2019高三数学12月月考试题 文
北京第二十五中学高三数学文月考试题含解析
北京第二十五中学高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的图象大致是()参考答案:D2. 函数在区间()内的图象是 ( )参考答案:D3. 等差数列的前n项和为,已知.则等于()A.100 B.50 C. 0 D.-50参考答案:C设等差数列的公差为,又,所以,解得,所以,故选C.4. 某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。
公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法参考答案:B;①因为抽取销售点与地区有关,因此要采用分层抽样法;②从20个特大型销售点中抽取7个调查,总体和样本都比较少,适合采用简单随机抽样法。
5. 如图所示,圆形纸片的圆心为O,半径为5cm, 该纸片上的正方形ABCD的中心为O.E,F,G,H为圆O上的点, ,,,分别是以AB, BC, CD, DA为底边的等腰三角形.沿虚线剪开后, 分别以AB, BC, CD, DA为折痕折起,,,,使得E,F,G,H重合,得到四棱锥. 当正方形ABCD的边长变化时,所得四棱锥体积(单位:cm3)的最大值为( )A. B. C. D.参考答案:D6. 已知集合,,则()A、B、C、D、参考答案:B7. 用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )参考答案:B 略8. 在平面直角坐标系xOy 中,已知点A(l ,2),若P 是拋物线 y 2=2x 上一动点,则P 到y 轴的距离与P 到点A 的距离之和的 最小值为(A) (B).(C)_(D)参考答案: C略9. 已知函数,若关于的方程有两个不同的实根,则实数的取值范围是( ) A.B.C.D.参考答案:B10. 定义在R 上的函数满足:成立,且上单调递增,设,则a 、b 、c 的大小关系是( )A .B .C .D .参考答案:A二、 填空题:本大题共7小题,每小题4分,共28分11. 已知f (x )=,各项都为正数的数列{a n }满足a 1=1,a n+2=f (a n ),若a 2010=a 2012,则a 1800+a 15的值是. .参考答案:【考点】等比数列的通项公式.【分析】题中给出了数列隔项递推公式,给出两个条件,一个用来解决偶数项,一个用来解决奇数项,即可得出. 【解答】解:∵f(x )=,各项均为正数的数列{a n }满足a 1=1,a n+2=f (a n ),∴a 1=1,a 3=,a 5=,a 7=,…,a 15=.∵a 2010=a 2012,∴a 2010=,∴a 2010=(负值舍去),由a 2010=,得a 2008=,…,a 1800=.∴a 1800+a 15=. 故答案为:.【点评】本题考查了数列递推关系、数列的周期性、方程的解法,考查了推理能力与计算能力,属于中档题.12. 已知0<θ<,由不等式tan θ+≥2,tan θ+=++≥3,tan θ+=+++≥4,…,启发我们得到推广结论:tan θ+≥n+1,则a= _________ .参考答案:n n略13. 扇形的半径为,圆心角∠AOB=120°,点是弧的中点,,则的值为▲ .参考答案:答案:14. 已知函数,若函数无零点,则实数的取值范围是.参考答案:<15. 某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为,则该学生在面试时得分的期望值为分.参考答案:1516. 已知函数,若,则的值为.参考答案:4依题意函数f(x)的自变量满足,即,此时恒成立∴∴∴故答案为4.17. 已知抛物线的弦AB的中点的横坐标为2,则的最大值为 .参考答案:略三、解答题:本大题共5小题,共72分。
湖南省株洲市第二中学2022-2023学年高三上学期12月月考数学试题(B)含答案
湖南株洲第二中学2022-2023学年上学期教学质量检测高三数学试题(B )(答案在最后)一、选择题;本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},则 ()=C B A A .{1,2,6,5} B .{3,7,8} C .{1,3,7,8}D .{1,3,6,7,8}2.与圆224240x y x y +-++=关于直线30x y -+=成轴对称的圆的方程是 A .22810400x y x y +-++= B .22810200x y x y +-++= C .22810400x y x y ++-+=D .22810200x y x y ++-+=3.已知c 是椭圆()2222:10x y C a b a b+=>>的半焦距,则b c a +的取值范围是( )A .()1,+∞B .)+∞C .(D .(4.已知实数a ,b ,0a >,0b >,则“2a b +<”是( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件5.已知函数()()()2|| 1.00125()e ,log 3,log 8,2x f x x a f b f c f ===-=-,则a ,b ,c 的大小关系为( ) A .a c b >>B .a b c >>C .c b a >>D .c a b >>6.已知A 、B 、C 是半径为3的球O 的球面上的三个点,且120ACB ∠=,AB =2AC BC +=,则三棱锥O ABC -的体积为( )A B C D7.过点22M p ,作抛物线2)20(x py p =的两条切线,切点分别为A ,B ,若线段AB的中点的纵坐标为6,则p 的值是( ) A .1B .2C .1或2D .-1或2 8.已知奇函数()f x 在R 上是减函数.若()2log 4.6a f =,22log 9b f ⎛⎫=- ⎪⎝⎭,()0.92c f =--,则a 、b 、c 的大小关系为( ) A .a b c >> B .c b a >> C .b a c >>D .c a b >>二、选择题;本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列说法正确的是( )A .“1a >”是“21a >”的充分不必要条件B .“423a <<”是“()()22123a a ---<-”的充要条件 C .命题“x R ∀∈,210x +<”的否定是“x R ∃∈,使得210x +≥”D .已知函数()y f x =的定义域为R ,则“()00=f ”是“函数()y f x =为奇函数”的必要不充分条件 10.对于函数()sin cos sin cos 2x x x xf x ++-=,下列结论正确的是( )A .()f x 是以2π为周期的函数B .()f x 的单调递减区间为()52,2Z 24k k k ππππ⎡⎤++∈⎢⎥⎣⎦C .()f x 的最小值为-1D .()f x ≥的解集是()32,2Z 44k k k ππππ⎡⎤-++∈⎢⎥⎣⎦ 11.在数列{}n a 中,已知1210,,,a a a ⋯是首项为1,公差为1的等差数列,10101101(),,,n n n a a a ++⋯是公差为n d 的等差数列,其中N*n ∈,则下列说法正确的是( )A .当1d =时,2020a =B .若3070a =,则2d =C .若1220320a a a +++=,则3d =D .当01d <<时,()101101n a d<-+ 12.已知正方体ABCD −A 1B 1C 1D 1的棱长为2,M 为棱CC 1上的动点,AM ⊥平面α,下面说法正确的是( )A.若N 为DD 1中点,当AM +MN 最小时,CM=2B .当点M 与点C 1重合时,若平面α截正方体所得截面图形的面积越大,则其周长就越大C .若点M 为CC 1的中点,平面α过点B ,则平面α截正方体所得截面图形的面积为92D .直线AB 与平面α所成角的余弦值的取值范围为⎣⎦三、填空题;本题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和为n S ,且()2n n a S n ++=∈N ,则{}n a 的通项公式为n a =______.14.下列四个命题中:⊥已知()()()sin cos 21,sin cos 2πααπαπα-+-=++则tan 1α=-;⊥()00tan 30tan 30-=-=⊥若sin α=则1cos 2;2α=-⊥在锐角三角形ABC 中,已知73sin ,cos ,255A B ==则119sin .125C =其中真命题的编号有_______. 15.已知定义在[2,2]-上的函数()g x 为奇函数,且在区间[0,2]上单调递增,则满足(1)()g m g m -<的m 的取值范围为______16.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________.四、解答题;本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.已知{}n a 是递增的等差数列,12,a a 是方程2430x x -+=的两根. (1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .18.已知函数()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-. (1)求函数()f x 的解析式;并写出函数的单调区间;(2)函数()f x 在区间[3,]a -上的最小值为()g a ,求()g a 的值域.19.在平面直角坐标系xOy 中,已知双曲线221:21C x y -=.(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P ,Q 两点,若l 与圆221x y +=相切,求证:OP OQ ⊥; (3)设椭圆222:41C x y +=,若M ,N 分别是1C ,2C 上的动点,且OM ON ⊥,求证:O 到直线MN 的距离是定值.20.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,已知cos sin b a C A =,点M 是BC 的中点. (⊥)求A 的值;(⊥)若a =AM 的最大值.21.已知椭圆C :()222210x y a b a b +=>>1F ,2F是椭圆的左、右焦点,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)过点2F 的直线l 与椭圆C 交于A ,B 两点,求OAB (O 为坐标原点)的面积的最大值.22.已知函数()2ln bf x ax x x =-+.(1)若()f x 在1x =,12x =处取得极值. ⊥求a 、b 的值;⊥若存在01[,2]4x ∈,使得不等式0()0f x c -≤成立,求c 的最小值;(2)当b a =时,若()f x 在(0,)+∞上是单调函数,求a 的取值范围.参考答案1.C2.C3.D4.C5.D 6.B因为AB =120ACB ∠=,所以,ABC 的外接圆半径为12sin120==r ,所以,三棱锥O ABC -的高为h = 在ABC 中,由余弦定理可得()22222232cos120AB AC BC AC BC AC BC AC BC AC BC AC BC ==+-⋅=++⋅=+-⋅,所以,()231AC BC AC BC ⋅=+-=,所以,13sin12024ABC S AC BC =⋅=△,因为1133O ABC ABC V S h -=⋅=△ 故选:B. 7.C由题意得22x y p=,x y p '=,设切点分别为11(,)A x y ,22(,)B x y ,所以切线方程为别为111()x y y x x p-=-,222()x y y x x p -=-,化简可得11x x y y p =-,22x x y y p =-由于两条切线都过M 点,所以1122x p y p -=-,2222xp y p-=-,所以点11(,)A x y ,22(,)B x y 都在直线220x y p p -+=上, 所以过A ,B 两点的直线方程为220x y p p -+=,联立22+2=0=2x y p p x py-⎧⎪⎨⎪⎩,消去x 得2234840py p y y p --+=,方程2234840py p y y p --+=的判别式2232484464640p p p p由已知2124812p y y p++==,解得1p =或=2p , 故选:C. 8.B解:因为奇函数()f x 在R 上是减函数.若()2log 4.6a f =,222229log log log 992b f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()0.90.922c f f =--=,⊥0.9229log 4.6log 222>>>, ⊥()()0.9229log 4.6log 22f f f ⎛⎫<< ⎪⎝⎭,即c b a >>. 故选:B. 9.ACD解:对于A :21a >,解得1a >或1a <-,所以“1a >”是“21a >”的充分不必要条件,故A 正确;对于B :()()22123a a ---<-,则12310230a a a a ⎧->-⎪-≠⎨⎪-≠⎩解得423a <<且32a ≠,故B 错误;对于C :全称量词命题的否定为存在量词命题,故命题“x R ∀∈,210x +<”的否定是“x R ∃∈,使得210x +≥”正确;对于D :因为函数()y f x =的定义域为R ,若函数()y f x =为奇函数,则()00f =,若()00f =得不到()y f x =为奇函数,若()2f x x =,故“()00f =”是“函数()y f x =为奇函数”的必要不充分条件,故D 正确; 故选:ACD 10.AD依题意,()sin(2)cos(2)sin(2)cos(2)2()2x x x x f x f x πππππ+++++-++==,()f x 是以2π为周期的函数,A 正确;5sin ,2244()(Z)3cos ,2244x k x k f x k x k x k ππππππππ⎧+≤≤+⎪⎪=∈⎨⎪-<<+⎪⎩,函数sin y x =在5[2,2]24k k ππππ++()k ∈Z 上单调递减,函数cos y x =在[2,2]4k k πππ+()k ∈Z 上单调递减,B 不正确;函数cos y x =在3[2,2]4k k πππ-()k ∈Z 上单调递增,因此,324x k ππ=-()k ∈Z 时,min 2()f x =C 不正确; 由()2f x ≥得522(Z)442sin k x k k x ππππ⎧+≤≤+∈⎪⎪⎨⎪≥⎪⎩或322(Z)442cos k x k k x ππππ⎧-<<+∈⎪⎪⎨⎪≥⎪⎩,解522(Z)442sin k x k k x ππππ⎧+≤≤+∈⎪⎪⎨⎪≥⎪⎩得322(Z)44k x k k ππππ+≤≤+∈,解322(Z)44cos k x k k x ππππ⎧-<<+∈⎪⎪⎨⎪≥⎪⎩得22(Z)44k x k k ππππ-≤<+∈,综上得:322(Z)44k x k k ππππ-≤≤+∈,()f x ≥的解集是3[2,2](Z)44k k k ππππ-+∈,D 正确. 故选:AD 11.ACD对于A ,当1d =时,1n d =,可知数列{}n a 是首项为1,公差为1的等差数列,所以201(201)120a =+-⨯=,故A 正确;对于B ,由已知1010a =,101120,,,a a a ⋯是公差为d 的等差数列,则201010a d =+,202130,,,a a a ⋯是公差为2d 的等差数列,则23010101070a d d =++=,即260d d +-=,解得:2d =或3d =-,故B 错误;对于C ,1220110101010101032022d da a a ++++=⨯+⨯+=++,解得:3d =,故C 正确; 对于D ,210(1)110101010101011n nn d a d d d d d+-=++++=<--,故D 正确;故选:ACD 12.AC对于A ,由展开图如下,当AM MN +最小时,2CM AC DN AD ===得2CM =A 正确对于B ,如图,取各边中点连接成六边形EFGHIJ , 由立体几何知1CC ⊥平面1A BD ,1CC ⊥平面EFGHIJ , 截面1A BD周长为3=8= 截面EFGHIJ6=62=对于C ,取1111,A D A B 中点分别为EF ,以D 为原点,1,,DA DC DD 所在直线分别为,,x y z 轴, 建立空间直角坐标系如图所示,(2,2,1)AM =--,(2,2,0)DB =,(1,0,2)DE =,由数量积可知,AM BD AM DE ⊥⊥,而BD DE D ⋂=, 故AM ⊥平面BDEF ,截面BDEF 为等腰梯形,2,2,5EF DB ED FB ====面积为19932222⨯=,故C 正确对于D ,设(0,2,)M t(0,2,0)AB =,平面α的一个法向量为(2,2,)AM t =-故直线AB 与平面α所成角的正弦值2232sin []2448t t θ==⨯+++ 则26cos [θ∈,故D 错误13.112n -⎛⎫ ⎪⎝⎭当1n =时,112a S +=,得11a =,当2n ≥时,由()2n n a S n ++=∈N ,得112n n a S --+=, 所以110n n n n a S a S --+--=, 所以120n n a a --=,所以112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列,所以112n n a -⎛⎫= ⎪⎝⎭,故答案为:112n -⎛⎫⎪⎝⎭14.⊥⊥对于⊥:因为()()()sin -cos 21,sin cos 2πααπαπα+-=++所以sin cos 1,sin cos 2αααα+=-所以sin 11cos ,sin 21cos αααα+=-即tan 11,tan 12αα+=-解得tan 3α=-,故⊥不正确;对于⊥:因为()()()000sin 30sin 30tan 30tan 30cos30cos 30---===-=-故⊥正确; 对于⊥:因为sin α=所以221cos 212sin 122αα⎛=-=-⨯=- ⎝⎭,故⊥正确; 对于⊥:因为在锐角三角形ABC 中, 73sin ,cos ,255A B ==所以00,0222A B C πππ<<<<<<,,所以244cos ,sin ,255A B ===所以 ()()sin sin +sin +C A B A B π⎡⎤=-=⎣⎦ 73244117sin cos +cos sin +255255125A B A B ==⨯⨯=,故⊥不正确, 故答案为:⊥⊥. 15.1(,2]2⊥()g x 为奇函数,且在[0,2]上为增函数, ⊥()g x 在[2,2]-上为增函数.⊥(1)()g m g m -<,⊥1-212-22m m m m -<⎧⎪≤-≤⎨⎪≤≤⎩,解得122m <≤.故答案为1(,2]2.16815解:设顶角为θ,由余弦定理可得:2236121221212cos θ=+-⨯⨯⨯,解得:7cos 8θ=, 15sin θ∴ 再由正弦定理可得62sin R θ=, 215R ∴=, 815R ∴=81517.(1)221,n n a n S n =-=;(2)21n nT n =+ (1)⊥{}n a 是递增的等差数列, ⊥12a a <,又12,a a 是方程2430x x -+=的两根,⊥121,3a a ==, ⊥21312d a a =-=-=, ⊥1(1)221n a n n =+-⨯=-. (2)111111()(21)(21)22121n n a a n n n n +==--+-+, ⊥11111111(1...)(1)2335212122121n nS n n n n =-+-++-=-=-+++.18.(1)()224,04,0x x x f x x x x ⎧->=⎨--≤⎩,单调递增区间为(],2-∞-,[)2,∞+;单调递减区间为[]22-,;(2)[]4,3-(1)当0x <时,0x -> ()()()2244f x x x x x ∴-=---=+()f x 为奇函数 ()()24f x f x x x ∴=--=--()f x 为R 上的奇函数 ()00f ∴=,满足()24f x x x =--()224,04,0x x x f x x x x ⎧->∴=⎨--≤⎩f x 的单调递增区间为(],2-∞-,[)2,∞+;单调递减区间为[]22-,(2)当31a -<<-时,()()min 39123f x f =-=-+=,即()3g a =当10a -≤≤时,()()2min 4f x f a a a ==--,即()24g a a a =-- ()[]0,3g a ∴∈ 当02a <<时,()()2min 4f x f a a a ==-,即()24g a a a =- ()()4,0g a ∴∈-当2a ≥时,()()min 2484f x f ==-=-,即()4g a =- 综上所述:()g a 的值域为[]4,3- 19.(1)根据题意可得1C的左顶点为(,设直线方程为y x =,与另一条渐近线y =联立求得交点坐标为1()2,所以对应三角形的面积为112228S =⨯=; (2)设直线PQ 的方程是y x b =+,因直线与已知圆相切,1=,即b =由2221y x b x y =+⎧⎨-=⎩得()22210x bx b --+=, 设()11,P x y ,()22,Q x y ,则122x x b +=,212(1)x x b ⋅=-+,则()()2222212121212221220OP OQ x x y y x x b x x b b b b b ⋅=+=+++=--++=-=,故OP OQ ⊥;(3)当直线ON 垂直于x 轴时,1ON =,OM =MN =则O 到直线MN的距离为1d ==当直线ON 不垂直于x 轴时,设直线ON 的方程为y kx =(显然22k >), 则直线OM 的方程为1=-y x k.由y kx =与椭圆方程联立,得2214x k =+,2224k y k =+,所以22214k ON k+=+. 同理222121k OM k +=-. 设O 到直线MN 的距离为d , 则由221122OM ON OM d ON ⋅=+,得2221113d OMON=+=.综上,O 到直线MN 3 20.(⊥)3A π=; (⊥)32. (⊥)由已知及正弦定理得3sin sin cos sin B A C C A =. 又()sin sin sin cos cos sin B A C A C A C =+=+, 且sin 0C ≠,⊥tan 3,0A A π=<<,即3A π=.(⊥)方法一:在ABC ∆中,由余弦定理得223b c bc +-=, ⊥222b c bc +≤,当且仅当b c =时取等号,⊥226b c +≤.⊥AM 是BC 边上的中线,⊥在ABM ∆和ACM ∆中, 由余弦定理得,22332cos 4c AM AM AMB =+-∠,⊥22332cos 4b AM AM AMC =+-∠.⊥ 由⊥⊥,得22239244b c AM +=-≤, 当且仅当3b c ==AM 取最大值32.方法二:在ABC ∆中,由余弦定理得223b c bc +-=, ⊥222b c bc +≤,当且仅当b c =时取等号,⊥226b c +≤.⊥AM 是BC 边上的中线,⊥2AB ACAM +=,两边平方得 ()22214AM b c bc =++,⊥22239244b c AM +=-≤,当且仅当b c ==AM 取最大值32.21.(1)2214x y +=;(2)1. (1)椭圆C 的半焦距为c,离心率c e a ==,因过1F 且垂直于x 轴的直线被椭圆C 截得的弦长为1,将x c =-代入椭圆C 方程得:2b y a =±,即221b a =,则有222221c e a b a a b c ⎧==⎪⎪⎪⎨=⎪⎪=+⎪⎩,解得21a b =⎧⎨=⎩, 所以椭圆C 的方程为2214x y +=.(2)由(1)知,2F ,依题意,直线l 的斜率不为0,则设直线l的方程为x my =+()11,A x y ,()22,B x y ,由2244x y x my ⎧+=⎪⎨=+⎪⎩x 并整理得:()22410m y ++-=,12y y +=,12214y y m =-+, OAB的面积2122121122S OF y OF y y =+=-,12y y -==设)1t t =≥,221m t =-,1224433t y y t t t-===++,3t t+≥,当且仅当t =,22m =时取得“=”,于是得1243y y t t-=≤+12312S y =-≤, 所以OAB 面积的最大值为1.22.(1)11,33--,7126n -+;(2)[2(0),,-∞⋃+∞ 试题分析:(1)⊥先求()f x ' ,根据函数在11,2x x ==处取得极值,则()110,()02f f ''==,代入可求得,a b 的值;⊥转化为()min c f x ≥,从而求函数()f x 在区间1[,2]4上的最小值,从而求得c 的值;(2)当a b =时,()2ln af x ax x x=-+,⊥当0a =时,符合题意; ⊥当0a ≠时,分0,0a a ><讨论()f x 在(0,)+∞上正负,以确定函数的单调性的条件,进而求出a 的取值范围. 试题解析:(1)⊥⊥()21b f x ax nx x =-+,⊥()21'2b f x a x x=++,⊥()f x 在1x =,12x =处取得极值,⊥()10f '=,102f ⎛⎫= ⎪⎭'⎝, 即2102420a b a b ++=⎧⎨++=⎩解得1313a b ⎧=-⎪⎪⎨⎪=-⎪⎩,⊥所求a 、b 的值分别为11,33--.⊥在1,24⎡⎤⎢⎥⎣⎦存在0x ,使得不等式()00f x c -≤成立,只需[]min c f x ≥(),由()()()2222211211231'3333x x x x f x x x x x x ---+=--+=-=-,⊥当1142x ⎡⎤∈⎢⎥⎣⎦,时,()0f x '<,故()f x 在1142⎡⎤⎢⎥⎣⎦,是单调递减;当112x ⎡⎤∈⎢⎥⎣⎦,时,()0f x '>,故()f x 在1,12⎡⎤⎢⎥⎣⎦是单调递增;当[]12x ∈,时,()0f x '<,故()f x 在[]12,是单调递减;⊥12f ⎛⎫⎪⎝⎭是()f x 在1,24⎡⎤⎢⎥⎣⎦上的极小值,()1111711221223236f n n f n ⎛⎫=+=-=-+ ⎪⎝⎭,且()321321411422f f n ne n ⎛⎫-=-=- ⎪⎝⎭,又3160e ->,⊥321140ne n >-,⊥[]2min f x f =()(),⊥()7126min c f x m ⎡⎤≥=-+⎣⎦,⊥c 的取值范围为7126n ,⎡⎫-++∞⎪⎢⎣⎭,所以c 的最小值为7126n -+.(2)当a b =时,222ax x a f x x ()++=', ⊥当0a =时,()1f x nx =,则()f x 在()0,+∞上单调递增;⊥当0a >时,⊥0x >,⊥220ax x a ++>,⊥()0f x '>,则()f x 在()0,+∞上单调递增;⊥当0a <时,设()22g x ax x a =++,只需0≤,从而得a ≤()f x 在()0,+∞上单调递减;综上得,a 的取值范围是[0⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭,, 点睛:本题主要考查了导数在函数中的综合应用问题,其中(1)⊥考查了函数取得极值的性质,若函数在0x 处取得极值,则0()0f x =,但0()0f x '=,0x 不一定是函数的极值点,即某点的导数为0是该点为极值的必要不充分条件;⊥注意是“存在14x ∈[,2],使得0()c f x ≥成立,等价于()min c f x ≥”(2)结合极值考查了函数的额单调性,需要分类讨论思想在解题中的应用,着重考查了分析问题和解答问题的能力.。
北京市2023-2024学年高一上学期12月月考试题 数学含解析
2023-2024学年度第一学期北京高一数学12月月考试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分1.已知集合{}2,A x x k k ==∈Z ,{}33B x x =-<<,那么A B = ()A.{}1,1- B.{}2,0-C.{}2,0,2- D.{}2,1,0,1--2.方程组22205x y x y +=⎧⎨+=⎩的解集是()A.()(){}1,2,1,2--B.()(){}1,2,1,2--C.()(){}2,1,2,1-- D.()(){}2,1,2,1--3.命题“x ∃∈R ,2230x x --<”的否定形式是()A.x ∃∈R ,2230x x -->B.x ∃∈R ,2230x x --≥C.x ∀∈R ,2230x x --< D.x ∀∈R ,2230x x --≥4.下列函数中,既是奇函数又在定义域上是增函数的是()A.ln y x =B.2x y =C.3y x = D.1y x=-5.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.140D.1206.设lg2a =,12log 3b =,0.22c =,则()A.a b c <<B.a c b<< C.b a c<< D.<<b c a7.若122log log 2a b +=,则有A.2a b= B.2b a= C.4a b= D.4b a=8.若()f x 是偶函数,且当[)0,x ∈+∞时,()1f x x =-,则()10f x -<的解集是()A.{}10x x -<<B.{0x x <或}12x <<C.{}02x x << D.{}12x x <<9.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)A.6年B.7年C.8年D.9年二、填空题(本大题共5小题,每小题5分,共25分.)11.函数()1lg(1)2f x x x =-+-的定义域为___________.12.已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=______;12x x -=______.13.设函数()f x 同时满足以下条件:①定义域为R ;②()01f =;③1x ∀,2R x ∈,当12x x ≠时,()()21210f x f x x x -<-;试写出一个函数解析式()f x =______.14.设函数()3log ,x af x x x a ≤≤=>⎪⎩,其中0a >.①若5a =,则()81f f ⎡⎤⎣⎦______;②若函数()3y f x =-有两个零点,则a 的取值范围是______.15.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____.三、解答题(本大题共6小题,共85分.)16.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.17.已知函数()211f x x =-.(1)证明:()f x 为偶函数;(2)用定义证明:()f x 是()1,+∞上的减函数;(3)直接写出()f x 在()1,+∞的值域.18.甲和乙分别记录了从初中一年级(2017年)到高中三年级(2022年)每年的视力值,如下表所示2017年2018年2019年2020年2021年2022年甲4.944.904.954.824.80 4.79乙 4.86 4.904.864.844.744.72(1)计算乙从2017年到2022年这6年的视力平均值;(2)从2017年到2022年这6年中随机选取2年,求这两年甲的视力值都比乙高0.05以上的概率;(3)甲和乙的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)19.某厂将“冰墩墩”的运动造型徽章纪念品定价为50元一个,该厂租用生产这种纪念品的厂房,租金为每年20万元,该纪念品年产量为x 万个()020x <≤,每年需投入的其它成本为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩(单位:万元),且该纪念品每年都能买光.(1)求年利润()f x (单位:万元)关于x 的函数关系式;(2)当年产量x 为何值时,该厂的年利润最大?求出此时的年利润.20.已知函数()()12log 21xf x mx =+-,m ∈R .(1)求()0f ;(2)若函数()f x 是偶函数,求m 的值;(3)当1m =-时,当函数()y f x =的图象在直线=2y -的上方时,求x 的取值范围.21.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.2023-2024学年度第一学期北京高一数学12月月考试卷一、选择题(本大题共10小题,每小题4分,共40分1.已知集合{}2,A x x k k ==∈Z ,{}33B x x =-<<,那么A B = ()A.{}1,1- B.{}2,0-C.{}2,0,2- D.{}2,1,0,1--【答案】C 【解析】【分析】解不等式()323k k Z -<<∈,求得整数k 的取值,由此可求得A B ⋂.【详解】解不等式323k -<<,得3322k -<<,k Z ∈ ,所以,整数k 的可能取值有1-、0、1,因此,{}2,0,2A B =- .故选:C.【点睛】本题考查交集的计算,考查计算能力,属于基础题.2.方程组22205x y x y +=⎧⎨+=⎩的解集是()A.()(){}1,2,1,2--B.()(){}1,2,1,2--C.()(){}2,1,2,1-- D.()(){}2,1,2,1--【答案】A 【解析】【分析】利用代入消元法,求解方程组的解集即可.【详解】因为22205x y x y +=⎧⎨+=⎩,所以2y x =-代入225x y +=,即()2225x x +-=,解得1x =±.当=1x -时,()212y =-⨯-=;当1x =时,212y =-⨯=-.故22205x y x y +=⎧⎨+=⎩的解集是()(){}1,2,1,2--.故选:A.3.命题“x ∃∈R ,2230x x --<”的否定形式是()A.x ∃∈R ,2230x x -->B.x ∃∈R ,2230x x --≥C.x ∀∈R ,2230x x --<D.x ∀∈R ,2230x x --≥【答案】D 【解析】【分析】直接根据特称命题的否定是全称命题来得答案.【详解】根据特称命题的否定是全称命题可得命题“x ∃∈R ,2230x x --<”的否定形式是x ∀∈R ,2230x x --≥.故选:D.4.下列函数中,既是奇函数又在定义域上是增函数的是()A.ln y x =B.2x y =C.3y x =D.1y x=-【答案】C 【解析】【分析】由函数的奇偶性和单调性的定义对选项一一判断即可得出答案.【详解】对于A ,ln y x =的定义域为{}0x x >,不关于原点对称,所以ln y x =是非奇非偶函数,故A 不正确;对于B ,2x y =的定义域为R ,关于原点对称,而()()122xx f x f x --==≠-,所以2x y =不是奇函数,故B 不正确;对于C ,3y x =的定义域为R ,关于原点对称,而()()()33f x x x f x -=-=-=-,所以3y x =是奇函数且在R 上是增函数,故C 正确;对于D ,1y x=-定义域为{}0x x ≠,关于原点对称,()()1f x f x x -==-,所以1y x=-是奇函数,1y x=-在(),0∞-和()0,∞+上单调递增,不能说成在定义域上单调递增,因为不满足增函数的定义,故D 不正确.故选:C .5.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.140D.120【答案】C 【解析】【详解】试题分析:由题意得,自习时间不少于22.5小时的频率为(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的人数为0.7200140⨯=,故选C.考点:频率分布直方图及其应用.6.设lg2a =,12log 3b =,0.22c =,则()A.a b c <<B.a c b<< C.b a c<< D.<<b c a【答案】C 【解析】【分析】借助中间量0,1可确定大小.【详解】对于lg2a =,由lg2lg1=0,lg2lg10=1><得01a <<,对于12log 3b =,由1122log 3log 10<=得0b <,对于0.22c =,由0.20221>=得1c >,所以b a c <<.故选:C.7.若122log log 2a b +=,则有A.2a b = B.2b a= C.4a b= D.4b a=【答案】C 【解析】【分析】由对数的运算可得212log log a b +=2log 2ab=,再求解即可.【详解】解:因为212log log a b +=222log log log 2a b ab-==,所以224a b==,即4a b =,故选:C.【点睛】本题考查了对数的运算,属基础题.8.若()f x 是偶函数,且当[)0,x ∈+∞时,()1f x x =-,则()10f x -<的解集是()A.{}10x x -<<B.{0x x <或}12x <<C.{}02x x << D.{}12x x <<【答案】C 【解析】【分析】根据()f x 是偶函数,先得到()0f x <的解集,再由()10f x -<,将1x -代入求解.【详解】因为[)0,x ∈+∞时,()1f x x =-,所以由()0f x <,解得01x ≤<,又因为()f x 是偶函数,所以()0f x <的解集是11x -<<,所以()10f x -<,得111x -<-<,解得02x <<所以()10f x -<的解集是{}02x x <<,故选:C9.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由()f x 是R 上的增函数得()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之若对任意0a >,()()f x a f x +<,满足()()y f x a f x =+-无零点,但不满足()f x 是R 上的增函数,不满足必要性,即可判断.【详解】若()f x 是R 上的增函数,则对任意0a >,显然x a x +>,故()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之,若对任意0a >,()()f x a f x +<,即()()0f x a f x +<-,满足()()y f x a f x =+-无零点,但()f x 是R 上的减函数,不满足必要性,故“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的充分而不必要条件.故选:A.10.某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)A.6年 B.7年 C.8年 D.9年【答案】B 【解析】【分析】依题求出经过x 年后,A 产品和B 产品的年产量分别为310(2x,640()5x,根据题意列出不等式,求出x 的范围即可得到答案.【详解】依题经过x 年后,A 产品的年产量为1310(110()22xx+=)B 产品的年产量为1640(140()55x x +=,依题意若A 产品的年产量会超过B 产品的年产量,则3610()40(25xx>化简得154x x +>,即lg 5(1)lg 4x x >+,所以2lg 213lg 2x >-,又20.3010lg =,则2lg 26.206213lg 2≈-所以至少经过7年A 产品的年产量会超过B 产品的年产量.故选:B【点睛】本题主要考查指数函数模型,解指数型不等式,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分.)11.函数()1lg(1)2f x x x =-+-的定义域为___________.【答案】()()1,22,⋃+∞【解析】【分析】根据函数的解析式,列出函数有意义时满足的不等式,求得答案.【详解】函数()()1lg 12f x x x =-+-需满足1020x x ->⎧⎨-≠⎩,解得1x >且2x ≠,故函数()()1lg 12f x x x =-+-的定义域为()()1,22,⋃+∞,故答案为:()()1,22,⋃+∞12.已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=______;12x x -=______.【答案】①.14②.【解析】【分析】利用韦达定理可得2212x x +、12x x -的值.【详解】因为方程2410x x -+=的两根为1x 和2x ,由韦达定理可得124x x +=,121=x x ,所以,()2221222121242114x x x x x x =+-=-=+⨯,12x x -===.故答案为:14;.13.设函数()f x 同时满足以下条件:①定义域为R ;②()01f =;③1x ∀,2R x ∈,当12x x ≠时,()()21210f x f x x x -<-;试写出一个函数解析式()f x =______.【答案】1x -+(答案不唯一)【解析】【分析】由题意首先由③得到函数的单调性,再结合函数定义域,特殊点的函数值,容易联想到一次函数,由此即可得解.【详解】由③,不妨设12x x ∀<,即210x x ->,都有()()21210f x f x x x -<-,即()()210f x f x -<,即()()21f x f x <,所以由题意可知()f x 是定义域为R 的减函数且满足()01f =,不妨设一次函数y x b =-+满足题意,则10b =-+,即1b =.故答案为:1x -+.14.设函数()3log ,x a f x x x a ≤≤=>⎪⎩,其中0a >.①若5a =,则()81f f ⎡⎤⎣⎦______;②若函数()3y f x =-有两个零点,则a 的取值范围是______.【答案】①.2②.[)9,27【解析】【分析】①代值计算即可;②分别画出()y f x =与3y =的图象,函数有两个零点,结合图象可得答案.【详解】①当5a =时,()35log ,5x f x x x ≤≤=>⎪⎩因为815>,所以()43381log 81log 345f ===<,所以()()8142f f f ⎡⎤===⎣⎦.②因为函数()3y f x =-有两个零点,所以()3f x =,即()y f x =与3y =的图象有两个交点.3=得9x =,3log 3x =得27x =.结合图象可得927a ≤<,即[)9,27a ∈.所以a 的取值范围是[)9,27.故答案为:①2;②[)9,27.15.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____.【答案】①③【解析】【分析】A 即为函数的定义域,B 即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【详解】对①,A =(﹣∞,0)∪(0,+∞),B =(﹣∞,0)∪(0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B =(0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ;对③,A =(0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;故答案为:①③.【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.三、解答题(本大题共6小题,共85分.)16.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.【答案】(Ⅰ)男生3人,女生2人;(Ⅱ)35【解析】【分析】(Ⅰ)利用分层抽样按比例计算出这5人中男生人数和女生人数.(Ⅱ)记这5人中的3名男生为B 1,B 2,B 3,2名女生为G 1,G 2,利用列举法能求出抽取的2人中恰有1名女生的概率.【详解】(Ⅰ)这5人中男生人数为19253320⨯=,女生人数为12852320⨯=.(Ⅱ)记这5人中的3名男生为B 1,B 2,B 3,2名女生为G 1,G 2,则样本空间为:Ω={(B 1,B 2),(B 1,B 3),(B 1,G 1),(B 1,G 2),(B 2,B 3),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2),(G 1,G 2)},样本空间中,共包含10个样本点.设事件A 为“抽取的2人中恰有1名女生”,则A ={(B 1,G 1),(B 1,G 2),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2)},事件A 共包含6个样本点.从而()63105P A ==所以抽取的2人中恰有1名女生的概率为35.【点睛】本题考查古典概型概率,考查分层抽样、列举法等基础知识,考查运算求解能力,是基础题.17.已知函数()211f x x =-.(1)证明:()f x 为偶函数;(2)用定义证明:()f x 是()1,+∞上的减函数;(3)直接写出()f x 在()1,+∞的值域.【答案】(1)证明见解析(2)证明见解析(3)()0,∞+【解析】【分析】(1)根据奇偶性的定义证明即可;(2)利用单调性定义证明即可;(3)根据单调性直接求得即可.【小问1详解】由函数()211f x x =-可知210x -¹,即1x ≠±,所以函数()f x 的定义域为{}1D x x =≠±,所以x D ∀∈,()()()221111f x f x x x -===---,故()f x 为偶函数.【小问2详解】假设()12,1,x x ∀∈+∞且12x x <,则()()()()()()()()()()()222221212121122222222212121212111111111111x x x x x x x x f x f x x x x x x x x x ----+--=-===--------,由()12,1,x x ∀∈+∞,12x x <知()()222121120,0,110x x x x x x ->+>++>,从而()()120f x f x ->,即()()12f x f x >.所以()f x 是()1,+∞上的减函数.【小问3详解】因为()f x 在()1,+∞上减函数,所以()f x 在()1,+∞的值域为()0,∞+.18.甲和乙分别记录了从初中一年级(2017年)到高中三年级(2022年)每年的视力值,如下表所示2017年2018年2019年2020年2021年2022年甲 4.94 4.90 4.95 4.82 4.80 4.79乙4.864.904.864.844.744.72(1)计算乙从2017年到2022年这6年的视力平均值;(2)从2017年到2022年这6年中随机选取2年,求这两年甲的视力值都比乙高0.05以上的概率;(3)甲和乙的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)【答案】(1)4.82(2)25(3)甲的视力平均值从2020开始连续三年的方差最小,乙的视力平均值从2017开始连续三年的方差最小.【解析】【分析】(1)利用平均数公式计算即可;(2)列表分析,利用古典概型概率公式计算即可(3)由表中数据分析波动性即可得结论.【小问1详解】乙从2017年到2022年这6年的视力平均值为:4.86 4.90 4.86 4.84 4.74 4.724.826+++++=.【小问2详解】列表:2017年2018年2019年2020年2021年2022年甲 4.94 4.90 4.95 4.82 4.80 4.79乙 4.864.904.864.844.744.72甲与乙视力值的差0.0800.090.02-0.060.07由表格可知:2017年到2022年这6年中随机选取2年,这两年甲的视力值都比乙高0.05上的年份由有4年,故所求概率为:2426C 62C 155P ===【小问3详解】从表格数据分析可得:甲的视力平均值从2020开始连续三年的方差最小,乙的视力平均值从2017开始连续三年的方差最小.19.某厂将“冰墩墩”的运动造型徽章纪念品定价为50元一个,该厂租用生产这种纪念品的厂房,租金为每年20万元,该纪念品年产量为x 万个()020x <≤,每年需投入的其它成本为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩(单位:万元),且该纪念品每年都能买光.(1)求年利润()f x (单位:万元)关于x 的函数关系式;(2)当年产量x 为何值时,该厂的年利润最大?求出此时的年利润.【答案】(1)()214520,0102256010736,1020x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-++<≤ ⎪⎪⎝⎭⎩(2)当年产量x 为16万个时,该厂的年利润最大,为416万元【解析】【分析】(1)根据利润等于销售总额减去总成本即可得出答案.(2)求出分段函数每一段的最大值,进行比较即可得出答案.【小问1详解】由题意得:()()5020f x x C x =--,()020x <≤.因为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩所以()2150205,01022560502060756,1020x x x x f x x x x x ⎧⎛⎫--+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪--+-<≤ ⎪⎪⎝⎭⎩,即()214520,0102256010736,1020x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-++<≤ ⎪⎪⎝⎭⎩.【小问2详解】当010x <≤时,函数()2145202f x x x =-+-在(]0,10单调递增,此时()()2max 110104510203802f x f ==-⨯+⨯-=.当1020x <≤时,函数()256010736f x x x ⎛⎫=-++ ⎪⎝⎭在()10,16上单调递增,在()16,20上单调递减,此时()()max 256016101673641638016f x f ⎛⎫==-⨯++=> ⎪⎝⎭.综上可得:当年产量x 为16万个时,该厂的年利润最大,为416万元.20.已知函数()()12log 21x f x mx =+-,m ∈R .(1)求()0f ;(2)若函数()f x 是偶函数,求m 的值;(3)当1m =-时,当函数()y f x =的图象在直线=2y -的上方时,求x 的取值范围.【答案】(1)1-(2)12m =-(3)21log 3x >【解析】【分析】(1)直接将0x =代入计算;(2)通过计算()()0f x f x --=恒成立可得m 的值;(3)解不等式()12log 212xx ++>-即可.【小问1详解】由已知得()()12log 2110f =+=-;【小问2详解】函数()f x 是偶函数,()()()()11122221log 21log 21log 212x xxx mxf x f x mx mx --⎡⎤+∴--=+--++⎢+⎣-=⎥⎦()1222210log 2x mx x mx x m =-=--=-+=,又()210x m -+=要恒成立,故210m +=,解得12m =-;【小问3详解】当1m =-时,()()12log 21x f x x =++,当函数()y f x =的图象在直线=2y -的上方时有()12log 212xx ++>-,()2211222112422l 2og 212log 21x xxxx x x --+--⎛⎫⎛⎫⇒==⨯ ⎪⎪⎝⎭⎝+>--=+<⎭21log 31321223xx⇒⨯>⇒>=解得21log 3x >.21.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【答案】(1){}6,10,15B =(2)7(3)不存在,理由见解析【解析】【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)不存在,理由反证法说明.【小问1详解】{}2,3,5A =Q ,{}6,10,15B ∴=【小问2详解】设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数等于7个,所以生成集B 中元素个数的最小值为7.【小问3详解】不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。
2019届高三数学10月月考试题 文 人教 新目标版
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019高三数学10月月考试题 文(满分150分 考试时间120分)一. 选择题:(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={0,1,2},则集合B={x-y |x∈A,y∈A}中元素的个数是 ( ) A.1 B.3 C.5 D.92. 命题∃x 0∈R ,sin x 0<12x 0的否定为( )A .∃x 0∈R ,sin x 0=12x 0B .∀x ∈R ,sin x <12xC .∃x 0∈R ,sin x 0≥12x 0D .∀x ∈R ,sin x ≥12x3. ()81sin log ,-0tan(2)42πππ-∂=∂∈-∂已知且(,),则的值为( )A.–5 B.5 C.±5 D. 24. 一个扇形的面积为2,周长为6则扇形的圆中角的弧度数为( )A.1B.1 或4C.4D. 2或4 5.设f (x )是R 上的任意函数,则下列叙述正确的是( )A .f (x )f (-x )是奇函数 B.()()f x f x -是奇函数C .f (x )-f (-x )是偶函数D .f (x )+f (-x )是偶函数6.已知1sin()43πα-=,则cos()4πα+的值是( )A. 13B. 13- D. 7.307cos 83sin 37cos 7sin -=( )A.-12 B. 12C.- 2D. 28.设函数f (x )为奇函数,且在(-∞,0)上是减函数,若f (-2)=0,则xf (x )<0的解集为 ( ).A .(-1,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)9.为了得到函数y =sin (2x -π3)的图象,只需把函数y =cos 2x 的图象上所有的点( )A .向左平行移动512π个单位长度 B .向右平行移动512π个单位长度 C .向左平行移动56π个单位长度 D .向右平行移动56π个单位长度 10. 函数ln cos ()22y x x ππ=-<<的图象是( )11.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌新的墙壁所用的材料最省时,堆料场的长和宽分别为 ( )A .40米,20米B .30米,15米C .32米,16米D .36米,18米12.若函数f(x)= 2log (2)+x 2xa --有零点,则a 的取值范围为( )A .(-∞,-2]B .(-∞,4]C .[2,+∞)D .[4,+∞)二、填空题(本大题共4小题,每小题5分,共20分.)13. 函数f (x ) =的定义域是________.14.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m ___________ 15.曲线y =x e x+2x -1在点(0,-1)处的切线方程为 ..16. 已知函数f (x )=a x-1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值范围是 .三、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分) 已知角α终边上一点P (-4,3),求 cos ⎝ ⎛⎭⎪⎫π2+αsin(-π-α)cos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α 的值18. (本小题满分12分)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos (π3-α)=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.(1)求sin 2α的值;(2)求tan α-1tan α的值.19.(本小题满分12分).已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数). (1)当a=2时,求函数f (x )的单调递增区间.(2)函数f (x )是否为R 上的单调递减函数,若是,求出a 的取值范围;若不是,请说明理由. 20. (本小题满分12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.若f (x )的极大值为1,求a 的值.21.(本小题满分12分) 已知函数f (x )=(x 2-2x )ln x +ax 2+2. (1)当a =-1时,求f (x )在点(1,f (1))处的切线方程; (2)若a =1,证明:当x ≥1时,g (x )=f (x )-x -2≥0成立 22. (本小题满分12分)已知函数f (x )=1+ln xx.(1)若函数f (x )在区间⎝ ⎛⎭⎪⎫a ,a +12上存在极值,求正实数a 的取值范围;(2)如果函数g (x )=f (x )-k 有两个零点,求实数k 的取值范围.平遥二中高三十月质检文科数学试题答案一.CDAB DBAC BACD 二.13. -+2,233k k k z ππππ⎡⎤+∈⎢⎥⎣⎦14.1 15 . y =3x -1., 16,a ≤115. ()2,2- 16.①②⑤ 三、解答题17、解:原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.18.【解】(1)∵cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝⎛⎭⎪⎫2α+π3=-14,∴sin ⎝ ⎛⎭⎪⎫2α+π3=-12. ∵α∈⎝⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3=12.(2)∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α∈⎝ ⎛⎭⎪⎫2π3,π,又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.19.【解】 (1)∵当a=2时,f (x )=(-x 2+2x )e x,∴f'(x )=(-2x+2)e x +(-x 2+2x )e x =(-x 2+2)e x. 令f'(x )>0,即(-x 2+2)e x>0, ∵e x>0,∴-x 2+2>0,解得X <<故函数f (x )的单调递增区间是(. (2)若函数f (x )在R 上单调递减, 则f'(x )≤0对x ∈R 都成立,即[-x 2+(a-2)x+a ]e x≤0对x ∈R 都成立. ∵e x >0,∴x 2-(a-2)x-a ≥0对x ∈R 都成立.因此应有Δ=(a-2)2+4a ≤0,即a 2+4≤0,这是不可能的. 故函数f (x )不可能在R 上单调递减. 20.【解】(1) (1)f ′(x )=3x 2-3a =3(x 2-a ), 当a <0时,对x ∈R ,有f ′(x )>0,所以当a <0时,f (x )的单调增区间为(-∞,+∞), 当a >0时,由f ′(x )>0,解得x <-a 或x >a , 由f ′(x )<0,解得-a <x <a ,所以当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞),f (x )的单调减区间为(-a ,a ).因为f (x )在x =-1处取得极值,所以f ′(-1)=3×(-1)2-3a =0,所以a =1. 所以f (x )=x 3-3x -1,f ′(x )=3x 2-3. 由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性,可知f (x )在x =-1处取得极大值f (-1)=1, 在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点, 又f (-3)=-19<-3,f (3)=17>1,结合f (x )的单调性,可知m 的取值范围是(-3,1).21. (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),f ′(x )=(2x -2)ln x +(x -2)-2x .所以f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程为3x +y -4=0. (2)22. (1)函数的定义域为(0,+∞),f ′(x )=1-1-ln x x 2=-ln xx2. 令f ′(x )=0,得x =1;当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以,x =1为极大值点,所以a <1<a +12,故12<a <1,即实数a 的取值范围为⎝ ⎛⎭⎪⎫12,1. (2(0,1))。
广东省中山市小榄中学高三数学理月考试题含解析
广东省中山市小榄中学高三数学理月考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若函数f (x )=x 3+ax 2+bx+c 有极值点x 1,x 2,且f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b=0的不同实根个数是( ) A .3 B .4 C .5 D .6参考答案:A【考点】函数在某点取得极值的条件;根的存在性及根的个数判断. 【专题】综合题;压轴题;导数的综合应用.【分析】求导数f′(x ),由题意知x 1,x 2是方程3x 2+2ax+b=0的两根,从而关于f (x )的方程3(f (x ))2+2af (x )+b=0有两个根,作出草图,由图象可得答案. 【解答】解:f′(x )=3x 2+2ax+b ,x 1,x 2是方程3x 2+2ax+b=0的两根,由3(f (x ))2+2af (x )+b=0,则有两个f (x )使等式成立,x 1=f (x 1),x 2>x 1=f (x 1), 如下示意图象: 如图有三个交点, 故选A .【点评】考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.2. 函数f (x )=-x 2+(2a -1)|x |+1的定义域被分成了四个不同的单调区间,则实数a 的取值范围是( )A .a >B .<a <C .a >D .a < 参考答案:C3. 已知函数,设,则是 ( )A.奇函数,在上单调递减B.奇函数,在上单调递增C.偶函数,在上递减,在上递增D.偶函数,在上递增,在上递减参考答案:B 略4. 若命题“或”是真命题,“且”是假命题,则( ▲ )A.命题和命题都是假命题B.命题和命题都是真命题C.命题和命题“”的真值不同 D.命题和命题的真值不同参考答案:D 略5. 在等比数列中,若,则.参考答案:略6. 三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图所示)的面积为8,侧视视图的面积为__________.A. 8B. 4C.D.参考答案:D7. 已知过抛物线焦点的直线交抛物线于、两点(点在第一象限),若,则直线的斜率为A.B.C.D. 2参考答案:A 8. 已知,“”是“函数在上为减函数”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件参考答案:D试题分析:若,则,可知充分性不成立;若函数在上为减函数,则,故不成立,必要性不成立.考点:充分必要性.9. 设、是两条不同的直线,、是两个不同的平面,则下列命题正确的是( )A .若则B .若则C .若则D .若则参考答案:D10. 对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,下列函数中是准偶函数的是 ( ) A .B .C.D.参考答案:【知识点】抽象函数及其应用. A 解:对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,∴函数的对称轴是x=a ,a≠0,选项B 、C 、D 函数没有对称轴;函数f (x )=cos (x+1),有对称轴,且x=0不是对称轴,选项A 正确. 故选:A .【思路点拨】由题意判断f (x )为准偶函数的对称轴,然后依次判断选项即可.二、 填空题:本大题共7小题,每小题4分,共28分11. 双曲线的渐近线与抛物线相切,则该双曲线的离心率等于.参考答案:略12. 若实数满足条件则的最大值为_____.参考答案:4试题分析:由约束条件作出可行域区域图,令目标函数,则,先作13. 直线和将单位圆分成长度相等的四段弧,则________.参考答案:214. 已知数列 (n)的公差为3,从中取出部分项(不改变顺序)a1,a4,a10,…组成等比数列,则该等比数列的公比是参考答案:215. 已知函数在区间上是增函数,则实数的取值范围为 .参考答案:略16. 设变量满足约束条件,则目标函数的最小值___________;参考答案:【知识点】简单线性规划.E5【答案解析】3 解析:设变量x、y满足约束条件,在坐标系中画出可行域△ABC,A(2,0),B(1,1),C(3,3),则目标函数z=2x+y的最小值为3.故答案为:3.【思路点拨】先根据条件画出可行域,设z=2x+y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线z=2x+y,过可行域内的点B(1,1)时的最小值,从而得到z最小值即可.17. 设,则等于.参考答案:,所以,故答案为.三、解答题:本大题共5小题,共72分。
贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案
江西省贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案贵溪市实验中学高中部2019-2020学年第一学期第一次月考高三(文科)数学试卷考试时间:120分钟 总分:150 命题人:第Ⅰ卷(选择题 共60分)一、 选择题:本大题共12小题.每小题5分,共60分。
在每个小题给出的四个选项中 ,只有一项是符合题目要求的。
1.已知集合{}31|<<-=x x A ,(){}1lg |-==x y x B ,则()=⋂B C A R ( )A 。
()3,1B 。
()3,1- C.()1,1- D.(]1,1-2.已知命题:p x R ∀∈,1sin x e x ≥+。
则命题p ⌝为( ) A .x R ∀∈,1sin x e x <+ B .x R ∀∈,1sin x e x ≤+ C .0x R∃∈,001sin x e x ≤+D .0x R∃∈,001sin x e x <+3.下列哪一组函数相等( ) A 。
()()xx x g x x f 2==与B.()()()42x x g x x f ==与C.()()()2x x g x x f ==与D.()()362x x g x x f ==与 4. = 255tan ( )A .3-2- B .32-+C .3-2D .32+5.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.()的图像为函数R x x y x ∈-=22( ) A.B.C 。
D 。
7.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )①f (b )>f (a )>f (c );②函数f (x )在x =c 处取得极小值在x =e 处取得极大值;③函数f (x )在x =c 处取得极大值在x =e 处取得极小值;④函数f (x )的最小值为f (d ).A.③ B 。
2019-2020学年广东省梅州市茶背中学高三数学文月考试题含解析
2019-2020学年广东省梅州市茶背中学高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知幂函数是偶函数,则实数的值为A、0B、-1或1C、1D、0或1参考答案:C因为函数为幂函数,所以,即或.当时,函数为为奇函数,不满足条件.当时,为偶函数,所以,选C.2. 已知复数满足,则()A.B.C.D.参考答案:D3. 如图,点A,B,C是圆O上的点,且AB=2,BC=,∠CAB=120°,则∠AOB对应的劣弧长为()A.πB.C.D.参考答案:C【考点】圆周角定理.【专题】计算题;转化思想;综合法;推理和证明.【分析】由正弦定理求出sin∠ACB=,从而∠AOB=,进而OB=,由此能求出∠AOB 对应的劣弧长.【解答】解:由正弦定理知:=, =,∴sin∠ACB==,∴,∴∠AOB=,∴OB=,∴∠AOB对应的劣弧长: =π.故选:C.【点评】本题考查劣弧长的求法,是中档题,解题时要认真审题,注意正弦定理的合理运用.4. 在边长为3的等边三角形ABC中,点D、E分别在AB、AC上,且满足,则A.B.C.D.参考答案:B略5. 已知命题P:若平面向量,,满足(?)?=(?)?,则向量与一定共线.命题Q:若?>0,则向量与的夹角是锐角.则下列选项中是真命题的是()A.P∧Q B.(¬P)∧Q C.(¬P)∧(¬Q)D.P∧(¬Q)参考答案:C【考点】命题的真假判断与应用.【分析】先判断出命题P和命题Q的真假,进而根据复合命题真假判断的真值表,可得答案.【解答】解:命题P:若平面向量,,满足(?)?=(?)?,则向量与共线或为零向量.故为假命题,命题Q:若?>0,则向量与的夹角是锐角或零解,故为假命题.故命题P∧Q,(¬P)∧Q,P∧(¬Q)均为假命题,命题(¬P)∧(¬Q)为真命题,故选:C【点评】本题以命题的真假判断与应用为载体,考查了复合命题,向量的运算,向量的夹角等知识点,难度中档.6. 数列{a n}的通项公式为a n=3n2﹣28n,则数列{a n}各项中最小项是()A. 第4项B. 第5项C. 第6项D. 第7项参考答案:B二次函数的对称轴为,数列中的项为二次函数自变量为正整数时对应的函数值,据此可得:数列各项中最小项是第5项.本题选择C选项.7. 某四面体三视图如图所示,则该四面体的四个面中,直角三角形的面积和是( ) Ks5u(A) 2 (B) 4 (C) (D)参考答案:C略8. 椭圆两个焦点分别是F1,F2,点P是椭圆上任意一点,则的取值范围是()A.[﹣1,1] B.[﹣1,0] C.[0,1] D.[﹣1,2]参考答案:C【考点】椭圆的简单性质.【专题】转化思想;向量法;圆锥曲线的定义、性质与方程.【分析】设P(x,y),,,则=x2+y2﹣i=即可.【解答】解:由椭圆方程得F1(﹣1,0)F2(1,0),设P(x,y),∴,,则=x2+y2﹣1=∈[0,1]故选:C【点评】本题考查了椭圆与向量,转化思想是关键,属于中档题.9. 已知函数是定义在R上的增函数,函数的图象关于点对称.w若对任意的恒成立,则当时,的取值范围是()A. B. C.D.参考答案:C略10. 若为实数,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分条件D.既不充分也不必要条件参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如右图所示,则二面角 C-AB-D的正切值为 .参考答案:12. 如图所示,将数以斜线作如下分群:(1),(2,3),(4,6,5),(8,12,10,7),(16,24,20,14,9),…,并顺次称其为第1群,第2群,第3群,第4群,…,(1)、第7群中的第2项是:;(2)、第n群中n个数的和是:参考答案:96,3·2n-2n-313. 若实数满足,则的取值范围是__________.参考答案:如图,画出可行域,设写成表示斜率为-2的一组平行线,当直线过时,目标函数取得最小值,当直线过点时目标函数取得最大值,所以的取值范围是,故填:.考点:线性规划14. 已知,,且,若恒成立,则实数m的取值范围是____.参考答案:(-4,2)试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值15. 曲线:(为参数)上的点到曲线:(为参数)上的点的最短离为.参考答案:116. “所有末位数字是0或5的整数能被5整除”的否定形式是______ __________。
四川省绵阳南山中学2022届高三上学期12月月考文综试卷(含部分解析)
绵阳南山中学2021 年秋季2019 级文综12月月考试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分300 分,考试时间150 分钟。
注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5 毫米的黑色墨水签字笔填写在答题卡上。
2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5 毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,将答题卡收回。
第Ⅰ卷(选择题共140分)本卷共35 小题,每小题4 分,共140 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
2021 年 7 月,经济以钢铁工业为主的攀枝花发放育儿津贴,以 500 元每月的标准补贴二孩、三孩生育直至 3 岁,属全国首创。
下表为攀枝花和成都人口普查数据。
据此完成 1~3 题。
1.攀枝花与成都常住人口的变化差异,最能反映两地()A.年龄结构差异 B.环境承载差异 C.出生人口差异 D.产业结构差异2.攀枝花发放育儿津贴,主要目的是()A.吸引周边人口迁入 B.缓解居民就业压力 C.促进全国人口发展 D.提高居民生活水平3.为了更好地激发生育意愿,当地还可以()①取消计划生育②降低育儿成本③降低结婚年龄④延长陪护假期A.①③ B.①④ C.②③ D.②④都市会展业为全球型新兴行业,该行业包含上游的会展公司、中游的场馆、下游的会展服务配套产业等部分。
上海依托大型会展场馆等设施,举办大型会展、节事活动,促进了城市空间的发展与变化。
下图示意 2014 年上海会展企业密度分布。
据此完成 4~6 题4.下列属于都市会展业下游部分的是()A.设施维护 B.会展策划C.酒店经营 D.工程展示5.图示会展业空间密集区形成的最主要原因是()A.政策扶持 B.土地租金高C.人口素质高D.经济活动频繁6.图示高密度会展区对城市功能分区的影响是()A.提升商业区的价值B.促进住宅区的扩建C.减少城市绿地的面积D.利于工业区的集聚冻土是指温度在0℃及其以下并含有冰的土壤和岩石。
2020届高三数学第一次月考试题 文(含解析)新 人教
2019学年第一学期九月测试卷高三数学(文科)一、选择题(每小题5分,共60分)1. 设集合M={1,2,3,4,5,6},N={1,4,5,7},则M∩N等于( )A. {1,2,4,5,7}B. {1,4,5}C. {1,5}D. {1,4}【答案】B【解析】则2. ( )A. B. C. D. -【答案】A【解析】试题分析:选C.考点:诱导公式.【易错点晴】本题主要考查诱导公式,属于容易题型.本题虽属容易题型,但如果不细心的话容易因判断错象限、或因忘了改变函数名而犯错.解决此类题型的口诀是:奇变偶不变,符号看象限,应用改口诀的注意细节有:1、“奇”、“偶”指的是的奇数倍或偶数倍,2、符号看象限,既要看旧角,又要看旧函数名.要熟练掌握这两个细节才不会“走火入魔”.3. 下列函数中,是偶函数且在上为增函数的是( )A. B. C. D.【答案】A【解析】由选项可看出四个函数中D为奇函数,所以排除D,在ABC三个选项中,A函数为增函数,B函数为减函数,C函数既有增区间又有减区间.故选A.4. 若已知函数f(x)= , 则的值是( )A. B. 3 C. D.【答案】D【解析】由函数f(x)=可知:,+1=故选:D5. 函数y=的定义域是( )A. [1,2]B. [1,2)C.D.【答案】D【解析】即得解得故选D6. 下列说法中,正确的是()A. 命题“若,则”的否命题为“若,则”B. 命题“存在,使得”的否定是:“任意,都有”C. 若命题“非”与命题“或”都是真命题,那么命题一定是真命题D. ""是" "的充分不必要条件【答案】C【解析】对于A,命题“若,则”的否命题为“若a≤b,则”;∴A 不正确;对于B,命题“存在x∈R,使得”的否定是:“任意x∈R,都有”;∴B不正确;对于C,若命题“非p”是真命题则P是假命题,命题“p或q”是真命题,那么命题q一定是真命题,∴C正确;对于D,∴推不出. ∴D不正确故选:C.7. 设a=,,则a,b,c的大小关系是( )A. b>c>aB. a>c>bC. b>a>cD. a>b>c【答案】D【解析】,所以故选D8. 函数f(x)=2x-6+lnx的零点个数为( )A. 1B. 2C. 3D. 4【答案】A【解析】,所以函数在上递增,又,所以函数的零点只有1个故选A点睛:本题是零点存在性定理的考查,先确定函数的单调性,在判断特殊点处的函数值有正负变化即得解.9. 函数y=Asin(ωx+φ)在一个周期内的图象如图所示,则此函数的解析式为( )A. B.C. D.【答案】B【解析】由图知A=2,又,此函数的解析式是故选B.10. 若=,则cos(π-2α)=( )A. -B.C. -D.【答案】C【解析】==,故选C11. 函数y= (0<a<1)的图象的大致形状是( )A. B.C. D.【答案】D【解析】又所以函数在上递减,在上递增,故选D点睛:函数中有绝对值的要去掉绝对值,写成分段函数,根据单调性即可以选出选项.12. 已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)【答案】B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选B.二、填空题(每小题5分,共20分)13. 已知=2, 则=______【答案】3【解析】,故答案为314. 函数f(x)=的单调递增区间为________.【答案】【解析】根据复合函数的单调性,内外层函数同则增异则减的原则,f(x)=的递增区间为的递减区间,但要注意定义域,所以f(x)=的递增区间为................故答案为点睛:研究复合函数的单调性:先把复合函数分成内外两层,根据内外层函数单调性相同,复合函数增,内外层函数单调性相异,复合函数减,即同则增异则减,做题时还要注意定义域.15. 已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则=________.【答案】-2【解析】由f(x+4)=f(x)得f(x)的周期为4,所以又f(x)在R上是奇函数,所以故答案为-2.点睛:函数奇偶性,周期性结合求函数值的问题,先利用周期性,把变为再利用奇偶性根据已知很容易出结果.16. 若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是________.【答案】(-∞,]【解析】2xlnx≥-x2+ax-3,则a≤2lnx+x+,设h(x)=2lnx+x+(x>0),则h′(x)=.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4,则a≤h(x)min=4,故实数a的取值范围是(-∞,4].故答案为:(-∞,4]点睛:恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.三、解答题(共6小题,共70分,解答应写出必要的文字说明、计算过程或证明步骤)17. (10分) 化简求值:(1) ; (2) .【答案】(1) 4 ; (2)【解析】试题分析:(1)主要是对数运算性质的考查(2)主要是三角恒等变换的二倍角公式,两角和与差的余弦公式的考查.试题解析:(1)原式= (2)原式=18. (12分)(1)已知sinα=- ,且α为第四象限角,求tanα的值;(2)已知cos且都是锐角,求的值【答案】(1)(2)【解析】试题分析:(1)由α为第四象限角,根据同角基本关系的平方关系得的值,商式关系得出.(2) cos,是锐角得出sin,又都是锐角,,得出,根据得出结果.试题解析:(1)为第四象限角,(2) 因为是锐角,所以sin=又都是锐角,,=,则cos=cos19. (12分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)若f(x)在区间[-4,6]上是单调函数.求实数a的取值范围.【答案】(1)35 (2) a≤-6,或a≥4【解析】试题分析:(1) 当a=-2时,f(x)=x2-4x+3=(x-2)2-1,根据二次函数的单调性得出函数的最值(2)二次函数的对称轴为x=-a,根据图像得出[-4,6]在轴的左侧或在轴的右侧,即-a≤-4,或-a≥6得解.试题解析:(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增.∴f(x)的最小值是f(2)=-1.又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4,或-a≥6,即a≤-6,或a≥4.20. (12分)已知.f(x)=sin x cos x-cos2x+(1)求f(x)的最小正周期,并求其图象对称中心的坐标;(2)当0≤x≤时,求函数f(x)的值域.【答案】(1)(k∈Z) (2)【解析】试题分析:(1)先对函数f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+化简得f(x)=sin,令sin=0,得=kπ(k∈Z)解得对称中心(2)0≤x≤所以-≤2x-≤,根据正弦函数图像得出值域.试题解析:(1)f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+=sin2x-cos2x=sin,所以f(x)的最小正周期为π.令sin=0,得=kπ(k∈Z),所以x= (k∈Z).故f(x)图象对称中心的坐标为 (k∈Z).(2)因为0≤x≤,所以-≤2x-≤,所以≤sin≤1,即f(x)的值域为.点睛:本题重点考查三角函数式的恒等变换,正弦型函数的最小正周期,正弦型函数的对称中心,及函数在某一定义域下的值域,是高考的常见题型,在求值域时要运用整体的思想.21. (12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线方程为l:y=3x+1,且当x=时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.【答案】(1) a=2,b=-4, c=5 (2) 最大值为13,最小值为【解析】试题分析:(1)对函数进行求导,当x=1时,切线l的斜率为3,可得2a+b=0,当x=时,y=f(x)有极值,则f′=0,联立得出a,b,c的值(2) 由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4. 令f′(x)=0,解得x1=-2,x2=,研究单调性得出最值.试题解析:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0,①当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0,②由①②,解得a=2,b=-4.由于切点的横坐标为1,所以f(1)=4. 所以1+a+b+c=4,得c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4.令f′(x)=0,解得x1=-2,x2=.当x变化时,f′(x),f(x)的取值及变化情况如下表所示:所以y=f(x)在[-3,1]上的最大值为13,最小值为.点睛:已知切线方程求参数问题,利用切线斜率,切点在切线上也在曲线上这两点即可求出字母值.函数的极值问题要注意对应的导值为0,且在此点的左右函数有单调性变化.22. (12分)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.【答案】(1)见解析(2) (0,1)【解析】试题分析:(1)先求导数,再根据导函数符号是否变化进行讨论:若,则,在单调递增;若,导函数先正后负,函数先增后减;(2)由(1)知函数有最大值条件为,且最大值为,转化为解不等式,先化简,再利用导数研究函数单调性及零点,确定不等式解集试题解析:解:(Ⅰ)的定义域为若,则,所以在单调递增若,则当时,;当时,。
高三数学上学期第一次月考试题 文扫描 试题
HY中学2021届高三数学上学期第一次月考试题文〔扫描版〕创作人:历恰面日期:2020年1月1日一中第一期联考文科数学答案命题、审题组老师 杨昆华 彭力 杨仕华 王佳文 张波 毛孝宗 丁茵 易孝荣 江明 李春宣一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBCDADDCAAB1. 解析:由题意,因为集合{}1>=x x A ,所以=B A {}31<<x x ,选B . 2. 解析:因为2i 12i i i)i)(1(1i)i(1i 1i 2+=-=-+-=+,选C . 3. 解析:18=0.4540,选B . 4. 解析:由得54)cos(-=--αβα,即54cos )cos(-==-ββ,又πβ(∈,)23π,所以0sin <β,且53cos 1sin 2-=--=ββ,选C .5. 解析:在长、宽、高分别为2,1,1的长方体中截得该三棱锥A DBC -,那么最长棱为2222116AB =++=,选D .6. 解析:对于B ,函数的周期是π,不是π4;对于C ,函数在3π=x 时不取最值;对于D ,当∈x 65(π-,)6π时,34(32ππ-∈+x ,)32π,函数不是单调递增,选A . 7. 解析:因为()()11f x f x -=+,所以()f x 的图象关于直线1x =对称,选D .8. 解析:由垂径定理可知直线CM 的斜率为2-,所以直线CM 的方程是)2(21--=+x y ,即032=-+y x ,选D .9. 解析:设外接球的半径为R ,因为PA ⊥平面ABC ,所以BC PA ⊥,又BC AB ⊥,所以BC PB ⊥,设PC 的中点为O ,易知:OA OB OC OP ===,故O 为四面体P ABC -的外接球的球心,又2PA AB BC ===,所以22AC =,23PC =,半径3R =,四面体P ABC -的外接球的外表积为()24312ππ=,选C .10. 解析:由()y f x =,()01f =-排除B ,()f x 是偶函数排除C,()20f =和()40f =排除D ,选A .11. 解析:由题设得3=ab,2)(12=+=a b e ,所以b e a +2362322323322=≥+=+=aa a a ,选A . 12. 解析:由余弦定理及22b ac a -=得,22222cos b a c ac B a ac =+-=+,所以有2cos c a B a =+,因此sin 2sin cos sin C A B A =+,故有()sin 2sin cos sin A B A B A +=+,即()sin sin A B A =-,因为三角形ABC 为锐角三角形,所以A B A =-,即2B A =,所以022A π<<,所以04A π<<,又3B A A +=,所以32A ππ<<,所以63A ππ<<,综上,64A ππ⎛⎫∈ ⎪⎝⎭, 所以()sin sin 22cos 2,3sin sin B At A A A===∈,选B .二、填空题13. 解析:由22a b a b -=+解得0a b ⋅=,所以向量a 与b 夹角为90︒. 14. 解析:N=126+146+96+136=288⨯⨯⨯⨯.15. 解析:由图知,直线4z y x =-过()1,0时,4y x -有最小值1-. 16. 解析:由得()()22log 1933f x x x -=+++,所以()()6f x f x +-=,因为2lg 3⎛⎫ ⎪⎝⎭与3lg 2⎛⎫⎪⎝⎭互为相反数,所以23lg lg 632f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以3lg 22f ⎛⎫=- ⎪⎝⎭. 三、解答题〔一〕必考题17. 解:〔1〕证明:设1122n n nn a a d ---=那么122n n n a a d --= 所以1122n n n a a d ++-=,11122222n n n n n n a a da a d++--==-所以}{12n na a +-是首项为4,公比为2的等比数列. ………6分〔2〕因为{}2n n a 是等差数列,所以1221122=-=a a d ,所以11(1)22n n a a n d =+-⨯ , 所以1()22nn a n =-所以123113531222...()2()222222n n n S n n -=⨯+⨯+⨯++-+-① 2311333222...()2()22222n n n S n n +=⨯+⨯++-+-②由①-②得23111=2+2+2...2()222n n n S n +-⨯++-- 13=(n-)232n n S ++. ………12分18. 解:〔1〕 选派B 同学参加比拟适宜.理由如下:1(7580808385909295)858A x =+++++++=,1(7879818284889395)858B x =+++++++=,22222221[(7885)(7985)(8185)(8285)(8485)(8885)8B S =-+-+-+-+-+-+22(9385)(9585)]35.5-+-=,22222221[(7585)(8085)(8085)(8385)(8585)(9085)8A S =-+-+-+-+-+-+22(9285)(9585)]41-+-=,从A B x x =,22B A S S <可以看出:A ,B 两位同学的平均程度一样而B 的成绩较稳定,所以选派B 参加比拟适宜. ………7分〔2〕任选派两人有(,)A B ,(,)A C ,(,)A D ,(,)A E ,(,)B C ,(,)B D ,(,)B E ,(,)C D ,(,)C E ,(,)D E 一共10种情况;所以A ,B ,C 三人中至多有一人参加英语口语竞赛有7种情况; 所以710P =. ………12分19. 解:〔1〕在直角梯形ABCD 中,2BC AD AB ⋅=,即AB ADBC AB=, 因为90DAB PBC ∠=∠=, 所以tan AB ACB BC ∠=,tan ADABD AB∠=, 所以ABD ACB ∠=∠,又因为90ACB BAC ∠+∠=, 所以90ABD BAC ∠+∠=,即AC BD ⊥图2的四棱锥1P ABCD -中,1P A AB ⊥,由题知1P A AD ⊥,那么1P A ⊥平面ABCD , 所以1BD P A ⊥,又1P AAC A =所以BD ⊥平面1P AC . ………6分(2)在图1中,因为AB =,1AD =,2BC AD AB ⋅=,所以3BC =因为PAD ∆∽PBC ∆,所以13PA AD PA PB BC ==⇒=,即1P A = 由〔1〕知1P A ⊥平面ABCD ,那么1C P BD V -1P CBD V -=1P CBD V -=111111133332324CBD S P A BC AB P A ∆⋅⋅=⨯⋅⋅=⨯⨯=. ………12分20. 解:〔1〕由椭圆定义知,224AF BF AB a ,又222AF BF AB ,得43ABa ,l 的方程为y x c ,其中22c a b .设11(,)A x y ,22(,)B x y ,将y x c 代入22221x y a b 得,2222222()2()0a b x a cx a c b . 那么212222-a c x x a b ,2221222)a cb x x a b (.因为直线AB 的倾斜角为4π,所以212122()4ABx x x x ,由43AB a 得,222443a ab a b ,即222a b .所以C的离心率2222c a b e a a. ………6分 (2) 设AB 的中点为0,0()N x y ,由〔1〕知,2120222--23x x a c c x a b ,003cy x c .由PA PB 得,PN 的斜率为-1,即001-1y x ,解得,3c ,32a ,3b .所以椭圆C 的方程为221189x y . ………12分21. 解:〔1〕()f x 的定义域为(,)-∞+∞,因为()e x f x a '=+,由(0)0f '=,得1a =-, 所以()e 2x f x x =--,由()e 10x f x '=->得0x >,由()e 10x f x '=-<得0x <,所以()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. ………6分 (2) 因为0x >,所以()e 1e 1xxm x -<+可化为e 1e 1x x x m +<-,令e 1()e 1x x x F x +=-,那么()2e (e 2)()e 1x x x x F x --'=-, 由〔1〕得()e 2x f x x =--在(0,)+∞上单调递增,而(1)e 30f =-<,2(2)e 40f =->,所以()f x 在(1,2)上存在唯一的0x , 使0()0f x =,所以()F x 在0(0,)x 上单调递减,在0(,)x +∞上单调递增, 所以0()F x 是()F x 00e 20x x --=得00e 2x x =+, 所以00000000e 1(2)1()11e 1x x x x x F x x x +++===++-, 又因为012x <<,所以02()3F x <<,所以[]max 2m =. ………12分 〔二〕选考题:第22、23题中任选一题做答。
2018-2019学年上学期高二数学12月月考试题含解析(466)
张北县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为 ( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}2. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣3. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)4. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =5. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°6. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与的变化关系,其中正确的是( )A.B. C. D.1111]7.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.9.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%10.sin3sin1.5cos8.5,,的大小关系为()A.sin1.5sin3cos8.5<<<<B.cos8.5sin3sin1.5C.sin1.5cos8.5sin3<<D.cos8.5sin1.5sin3<<11.用秦九韶算法求多项式f(x)=x6﹣5x5+6x4+x2+0.3x+2,当x=﹣2时,v1的值为()A.1 B.7 C.﹣7 D.﹣512.已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2πD .23π二、填空题13.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x ax =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.14.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .16.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .18.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.21.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.22.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)23.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)24.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.张北县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.2.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.3.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C4.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。
2019-2020学年上海同济大学第二附属中学高三数学文月考试题含解析
2019-2020学年上海同济大学第二附属中学高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列说法正确的是()A.命题“若,则”的否命题是“若,则”B.“”是“”的必要不充分条件C.命题“若,则”的逆否命题是真命题D.“”是“”的充分不必要条件参考答案:C略2. 若函数的图象关于y轴对称,则实数a的值为()A. 2B. ±2C. 4D. ±4参考答案:B【分析】根据图象对称关系可知函数为偶函数,得到,进而得到恒成立,根据对应项系数相同可得方程求得结果.【详解】图象关于轴对称,即为偶函数即:恒成立,即:,解得:本题正确选项:【点睛】本题考查根据函数的奇偶性求解参数值的问题,关键是能够明确恒成立时,对应项的系数相同,属于常考题型.3. 定义在R上的函数f(x)对任意x1、x2(x1≠x2)都有<0,且函数y=f (x﹣1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2﹣2s)≤﹣f(2t﹣t2),则当1≤s≤4时,的取值范围是()A.[﹣3,﹣)B.[﹣3,﹣] C.[﹣5,﹣)D.[﹣5,﹣]参考答案:D【考点】函数单调性的性质.【分析】根据已知条件便可得到f(x)在R上是减函数,且是奇函数,所以由不等式f (s2﹣2s)≤﹣f(2t﹣t2)便得到,s2﹣2s≥t2﹣2t,将其整理成(s﹣t)(s+t﹣2)≥0,画出不等式组所表示的平面区域.设,所以得到t=,通过图形求关于s的一次函数的斜率范围即可得到z的范围,从而求出的取值范围.【解答】解:由已知条件知f(x)在R上单调递减,且关于原点对称;∴由f(s2﹣2s)≤﹣f(2t﹣t2)得:s2﹣2s≥t2﹣2t;∴(s﹣t)(s+t﹣2)≥0;以s为横坐标,t为纵坐标建立平面直角坐标系;不等式组所表示的平面区域,如图所示:即△ABC及其内部,C(4,﹣2);设,整理成:;;∴,解得:;∴的取值范围是[].故选:D.4. 复数的共轭复数是()A.B.C.D.参考答案:C5. 下列命题中正确命题的个数是(1)是的充分必要条件;(2)若且,则;(3)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;(4)设随机变量服从正态分布N(0,1),若,则A.4 B.3 C.2D.1参考答案:B6. 已知双曲线E:焦距为,圆C1:与圆C2:外切,且E的两条渐近线恰为两圆的公切线,则E的离心率为()A. B. C. D.参考答案:C【分析】两圆相外切,可得两圆心距为3,从而可得,渐近线为两圆的公切线,故可得,从而可得出关于的关系,求得离心率.【详解】解:因为圆:与圆:外切,所以即①,渐近线为两圆的公切线,故可得,即②,将②代入到①中,得,即,又因为故,解得:,故,故选C.【点睛】本题考查了双曲线的离心率问题、直线与圆相切、圆与圆相切问题,构造出的等量关系式是本题解题的关键.7. 已知向量满足,且与夹角为,则()A. -3B. -1C. 1D. 3参考答案:B【分析】根据向量的运算法则与数量积的运算求解即可.【详解】.故选:B【点睛】本题主要考查了向量的运算法则与数量积的运算,属于基础题型.8. 已知函数f(x)=x n+a n﹣1x n﹣1+a n﹣2x n﹣2+…+a1x+a0(n>2且n∈N*)设x0是函数f(x)的零点的最大值,则下述论断一定错误的是()A.f′(x0)≠0B.f′(x0)=0 C.f′(x0)>0 D.f′(x0)<0参考答案:D【考点】函数的零点.【分析】根据函数f(x)=x n+a n﹣1x n﹣1+a n﹣2x n﹣2+…+a1x+a0可知,函数最终变化趋势是单调递增的,因此,当函数与x轴的最大的交点时,函数是成递增趋势,因此得到答案.【解答】解:因为x n是决定函数值的最重要因素,当x趋近无穷时X n也趋近无穷,导致函数值趋近无穷,所以最终f′(x)>0,若f′(x0)<0,说明在x0后有函数值小于0值但最终函数值大于0,说明x0后还有零点,这与x0是函数f(x)的零点的最大值矛盾,故选D.9. 若,,则下列不等式成立的是()A. B. C. D.参考答案:B10. “”是“直线的倾斜角大于”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 函数的定义域为__________.参考答案:(0,1],解得定义域为.12.的展开式中,的系数是_____.(用数字作答)参考答案:二项式展开式,令,所以,所以,所以的系数为.13. 在△ABC 中,AD 为BC 边上的中线,AB=2,BD=2,AD=2,则△ADC 的面积S △ADC =参考答案:2 略 14. 函数的定义域为 [﹣1,2) .参考答案:解:要使函数的解析式有意义,自变量x 须满足:解得:﹣1≤x <2.故函数的定义域为[﹣1,2).故答案为:[﹣1,2).15. 设函数满足当时,则________ .参考答案:16. 已知双曲线左、右焦点分别为,过点作与轴垂直的直线与双曲线一个交点为,且,则双曲线的渐近线方程为_______;参考答案:17. 若“”为真命题,则实数a的取值范围是。
高三数学月考试卷
高三数学月考试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知圆和两点,若圆上存在点,使得,则的最小值为( )A .B .C .D .2.等差数列{a n }中,a 5 + a 7 =16,a 3 = 4,则a 9 =( ) A .8 B .12 C .24 D .253.设,且,则( )A .B .C .D .4.已知双曲线的两条渐近线方程是,若顶点到渐近线的距离为1,则双曲线的离心率为A .B .C .D .5.函数有极值的充要条件是( ) A .B .C .D .6.若数列的前n 项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列(公差),则的充要条件是(4)若是等比数列,则的充要条件是其中,正确命题的个数是( ) A .0个 B .1个 C .2个 D .3个7.已知双曲线的两条渐近线方程是,则双曲线的离心率为()A. B. C. D.8.设函数,.若实数满足,,则()A.B.C.D.9.在平面直角坐标系中,圆C的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是()A. B. C. D.10.已知两个非零向量满足,且,则()A. B. C. D.11.设,则的大小关系为()A.B.C.D.12.对于上可导的任意函数,若满足,则必有()A.B.C.D.13.设是实数,且是纯虚数,则( )A. B. C. D.314.方程的根的个数是()A.3 B.4 C.5 D.615.已知椭圆的左焦点为F1有一小球A 从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为()A. B. C. D.16.长方体的八个顶点都在球的球面上,其中,,,则、两点的球面距离是()A. B. C. D.17.设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是18.在△ABC中,tanA+tanB+=tanA·tanB,则C等于()A. B. C. D.19.某疾病研究所想知道吸烟与患肺病是否有关,于是随机抽取1000名成年人调查是否吸烟及是否患有肺病,得到列联表,经计算得,已知在假设吸烟与患肺病无关的前提条件下,,则该研究所可以()A.有95%以上的把握认为“吸烟与患肺病有关”B.有95%以上的把握认为“吸烟与患肺病无关”C.有99%以上的把握认为“吸烟与患肺病有关”D.有99%以上的把握认为“吸烟与患肺病无关”20.已知直线与圆相切,则直线的倾斜角为()A. B. C. D.二、填空题21.已知A船在灯塔C东偏北10°处,且A到C的距离为2km,B船在灯塔C北偏西40°,A、B两船的距离为3 km,则B到C的距离为 _______km.22.对于函数,若存在区间(),使得,则称区间为函数的一个“稳定区间”.给出下列4个函数:①;②;③;④.其中存在“稳定区间”的函数有_____(填上所有符合要求的序号)23.在中,,,若为外接圆的圆心(即满足),则的值为__________.24.(2011南京模拟).设=,其中a,b R ,ab 0,若对一切则x R恒成立,则:①;②<;③既不是奇函数也不是偶函数;④的单调递增区间是;⑤存在经过点(a,b )的直线与函数的图像不相交。
2019-2020学年绍兴市绍兴县鉴湖中学高三语文月考试题及答案解析
2019-2020学年绍兴市绍兴县鉴湖中学高三语文月考试题及答案解析一、现代文阅读(36分)(一)现代文阅读I(9分)阅读下面的文字,完成下面小题。
药砚练建安阳光朗照,河头城浮动飘忽的浓雾渐渐消散。
石钵头赤裸脊背,噔噔踏入石坝码头肉铺摊点,立定,双肩一耸,大块猪肉扇啪嗒一声脆响,平摊在了肉案上。
两个伙计手忙脚乱,将猪肉扇挂上一根铜皮红木大秤。
一个掌挂钩,一个挪秤砣报数:“二百……三十一斤半。
”石钵头斜了他们一眼,操起两把剔骨尖刀,咔咔磨擦,笑骂:“黄疸后生!”墟镇巷道,湿漉漉的,水气淋漓。
此时悠悠然走来一位身穿灰布长衫、手摇折扇的精瘦老人。
他迈着方步在猪肉摊边踱了三二个来回,瞧瞧,点点头,似笑非笑。
石钵头认得此人,是个老童生。
传说是满腹诗书,考到胡子花白,连一个秀才也没捞着。
长衫洗得发白,几块补丁格外刺眼,看着老穷酸装模作样赛百万的架势,石钵头扭头噗地吐出了一口浓痰。
华昌驻足停步,收起折扇,倒转扇柄指点,问:“前蹄,几多钱啊?”石钵头利刀游走剔骨,沙沙响。
“老弟,几多钱?”华昌再问。
石钵头说:“现钱,不赊账。
”华昌说:“你这后生哥啊,好没道理,咋就说俺要赊账呢?”石钵头说:“搞笑嘴!”华昌在衣兜里摸索良久,拍出了一把制钱。
石钵头将制钱收拢、叠好,放在案板前沿,说:“钱你拿走,莫挡俺做生意。
”华昌说:“无怨无仇,做嘛介不卖?”石钵头斫下猪蹄,说:“看好了,可是这副?”华昌点头。
石钵头抓起猪蹄,猛地往后抛入汀江,说:“俺要敬孝龙王爷。
不行么?”华昌拣起制钱,一声不吭地走了。
身后传来阵阵哄笑声。
半个月后,华昌带着几个破蒙童子江岸踏青,歇息于城东风雨亭。
彼时,石钵头正惬意地嚼吃着亭间售卖的糖酥花生。
一扬手,花生壳撒落遍地。
石钵头说:“咦,巧了,今天倒有八副猪蹄,老先生有现钱么?”华昌面无表情,牵着童子匆匆离去。
走不远,就听到石钵头的两个伙计阴阳怪气地高唱一首当地歌谣:“先生教俺一本书,俺教先生打野猪。
野猪逐过河,逐去先生背驼驼……”后来,他们还遇过几次。
重庆市南坪中学校2019届高三数学上学期月考试题 理
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……重庆市南坪中学校2019届高三数学上学期月考试题 理考试时间:120分钟 分值:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}(){}|sin ,x R ,|lg A y y x B x y x ==∈==-,则AB =( )A .(]0,1B .[)1,0-C .[]1,0-D .(],1-∞ 2.已知复数z 满足i z i 3)31(=+,则=z ( )A .i 2323+ B .i 2323- C .i 4343+ D .i 4343- 3.设命题2:,ln p x R x x ∀∈>,则p ⌝为( )A .2000,ln x R x x ∃∈> B .2,ln x R x x ∀∈≤ C .2000,ln x R x x ∃∈≤ D .2,ln x R x x ∀∈<4.已知平面向量 与 00 相互垂直, =(﹣1,1)||=1,则|+2|=( )A .B .C .2D .5.已知实数()ln ln ln ,ln ,2a b c πππ===,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<6.已知双曲线22221(0,0)x y a b a b -=>>(c 为双曲线的半焦距),则双曲线的离心率为( ) A .37 B .273 C .73 D .7737.执行如图所示的程序框图,若输入2,1==b a ,则输出的=x ( )A .25.1B .375.1C .4375.1D .40625.18.ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 9.已知函数()()2sin 0,22f x x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭的部分图象如图所示,则把函数()f x 的图像向左平移6π后得到的函数图象的解析式是( )A .2sin 2y x =B .2sin 23y x π⎛⎫=-⎪⎝⎭C .2sin 26y x π⎛⎫=-⎪⎝⎭D .2sin 6y x π⎛⎫=-⎪⎝⎭10.已知数列{}n a 满足:)2112,11n a a +==+, 则12a =( )A .101B .122C .145D .17011.已知函数()()1,1010lg 2,10x x f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,若()()282f m f m -<,则实数m 的取值范围是( )A .()4,2-B .()4,1-C .()2,4-D .()(),42,-∞-+∞12.已知函数()21,g x m x x e e e ⎛⎫=-≤≤⎪⎝⎭为自然对数的底数与()2ln h x x =的图象上存在关于x 轴对称的点,则实数m 的取值范围是( ) A .211,2e ⎡⎤+⎢⎥⎣⎦ B .21,2e ⎡⎤-⎣⎦ C .2212,2e e ⎡⎤+-⎢⎥⎣⎦D .)22,e ⎡-+∞⎣第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分。
河北省唐山2019-2020学年高一上学期12月月考语文试题_word版有答案(精校版)
唐山一中2019-2020学年第一学期高一年级第二次月考语文试卷说明:1.考试时间150分钟,满分150分。
2.将卷Ⅰ答案用2B铅笔涂在答题卡上,将卷Ⅱ答案答在答题纸上。
3.Ⅱ卷答题纸卷头和答题卡均填涂本次考试的考号,不要误填学号,答题卡占后5位。
一、基础题(共12题,每题2分,计24分)1.下列各组词语中加点字的读音全部正确的一组是()A. 哺.育(pǔ)驰骋.(chéng)溘.然长逝(kè)B.蕈.菌(xūn)拾掇.(duó) 熏陶渐.染(jiān)C.房檩.(lín) 龟.裂(jūn) 蓊.蓊郁郁(wěn)D.愧疚.(jiù) 袅娜.(nuó) 管窥蠡.测(lí)2.下列词语中有错别字的一组是()A.暧昧樊笼遑恐不安放荡不羁B.阡陌踯躅妖童媛女奄奄一息C.婀娜猗郁夙兴夜寐一夜知秋D.玳瑁脉脉平平仄仄唯唯诺诺3. 下列词语的解释有误的一项是()A.秋士:古时指到了暮年仍不得志的知识分子。
B.总角:古代少年男女把头发扎成丫髻,叫总角。
C.结发:指成婚之夕,男左女右共髻束发。
D.青衿:是商代读书人的服装,这里指代有学识的人。
4. 对下列各句中运用的修辞格,判断正确的一项是()A.光与影有着和谐的旋律,如梵阿玲上奏着的名曲。
(比喻)B.可是啊,北国的秋,却特别地来得清,来得静,来得悲凉。
(夸张)C.屈心而抑志兮,忍尤而攘诟。
(对偶)D.孔雀东南飞,五里一徘徊。
(拟人)5. 下列各句中加点的字,活用现象与其他三项不同的一项是()A.夙兴夜寐B.雨雪霏霏C.卿当日胜贵D.乌鹊南飞6.下列各句中不含偏义复词的一项是()A.昼夜勤作息B.便可白公姥C.我有亲父母D.否泰如天地7.下列文学常识的表述,错误的一项是()A.朱自清是毛泽东称颂的“表现了我们民族的英雄气概”的著名作家、学者、民主战士,他的作品有诗集《踪迹》,散文集《背影》《欧游杂记》等。
河北省武安市第三中学高三数学上学期第一次月考试题
武安三中高三第一次月考文科数学试题(时间120分钟,满分150分)注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上3.考试范围:集合与常用逻辑用语,函数,导数。
第Ⅰ卷(客观题 共60 分)一、选择题:(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填涂在答题卡上.)1.若集合}65432{,,,,=P ,}753{,,=Q ,若Q P M I =,则M 的子集个数为( ) A .5 B .4 C .3 D .22.已知集合2{|230}A x x x =--≤,{|ln(2)}B x y x ==-,则A B =I ( ) A .(1,3) B .(1,3] C .[1,2)- D .(1,2)- 3.已知命题:p x ∀∈R ,sin 1x ≤,则( )A.R x p ∈∀⌝0:,1sin 0≥xB. :p x ⌝∀∈R ,sin 1x >C. :p x ⌝∃∉R ,sin 1x >D.R x p ∈∃⌝0:,1sin 0>x4.已知函数)(x f 满足x f x=)2(,则=)3(f ( ) A .3log 2 B .2log 3 C .2ln D .3ln5.如果函数f (x )=x 2+2(a ﹣1)x+2在区间(﹣∞,2]上单调递减,那么实数a 的取值范围是( ) A .a≤﹣2 B .a≥﹣2 C .a ≤﹣1 D .a≥16.已知函数f (x )是函数y=log a x (a >0且a≠1)的反函数,则函数y=f (x )+2图象恒过点的坐标为( ) A .(1,0)B .(0,1)C .(1,2)D .(0,3)7.已知方程a x =-12有两个不等实根,则实数a 的取值范围是( ) A .()0,∞- B .()2,1 C .()+∞,0 D .()1,08. 下列函数中,在其定义域内既是奇函数又单调递增的函数是( ) A .1y x=-B .33x x y -=-C .y x x =D .3y x x =- 9.三个数60.7,0.76,0.7log 6的大小关系为( )A. 60.70.70.7log 66<<B. 60.70.70.76log 6<<C .0.760.7log 660.7<< D. 60.70.7log 60.76<<10.函数131()()2xf x x =-的零点所在的区间为( )A. 1(0,)6B. 11(,)63C. 11(,)32D. 1(,1)211.已知函数()3134f x x ax =-+,若函数()y f x =的极小值为0,则a 的值为( ) A .14 B .12- C .34 D .34-12.已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式()()0f x xf x '+<成立,若3(3)a f =,2(2),b f =--(1)c f =,则c b a ,,的大小关系是( ) A .c b a >> B .a b c >> C .c a b >> D .b c a >>第Ⅱ卷(主观题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,在每小题给出横线上填上正确结果) 13. 若不等式1x a -<成立的充分条件是04x <<,则实数a 的取值范围是 . 14.若幂函数()()22233--⋅+-=m m xm m x f 的图像不过原点,则m 的值为 .15.函数ln y x x =的图象在点1x =处的切线方程_____________. 16.已知3()2'(1)f x x xf =+,则'(1)f =________三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)已知集合A ={x |x 2-2x -3≤0,x ∈R},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R}.若A ⊆∁R B ,求实数m 的取值范围.18.(12分)设p :2x 2-x -1≤0,q :x 2-(2a -1)x +a(a -1)≤0,若非q 是非p 的必要不充分条件,求实数a 的取值范围.19.(12分)设()f x 是定义在[3,3]-上的偶函数,当03x ≤≤时,()f x 单调递减,若(12)()f m f m -<成立,求m 的取值范围.20.(12分)已知函数⎪⎭⎫⎝⎛++=a x x f 1020lg )(为奇函数,(Ⅰ)求实数a 的值;(Ⅱ)求不等式0)(>x f 的解集。
2019-2020学年北京第二十中学高三语文月考试题及答案
2019-2020学年北京第二十中学高三语文月考试题及答案一、现代文阅读(36分)(一)现代文阅读I(9分)阅读下面的文字,然后完成下面小题。
老村与老屋王兆胜①每个从山村走向都市的人,大概都有一个如梦如幻的村庄记忆,也有一个关于“老屋”的深深的情结。
因为它们不仅仅包裹着我们的童年、少年甚至青年时光,还成为我们这些远走天涯的游子生命的根系。
②每次回到生养自己的村庄,都有一种莫名的酸楚和愧疚涌上心头。
原来记忆中的村庄和老屋渐渐被新房代替,剩下的也多颓败与凋零,一如秋后的残荷与落叶,在风中悲壮地摇曳。
我已找不到自己的根脉,也挽不住逝去的岁月!上小学时必经的一条转弯抹角的胡同虽在,但已面目全非,颓败、肮脏一览无余,永远失去了原来的严整、净洁、古朴和神秘,现在连一个神奇的故事也隐藏不住了。
③还有童年的井、童年的河、童年的树、童年的鹅、童年的麦田和童年的菜园,现在都已失去了踪影。
记得村边曾有一个大河湾,这是全村的鸭与鹅的天堂。
每当清晨阳光洒满村庄,可爱的鸡、鸭、鹅、狗蜂拥而出,鸡们寻找自己的玩伴或飞上草垛引吭高歌,狗们追逐友伴或吠天叫日,鸭与鹅们纷纷迈着骄傲的步伐向池湾奔去。
鸭子左右摇晃,步态憨厚拙笨,常因急切弄翻了自己;而鹅们则大为不同,它们头颈高昂、步履轻盈、声音清扬,是动物中的君子,真有气宇轩昂、国色天香和超凡脱俗之姿,令人叹为观止!如今村庄中的河湾枯了,鸭与鹅也看不到了,只剩下了日夜的鸡犬不宁。
④我家的老屋早已拆除,并盖上了新房,现在再也找不到原来的形象。
由于缺乏先见之明,当时就连一张照片也没能留下,这令我一直耿耿于怀,因为老屋寄托着我的童年、少年、青年生活,也包裹着爷爷、奶奶、父亲、母亲以及兄弟姐妹共同生活的岁月,我唯恐一不小心将这些记忆丢失,以后就再也找不回老屋了。
我曾想自己为“老屋”画一幅画,但因画技不佳迟迟没有动笔;我曾寄望于儿子,让他好好学画,将来有一天让他将我的记忆画下来,但那又是遥遥无期和不能指望的事情,因为儿子画技再高,他能画出我记忆中的海水情深吗?于是,我决定用文章将老屋描绘出来,哪怕是一个简单的轮廓也好!⑤母亲曾告诉我们兄弟姐妹:“以后你们可别忘了小舅,是他一砖一瓦一单一木用小驴驮料,帮咱家盖起南屋的。
银川市第二十四中学2018-2019学年高三上学期第三次月考试卷数学含答案
银川市第二十四中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x2. 在正方体1111ABCD A B C D -中,M 是线段11A C 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.3. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .54. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A .(1,12)+B .(12,)++∞ C. (1,3) D .(3,)+∞ 5. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2}C .{x|x >﹣lg2}D .{x|x <﹣lg2}6. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )7. “1ab >”是“10b a>>”( )A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 8. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 9. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.10.设a=tan135°,b=cos (cos0°),c=(x 2+)0,则a ,b ,c 的大小关系是( ) A .c >a >b B .c >b >a C .a >b >c D .b >c >a11.如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD12.已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .14.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .15.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 . 16.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 三、解答题(本大共6小题,共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省青岛第五十八中2016届高三数学12月月考试题 文
2015.12
第Ⅰ卷(共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,有
一项是符合题目要求的.
1. 已知全集为R ,集合A={1|()12x
x ≤},B={|2x x ≥},R A B ð=( )
A . [0,2]
B .[0,2)
C .(1,2)
D . (1,2] 2. 偶函数()f x 在[]0,2上递减,则(
)12211 , log , log 42a f b f c f ⎛⎛⎫=== ⎪ ⎝⎭⎝⎭
大小为 ( )
A.c a b >>
B. a c b >>
C. b a c >>
D. a b c >>
3.下列说法中正确的是( )
A.命题“若x y x y >-<-,则”的逆否命题是“若x y ->-,则x y <”
B.若命题22
:,10:,10p x R x p x R x ∀∈+>⌝∃∈+>,则
C.设l 是一条直线,,αβ是两个不同的平面,若,//l l αβαβ⊥⊥,则
D.设,x y R ∈,则“()20x y x -⋅<”是“x y <”的必要而不充分条件 4.变量,x y 满足约束条件20,201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩
,则目标函数2z x y =+的最小值为( )
A.5
B.4
C.3
D.2
5.在空间给出下面四个命题(其中m 、n 为不同的两条直线,α、β为不同的两个平面 ①m ⊥α,n ∥α⇒m ⊥n
②m ∥n ,n ∥α⇒m ∥α
③m ∥n ,n ⊥β,m ∥α⇒α⊥β
④m ∩n=A ,m ∥α,m ∥β,n ∥α,n ∥β⇒α∥β
其中正确的命题个数有( )
A .1个
B .2个
C .3个
D .4个
6、已知:x >0,y >0,且
,若x+2y >m 2+2m 恒成立,则实数m 的取值范围是( ) A .(][),24,-∞-+∞ B. (][),42,-∞-+∞ C. ()2,4- D. ()4,2-
7、已知函数f (x )=
sin2x+cos2x ﹣m 在[0,]上有两个零点,则实数m 的取值范围是( )
A . (﹣1,2)
B . [1,2)
C . (﹣1,2]
D . [1,2]
8. 已知某几何体的三视图如图所示,则该几何体的外接球的表面积
为( )
A. 36π
B.
94π C. 9π D. 92π
9、若过点()2P --的直线与圆224x y +=有公共点,则该直线
的倾斜角的取值范围是( ) A. 0,6π⎛
⎫ ⎪⎝⎭ B. 0,3π⎡⎤⎢⎥⎣⎦ C. 0,6π⎡⎤⎢⎥⎣⎦
D. 0,3π⎛⎤ ⎥⎝⎦ 10、从双曲线=1的左焦点F 引圆x 2
+y 2=3的切线FP 交双曲线右支于点P ,T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO|﹣|MT|等于( )
A .
B .
C .
D .
第Ⅱ卷(非选择题 共100分)
二、填空题:本大题共5小题,每小题5分,共25分.
11.若向量,a b r r 的夹角为150,3,42a b a b ==+=,则___________.
12.函数12y x
=
-的定义域是________.
13.△ABC 的面积为AB =5, AC =8,则BC 等于 .
14、已知12,F F 分别为双曲线()22
2210,0x y a b a b
-=>>的左,右焦点,P 为双曲线右支上的一点,且122PF PF =.若12PF
F ∆为等腰三角形,则该双曲线的离心率为_________.
15.已知偶函数()f x 满足()()
[]()2111,0f x x f x x f x -=∈-=,且当时,,若在区间[]13-,内,函数()()()log 2a g x f x x =-+有3个零点,则实数a 的取值范围_________.
三、解答题:本大题6小题,共75分.解答应写出文字说明,证明过程或演算步骤.
16.(本题满分12分)
已知函数()()()22sin cos cos 0,f x x x x x f x ωωωωω=+->的图象相邻两条对称轴的距离为4
π. (I )求4f π⎛⎫ ⎪⎝⎭
的值; (II )将()f x 的图象上所有点向左平移()0m m >个长度单位,得到()y g x =的图象,若()y g x =图象的一个对称中心为,06π⎛⎫
⎪⎝⎭,当m 取得最小值时,求()g x 的单调递增区间.
17、(本题满分12分)
已知等差数列{a n }的前n 项和为S n ,且a 2=,S 10=40.
(Ⅰ)求数列{a n }的通项公式;
(Ⅱ)令b n =(﹣1)n+1a n a n+1(n ∈N *),求数列{b n }的前2n 项的和T 2n .
18、(本题满分12分)
如图,在三棱柱
111A B C 中,四边形1111ABB A ACC A 和都为矩形.。