中,A′B=222272425A C BC +=+=′cm .故选B .【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.13.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【答案】C【解析】【分析】 先利用平移的性质求出AD 、CF ,进而完成解答.【详解】解:将△ABC 沿BC 方向平移1个单位得到△DEF ,∴AD=CF=1,AC=DF ,又∵△ABC 的周长等于9,∴四边形ABFD 的周长等于9+1+1=11.故答案为C .【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.14.如图,将ABC V 沿射线BC 方向平移2 cm 得到DEF V .若ABC V 的周长为13 cm ,则四边形ABFD 的周长为( )A .12 cmB .15 cmC .17 cmD .21 cm【答案】C【解析】【分析】 根据平移的特点得AD=BE=CF=2,将四边形ABFE 的周长分解为AB+BC+DF+AD+CF 的形式,其中AB+BC+DF=AB+BC+AC 为△ABC 的周长.【详解】∵△DEF 是△ABC 向右平移2个单位得到∴AD=CF=BE=2,AC=DF四边形ABFD 的周长为:AB+BC+DF+AD+CF=(AB+BC+AC)+(AD+CF)=13+2+2=17故选:C .【点睛】本题考查平移的性质,需要注意,平移前后的图形是完全相同的,且对应点之间的线段长即为平移距离.15.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1 图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 16.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.17.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )A.70°B.80°C.84°D.86°【答案】B【解析】【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.18.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP +CP =DP +PC ′=DC ′的值最小.∵DC =1,BC =4,∴BD =3,连接BC ′,由对称性可知∠C ′BE =∠CBE =45°,∴∠CBC ′=90°,∴BC ′⊥BC ,∠BCC ′=∠BC ′C =45°,∴BC =BC ′=4,根据勾股定理可得DC ′=22'BC BD +=2234+=5.故选B .19.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是 ( )A .21:10B .10:21C .10:51D .12:01【答案】C【解析】【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C .【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.20.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】根据题意得,▱ABCD∽▱OECF,且AO=OC=12AC,故四边形OECF的面积是▱ABCD面积的14【详解】解:如图,由平移的性质得,▱ABCD∽▱OECF,且AO=OC=12 AC故四边形OECF的面积是▱ABCD面积1 4即图中阴影部分的面积为4cm2.故选:C【点睛】此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题.。
(易错题精选)初中数学图形的平移,对称与旋转的难题汇编含答案解析
(易错题精选)初中数学图形的平移,对称与旋转的难题汇编含答案解析一、选择题1.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.2.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B 2C 3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒ ∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒, 又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.3.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A .(30)B .(3,0)C .(403523,32D .(30) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===,结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=,∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.4.如图,在锐角△ABC 中,AB =4,∠ABC =45°,∠ABC 的平分线交AC 于点D ,点P ,Q 分别是BD ,AB 上的动点,则AP +PQ 的最小值为( )A .4B .42C .2D .22【答案】D【解析】【分析】 作AH ⊥BC 于H ,交BD 于P′,作P′Q′⊥AB 于Q′,此时AP′+P′Q′的值最小.【详解】作AH ⊥BC 于H ,交BD 于P′,作P′Q′⊥AB 于Q′,此时AP′+P′Q′的值最小.∵BD 平分∠ABC ,P′H ⊥BC ,P′Q′⊥AB ,P′Q′=P′H ,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴AH=BH=22.故选:D.【点睛】考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.5.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.6.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A、不能通过平移得到,故不符合题意;B、不能通过平移得到,故不符合题意;C、不能通过平移得到,故不符合题意;D、能够通过平移得到,故符合题意,【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.7.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 8.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.10.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.,若将△ABO绕点O沿顺时针方向旋转90°12.如图,平面直角坐标系中,已知点B(3,2)后得到△A1B1O,则点B的对应点B1的坐标是( )A.(3,1)B.(3,2)C.(1,3)D.(2,3)【答案】D【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.【详解】解:△A1B1O如图所示,点B1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.13.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =;∴32BE =. 故选:C .【点睛】 本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.14.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.15.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1 图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A 到BC 上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 16.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.17.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.18.下列图形中,是轴对称图形不是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;而在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断求出答案即可.【详解】A:是轴对称图形,但不是中心对称图形,符合题意;B:是轴对称图形,也是中心对称图形,不符合题意;C:是中心对称图形,但不是轴对称图形,不符合题意;D:是轴对称图形,也是中心对称图形,不符合题意;故选:A.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.19.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.故选:D.20.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.。
(易错题精选)初中数学图形的平移,对称与旋转的专项训练解析含答案
(易错题精选)初中数学图形的平移,对称与旋转的专项训练解析含答案一、选择题1.点M(﹣2,1)关于y 轴的对称点N 的坐标是( )A .(﹣2,﹣1)B .(2,1)C .(2,﹣1)D .(1,﹣2)【答案】B【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M (-2,1)关于y 轴的对称点N 的坐标是(2,1).故选B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A .120°B .108°C .72°D .36° 【答案】B【解析】【分析】 根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,DAC C 54∠∠==︒,利用三角形内角和定理求出ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出BED BAD ADF 108∠∠∠=+=︒.【详解】∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,∴C 90B 54∠∠=︒-=︒.∵AD 是斜边BC 上的中线,∴AD BD CD ==,∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,∴ADC=180DAC C 72∠∠∠︒--=︒.∵将△ACD 沿AD 对折,使点C 落在点F 处,∴ADF ADC 72∠∠==︒,∴BED BAD ADF 108∠∠∠=+=︒.故选B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.3.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S 阴影=4025360π⨯=259π, 故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.4.如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点A 在y 轴上,BC ∥x 轴,点B(2,32)-.将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为()A32﹣1)B231)C33)D33﹣1)【答案】D【解析】【分析】作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE=12BC=2,BC=22AB,得出AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'22'AB OA-1=12AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO=3,求出OD=AO﹣AD3﹣1,即可得出答案.【详解】解:作C'D⊥OA于D,设AO交BC于E,如图所示:则∠C'DA=90°,∵∠CAB=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠B=45°,∵BC∥x轴,点B232),∴AE=12BC2,BC=22AB,∴AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,∴OB'22'AB OA-1=12AB',∴∠OAB'=30°,∴∠C'AD=∠AB'O=60°,在△AC'D和△AB'O中,''''''C DA AOBC AD AB OAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AC'D≌△B'AO(AAS),∴AD=OB'=1,C'D=AO=3,∴OD=AO﹣AD=3﹣1,∴点C′的坐标为(﹣3,3﹣1);故选:D.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.5.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣7b-,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.6.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.7.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( )A .俯视图B .主视图C .俯视图和左视图D .主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.8.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.9.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)a a >,那么所得的图案与原来图案相比( )A .形状不变,大小扩大到原来的a 倍B .图案向右平移了a 个单位C .图案向上平移了a 个单位D .图案向右平移了a 个单位,并且向上平移了a 个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a (a >1),那么所得的图案与原图案相比,图案向右平移了a 个单位长度,并且向上平移了a 个单位长度. 故选D .【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =- 即直线OA 的解析式为:33y x =- 将点A '的横坐标为34y =-即点A '的坐标为(43,4)-∵点A 向右平移636个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.11.对于图形的全等,下列叙述不正确的是( )A .一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =;∴32BE =. 故选:C .【点睛】 本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.13.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )A .102+B .26C .5D .26【答案】B【解析】【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''+=+故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A关于直线PD的对称点,找出PA+PB的值最小时三角形ABC的位置.14.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.故选:B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.15.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )A.70°B.80°C.84°D.86°【答案】B【解析】【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.17.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.18.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为()A.2a B.4 3 aC.1.5a D.a【答案】C【解析】解:△ABC是等边三角形,由折叠可知,AD=BD=0.5AB=0.5a,易得△ADE是等边三角形.故周长是1.5a。
【解析版】中考数学常考易错点:5.1《图形的轴对称,平移与旋转》
5.1 图形的轴对称平移与旋转易错清单1. 图形经历多次旋转时,要关注每次旋转的旋转中心,旋转角,否则易于出错.【例1】(2018·四川南充)如图,在矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是( ).A. πB. 13πC. 25πD. 25【解析】连接BD,B'D,首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.连接BD,B'D,∵AB=5,AD=12,∴BD==13.【答案】 A【误区纠错】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式名师点拨1. 熟练掌握图形的轴对称,图形的平移,图形的旋转的基本性质和基本作图法.2. 结合具体问题大胆尝试,动手操作平移,旋转,探究发现其内在规律.3. 注重对格内和坐标内图形的变换试题的研究,熟练掌握常用的解题方法.提分策略1. 图形的对称问题.【例1】下列图案既是轴对称图形又是中心对称图形的是( ).【解析】A为轴对称图但不是中心对称图形;B为中心对称图但不是轴对称图形;C既不是轴对称图也不是中心对称图形;D既是轴对称图形又是中心对称图形.【答案】 D2. 图形的折叠问题.【例2】如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B'重合,AE 为折痕,则EB'= .【解析】首先根据折叠可得BE=EB',AB'=AB=3,然后设BE=EB'=x,则EC=4-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B'EC中,由勾股定理可得方程x2+22=(4-x)2,再解方程即可算出答案.根据折叠可得BE=EB',AB'=AB=3.设BE=EB'=x,则EC=4-x,在Rt△ABC中,由勾股定理,得∴B'C=5-3=2.在Rt△B'EC中,由勾股定理,得x2+22=(4-x)2,解得x=1.5.【答案】 1.53. 图形的平移、旋转问题.【例3】如图,在直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,-1),点B落在点B1,则点B1的坐标为.【解析】根据格结构找出点A1,B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.【答案】(1,1)【例4】如图,将△ABC绕点P顺时针旋转90°得到△A'B'C',则点P的坐标是( ).A. (1,1)B. (1,2)C. (1,3)D. (1,4)【解析】先根据旋转的性质得到点A的对应点为点A',点B的对应点为点B',再根据旋转的性质得到旋转中心在线段AA'的垂直平分线,也在线段BB'的垂直平分线,即两垂直平分线的交点为旋转中心.将△ABC以某点为旋转中心,顺时针旋转90°得到△A'B'C',∴点A的对应点为点A',点B的对应点为点B'.作线段AA'和BB'的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).【答案】 B专项训练一、选择题1. (2018·安徽铜陵模拟)下列标志中,既是轴对称图形,又是中心对称图形的是( ).2. (2018·广东深圳模拟)下列所给图形中,既是中心对称图形又是轴对称图形的是( ).3. (2018·上海长宁区二模)下列图形中,中心对称图形是( ).4. (2018·江苏泰州洋思中学模拟)某位同学参加课外数学兴趣小组,绘制了下列四幅图案,其中是轴对称图形的个数为( ).(第4题)A.1B. 2C. 3D. 45. (2018·四川峨眉山二模)京剧和民间剪纸是我国的两大国粹,这两者的结合无疑是最能代表中国特色的艺术形式之一.下列五个京剧脸谱的剪纸中,是轴对称图形的个数是( ).(第5题)A. 1B. 2C. 3D. 46. (2018·江苏扬州弘扬中学二模)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( ).(第6题)A. 2+B. 2+2C. 12D. 187. (2018·浙江温州模拟)将一圆形纸片对折后再对折,得到如图所示,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( ).(第7题)8. (2018·湖北荆门东宝区模拟)下列图案是部分汽车的标志,其中是中心对称图形的是( ).9. (2018·浙江瑞安模拟)由地板砖铺成的下列图案中,既是轴对称图形,又是中心对称图形的是( ).10. (2018·湖南长沙五模)用两把带有刻度的直尺,①可以画出两条平行的直线a与b,如图(1)所示;②可以画出∠AOB的平分线OP,如图(2)所示;③可以检验工件的凹面是否为半圆,如图(3)所示;④可以量出一个圆的半径,如图(4)所示.这四种说法正确的个数为( ).(第10题)A. 1B. 2C. 3D. 4二、填空题11. (2018·江西吉安模拟)如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为.(第11题)(第12题)12. (2018·湖北黄冈模拟)如图,矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过点P作PF⊥AD交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是cm.13. (2018·浙江湖州模拟)一个长方形的长与宽分别为16cm和16cm,绕它的对称中心旋转一周所扫过的面积是cm2;旋转90度时, 扫过的面积是cm2.14. (2018·山西模拟)已知△ABC的面积为36,将△ABC沿BC平移到△A'B'C',使B'和C重合,连接AC'交A'C 于D,则△C'DC的面积为.三、解答题15. (2018·四川中江县一模)如图,在边长为1的正方形组成的格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3),B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长;(3)求在旋转过程中,线段AB所扫过的面积.(第15题)16. (2018·安徽芜湖一模)如图(1),△ABC是等腰直角三角形,四边形ADEF是正方形,D,F分别在边AB,AC上,此时,BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图(2),BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图(3),延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.(第16题)参考答案与解析1. D2. D3. B4. C5. B6. B7. C8. A [解析]只有A图形旋转180°后与原图形重合.9. A [解析]B,C是轴对称图形,D是中心对称图形.10. D [解析]利用图形的平移,旋转进行实际应用,利用数学原理解决实际问题.11. 6 [解析]观察可知:所扫过的面积等于矩形ABCD的面积.12. [解析]连接EQ,过点Q作CD的垂线,垂足为O,则DO=EQ=PQ,OQ=DP=3,OE=DO-DE=PQ-2,利用勾股定理易得PQ=.13. 256ππ+128-12814. 1815. (1)如图,(第15题)A1(-3,3),B1(-2,1).16. (1)BD=CF成立. 理由如下:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°.∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC,∴∠BAD=∠CAF,∴△BAD≌△CAF.∴BD=CF.(2)①设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA =∠CMG,∴△BMA ∽△CMG.∴∠BGC=∠BAC =90°.∴BD⊥CF.∵在等腰直角三角形ABC 中,AC=AB=4,∴CN=AC-AN=3,BC==4.易得Rt△FCN∽Rt△ABM,(第16题)。
中考数学专题复习卷:轴对称、平移与旋转(含解析)
轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。
2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。
根据平移规则即可得出平移后的抛物线的解析式。
即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【解析】:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
(易错题精选)初中数学图形的平移,对称与旋转的图文答案
(易错题精选)初中数学图形的平移,对称与旋转的图文答案一、选择题1.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°【答案】C【解析】【分析】 根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.2.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A .线段BE 的长度B .线段EC 的长度 C .线段CF 的长度D .A D 、两点之向的距离【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形. 3.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A B C D【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=2AEAE=2.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.4.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A.1个 B.2个 C.3个 D.4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C.【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.5.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)a a>,那么所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.故选D.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.7.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q 分别是BD,AB上的动点,则AP+PQ的最小值为()A.4 B.2C.2 D.2【答案】D【解析】【分析】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,P′Q′=P′H,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴AH=BH=22.故选:D.【点睛】考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.8.如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点B(2,32).将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为()A32﹣1)B231)C33)D33﹣1)【答案】D【解析】【分析】作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE=12BC=2,BC=22AB,得出AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'=22'AB OA-=1=12AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO=3,求出OD=AO﹣AD=3﹣1,即可得出答案.【详解】解:作C'D⊥OA于D,设AO交BC于E,如图所示:则∠C'DA=90°,∵∠CAB=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠B=45°,∵BC∥x轴,点B(2,3﹣2),∴AE=12BC=2,BC=22=2AB,∴AB=2,OA=3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,∴OB'=22'AB OA-=1=12AB',∴∠OAB'=30°,∴∠C'AD=∠AB'O=60°,在△AC'D和△AB'O中,''''''C DA AOBC AD AB OAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AC'D≌△B'AO(AAS),∴AD=OB'=1,C'D=AO=3,∴OD=AO﹣AD=3﹣1,∴点C′的坐标为(﹣3,3﹣1);故选:D.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )A .30°B .60°C .72°D .90°【答案】C【解析】【分析】 紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【详解】解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,故选:C .【点睛】正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.10.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.11.对于图形的全等,下列叙述不正确的是( )A .一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,将△ABC 绕点A 顺时针旋转60°得到△ADE ,点C 的对应点E 恰好落在BA 的延长线上,DE 与BC 交于点F ,连接BD .下列结论不一定正确的是( )A .AD=BDB .AC ∥BD C .DF=EF D .∠CBD=∠E【答案】C【解析】【分析】由旋转的性质知∠BAD=∠CAE=60°、AB=AD ,△ABC ≌△ADE ,据此得出△ABD 是等边三角形、∠C=∠E ,证AC ∥BD 得∠CBD=∠C ,从而得出∠CBD=∠E .【详解】由旋转知∠BAD=∠CAE=60°、AB=AD ,△ABC ≌△ADE ,∴∠C=∠E ,△ABD 是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD ,∴AC ∥BD ,∴∠CBD=∠C ,∴∠CBD=∠E ,则A 、B 、D 均正确,故选C .【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.13.如图所示,把一张矩形纸片对折,折痕为AB ,再把以AB 的中点O 为顶点的平角AOB ∠三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形【答案】D【解析】【分析】 对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB 被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D .【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.14.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB15.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .5C .6D .26【答案】D【解析】【分析】 利用旋转的性质得出四边形 AECF 的面积等于正方形 ABCD 的面积,进而可求 出正方形的边长,再利用勾股定理得出答案.【详解】ADE ∆Q 绕点A 顺时针旋转90︒到ABF ∆的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,25∴==,AD DCQ,2DE=∴∆中,2226Rt ADE=+=AE AD DE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )A.70°B.80°C.84°D.86°【答案】B【解析】【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键. 17.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22'BC BD+=2234+=5.故选B.18.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为()A.2a B.4 3 aC.1.5a D.a【答案】C【解析】解:△ABC是等边三角形,由折叠可知,AD=BD=0.5AB=0.5a,易得△ADE是等边三角形.故周长是1.5a。
2020-2021初中数学图形的平移,对称与旋转的易错题汇编(1)
2020-2021初中数学图形的平移,对称与旋转的易错题汇编(1)一、选择题1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】 如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【点睛】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.2.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】 由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.3.如图,在边长为1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55的点P 的个数是( )A .0B .4C .8D .16【答案】B【解析】【分析】 作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM ,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55【详解】作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM . ∵正方形ABCD 1522, ∴15222=15, ∵点E ,F 是对角线AC 的三等分点,∴EC=10,FC=AE=5,∵点M 与点F 关于BC 对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴222210555EC CM +=+=∴在BC 边上,只有一个点P 满足PE+PF=55, 同理:在AB ,AD ,CD 边上都存在一个点P ,满足PE+PF=55,∴满足PE+PF=55的点P 的个数是4个.故选B .【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.4.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.5.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是( )A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)【答案】C【解析】【分析】根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.【详解】解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,故选:C.【点睛】此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.6.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【答案】B【解析】【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【详解】A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选B.7.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣7b ,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.8.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )A.30°B.60°C.72°D.90°【答案】C【解析】【分析】紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【详解】解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,故选:C.【点睛】正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.10.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形 B.角 C.等边三角形 D.锐角三角形【答案】C【解析】A.等腰三角形只有一条对称轴;B.角也只有一条对称轴,是角平分线所在的直线;C.等边三角形有三条对称轴;D.锐角三角形的对称轴数量不确定.故选:C12.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.13.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形【答案】D【解析】【分析】 对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB 被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D .【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.14.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.如图,将ABC V 沿射线BC 方向平移2 cm 得到DEF V .若ABC V 的周长为13 cm,则四边形ABFD的周长为()A.12 cm B.15 cm C.17 cm D.21 cm【答案】C【解析】【分析】根据平移的特点得AD=BE=CF=2,将四边形ABFE的周长分解为AB+BC+DF+AD+CF的形式,其中AB+BC+DF=AB+BC+AC为△ABC的周长.【详解】∵△DEF是△ABC向右平移2个单位得到∴AD=CF=BE=2,AC=DF四边形ABFD的周长为:AB+BC+DF+AD+CF=(AB+BC+AC)+(AD+CF)=13+2+2=17故选:C.【点睛】本题考查平移的性质,需要注意,平移前后的图形是完全相同的,且对应点之间的线段长即为平移距离.16.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.17.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.18.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()A.21:10 B.10:21C.10:51 D.12:01【答案】C【解析】【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C.【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.19.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.故选:D.20.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.。
中考数学常考易错点:5-1《图形的轴对称,平移与旋转》
5.1 图形的轴对称平移与旋转易错清单1.图形经历多次旋转时,要关注每次旋转的旋转中心,旋转角,否则易于出错.【例1】(2014·四川南充)如图,在矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是().A. πB. 13πC. 25πD. 25【解析】连接BD,B'D,首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.连接BD,B'D,∵AB=5,AD=12,∴BD==13.【答案】 A【误区纠错】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式名师点拨1.熟练掌握图形的轴对称,图形的平移,图形的旋转的基本性质和基本作图法.2.结合具体问题大胆尝试,动手操作平移,旋转,探究发现其内在规律.3.注重对网格内和坐标内图形的变换试题的研究,熟练掌握常用的解题方法.提分策略1.图形的对称问题.【例1】下列图案既是轴对称图形又是中心对称图形的是().【解析】A为轴对称图但不是中心对称图形;B为中心对称图但不是轴对称图形;C既不是轴对称图也不是中心对称图形;D既是轴对称图形又是中心对称图形.【答案】 D2.图形的折叠问题.【例2】如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B'重合,AE为折痕,则EB'= .【解析】首先根据折叠可得BE=EB',AB'=AB=3,然后设BE=EB'=x,则EC=4-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B'EC中,由勾股定理可得方程x2+22=(4-x)2,再解方程即可算出答案.根据折叠可得BE=EB',AB'=AB=3.设BE=EB'=x,则EC=4-x,在Rt△ABC中,由勾股定理,得∴B'C=5-3=2.在Rt△B'EC中,由勾股定理,得x2+22=(4-x)2,解得x=1.5.【答案】1.53.图形的平移、旋转问题.【例3】如图,在直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,-1),点B落在点B1,则点B1的坐标为.【解析】根据网格结构找出点A1,B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.【答案】(1,1)【例4】如图,将△ABC绕点P顺时针旋转90°得到△A'B'C',则点P的坐标是().A. (1,1)B. (1,2)C. (1,3)D. (1,4)【解析】先根据旋转的性质得到点A的对应点为点A',点B的对应点为点B',再根据旋转的性质得到旋转中心在线段AA'的垂直平分线,也在线段BB'的垂直平分线,即两垂直平分线的交点为旋转中心.将△ABC以某点为旋转中心,顺时针旋转90°得到△A'B'C',∴点A的对应点为点A',点B的对应点为点B'.作线段AA'和BB'的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).【答案】 B专项训练一、选择题1. (2014·安徽铜陵模拟)下列标志中,既是轴对称图形,又是中心对称图形的是().2. (2014·广东深圳模拟)下列所给图形中,既是中心对称图形又是轴对称图形的是().3. (2014·上海长宁区二模)下列图形中,中心对称图形是().4. (2014·江苏泰州洋思中学模拟)某位同学参加课外数学兴趣小组,绘制了下列四幅图案,其中是轴对称图形的个数为().(第4题)A.1B. 2C. 3D. 45.(2014·四川峨眉山二模)京剧和民间剪纸是我国的两大国粹,这两者的结合无疑是最能代表中国特色的艺术形式之一.下列五个京剧脸谱的剪纸中,是轴对称图形的个数是().(第5题)A. 1B. 2C. 3D. 46.(2013·江苏扬州弘扬中学二模)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是().(第6题)A. 2+B. 2+2C. 12D. 187.(2013·浙江温州模拟)将一圆形纸片对折后再对折,得到如图所示,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是().(第7题)8. (2013·湖北荆门东宝区模拟)下列图案是部分汽车的标志,其中是中心对称图形的是().9. (2013·浙江瑞安模拟)由地板砖铺成的下列图案中,既是轴对称图形,又是中心对称图形的是().10.(2013·湖南长沙五模)用两把带有刻度的直尺,①可以画出两条平行的直线a与b,如图(1)所示;②可以画出∠AOB的平分线OP,如图(2)所示;③可以检验工件的凹面是否为半圆,如图(3)所示;④可以量出一个圆的半径,如图(4)所示.这四种说法正确的个数为().(第10题)A. 1B. 2C. 3D. 4二、填空题11. (2014·江西吉安模拟)如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为.(第11题)(第12题)12.(2014·湖北黄冈模拟)如图,矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过点P作PF⊥AD交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是cm.13. (2013·浙江湖州模拟)一个长方形的长与宽分别为16cm和16cm,绕它的对称中心旋转一周所扫过的面积是cm2;旋转90度时, 扫过的面积是cm2.14. (2013·山西模拟)已知△ABC的面积为36,将△ABC沿BC平移到△A'B'C',使B'和C重合,连接AC'交A'C于D,则△C'DC的面积为.三、解答题15. (2014·四川中江县一模)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3),B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长;(3)求在旋转过程中,线段AB所扫过的面积.(第15题)16. (2013·安徽芜湖一模)如图(1),△ABC是等腰直角三角形,四边形ADEF是正方形,D,F分别在边AB,AC上,此时,BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图(2),BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图(3),延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.(第16题)参考答案与解析1. D2. D3. B4. C5. B6. B7. C8. A[解析]只有A图形旋转180°后与原图形重合.9. A[解析]B,C是轴对称图形,D是中心对称图形.10. D[解析]利用图形的平移,旋转进行实际应用,利用数学原理解决实际问题.11. 6[解析]观察可知:所扫过的面积等于矩形ABCD的面积.12. [解析]连接EQ,过点Q作CD的垂线,垂足为O,则DO=EQ=PQ,OQ=DP=3,OE=DO-DE=PQ-2,利用勾股定理易得PQ=.13. 256ππ+128-12814. 1815. (1)如图,(第15题)A1(-3,3),B1(-2,1).16. (1)BD=CF成立.理由如下:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°.∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC,∴∠BAD=∠CAF,∴△BAD≌△CAF.∴BD=CF.(2)①设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.∵在等腰直角三角形ABC中,AC=AB=4,∴CN=AC-AN=3,BC==4.易得Rt△FCN∽Rt△ABM,(第16题)。
(易错题精选)初中数学图形的平移,对称与旋转的分类汇编含解析
(易错题精选)初中数学图形的平移,对称与旋转的分类汇编含解析一、选择题1.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.2.下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重本题考查了轴对称图形的概念合.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.4.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.5.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( )A .俯视图B .主视图C .俯视图和左视图D .主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.7.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD.【详解】由旋转得到AD=AB=1,∠BAD=90°,∴BD= 22+=22AB AD+=2,11故选:B.【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.8.如图,圆柱形玻璃杯高为8cm,底面周长为48cm,在杯内壁离杯底3cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm且与蜂蜜相对的A处,则蚂蚁从外壁A处走到内壁B处,至少爬多少厘米才能吃到蜂蜜()+D.382A.24 B.25 C.23713【答案】B【解析】【分析】将圆柱形玻璃杯的侧面展开图为矩形MNPQ,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁A处走到内壁B处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ,则E、F分别是MQ,NP的中点,AM=2cm,BF=3cm,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁A处走到内壁B处的最短距离.过点B作BC⊥MN于点C,则BC=ME=24cm,A′C=8+2-3=7cm,∴在Rt∆A′BC中,A′B=2222′cm.+=+=A C BC72425故选B.【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )A.30°B.60°C.72°D.90°【答案】C【解析】【分析】紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【详解】解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,故选:C.【点睛】正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【答案】B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.11.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt△AOD1中,OA=3,OD1=CD1-OC=4,由勾股定理得:AD1=5.故选B.,若将△ABO绕点O沿顺时针方向旋转90°13.如图,平面直角坐标系中,已知点B(3,2)后得到△A1B1O,则点B的对应点B1的坐标是( )A.(3,1)B.(3,2)C.(1,3)D.(2,3)【答案】D【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.【详解】解:△A1B1O如图所示,点B1的坐标是(2,3).故选D.【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.14.下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .【答案】C【解析】【分析】 根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC ∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.16.如图,点E是正方形ABCD的边DC上一点,把ADE∆绕点A顺时针旋转90︒到ABF∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】ADE∆Q绕点A顺时针旋转90︒到ABF∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,25AD DC∴==2DE=Q,Rt ADE∴∆中,2226=+=AE AD DE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.17.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.18.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22BC BD+=22'+=5.故选B.3419.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.20.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.。
(易错题精选)初中数学图形的平移,对称与旋转的知识点总复习附答案解析
(易错题精选)初中数学图形的平移,对称与旋转的知识点总复习附答案解析一、选择题1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【点睛】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.2.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60︒得到线段AQ,连接BQ.若6PA=,8PC=,则四边形APBQ的面积为()PB=,10A.2493+D.48183+ +B.483+C.243【答案】A【解析】【分析】连结PQ,先根据等边三角形的性质和旋转的性质证明△APQ为等边三角形,则P Q=AP=6,再证明△APC≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式求出面积,最后利用S四边形APBQ=S△BPQ+S△APQ即可解答.【详解】解:如图,连结PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,∵在△APC和△ABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ ∴△APC≌△AQB,∴PC=QB=10,在△BPQ中, PB2=82=64,PQ2=62=36,BQ2=102=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∴∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12×6×8+3×62=24+93故答案为A..【点睛】本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)a a>,那么所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a (a >1),那么所得的图案与原图案相比,图案向右平移了a 个单位长度,并且向上平移了a 个单位长度. 故选D .【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A .120°B .108°C .72°D .36° 【答案】B【解析】【分析】 根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,DAC C 54∠∠==︒,利用三角形内角和定理求出ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出BED BAD ADF 108∠∠∠=+=︒.【详解】∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,∴C 90B 54∠∠=︒-=︒.∵AD 是斜边BC 上的中线,∴AD BD CD ==,∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,∴ADC=180DAC C 72∠∠∠︒--=︒.∵将△ACD 沿AD 对折,使点C 落在点F 处,∴ADF ADC 72∠∠==︒,∴BED BAD ADF 108∠∠∠=+=︒.故选B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.5.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.7.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.【详解】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握8.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)【答案】C【解析】【分析】根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.【详解】解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,故选:C.【点睛】此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.10.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.11.下列图形中,是轴对称图形不是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;而在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断求出答案即可.【详解】A:是轴对称图形,但不是中心对称图形,符合题意;B:是轴对称图形,也是中心对称图形,不符合题意;C:是中心对称图形,但不是轴对称图形,不符合题意;D:是轴对称图形,也是中心对称图形,不符合题意;故选:A.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.12.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.13.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.14.如图,在R t△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.43B.6 C.33D.3【答案】B【解析】【分析】【详解】试题分析:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选B.考点:1、旋转的性质;2、直角三角形的性质15.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D.31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt△AOD1中,OA=3,OD1=CD1-OC=4,由勾股定理得:AD1=5.故选B.16.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.a b,则点17.如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(,)的坐标为()A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.18.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.19.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.20.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.。
(易错题精选)初中数学图形的平移,对称与旋转的技巧及练习题含答案
(易错题精选)初中数学图形的平移,对称与旋转的技巧及练习题含答案一、选择题1.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.a a>,那么2.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.故选D.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.5.如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点B(2,32)-.将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为()A32﹣1)B231)C33)D33﹣1)【答案】D【解析】【分析】作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE=12BC=2,BC=22AB,得出AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'22'AB OA-1=12AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO=3,求出OD=AO﹣AD3﹣1,即可得出答案.【详解】解:作C'D⊥OA于D,设AO交BC于E,如图所示:则∠C'DA=90°,∵∠CAB=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠B=45°,∵BC∥x轴,点B232),∴AE=12BC2,BC=22AB,∴AB=2,OA3,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,∴OB'22'AB OA-1=12AB',∴∠OAB'=30°,∴∠C'AD=∠AB'O=60°,在△AC'D和△AB'O中,''''''C DA AOBC AD AB OAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AC'D≌△B'AO(AAS),∴AD=OB'=1,C'D=AO=3,∴OD=AO﹣AD=3﹣1,∴点C′的坐标为(﹣3,3﹣1);故选:D.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.6.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.7.如图,若OABCY的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.8.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )A.30°B.60°C.72°D.90°【答案】C【解析】【分析】紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【详解】解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,故选:C.【点睛】正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.10.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.11.对于图形的全等,下列叙述不正确的是()A .一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.13.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.14.如图,平面直角坐标系中,已知点B (3,2)-,若将△ABO 绕点O 沿顺时针方向旋转90°后得到△A 1B 1O ,则点B 的对应点B 1的坐标是( )A .(3,1)B .(3,2)C .(1,3)D .(2,3)【答案】D【解析】【分析】 根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B 1的坐标即可.【详解】解:△A 1B 1O 如图所示,点B 1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.15.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°,∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-,解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C 选项正确;故选D.18.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22'+=22BC BD+=5.故选B.3419.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.故选:D.20.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.。
2020年中考数学专题分类卷 专题二十五 图形的对称、平移和旋转(真题篇)(含答案)
拓展训练2020年中考数学专题分类卷专题二十五图形的对称、平移和旋转(真题篇)一、选择题1.下列图形:平行四边形、矩形、菱形、圆、等腰三角形,这些图形中只是轴对称图形的有( ) A.1个B.2个C.3个D.4个2.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为( ) A.(-2,-1)B.(-1,0)C.(-1,-1)D.(-2,0)3.下列图形中,是轴对称图形的是( )4.如图,在△ABO中,AB⊥OB,OB=3,AB=1.将△ABO绕O点旋转90°后得到O△,则点A1BA11的坐标为( )A.(-1,3)B.(-1,3)或(1,3-)C.(-1,3-)D.(-1,3-,-1)-)或(35.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( ) A.AM=BMB.AP=BNC.∠MAP=∠MBPD.∠ANM=∠BNM6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A'B'C,点A 在边B'C上,则∠B'的大小为( )A.42°B.48°C.52°D.58°7.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )A.(1,-1)B.(-1,-1)C.(2,0)D.(0,2)8.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB'C'(点B的对应点是点B',点C的对应点是点C'),连接CC'.若∠CC'B'=32°;则∠B的大小是( )B.64°C.77°D.87°9.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )A.AF=AEB.△ABE≌△AGFC.EF=52D.AF=EF10.如图,四边形ABCD中,∠C=50°,∠B =∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为( )A.50°C.70°D.80°二、填空题1.点A(3,-2)关于x轴对称的点的坐标是________.2.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A'的坐标为_______.3.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC 重合,点D旋转至点E,则∠CDE的正切值为_______.4.如图,一张三角形纸片ABC,∠C=90°,AC=8 cm,BC=6 cm.现将纸片折叠:使点A与点B重合,那么折痕长等于____.5.如图,∠AOB= 30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA 上,则MP +PQ+QN 的最小值是_______.6.在矩形ABCD 中,AB=4,BC=3,点P 在AB 上,若将△DAP 沿DP 折叠,使点A 落在矩形对角线上的A'处,则AP 的长为_______.三、按要求做题1.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1).(1)将△ABC 沿y 轴正方向平移3个单位得到C B A 111△,画出C B A 111△,并写出点B 1坐标;(2)画出C B A 111△关于y 轴对称的C B A 222△,并写出点C 2的坐标.真题篇一、1.A2.C3.D4.B5.B解析:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM.AN=BN,∠ANM=∠BNM,∵点P是直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.6.A解析:∵在Rt△ABC中,∠BAC= 90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A'B'C,∴∠A'=∠BAC=90°,∠ACA'=48°,∴∠B'=90°-∠ACA'=42°.故选A.7.B解析:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2 700°,2 700°÷360°=7.5周,所以OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),故选B8.C解析:由旋转的性质可知,AC=AC’,∵∠CAC’=90°,可知△CAC’为等腰直角三角形,则∠CC’A =45°.∵∠CC'B'= 32°,∴∠C'B'A=∠C'CA+∠CC'B'=45°+32°=77°,∵∠B=∠C'B'A,∴∠B=77°.故选C.9.D解析:设BE=x.则CE=BC-BE=8-x,∵沿EF 翻折后点C 与点A 重合,∴AE=CE=8-x,在Rt △ABE 中,AE BE AB 222=+,即)8(4222x x -=+,解得x=3,∴AE=8-3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD 的对边AD ∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE ,∴AE=AF=5,∴A 正确;在Rt △ABE 和Rt △AGF 中,∴△ABF ≌△AGF(HL),∴B 正确;过点E 作EH ⊥AD 于H ,则四边形ABEH 是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF-AH=5-3=2.在Rt△EFH中,EF=,∴C正确;∵△AEF不是等边三角形,∴EF≠AE,故D错误.故选D.10.D解析:作A关于BC和CD的对称点A’,A”,连接A'A”,交BC于E,交CD于F,则A'A”即为△AEF的周长最小值,作DA延长线AH.∵∠C=50°,∴∠DAB=130°,∴∠HAA'=50°,∴∠AA'E+∠A"=∠HAA'=50°.∵∠EA'A =∠EAA',∠FAD=∠A",且∠EA'A+∠EAA'=∠AEF,∠FAD+∠A”=∠AFE,∴∠AEF+∠AFE=∠EA'A+ ∠EAA'+ ∠FAD+ ∠A"=2(∠AA'E+∠A") =2×50°=100°,∴∠EAF=180°-100°=80°.故选D.二、1.(3,2)2.(-5,4)3. 3(根号7) 解析:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△ABD绕A点逆时针旋转得△ACE,∴AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,过E点作EH⊥CD于H,如图,设DH=x,则CH=4-x,在Rt △EDH 中,4.15/4cm 解析:如图,折痕为GH ,由勾股定理得:AB=8622 =10 cm ,由折叠得:AG= BG=21AB=21×10 =5 cm ,GH ⊥AB ,∴∠AGH =90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,5.根号10 解析:作M关于OB的对称点M',作N关于OA的对称点N',连接M'N',即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N'OQ=∠M'OB=30°,∴∠N'ON =60°,ON'= ON,∠MOM'=60°,OM=OM',∴△ONN'为等边三角形,△OMM'为等边三角形,∴∠N'OM'=90°,∴在Rt△M'ON'中,6.3/2或9/4 解析:①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A'D=3,AP=A'P.∠A=∠PA'D=90°,∴BA'=2,设AP=x,则BP=4-x,②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,三、1.解:(1)如图所示:C B A 111△,即为所求; 点B 1坐标为:(-2,-1);(2)如图所示:C B A 222△,即为所求, 点C 2的坐标为:(1,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1图形的轴对称平移与旋转
易错清单
1.图形经历多次旋转时,要关注每次旋转的旋转中心,旋转角,否则易于出错.
【例1】(2014·四川南充)如图,在矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是().
A. π
B. 13π
C. 25π
D. 25
【解析】连接BD,B'D,首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.
连接BD,B'D,
∵AB=5,AD=12,
∴BD==13.
【答案】 A
【误区纠错】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公
式
名师点拨
1.熟练掌握图形的轴对称,图形的平移,图形的旋转的基本性质和基本作图法.
2.结合具体问题大胆尝试,动手操作平移,旋转,探究发现其内在规律.
3.注重对网格内和坐标内图形的变换试题的研究,熟练掌握常用的解题方法.
提分策略
1.图形的对称问题.
【例1】下列图案既是轴对称图形又是中心对称图形的是().
【解析】A为轴对称图但不是中心对称图形;
B为中心对称图但不是轴对称图形;
C既不是轴对称图也不是中心对称图形;
D既是轴对称图形又是中心对称图形.
【答案】 D
2.图形的折叠问题.
【例2】如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B'重合,AE为折痕,则EB'= .
【解析】首先根据折叠可得BE=EB',AB'=AB=3,然后设BE=EB'=x,则EC=4-x,在Rt△ABC 中,由勾股定理求得AC的值,再在Rt△B'EC中,由勾股定理可得方程x2+22=(4-x)2,再解方程即可算出答案.
根据折叠可得BE=EB',AB'=AB=3.
设BE=EB'=x,则EC=4-x,
在Rt△ABC中,由勾股定理,得
∴B'C=5-3=2.
在Rt△B'EC中,由勾股定理,得x2+22=(4-x)2,
解得x=1.5.
【答案】1.5
3.图形的平移、旋转问题.
【例3】如图,在直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,-1),点B落在点B1,则点B1的坐标为.
【解析】根据网格结构找出点A1,B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.
【答案】(1,1)
【例4】如图,将△ABC绕点P顺时针旋转90°得到△A'B'C',则点P的坐标是().
A. (1,1)
B. (1,2)
C. (1,3)
D. (1,4)
【解析】先根据旋转的性质得到点A的对应点为点A',点B的对应点为点B',再根据旋转的性质得到旋转中心在线段AA'的垂直平分线,也在线段BB'的垂直平分线,即两垂直平分线的交点为旋转中心.
将△ABC以某点为旋转中心,顺时针旋转90°得到△A'B'C',
∴点A的对应点为点A',点B的对应点为点B'.
作线段AA'和BB'的垂直平分线,它们的交点为P(1,2),
∴旋转中心的坐标为(1,2).
【答案】 B
一、选择题
1. (2014·安徽铜陵模拟)下列标志中,既是轴对称图形,又是中心对称图形的是().
2. (2014·广东深圳模拟)下列所给图形中,既是中心对称图形又是轴对称图形的是().
3. (2014·上海长宁区二模)下列图形中,中心对称图形是().
4. (2014·江苏泰州洋思中学模拟)某位同学参加课外数学兴趣小组,绘制了下列四幅图案,其中是轴对称图形的个数为().
(第4题)
A.1
B. 2
C. 3
D. 4
5.(2014·四川峨眉山二模)京剧和民间剪纸是我国的两大国粹,这两者的结合无疑是最能代表中国特色的艺术形式之一.下列五个京剧脸谱的剪纸中,是轴对称图形的个数是().
(第5题)
A. 1
B. 2
C. 3
D. 4
6.(2013·江苏扬州弘扬中学二模)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是().
A. 2+
B. 2+2
C. 12
D. 18
7. (2013·浙江温州模拟)将一圆形纸片对折后再对折,得到如图所示,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是().
(第7题)
8. (2013·湖北荆门东宝区模拟)下列图案是部分汽车的标志,其中是中心对称图形的是().
9. (2013·浙江瑞安模拟)由地板砖铺成的下列图案中,既是轴对称图形,又是中心对称图形的是().
10.(2013·湖南长沙五模)用两把带有刻度的直尺,①可以画出两条平行的直线a与b,如图(1)所示;②可以画出∠AOB的平分线OP,如图(2)所示;③可以检验工件的凹面是否为半圆,如图(3)所示;④可以量出一个圆的半径,如图(4)所示.这四种说法正确的个数为().
(第10题)
A. 1
B. 2
C. 3
D. 4
二、填空题
11. (2014·江西吉安模拟)如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为.
(第11题)
(第12题)
12.(2014·湖北黄冈模拟)如图,矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD 上有一点P,PD=3cm,过点P作PF⊥AD交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是cm.
13. (2013·浙江湖州模拟)一个长方形的长与宽分别为16cm和16cm,绕它的对称中心旋转一周所扫过的面积是cm2;旋转90度时, 扫过的面积是cm2.
14. (2013·山西模拟)已知△ABC的面积为36,将△ABC沿BC平移到△A'B'C',使B'和C重合,连接AC'交A'C于D,则△C'DC的面积为.
三、解答题
15.(2014·四川中江县一模)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3),B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.
(1)画出△A1OB1,直接写出点A1,B1的坐标;
(2)在旋转过程中,点B经过的路径的长;
(3)求在旋转过程中,线段AB所扫过的面积.
(第15题)
16. (2013·安徽芜湖一模)如图(1),△ABC是等腰直角三角形,四边形ADEF是正方形,D,F 分别在边AB,AC上,此时,BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图(2),BD=CF成立吗?若成立,
请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图(3),延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=时,求线段BG的长.
(第16题)
参考答案与解析
1. D
2. D
3. B
4. C
5. B
6. B
7. C
8. A[解析]只有A图形旋转180°后与原图形重合.
9. A[解析]B,C是轴对称图形,D是中心对称图形.
10. D[解析]利用图形的平移,旋转进行实际应用,利用数学原理解决实际问题.
11. 6[解析]观察可知:所扫过的面积等于矩形ABCD的面积.
12. [解析]连接EQ,过点Q作CD的垂线,垂足为O,则
DO=EQ=PQ,OQ=DP=3,OE=DO-DE=PQ-2,利用勾股定理易得PQ=.
13.256ππ+128-128
14. 18
15. (1)如图,
(第15题)
A1(-3,3),B1(-2,1).
16. (1)BD=CF成立.理由如下:
∵△ABC是等腰直角三角形,四边形ADEF是正方形, ∴AB=AC,AD=AF,∠BAC=∠DAF=90°.
∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC,
∴∠BAD=∠CAF,
∴△BAD≌△CAF.
∴BD=CF.
(2)①设BG交AC于点M.
∵△BAD≌△CAF(已证),
∴∠ABM=∠GCM.
∵∠BMA=∠CMG,
∴△BMA∽△CMG.
∴∠BGC=∠BAC=90°.
∴BD⊥CF.
∵在等腰直角三角形ABC中,AC=AB=4,
∴CN=AC-AN=3,BC==4.
易得Rt△FCN∽Rt△ABM,
(第16题)。