Lingo快速入门

合集下载

lingo教程

lingo教程

lingo教程LINGO是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门安装:实验室的所有电脑都已经事先安装好了Lingo 8(或者9,10,11)。

如果要在自己的电脑上安装这个软件,建议从网上下载一个破解版的,按照提示一步一步地安装完毕。

简单例子:当你在windows系统下开始运行LINGO时,会得到类似于下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model –LINGO1的窗口是LINGO的默认模型窗口,建立的模型都要在该窗口内编码实现。

下面举两个例子。

例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示。

产品I 产品II 设备 1 2 8台时原材料A 4 0 16kg 原材料B 0 4 12kg工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应该如何安排生产计划使该厂获利最多?我们用下面的数学模型来描述这个问题。

设x_1、x_2分别表示在计划期内产品I、II的产量。

因为设备的有效台时是8,这是一个限制产量的条件,所以在确定产品I、II的产量时,要考虑不超过设备的有效台时数,即可用不等式表示为x_1 + 2x_2 <=8 同理,因原材料A、B的限量,可以得到以下不等式4x_1 <=16 4x_2 <=12 该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x_1、x_2以得到最大的利润。

若用z表示利润,这时z=2x_1+3x_2.综合上述,该计划问题可用数学模型表示为:目标函数max z=2x_1+3x_2约束条件x_1+2x_2<=84x_1 <=16 4x_2 <=12 x_1、x_2 >=0 一般来说,一个优化模型将由以下三部分组成:1. 目标函数(Objective Function):要达到的目标。

LINGO使用教程

LINGO使用教程

LINGO使用指南目录§1 LINGO快速入门 (1)§2 LINGO中的集 (3)§3 模型的数据部分和初始部分 (6)§4 LINGO函数 (9)§5 LINGO WINDOWS命令 (22)§6 LINGO的命令行命令 (35)§7 综合举例 (38)LINGO是用来求解线性和非线性优化问题的简易工具。

LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

§1 LINGO快速入门当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model –LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1如何在LINGO中求解如下的LP问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。

产销model :!6发点8收点运输问题; sets :warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume; endsets !目标函数;min =@sum (links: cost*volume); !需求约束;@for (vendors(J):@sum (warehouses(I): volume(I,J))=demand(J)); !产量约束;@for (warehouses(I):@sum (vendors(J): volume(I,J))<=capacity(I)); !这里是数据; data :capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

LINGO教程

LINGO教程

LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

lingo快速入门

lingo快速入门

LINGO 使用教程LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

Lingo教程

Lingo教程

LINGO教程LINGO是用来求解线性和非线性优化问题的简易工具。

LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

§1 LINGO快速入门●安装:实验室的所有电脑都已经事先安装好了Lingo 8(或者9, 10, 11)。

如果要在自己的电脑上安装这个软件,建议从网上下载一个破解版的,按照提示一步一步地安装完毕。

●简单例子:当你在windows系统下开始运行LINGO时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都要在该窗口内编码实现。

下面举两个例子。

例 1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示。

产品I 产品II设备 1 2 8台时原材料A 4 0 16kg原材料B 0 4 12kg该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应该如何安排生产计划使该厂获利最多?我们用下面的数学模型来描述这个问题。

设x_1、x_2分别表示在计划期内产品I、II的产量。

因为设备的有效台时是8,这是一个限制产量的条件,所以在确定产品I、II的产量时,要考虑不超过设备的有效台时数,即可用不等式表示为x_1 + 2x_2 <=8同理,因原材料A、B的限量,可以得到以下不等式4x_1 <=164x_2 <=12该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x_1、x_2以得到最大的利润。

若用z表示利润,这时z=2x_1+3x_2.综合上述,该计划问题可用数学模型表示为:目标函数 max z=2x_1+3x_2约束条件 x_1 + 2x_2 <=84x_1 <=164x_2 <=12x_1、x_2 >=0一个优化模型一般有三部分组成:1.目标函数(Objective Function):要达到的目标。

LINGO快速入门

LINGO快速入门
服务系统的等待或返修顾客数的期望值。a是顾客数乘以平均服务时间, 再除以平均返修时间。当c和(或)x不是整数时,采用线性插值进行计 算。
概率函数
• 7.@phg(pop,g,n,x) • 超几何(Hypergeometric)分布的累积分布函数。pop表示产品总数,g是正
品数。从所有产品中任意取出n(n≤pop)件。pop,g,n和x都可以是非整数, 这时采用线性插值进行计算。
变量界定函数
• 变量界定函数实现对变量取值范围的附加限制,共4种: • @bin(x) 限制x为0或1 • @bnd(L,x,U) 限制L≤x≤U • @free(x) 取消对变量x的默认下界为0的限制,即x可
以取任意实数 • @gin(x) 限制x为整数 • 在默认情况下,LINGO规定变量是非负的,也就是说下界
• @smax(x1,x2,...,xn)返回 x1 , x2 , … , xn 中的 最大值
• @smin(x1,x2,...,xn)返回 x1 , x2 , … , xn 中的最 小值
例 给定一个直角三角形,求包含该三角形的最小正方形。
解:如图所示。ABCDDAEabx
求最小的正方形就相当于求如下的最优化问题:
• data:
• sex,age = 1 16

0 14

0 17

0 13;
• friend = 0.3 0.5 0.6;
• enddata
基本运算符
• ^ 乘方 •﹡ 乘 •/ 除 •﹢ 加 •﹣ 减
: LINGO具有9种逻辑运算符
• #not# 否定该操作数的逻辑值,# not #是一个一元运算符 • #eq# 若两个运算数相等,则为 true ;否则为 flase • #ne# 若两个运算符不相等,则为 true ;否则为 flase • #gt# 若左边的运算符严格大于右边的运算符,则为 true ;否则

Lingo教程

Lingo教程

L i n g o教程(总74页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--LINGO教程LINGO是用来求解线性和非线性优化问题的简易工具。

LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

?§1 LINGO快速入门安装:实验室的所有电脑都已经事先安装好了Lingo 8(或者9, 10,11)。

如果要在自己的电脑上安装这个软件,建议从网上下载一个破解版的,按照提示一步一步地安装完毕。

简单例子:当你在windows系统下开始运行LINGO时,会得到类似于下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都要在该窗口内编码实现。

下面举两个例子。

例 1某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示。

产品I产品II设备 1 28台时原材料A 4 016kg原材料B 0 412kg该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应该如何安排生产计划使该厂获利最多我们用下面的数学模型来描述这个问题。

设x_1、x_2分别表示在计划期内产品I、II的产量。

因为设备的有效台时是8,这是一个限制产量的条件,所以在确定产品I、II的产量时,要考虑不超过设备的有效台时数,即可用不等式表示为x_1 + 2x_2 <=8同理,因原材料A、B的限量,可以得到以下不等式4x_1 <=164x_2 <=12该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x_1、x_2以得到最大的利润。

若用z表示利润,这时z=2x_1+3x_2.综合上述,该计划问题可用数学模型表示为:目标函数 max z=2x_1+3x_2约束条件 x_1 + 2x_2 <=84x_1 <=164x_2 <=12x_1、x_2 >=0一般来说,一个优化模型将由以下三部分组成:1.目标函数(Objective Function):要达到的目标。

Lingo教程

Lingo教程

LINGO教程之欧侯瑞魂创作LINGO是用来求解线性和非线性优化问题的简易工具。

LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

§1 LINGO快速入门●装置:实验室的所有电脑都已经事先装置好了Lingo 8(或者9, 10,11)。

如果要在自己的电脑上装置这个软件,建议从网上下载一个破解版的,依照提示一步一步地装置完毕。

●简单例子:当你在windows系统下开始运行LINGO时,会得到类似于下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的题目为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都要在该窗口内编码实现。

下面举两个例子。

例 1某工厂在计划期内要安插生产I、II两种产品,已知生产单位产品所需的设备台时及A、B两种原资料的消耗,如表所示。

该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应该如何安插生产计划使该厂获利最多?我们用下面的数学模型来描述这个问题。

设x_1、x_2分别暗示在计划期内产品I、II的产量。

因为设备的有效台时是8,这是一个限制产量的条件,所以在确定产品I、II的产量时,要考虑不超出设备的有效台时数,即可用不等式暗示为x_1 + 2x_2 <=8同理,因原资料A、B的限量,可以得到以下不等式4x_1 <=164x_2 <=12该工厂的目标是在不超出所有资源限量的条件下,如何确定产量x_1、x_2以得到最大的利润。

若用z暗示利润,这时z=2x_1+3x_2.综合上述,该计划问题可用数学模型暗示为:目标函数 max z=2x_1+3x_2约束条件 x_1+2x_2 <=84x_1 <=164x_2 <=12x_1、x_2 >=0一般来说,一个优化模型将由以下三部分组成:1.目标函数(Objective Function):要达到的目标。

资料:lingo新手入门共4章

资料:lingo新手入门共4章

1.LINGO入门2.在LINGO中使用集合3. 运算符和函数4. LINGO的主要菜单命令5. LINGO命令窗口•.LG4:LINGO格式的模型文件,保存了模型窗口中所能够看到的所有文本和其他对象及其格式信息;•.LNG:文本格式的模型文件,不保存模型中的格式信息(如字体、颜色、嵌入对象等);•.LDT:LINGO数据文件;•.LTF:LINGO命令脚本文件;•.LGR:LINGO报告文件;•.LTX:LINDO格式的模型文件;•.MPS:示MPS(数学规划系统)格式的模型文件。

除“LG4”文件外,另外几种格式的文件都是普通的文本文件,可以用任何文本编辑器打开和编辑。

注:凡是可以从一个约束直接解出变量取值时,这个变量就不认为是决策变量而是固定变量,不列入统计中;只含有固定变量的约束也不列入约束统计中。

一个简单的LINGO 程序例 直接用LINGO 来解如下二次规划问题:程序语句输入的备注:LINGO 总是根据“MAX=”或“MIN=”寻找目标函数,而除注释语句和TITLE()()()()22121122121212982770.321..100223,04Max x x x x x x s t x x x x x x +---+≤≤≥为整数语句外的其他语句都是约束条件,因此语句的顺序并不重要。

限定变量取整数值的语句为“@GIN(X1)”和“@GIN(X2)”,不可以写成“@GIN(2)”,否则LINGO将把这个模型看成没有整数变量。

LINGO中函数一律需要以“@”开头,其中整型变量函数(@BIN、@GIN)和上下界限定函数(@FREE、@SUB、@SLB)与LINDO中的命令类似。

而且0/1变量函数是@BIN函数。

输出结果:•运行菜单命令“LINGO|Solve”•输出结果备注:LINGO是将它作为PINLP(纯整数非线性规划)来求解,因此找到的是局部最优解。

通过菜单“WINDOW| Status Window”看到状态窗口,可看到最佳目标值“Best Obj”与问题的上界“Obj Bound”已经是一样的,当前解的最大利润与这两个值非常接近,是计算误差引起的。

Lingo教程[参照]

Lingo教程[参照]

LINGO教程LINGO是用来求解线性和非线性优化问题的简易工具。

LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

§1 LINGO快速入门●安装:实验室的所有电脑都已经事先安装好了Lingo 8(或者9,10,11)。

如果要在自己的电脑上安装这个软件,建议从网上下载一个破解版的,按照提示一步一步地安装完毕。

●简单例子:当你在windows系统下开始运行LINGO时,会得到类似于下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都要在该窗口内编码实现。

下面举两个例子。

例 1某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示。

产品I产品II设备 1 28台时原材料A 4 016kg原材料B 0 412kg该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应该如何安排生产计划使该厂获利最多?我们用下面的数学模型来描述这个问题。

设x_1、x_2分别表示在计划期内产品I、II的产量。

因为设备的有效台时是8,这是一个限制产量的条件,所以在确定产品I、II的产量时,要考虑不超过设备的有效台时数,即可用不等式表示为x_1 + 2x_2 <=8同理,因原材料A、B的限量,可以得到以下不等式4x_1 <=164x_2 <=12该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x_1、x_2以得到最大的利润。

若用z表示利润,这时z=2x_1+3x_2.综合上述,该计划问题可用数学模型表示为:目标函数 max z=2x_1+3x_2约束条件 x_1 + 2x_2 <=84x_1 <=164x_2 <=12x_1、x_2 >=0一般来说,一个优化模型将由以下三部分组成:1.目标函数(Objective Function):要达到的目标。

LINGO基础知识

LINGO基础知识

LINGO 使用教程LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

LINGO教程

LINGO教程

LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

LINGO教程

LINGO教程

LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。

产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

lingo教程

lingo教程

LINGO 使用教程LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。

lingo11入门到精通

lingo11入门到精通
LINGO 教程
LINGO11 入门到精通 LINGO 是用来求解线性和非线性优化问题的简易工具。 LINGO 内置了一种建立 最优化模型的语言,可以简便地表达大规模问题,利用 LINGO 高效的求解器可快 速求解并分析结果。 一般来说 LINGO 多用于解决大规模数学规划。 用时要注意以下几点: (1) 每条语句后必须使用分号“; ”结束。问题模型必须由 MODEL 命令 开始,END 结束。 (2) 用 MODEL 命令来作为输入问题模型的开始,格式为 MODEL : statement (语句) 。 (3) 目标函数必须由“min =”或“max =”开头。 §1 LINGO 快速入门 当你在 windows 下开始运行 LINGO 系统时,会得到类似下面的一个窗口:
共 53 页 4
LINGO 教程
Rose 0 17 Mike 1 13; enddata
注意:开头用感叹号(!) ,末尾用分号(;)表示注释,可跨多行。
在集部分只定义了一个集 students,并未指定成员。在数据部分罗列了集 成员 John、Jill、Rose 和 Mike,并对属性 sex 和 age 分别给出了值。 集成员无论用何种字符标记,它的索引都是从 1 开始连续计数。在 attribute_ list 可以指定一个或多个集成员的属性, 属性之间必须用逗号隔开。 可以把集、集成员和集属性同 C 语言中的结构体作个类比。如下图: 集 ←→ 结构体 集成员 ←→ 结构体的域 集属性 ←→ 结构体实例 LINGO 内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些 问题, 然后再借助于 LINGO 求解器求解。 因此, 集属性的值一旦在模型中被确定, 就不可能再更改。在 LINGO 中, 只有在初始部分中给出的集属性值在以后的求解 中可更改。这与前面并不矛盾,初始部分是 LINGO 求解器的需要,并不是描述问 题所必须的。 2.3.2 定义派生集 为了定义一个派生集,必须详细声明: ·集的名字 ·父集的名字 ·可选,集成员 ·可选,集成员的属性 可用下面的语法定义一个派生集: setname(parent_set_list)[/member_list/][:attribute_list]; setname 是集的名字。parent_set_list 是已定义的集的列表,多个时必须 用逗号隔开。如果没有指定成员列表,那么 LINGO 会自动创建父集成员的所有组 合作为派生集的成员。派生集的父集既可以是原始集,也可以是其它的派生集。

lingo入门教程

lingo入门教程

lingo入门教程Lingo是一种广泛应用于计算机编程和计算机科学领域的编程语言。

它是用于Adobe Director(一种多媒体应用程序)中的脚本语言,用于控制多媒体元素和动画。

Lingo的语法比较简单易懂,有助于创建交互式和多媒体项目。

下面是一些Lingo的基本概念和用法。

1. 变量(Variables): 在Lingo中,变量用于存储数据值。

变量可以是数字、文本或其他数据类型。

要创建变量,可以使用关键字`global`或`local`,后跟变量名和初始值(可选)。

例如:```global myVariable = 10local myText = "Hello World"```2. 条件语句(Conditional statements): 条件语句用于根据条件执行特定的代码块。

常用的条件语句有`if-then`和`if-then-else`。

例如:```if myVariable > 5 thenalert "Value is greater than 5"elsealert "Value is less than or equal to 5"end if```3. 循环(Loops): 循环用于重复执行一段代码块,直到满足指定条件为止。

Lingo提供了`repeat`和`repeat while`循环语句。

例如:```repeat with i = 1 to 5put iend repeat```4. 函数(Functions): 函数是一组预定义的代码,用于执行特定的任务。

Lingo提供了许多内置函数,如`alert`、`put`等。

您还可以创建自己的函数。

例如:```on multiplyNumbers(a, b)return a * bend multiplyNumbersput multiplyNumbers(2, 4) -- 输出8```这些只是Lingo的一些基本概念和用法。

(完整版)lingo初级入门手册

(完整版)lingo初级入门手册
数学建模及其实验
LINGO软件使用
LINGO是美国LINDO系统公司开发的一套专门用 于求解最优化问题的软件.它为求解最优化问题提供 了一个平台,主要用于求解线性规划、非线性规划、 整数规划、二次规划、线性及非线性方程组等问 题.它是最优化问题的一种建模语言,包含有许多常 用的函数供使用者编写程序时调用,并提供了与其他 数据文件的接口,易于方便地输入,求解和分析大规 模最优化问题,且执行速度快.由于它的功能较强, 所以在教学、科研、工业、商业、服务等许多领域得 到了广泛的应用.
STUDENTS/1..5/:NAME,AGE; ENDSETS
数学建模及其实验
数学建模及其实验
数学建模及其实验
数学建模及其实验
派生集:
Setname(parent_set_list(源集列表))[/member_list/][:attribute_list];
图1.1中最外层的窗口是LINGO软件的主窗口(LINGO软件的用户界 面),所有其他窗口都在这个窗口之内.主窗口有:标题栏、菜单栏、工 具栏和状态栏.目前,状态栏最左边显示的是“Ready”,表示准备就绪, 右下角显示的是当前时间,时间前面是当前光标的位置“Ln 1,Col 1” (即1行1列).将来用户可以用选项命令(LINGO|Options|Interface菜单 命令)决定是否需要显示工具栏和状态栏.
LINGO|Solution(Ctrl-O)(解答)命令显示当前解
• LINGO|Range(Ctrl-R)
LINGO|Range(Ctrl-R)(灵敏度分析)命令显示当前解的灵敏度分析结 果.(你必须在此之前求解过当前模型)
数学建模及其实验
• LINGO|Options(Ctrl-I)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意:用“[]”表示该部分内容可选。下同,不再赘述。
Setname 是你选择的来标记集的名字,最好具有较强的可读性。集名字必须严格符合标 准命名规则:以拉丁字母或下划线(_)为首字符,其后由拉丁字母(A—Z) 、下划线、阿拉 伯数字(0,1,„,9)组成的总长度不超过 32 个字符的字符串,且不区分大小写。
!这里是数据; data: capacity=60 55 51 43 41 52; demand=35 37 22 32 41 32 43 38; cost=6 2 6 7 4 2 9 5 4 9 5 3 8 5 8 2 5 2 1 9 7 4 3 3 7 6 7 3 9 2 7 1 2 3 9 5 7 2 6 5 5 5 2 2 8 1 4 3; enddata end 然后点击工具条上的按钮 即可。 为了能够使用 LINGO 的强大功能,接着第二节的学习吧。
注意:开头用感叹号(!) ,末尾用分号(;)表示注释,可跨多行。
在集部分只定义了一个集 students,并未指定成员。在数据部分罗列了集成员 John、 Jill、Rose 和 Mike,并对属性 sex 和 age 分别给出了值。 集成员无论用何种字符标记,它的索引都是从 1 开始连续计数。在 attribute_ list 可 以指定一个或多个集成员的属性,属性之间必须用逗号隔开。 可以把集、集成员和集属性同 C 语言中的结构体作个类比。如下图: 集 ←→ 结构体 集成员 ←→ 结构体的域 集属性 ←→ 结构体实例 LINGO 内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后 再借助于 LINGO 求解器求解。因此,集属性的值一旦在模型中被确定,就不可能再更改。在 LINGO 中,只有在初始部分中给出的集属性值在以后的求解中可更改。这与前面并不矛盾, 初始部分是 LINGO 求解器的需要,并不是描述问题所必须的。 2.3.2 定义派生集 为了定义一个派生集,必须详细声明: ·集的名字 ·父集的名字 ·可选,集成员 ·可选,集成员的属性 可用下面的语法定义一个派生集: setname(parent_set_list)[/member_list/][:attribute_list]; setname 是集的名字。 parent_set_list 是已定义的集的列表, 多个时必须用逗号隔开。 如果没有指定成员列表, 那么 LINGO 会自动创建父集成员的所有组合作为派生集的成员。 派 生集的父集既可以是原始集,也可以是其它的派生集。
注意:该命名规则同样适用于集成员名和属性名等的命名。
Member_list 是集成员列表。如果集成员放在集定义中,那么对它们可采取显式罗列和 隐式罗列两种方式。如果集成员不放在集定义中,那么可以在随后的数据部分定义它们。 ① 当显式罗列成员时, 必须为每个成员输入一个不同的名字, 中间用空格或逗号搁开, 允许混合使用。 例 2.1 可以定义一个名为 students 的原始集,它具有成员 John、Jill、Rose 和 Mike, 属性有 sex 和 age: sets: students/John Jill, Rose Mike/: sex, age; endsets ② 当隐式罗列成员时,不必罗列出每个集成员。可采用如下语法: setname/member1..memberN/[: attribute_list]; 这里的 member1 是集的第一个成员名,memberN 是集的最末一个成员名。LINGO 将自动产生 中间的所有成员名。 LINGO 也接受一些特定的首成员名和末成员名, 用于创建一些特殊的集。 列表如下: 隐式成员列表格式 1..n StringM..StringN DayM..DayN 1..5 Car2..car14 Mon..Fri 示例 1,2,3,4,5 Car2,Car3,Car4,„,Car14 Mon,Tue,Wed,Thu,Fri 所产生集成员
例 2.3 sets: product/A B/; machine/M N/; week/1..2/; allowed(product,machine,week):x; endsets LINGO 生成了三个父集的所有组合共八组作为 allowed 集的成员。列表如下: 编号 成员 1 (A,M,1)
LINGO 教程
LINGO 是用来求解线性和非线性优化问题的简易工具。LINGO 内置了一种建立最优化模型 的语言,可以简便地表达大规模问题,利用 LINGO 高效的求解器可快速求解并分析结果。
§1
LINGO 快速入门
当你在 windows 下开始运行 LINGO 系统时,会得到类似下面的一个窗口:
§2
LINGO 中的集
对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通 工具和雇工等等。LINGO 允许把这些相联系的对象聚合成集(sets) 。一旦把对象聚合成集, 就可以利用集来最大限度的发挥 LINGO 建模语言的优势。 现在我们将深入介绍如何创建集,并用数据初始化集的属性。学完本节后,你对基于建 模技术的集如何引入模型会有一个基本的理解。 2.1 为什么使用集 集是 LINGO 建模语言的基础,是程序设计最强有力的基本构件。借助于集,能够用一个
共 53 页 1
LINGO 教程
A3 A4 A5 A6 销量
5 7 2 5 35
2 6 3 5 37
1 7 9 2 22
9 3 5 2 32
7 9 7 8 41
4 2 2 1 32
3 7 6 4 43
3 1 5 3 38
51 43 41 52
使用 LINGO 软件,编制程序如下: model: !6 发点 8 收点运输问题; sets: warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand; links(warehouses,vendors): cost, volume; endsets !目标函数; min=@sum(links: cost*volume); !需求约束; @for(vendors(J): @sum(warehouses(I): volume(I,J))=demand(J)); !产量约束; @for(warehouses(I): @sum(vendors(J): volume(I,J))<=capacity(I));
min s.t.
2 x1 3 x 2 x1 x 2 350 x1 100
2 x1 x 2 600 x1 , x 2 0
在模型窗口中输入如下代码: min=2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600; 然后点击工具条上的按钮 即可。 例 1.2 使用 LINGO 软件计算 6 个发点 8 个收点的最小费用运输问题。产销单位运价如 下表。 单 位 销地 运 B1 B2 B3 B4 B5 B6 B7 B8 产量 价 产地 A1 A2 6 4 2 9 6 5 7 3 4 8 2 5 5 8 9 2 60 55
共 53 页 4
LINGO 教程
2 2 (A,M,2) 3 3 (A,N,1) 4 4 (A,N,2) 5 5 (B,M,1) 6 6 (B,M,2) 7 7 (B,N,1) 8 8 (B,N,2) 成员列表被忽略时, 派生集成员由父集成员所有的组合构成, 这样的派生集成为稠密集。 如果限制派生集的成员, 使它成为父集成员所有组合构成的集合的一个子集, 这样的派生集 成为稀疏集。同原始集一样,派生集成员的声明也可以放在数据部分。一个派生集的成员列 表有两种方式生成:①显式罗列;②设置成员资格过滤器。当采用方式①时,必须显式罗列 出所有要包含在派生集中的成员,并且罗列的每个成员必须属于稠密集。使用前面的例子, 显式罗列派生集的成员: allowed(product,machine,week)/A M 1,A N 2,B N 1/; 如果需要生成一个大的、稀疏的集,那么显式罗列就很讨厌。幸运地是许多稀疏集的成员都 满足一些条件以和非成员相区分。 我们可以把这些逻辑条件看作过滤器, 在 LINGO 生成派生 集的成员时把使逻辑条件为假的成员从稠密集中过滤掉。 例 2.4 sets: !学生集:性别属性 sex,1 表示男性,0 表示女性;年龄属性 age. ; students/John,Jill,Rose,Mike/:sex,age; !男学生和女学生的联系集:友好程度属性 friend,[0,1]之间的数。 ; linkmf(students,students)|sex(&1) #eq# 1 #and# sex(&2) #eq# 0: friend; !男学生和女学生的友好程度大于 0.5 的集; linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x; endsets data: sex,age = 1 16 0 14 0 17 0 13; friend = 0.3 0.5 0.6; enddata 用竖线 (|) 来标记一个成员资格过滤器的开始。 #eq#是逻辑运算符, 用来判断是否“相 等”,可参考§4. &1 可看作派生集的第 1 个原始父集的索引,它取遍该原始父集的所有成 员; &2 可看作派生集的第 2 个原始父集的索引, 它取遍该原始父集的所有成员; &3, &4, „„, 以此类推。注意如果派生集 B 的父集是另外的派生集 A,那么上面所说的原始父集是集 A 向 前回溯到最终的原始集,其顺序保持不变,并且派生集 A 的过滤器对派生集 B 仍然有效。因 此, 派生集的索引个数是最终原始父集的个数, 索引的取值是从原始父集到当前派生集所作 限制的总和。 总的来说,LINGO 可识别的集只有两种类型:原始集和派生集。 在一个模型中,原始集是基本的对象,不能再被拆分成更小的组分。原始集可以由显式 罗列和隐式罗列两种方式来定义。 当用显式罗列方式时, 需在集成员列表中逐个输入每个成 员。 当用隐式罗列方式时, 只需在集成员列表中输入首成员和末成员, 而中间的成员由 LINGO 产生。 另一方面,派生集是由其它的集来创建。这些集被称为该派生集的父集(原始集或其它 的派生集) 。一个派生集既可以是稀疏的,也可以是稠密的。稠密集包含了父集成员的所有 组合(有时也称为父集的笛卡尔乘积) 。稀疏集仅包含了父集的笛卡尔乘积的一个子集,可 通过显式罗列和成员资格过滤器这两种方式来定义。 显式罗列方法就是逐个罗列稀疏集的成 员。 成员资格过滤器方法通过使用稀疏集成员必须满足的逻辑条件从稠密集成员中过滤出稀 疏集的成员。不同集类型的关系见下图。
相关文档
最新文档