2017年湖北省武汉市中考数学试卷(含答案)

合集下载

武汉市2017年中考数学试卷参考答案

武汉市2017年中考数学试卷参考答案

2
又∵AB=AC ∴AO 平分∠BAC (2)方法 1:如图,过点 D 作 DK⊥AO 于 K. ∵由(1)知 AO⊥BC,OB=OC,BC=6
∴ BH=CH= 1 BC=3,∠COH= 1 ∠BOC,
2
2
∵∠BAC= 1 ∠BOC,∴∠COH=∠BAC 2
在 Rt△COH 中,∠OHC=90°,sin∠COH= HC CO


x x
2 5x 5<0
6>0


xx< <5-1或x>6∴
x<-1或 x<5

x>6 x<5
∴此时x<-1

x x
2 5x 5>0
6<0

x>1<5 x<6∴x>1<5x<6
解得:
5<x<6
综上,原不等式的解集是: x<-1或5<x<6
由 6 >x得, 6 x>0
x5
x5
y
y = x2 5∙x 6
∴ 6 x2 5x >0 ∴ x2 5x 6<0
x5
x5

x2 5x x 5<0
6>0


x x
2 5x 5>0
6<0
-1 O
6
x
结合抛物线 y=x2 5x 6 的图象可知
解法 2:图像法,将反比例函数 y 6 向右平移 5 个单位. x
23、.解:(1)∵∠ADC=90°,∠EDC+∠ADC=180°, ∴∠EDC=90°,又∠ABC=90°, ∴∠EDC=∠ABC,又∠E 为公共角, ∴△EDC∽∠EBA,
B C
∴EEDB=EECA,∴ED²EA=EC²EB. (2)过 C 作 CF⊥AD 于 F,过 A 作 AG⊥EB 交 EB 延长线于 G.

2017武汉中考数学真题试卷及答案

2017武汉中考数学真题试卷及答案

一、选择题(共10小题,每小题3分,共30分)1.(3分)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()2017年湖北省武汉市中考数学试卷(官方)A .9B .10C .11D .129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 10.(3分)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为 .12.(3分)计算x x+1﹣1x+1的结果为 . 13.(3分)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.(3分)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解:√36=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【考点】62:分式有意义的条件.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【考点】A:48:同底数幂的除法;B:35:合并同类项;C:46:同底数幂的乘法;D:47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【考点】4B:多项式乘多项式.【专题】11 :计算题;512:整式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【考点】U3:由三视图判断几何体.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C 、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D 、五棱柱的主视图为矩形,不符合题意,故选:A .【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A .9B .10C .11D .12【考点】37:规律型:数字的变化类.【分析】观察得出第n 个数为(﹣2)n ,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n 个数为(﹣2)n ,那么(﹣2)n ﹣2+(﹣2)n ﹣1+(﹣2)n =768,当n 为偶数:整理得出:3×2n ﹣2=768,解得:n=10;当n 为奇数:整理得出:﹣3×2n ﹣2=768,则求不出整数,故选B .【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n 个数为(﹣2)n 是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 【考点】MI :三角形的内切圆与内心.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由AD 2=AB 2﹣BD 2=AC 2﹣CD 2,可得72﹣x 2=82﹣(5﹣x )2,解得x=1,推出AD=4√3,由12•BC•AD=12(AB +BC +AC )•r ,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4√3=12×20×r , ∴r=√3,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7【考点】KJ :等腰三角形的判定与性质.【分析】①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算x x+1﹣1x+1的结果为 x−1x+1 . 【考点】6B :分式的加减法. 【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=x−1x+1, 故答案为:x−1x+1. 【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB ∥CD ,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:25【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .【考点】KD :全等三角形的判定与性质;KQ :勾股定理;PB :翻折变换(折叠问题);R2:旋转的性质.【分析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,由AB=AC=2√3、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE (SAS ),进而可得出DE=FE ,设CE=2x ,则CM=x ,EM=√3x 、FM=4x ﹣x=3x 、EF=ED=6﹣6x ,在Rt △EFM 中利用勾股定理可得出关于x 的一元二次方程,解之可得出x 的值,再将其代入DE=6﹣6x 中即可求出DE 的长.【解答】解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中,{AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3. 故答案为:3√3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x 的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 .【考点】HA :抛物线与x 轴的交点.【分析】先用a 表示出抛物线与x 轴的交点,再分a >0与a <0两种情况进行讨论即可.【解答】解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x +a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 【点评】本题考查的是抛物线与x 轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1)【考点】86:解一元一次方程.【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x ﹣3=2(x ﹣1)4x ﹣3=2x ﹣24x ﹣2x=﹣2+32x=1x=12【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【考点】KD:全等三角形的判定与性质.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C 部门所对应的圆心角的度数为 108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【考点】VB :扇形统计图;W2:加权平均数.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B ,C 部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元). 【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【专题】12 :应用题.【分析】(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买甲、乙两种奖品共花费了650元列方程40x +30(20﹣x )=650,然后解方程求出x ,再计算20﹣x 即可;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组{20−x ≤2x 40x +30(20−x)≤680,然后解不等式组后确定x 的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x ≤8, ∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.【考点】MA:三角形的外接圆与外心;T7:解直角三角形.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=53BC=10,由勾股定理求出BE=8,证出BE∥OA,得出OABE=ODDE,求出OD=2513,得出CD═9013,而BE∥OA,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC ⊥BE ,∵∠E=∠BAC ,∴sinE=sin ∠BAC ,∴BC CE =35, ∴CE=53BC=10, ∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=kx即可得到结论;(2)根据已知条件得到M(m+42,m),N(6m,m),根据MN=4列方程即可得到结论;(3)根据6x−5>x得到6−x2+5xx−5>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=kx的图象上,∴2×(﹣3)+4=a ,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M 在直线AB 上,∴M (m+42,m ),N 在反比例函数y=6x上, ∴N (6m,m ), ∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m =4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0, ∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得 {x <−1或x >6x <5, ∴{x <−1x <5或{x >6x <5, ∴此时x <﹣1,由{x 2−5x −6<0x −5>0得,{−1<x <6x >5, ∴{−1<x <6x >5, 解得:5<x <6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【考点】SO :相似形综合题.【分析】(1)只要证明△EDC ∽△EBA ,可得ED EB =EC EA,即可证明ED•EA=EC•EB ; (2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .想办法求出EB ,AG 即可求出△ABE 的面积,即可解决问题;(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,只要证明△AFG ∽△CEH ,可得AG CH =FG EH,即4a 5+n−3a =4n+3,求出a 即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC +∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴ED EB =EC EA ,∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35,∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6, ∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴EF EG =CF AG, ∴6EG =6√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F ,易证△AFG ∽△CEH ,∴AG CH =FG EH, ∴4a 5+n−3a =4n+3, ∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.【考点】HF :二次函数综合题.【分析】(1)根据点A 、B 的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A 、F 的坐标利用待定系数法,可求出直线AF 的解析式,联立直线AF 和抛物线的解析式成方程组,通过解方程组可求出点G 的坐标,进而可得出点H 的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A 、E (F 、H )的坐标利用待定系数法,可求出直线AE (FH )的解析式,由此可证出FH ∥AE ;(3)根据点A 、B 的坐标利用待定系数法,可求出直线AB 的解析式,进而可找出点P 、Q 的坐标,分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况考虑,借助相似三角形的性质可得出点M 的坐标,再利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之即可得出结论.【解答】解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x +12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m )、H (2m ,0)代入y=k 2x +b 2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x +b 0,将A (﹣1,1)、B (4,6)代入y=k 0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A 、B 的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A 、E (F 、H )的坐标利用待定系数法,求出直线AE (FH )的解析式:(3)分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况,借助相似三角形的性质找出点M 的坐标.。

武汉市中考数学试卷含答案解析版

武汉市中考数学试卷含答案解析版

武汉市中考数学试卷含答案解析版The following text is amended on 12 November 2020.2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2x3D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.、 B.、 C.、 D.、5.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A. B. C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129. 已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32 B .32C .√3D .2√310. 如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分) 11. 计算2×3+(﹣4)的结果为 .12. 计算a a +1﹣1a +1的结果为 . 13. 如图,在ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14. 一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15. 如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16. 已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 .三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图 各部门人数及每人所创年利润统计表 部门 员工人数 每人所创的年利润/万元 A 5 10 B b 8 Cc5(1)①在扇形图中,C 部门所对应的圆心角的度数为 ②在统计表中,b= ,c= (2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案21.(8分)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长.22.(10分)如图,直线y=2x+4与反比例函数y=aa 的图象相交于A (﹣3,a )和B 两点 (1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值; (3)直接写出不等式6a −5>x 的解集.23.(10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E . (1)如图1,若∠ABC=∠ADC=90°,求证:EDEA=ECEB ;(2)如图2,若∠ABC=120°,cos ∠ADC=35,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC=cos ∠ADC=35,CD=5,CF=ED=n ,直接写出AD 的长(用含n 的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18解:√36=6.故选:A.2.(3分)(2017武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2x3D.(x2)3解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2x3=x5.D、(x2)3=x64.(3分)(2017武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.、 B.、 C.、 D.、解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为,故中位数为;跳高成绩为的人数最多,故跳高成绩的众数为;故选C.5.(3分)(2017武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2解:原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017武汉)某物体的主视图如图所示,则该物体可能为()A.B.C. D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32 B .32C .√3D .2√3解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2, 即72﹣x 2=82﹣(5﹣x )2,解得x=1, ∴AD=4√3,∵12BCAD=12(AB+BC+AC )r , 12×5×4√3=12×20×r , ∴r=√3, 故选C10.(3分)(2017武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7 解:如图:故选D .二、填空题(本大题共6个小题,每小题3分,共18分) 11.(3分)(2017武汉)计算2×3+(﹣4)的结果为 2 . 解:原式=6﹣4=2, 故答案为:212.(3分)(2017武汉)计算a a +1﹣1a +1的结果为 a −1a +1. 解:原式=a −1a +1,故答案为:a −1a +1.13.(3分)(2017武汉)如图,在ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .解:∵四边形ABCD 是平行四边形, ∴∠ABC=∠D=100°,AB ∥CD , ∴∠BAD=180°﹣∠D=80°, ∵AE 平分∠DAB , ∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.14.(3分)(2017武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:2515.(3分)(2017武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√aa 2−aa 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE 和△AFE 中,{aa =aa∠aaa =∠aaa =60°aa =aa,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3.故答案为:3√3﹣3.16.(3分)(2017武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 . 解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x+a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12;当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 三、解答题(共8题,共72分)17.(8分)(2017武汉)解方程:4x ﹣3=2(x ﹣1)解:4x ﹣3=2(x ﹣1)4x ﹣3=2x ﹣24x ﹣2x=﹣2+32x=1x=1218.(8分)(2017武汉)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.解:CD ∥AB ,CD=AB ,理由是:∵CE=BF ,∴CE ﹣EF=BF ﹣EF ,∴CF=BE ,在△AEB 和△CFD 中,{aa =aa∠aaa =∠aaa aa =aa,∴△AEB ≌△CFD (SAS ),∴CD=AB ,∠C=∠B ,∴CD ∥AB .19.(8分)(2017武汉)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部员工人每人所创的年利润/门数万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=(万元).20.(8分)(2017武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得{20−a≤2a40a+30(20−a)≤680,解得203≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC ,∴sinE=sin ∠BAC ,∴aa aa =35, ∴CE=53BC=10, ∴BE=√aa 2−aa 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴aa aa =aa aa ,即58=aa 5−aa, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√aa 2+aa 2=√92+32=3√10.22.(10分)(2017武汉)如图,直线y=2x+4与反比例函数y=a a的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值;(3)直接写出不等式6a −5>x 的解集.(1)∵点A (﹣3,a )在y=2x+4与y=a a的图象上, ∴2×(﹣3)+4=a ,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M 在直线AB 上,∴M (a +42,m ),N 在反比例函数y=6a上, ∴N (6a,m ), ∴MN=x N ﹣x m =6a ﹣a −42=4或x M ﹣x N =a −42﹣6a=4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6a −5>x 得:6a −5﹣x >0, ∴6−a 2+5a a −5>0, ∴a 2−5a −6a −5<0,∴{a 2−5a −6>0a −5<0或{a 2−5a −6<0a −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{a 2−5a −6>0a −5<0得 {a<−1或a>6a<5, ∴{a<−1a<5或{a>6a<5, ∴此时x <﹣1,由{a 2−5a −6<0a −5>0得,{−1<a<6a>5, ∴{−1<a<6a>5, 解得:5<x <6,综上,原不等式的解集是:x <﹣1或5<x <6.23.(10分)(2017武汉)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E .(1)如图1,若∠ABC=∠ADC=90°,求证:EDEA=ECEB ;(2)如图2,若∠ABC=120°,cos ∠ADC=35,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC=cos ∠ADC=35,CD=5,CF=ED=n ,直接写出AD 的长(用含n 的式子表示) 解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴aa aa =aa aa ,∴EDEA=ECEB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35,∴aa aa =35,∵CD=5,∴DF=3,∴CF=√aa 2−aa 2=4,∵S △CDE =6,∴12EDCF=6, ∴ED=12aa=3,EF=ED+DF=6, ∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC , ∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√aa 2−aa 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴aa aa =aa aa, ∴6aa =46√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4a +3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a , ∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F ,易证△AFG ∽△CEH ,∴aa aa =aa aa, ∴4a 5+a −3a =4a +3, ∴a=a +5a +6, ∴AD=5a=5(a +5)a +6. 24.(12分)(2017武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −a =116a +4a =6,解得:{a =12a =−12,∴抛物线的解析式为y=12x2﹣12x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,{a=(a−1)a+aa=12a2−12a,解得:{a1=−1a1=1,{a2=2aa2=2a2−a,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=12x2﹣12x=12x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,{−a1+a1=1a1+a1=0,解得:{a1=−12a1=12,∴直线AE的解析式为y=﹣12x+12.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,{a2=a2aa2+a2=0,解得:{a2=−12a2=a,∴直线FH的解析式为y=﹣12x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b,将A (﹣1,1)、B (4,6)代入y=k 0x+b 0中,{−a 0+a 0=14a 0+a 0=6,解得:{a 0=1a 0=2, ∴直线AB 的解析式为y=x+2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0). 当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴aa′aa′=aa′aa′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .。

(含参考答案) 2017年湖北省武汉市中考数学试卷

(含参考答案) 2017年湖北省武汉市中考数学试卷

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为( ) A .6 B .﹣6 C .18 D .﹣182.(3分)若代数式在实数范围内有意义,则实数a 的取值范围为( )A .a=4B .a >4C .a <4D .a ≠4 3.(3分)下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.(3分)计算(x +1)(x+2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.(3分)点A (﹣3,2)关于y 轴对称的点的坐标为( )A .(3,﹣2)B .(3,2)C .(﹣3,﹣2)D .(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为( )A .B .C .D .8.(3分)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD ⊥BC于D,设BD=x,则CD=5﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,可得72﹣x2=82﹣(5﹣x)2,解得x=1,推出AD=4,由•BC•AD=(AB+BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算﹣的结果为.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.【分析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x﹣x=3x、EF=ED=6﹣6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6﹣6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF 为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6﹣3x=x可求出x以及FE的值,此题得解.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB 和△CFD 中,,∴△AEB ≌△CFD (SAS ),∴CD=AB ,∠C=∠B ,∴CD ∥AB .【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C 部门所对应的圆心角的度数为 108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【分析】(1)只要证明△EDC∽△EBA,可得=,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S=6,△CDE∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.∴S四边形ABCD(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FH∥AE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.第31页(共31页)。

2017年湖北省武汉市中考数学试卷和解析答案

2017年湖北省武汉市中考数学试卷和解析答案

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A .x2+2 B.x 2+3x+2 C.x 2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)3【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,可得72﹣x2=82﹣(5﹣x)2,解得x=1,推出AD=4,由•BC•AD=(AB+BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算﹣的结果为.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3 .【分析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x﹣x=3x、EF=ED=6﹣6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6﹣6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6﹣3x=x可求出x以及FE的值,此题得解.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF 于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2 .【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B 两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【分析】(1)只要证明△EDC∽△EBA,可得=,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FH∥AE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.31。

(完整版)2017年武汉市中考数学试卷(含答案

(完整版)2017年武汉市中考数学试卷(含答案

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为( )A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为( )A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2 B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1。

501。

60 1.65 1.70 1.751。

80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1。

70 B.1.65、1.75 C.1.70、1.75 D.1.70、1。

705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2) B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B.C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为( )A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部员工人每人所创的年利润门数/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【考点】62:分式有意义的条件.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2 B.x6﹣x C.x2•x3D.(x2)3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1。

2017武汉中考数学试题(附含答案解析版)

2017武汉中考数学试题(附含答案解析版)

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30 分)1.计算.;的结果为()A. 6B.—6C. 18D.—1812. 若代数式•在实数范围内有意义,则实数a的取值范围为()A. a=4B. a>4C. a v4D. a≠43. 下列计算的结果是X5的为()A. 10 2 6 2 3 2、3X ÷( B. X - X C. X? X D. (X )4. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩 1.50 1.60 1.65 1.70 1.75 1.80/m人数 2 3 2 341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B. 1.65、1.75 C. 1.70、1.75D. 1.70、1.705.计算(x+1 )(X+2)的结果为()A. X2+2 2 2 2B. X +3X+2 C . X +3X+3 D. X +2X+26.点A(-3,2)关于y轴对称的点的坐标为()A. (3,- -2)B. (3, 2)C. (-3,- 2)D.(2,-3)7.某物体的主视图如图所示,则该物体可能为()8. 按照一定规律排列的n 个数:-2、4、- 8、16、- 32、64、…,若最后三 个数的和为768 ,则n 为( )A. 9 B . 10 C . 11 D . 129.已知一个三角形的三边长分别为 5、7、8,则其内切圆的半径为()10. 如图,在 Rt △ ABC 中,∠ C=90° ,以△ ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ ABC 的其他边上, 则可以画出的不同的等腰三角形的个数最多为()A . 4B . 5C . 6D . 7二、填空题(本大题共6个小题,每小题3分,共18分) 11 .计算2×3+ (-4)的结果为 __________ .X112 .计算κ + 1-耳+ 1的结果为 __________ . 13.如图,在? ABCD 中,∠ D=100 ° ,∠ DAB 的平分线AE 交DC 于点E ,连接BE 若AE=AB ,贝U ∠ EBC 的度数为 ______ .B. D .14. 一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同•随机摸出两个小球,摸出两个颜色相同的小球的概率为_________ •15. 如图,在△ ABC 中,AB=AC=2,∠BAC=120° ,点D、E都在边BC上, ∠ DAE=60° .若BD=2CE,贝U DE 的长为______ .B Q EC16. 已知关于X的二次函数y=aχ2+ (a2- 1)X- a的图象与X轴的一个交点的坐标为(m,0).若2V m V 3,则a的取值范围是__________ .三、解答题(共8题,共72分)17. (8 分)解方程:4χ- 3=2 (X- 1)18. (8 分)如图,点C、F、E、B 在一条直线上,∠ CFD=∠ BEA, CE=BF, DF=AE,写出CD与AB之间的关系,并证明你的结论.C -------------------- D19. (8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部员工人每人所创的年利润/门数万元A 5 10Bb 8CC 5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= _______ ,C= ______(2)求这个公司平均每人所创年利润.各部门人数分布扇形图ZTΛ/ Agii-I \I疏BSP门\\ 4孩∖f部门\20. (8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件•其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21. (8分)如图,△ ABC内接于。

2017年武汉市中考数学试卷(含答案解析版)

2017年武汉市中考数学试卷(含答案解析版)

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A.B.C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A .9B .10C .11D .129. 已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 10. 如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11. 计算2×3+(﹣4)的结果为 .12. 计算x x+1﹣1x+1的结果为 . 13. 如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14. 一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15. 如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16. 已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 .三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数 每人所创的年利润/万元 A5 10 Bb 8 Cc 5(1)①在扇形图中,C 部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18解:√36=6.故选:A.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2解:原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4√3=12×20×r , ∴r=√3,故选C10.(3分)(2017•武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7解:如图:故选D .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .解:原式=6﹣4=2,故答案为:212.(3分)(2017•武汉)计算x x+1﹣1x+1的结果为 x−1x+1 . 解:原式=x−1x+1, 故答案为:x−1x+1. 13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:2515.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中,{AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3.故答案为:3√3﹣3.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 .解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x +a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1)解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=1 218.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.解:(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元). 20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x ≤8, ∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017•武汉)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长. (1)证明:延长AO 交BC 于H ,连接BO ,如图1所示:∵AB=AC ,OB=OC ,∴A 、O 在线段BC 的垂直平分线上,∴AO ⊥BC ,又∵AB=AC ,∴AO 平分∠BAC ;(2)解:延长CD 交⊙O 于E ,连接BE ,如图2所示:则CE 是⊙O 的直径,∴∠EBC=90°,BC ⊥BE ,∵∠E=∠BAC ,∴sinE=sin ∠BAC ,∴BC CE =35, ∴CE=53BC=10, ∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.22.(10分)(2017•武汉)如图,直线y=2x +4与反比例函数y=k x的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值;(3)直接写出不等式6x−5>x 的解集.(1)∵点A (﹣3,a )在y=2x +4与y=k x的图象上, ∴2×(﹣3)+4=a ,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M 在直线AB 上,∴M (m+42,m ),N 在反比例函数y=6x上, ∴N (6m,m ), ∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m=4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0, ∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得{x <−1或x >6x <5,∴{x<−1x<5或{x>6x<5,∴此时x<﹣1,由{x2−5x−6<0x−5>0得,{−1<x<6x>5,∴{−1<x<6 x>5,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)解:(1)如图1中,∵∠ADC=90°,∠EDC +∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴ED EB =EC EA, ∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35, ∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6, ∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴EF EG =CF AG , ∴6EG =6√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F ,易证△AFG ∽△CEH ,∴AG CH =FG EH,∴4a 5+n−3a =4n+3, ∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x +12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m )、H (2m ,0)代入y=k 2x +b 2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x +b 0,将A (﹣1,1)、B (4,6)代入y=k 0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .。

2017武汉中考数学试题(附含答案解析版)

2017武汉中考数学试题(附含答案解析版)

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A. B. C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算﹣的结果为.13.如图,在▱ABCD中,∠D= 00°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2,∠BAC= 0°,点D、E都在边BC上,∠DAE= 0°.若BD=2CE,则DE的长为.16.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B 两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC= 0°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18解:=6.故选:A.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2解:原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B.C.D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC 于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7解:如图:故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .解:原式=6﹣4=2,故答案为:212.(3分)(2017•武汉)计算﹣的结果为.解:原式=,故答案为:.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D= 00°,∠DAB的平分线AE 交DC于点E,连接BE.若AE=AB,则∠EBC的度数为 0°.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D= 00°,AB∥CD,∴∠BAD= 80°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷ = 0°,∵AE=AB,∴∠ABE=( 80°﹣ 0°)÷ =70°,∴∠EBC=∠ABC﹣∠ABE= 0°;故答案为: 0°.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为80 =,故答案为:15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC= 0°,点D、E都在边BC上,∠DAE= 0°.若BD=2CE,则DE的长为3﹣3 .解:将△ABD绕点A逆时针旋转 0°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC= 0°,∴BN=CN,∠B=∠ACB= 0°.在Rt△BAN中,∠B= 0°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC= 0°,∠DAE= 0°,∴∠BAD+∠CAE= 0°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE= 0°.在△ADE和△AFE中,∠ ∠ 0°,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B= 0°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2 .解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,∠ ∠ ,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为 08°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.解:(1)①在扇形图中,C部门所对应的圆心角的度数为: 0°× 0%= 08°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为: 08°,9,6;(2)这个公司平均每人所创年利润为: 098=7.6(万元).20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得 00 0 0 80,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即8=,解得:OD=,∴CD=5+=90,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC==9=3 0.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=xN ﹣xm=﹣=4或xM﹣xN=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴>0<0或<0>0,结合抛物线y=x2﹣5x﹣6的图象可知,由>0 <0得<或 ><,∴<<或><,∴此时x<﹣1,由<0>0得,< <>,∴< <>,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC= 0°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC= 80°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC= 0°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG= 0°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD =S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx 上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,0,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,0,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB 的解析式为y=k 0x+b 0,将A (﹣1,1)、B (4,6)代入y=k 0x+b 0中,0 0 0 0 ,解得: 0 0, ∴直线AB 的解析式为y=x+2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴ ′ ′= ′ ′=, ∴QM′= ,MM′=t , ∴点M 的坐标为(t ﹣ ,t ). 又∵点M 在抛物线y= x 2﹣x 上, ∴ t= ×(t ﹣ )2﹣ (t ﹣), 解得:t=; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y= x 2﹣x 上, ∴2t= ×(t ﹣4)2﹣(t ﹣4), 解得:t= 89. 综上所述:当运动时间为 秒、 秒、 89 秒或 89秒时,QM=2PM .。

湖北省武汉市2017年中考数学真题及答案

湖北省武汉市2017年中考数学真题及答案

湖北省武汉市2017年中考数学真题试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)A.6 B.-6 C.18 D.-18 2.若代数式14a -在实数范围内有意义,则实数a 的取值范围为( ) A.4a = B.4a > C.4a < D.4a ≠ 3.下列计算的结果是5x 的为( )A.102x x ÷ B.6x x - C.23x x D.23()x4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示. 成绩/m 1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数,众数分别为( )A.1.65,1.70 B.1.65,1.75 C. 1.70,1.75 D.1.70,1.70 5.计算(1)(2)x x ++的结果为( )A.22x + B.232x x ++ C. 233x x ++ D.222x x ++ 6.点(3,2)A -关于y 轴对称的坐标为( )A.(3,2)- B.(3,2) C. (3,2)-- D.(2,3,)- 7.某物体的主视图如图所示,则该物体可能为( )A. B. C. D.高途课堂整理8.按照一定规律排列的n 个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则n 为( ) A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为( )A.2B.32D.10.如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A.4 B.5 C. 6 D.7第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算23(4)⨯+-的结果为 .12.计算2111x x x -++的结果为 .13.如图,在 ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E,连接BE,若AE=AB,则∠EBC 的度数为 .14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.如图△ABC 中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE 的长为 .高途课堂整理16.已知关于x 的二次函数y=ax 2+(a 2-1)x-a 的图象与x 轴的一个交点的坐标为(m,0),若2<m<3,则a 的取值范围是 .三、解答题 (共8小题,共72分)在答题卡指定位置写出必要的演算过程或证明过程. 17.解方程:432(1)x x -=-.18.如图,点,,,C F E B 在一条直线上,CFD BEA ∠=∠,,CE BF DF AE ==.写出CD 与AB 之间的关系,并证明你的结论.19.某公司共有,,A B C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表 部门 员工人数 每人所创的年利润/万元 A 510 B b 8 Cc5(1)①在扇形图中,C 部门所对应的圆心角的度数为___________;②在统计表中,b =___________,c =___________; (2)求这个公司平均每人所创年利润.高途课堂整理20.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种...不同的购买方案.21.如图,ABC ∆内接于O ,,AB AC CO =的延长线交AB 于点D .(1)求证AO 平分BAC ∠; (2)若36,sin 5BC BAC =∠=,求AC 和CD 的长. 22.如图,直线24y x =+与反比例函数ky x=的图象相交于(3,)A a -和B两点.(1)求k 的值;(2)直线(0)y m m =>与直线AB 相交于点M ,与反比例函数ky x=的图象相交于点N .若4MN =,求m 的值; (3)直接写出不等式65x x >-的解集. 23.已知四边形ABCD 的一组对边,AD BC 的延长线相交于点E .高途课堂整理(1)如图1,若90ABC ADC ∠=∠=,求证ED EA EC EB = ;(2)如图2,若120ABC ∠=,3cos 5ADC ∠=,5CD =,12AB =,CDE ∆的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边,AB DC 的延长线相交于点F ,若3cos cos 5ABC ADC ∠=∠=,5CD =,CF ED n ==,直接写出AD 的长(用含n 的式子表示).24.已知点(1,1),(4,6)A B -在抛物线2y ax bx =+上.(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,)(2)m m >,直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H ,设抛物线与x 轴的正半轴交于点E ,连接,FH AE ,求证//FH AE ;(3)如图2,直线AB 分别交x 轴,y 轴于,C D 两点,点P 从点C 出发,沿射线CD 方向匀速运动,速度个单位长度,同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度,点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,2QM PM =,直接写出t 的值.高途课堂整理参考答案及解析: 1.【答案】A. 【解析】故选A.考点:算术平方根. 2.【答案】D.考点:分式有意义的条件. 3.【答案】C. 【解析】试题解析:A.=x 8,该选项错误;B.与不能合并,该选项错误; C.=,该选项正确; D.=x 6,该选项错误.故选C.考点:1.同底数幂的除法;2.同底数幂的乘法;3.积的乘方与幂的乘方. 4.【答案】C. 【解析】102x x 6x x 23x x 5x 23()x 高途课堂整理考点:1.中位数;2.众数. 5.【答案】B. 【解析】试题解析:=x 2+2x+x+2= x 2+3x +2.故选B.考点:多项式乘以多项式 6.【答案】B. 【解析】试题解析:根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得: 点A(-3,2)关于y 轴对称的坐标为(3,2). 故选B.考点:关于x 轴、y 轴对称的点的坐标特征 7.【答案】D 【解析】试题解析:只有选项A 的图形的主视图是拨给图形,其余均不是. 故选A. 考点:三视图. 8.【答案】A.考点:数字变化规律.(1)(2)x x ++高途课堂整理9.【答案】C高途课堂整理考点:三角形的内切圆.10.【答案】C考点:画等腰三角形. 11.【答案】2. 【解析】试题解析:=6-4=2. 考点:有理数的混合运算. 12.【答案】x-1. 【解析】试题解析:=考点:分式的加减法.13.【答案】30°. 【解析】23(4)⨯+-2111x x x -++211)(1)=111(-+-=-++x x x x x x 高途课堂整理考点:1.解平分线的性质;2.平行四边形的性质. 14.【答案】. 【解析】试题解析:根据题意可得:列表如下 红1 红2 黄1 黄2 黄 3 红1红1,红2 红1,黄1 红1,黄2 红1,黄3 红2 红2,红1红2,黄1 红2,黄2 红2,黄3 黄1 黄1,红1 黄1,红2黄1,黄2 黄1,黄3 黄2 黄2,红1 黄2,红2 黄2,黄1黄2,黄3 黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况, 故摸出两个颜色相同的小球的概率为. 考点:列表法和树状图法.15.【答案】7.2582=205高途课堂整理【解析】考点:1.含30度角的直角三角形;2.等腰三角形的性质.高途课堂整理16.【答案】-3<a<-2,<a<. 【解析】 试题解析:把(m,0)代入y=ax 2+(a 2-1)x-a 得,am 2+(a 2-1)m-a=0解得:m= ∵2<m<3解得:-3<a<-2,<a<. 考点:二次函数的图象.17.【答案】x=.考点:解一元一次方程.18.【答案】证明见解析:【解析】试题分析:通过证明ΔCDF≌ΔABE,即可得出结论试题解析:CD 与AB 之间的关系是:CD=AB,且CD∥A B证明:∵CE=BF,∴CF=BE在ΔCDF 和ΔBAE 中∴ΔCDF≌ΔBAE1312222(--1)(--1)(+1)22a a a a a ±±=131212CF=BE CFD=BEA DF=AE ⎧⎪∠∠⎨⎪⎩高途课堂整理∴CD=BA,∠C=∠B∴CD∥BA考点:全等三角形的判定与性质.19.【答案】(1)①108°;②9,6;(2)7.6万元.5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6 答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.20.【答案】(1)甲、乙两种奖品分别购买5件、15件.(2)该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.(2)设甲种奖品购买m件,则乙种奖品购买(20-m)件高途课堂整理依题意得:解得: ∵m 为整数,∴m=7或8当m=7时,20-m=13;当m=8时,20-m=12答:该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.考点:1.二元一次方程组的应用;2.一元一次不等式组的应用.21.【答案】(1)证明见解析;(2);. (2)过点C 作CE⊥AB 于E∵sin∠BAC=,设AC=5m,则CE=3m ∴AE=4m,BE=m在Rt ΔCBE 中,m 2+(3m)2=36 20-240+30(20-m)650m m m ⎧≤⎨≤⎩2083m ≤≤901335高途课堂整理∴m=, ∴AC=延长AO 交BC 于点H,则AH⊥BC,且BH=CH=3,考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例.22.【答案】(1)-6;(2) m=2或6+;(3) x<-1或5<x<65高途课堂整理(2)∵M 是直线y=m 与直线AB 的交点∴M(,m) 同理,N(,m)∴MN=|-|=4 ∴-=±4 解得m=2或-6或6±∵m>0∴m=2或6+(3)x<-1或5<x<6考点:1.求反比例函数解析式;2.反比例函数与一次函数交点问题. 23.【答案】(1)证明见解析;;(3) 42m -6m 42m -6m 42m -6m 5256n n ++高途课堂整理(3)由(1)(2)提供的思路即可求解.试题解析:(1)∵∠ADC=90°∴∠EDC=90°∴∠ABE=∠CDE又∵∠AEB=∠CED∴ΔEAB∽ΔECD∴∴由(1)有:ΔECG∽ΔEAHEB EA ED EC=ED EA EC EB =高途课堂整理∴∴S四边形ABCD =SΔAEH -S ΔECG-S ΔABH=(3) 考点:相似三角形的判定与性质.24.【答案】(1)抛物线的解析式为:y=x 2-x;(2)证明见解析;(3);. (3)进行分类讨论 即可得解. 试题解析:(1)∵点A(-1,1),B(4,6)在抛物线y=ax 2+bx 上 ∴a-b=1,16a+4b =6解得:a=,b=- ∴抛物线的解析式为:y=x2-x EG CG EH AH =116622⨯⨯--⨯⨯5256n n ++1212156±132±12121212高途课堂整理设直线AF 的解析式为y=kx+m∵A (-1,1)在直线AF 上,∴-k+m=1即:k=m-1∴直线AF 的解析式可化为:y=(m-1)x+m与y=x 2-x 联立,得(m-1)x+m=x 2-x ∴(x+1)(x-2m)=0∴x=-1或2m∴点G 的横坐标为2m12121212高途课堂整理考点:二次函数综合题.高途课堂整理。

【真题】2017年武汉市中考数学试卷及答案解析(word版)

【真题】2017年武汉市中考数学试卷及答案解析(word版)

湖北省武汉市2017年中考数学试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)1 )A .6B .-6C .18D .-18 【答案】A. 【解析】故选A.考点:算术平方根. 2.若代数式14a -在实数范围内有意义,则实数a 的取值范围为( ) A .4a = B .4a > C .4a < D .4a ≠ 【答案】D.考点:分式有意义的条件.3.下列计算的结果是5x 的为( )A .102x x ÷B .6x x -C .23x xD .23()x 【答案】C. 【解析】试题解析:A .102x x ÷=x 8,该选项错误;B .6x 与x 不能合并,该选项错误;C .23x x =5x ,该选项正确;D .23()x =x 6,该选项错误. 故选C.考点:1.同底数幂的除法;2.同底数幂的乘法;3.积的乘方与幂的乘方.4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.则这些运动员成绩的中位数,众数分别为( )A .1.65,1.70B .1.65,1.75C . 1.70,1.75D .1.70,1.70 【答案】C. 【解析】考点:1.中位数;2.众数.5.计算(1)(2)x x ++的结果为( )A .22x +B .232x x ++C . 233x x ++D .222x x ++ 【答案】B. 【解析】试题解析:(1)(2)x x ++=x 2+2x+x+2= x 2+3x +2. 故选B.考点:多项式乘以多项式6.点(3,2)A -关于y 轴对称的坐标为( )A .(3,2)-B .(3,2)C . (3,2)--D .(2,3,)- 【答案】B.【解析】试题解析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得:点A(-3,2)关于y轴对称的坐标为(3,2).故选B.考点:关于x轴、y轴对称的点的坐标特征7.某物体的主视图如图所示,则该物体可能为()A. B. C. D.【答案】D【解析】试题解析:只有选项A的图形的主视图是拨给图形,其余均不是.故选A.考点:三视图.8.按照一定规律排列的n个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【答案】A.考点:数字变化规律.9.已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为()A B .32C .D .【答案】C考点:三角形的内切圆.10.如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A.4 B.5 C. 6 D.7【答案】C考点:画等腰三角形.第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)⨯+-的结果为.11.计算23(4)【答案】2.【解析】⨯+-=6-4=2.试题解析:23(4)考点:有理数的混合运算.12.计算2111xx x-++的结果为.【答案】x-1. 【解析】试题解析:2111xx x-++=211)(1)=111(-+-=-++x x xxx x考点:分式的加减法.13.如图,在ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE,若AE=AB,则∠EBC的度数为.【答案】30°.【解析】考点:1.解平分线的性质;2.平行四边形的性质.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【答案】25.【解析】试题解析:根据题意可得:列表如下共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为82= 205.考点:列表法和树状图法.15.如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为.【答案】7.【解析】考点:1.含30度角的直角三角形;2.等腰三角形的性质.16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0),若2<m<3,则a 的取值范围是 . 【答案】-3<a<-2,13<a<12. 【解析】试题解析:把(m ,0)代入y=ax 2+(a 2-1)x-a 得,am 2+(a 2-1)m-a=0解得:22(--1)(+1)2a a a±=∵2<m<3 解得:-3<a<-2,13<a<12. 考点:二次函数的图象.三、解答题 (共8小题,共72分)在答题卡指定位置写出必要的演算过程或证明过程.17.解方程:432(1)x x -=-.【答案】x=12.考点:解一元一次方程.18.如图,点,,,C F E B 在一条直线上,CFD BEA ∠=∠,,CE BF DF AE ==.写出CD 与AB 之间的关系,并证明你的结论.【答案】证明见解析: 【解析】试题分析:通过证明ΔCDF ≌ΔABE ,即可得出结论 试题解析:CD 与AB 之间的关系是:CD=AB ,且CD ∥AB 证明:∵CE=BF ,∴CF=BE 在ΔCDF 和ΔBAE 中CF=BE CFD=BEA DF=AE ⎧⎪∠∠⎨⎪⎩∴ΔCDF ≌ΔBAE ∴CD=BA ,∠C=∠B ∴CD ∥BA考点:全等三角形的判定与性质.19.某公司共有,,A B C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表(1)①在扇形图中,C 部门所对应的圆心角的度数为___________;②在统计表中,b =___________,c =___________; (2)求这个公司平均每人所创年利润. 【答案】(1)①108°;②9,6;(2)7.6万元.5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.20.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种...不同的购买方案.【答案】(1)甲、乙两种奖品分别购买5件、15件.(2)该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.(2)设甲种奖品购买m 件,则乙种奖品购买(20-m )件 依题意得:20-240+30(20-m )650m mm ⎧≤⎨≤⎩解得:2083m ≤≤ ∵m 为整数,∴m=7或8当m=7时,20-m=13;当m=8时,20-m=12答:该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.考点:1.二元一次方程组的应用;2.一元一次不等式组的应用. 21.如图,ABC ∆内接于O ,,AB AC CO =的延长线交AB 于点D .(1)求证AO 平分BAC ∠; (2)若36,sin 5BC BAC =∠=,求AC 和CD 的长.【答案】(1)证明见解析;(2);9013.(2)过点C作CE⊥AB于E∵sin∠BAC=35,设AC=5m,则CE=3m∴AE=4m,BE=m在RtΔCBE中,m2+(3m)2=36∴,∴AC=延长AO交BC于点H,则AH⊥BC,且BH=CH=3,考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例. 22.如图,直线24y x =+与反比例函数ky x=的图象相交于(3,)A a -和B 两点.(1)求k 的值;(2)直线(0)y m m =>与直线AB 相交于点M ,与反比例函数ky x=的图象相交于点N .若4MN =,求m 的值;(3)直接写出不等式65xx>-的解集.【答案】(1)-6;(2) m=2或6+或5<x<6(2)∵M是直线y=m与直线AB的交点∴M(42m-,m)同理,N(6m,m)∴MN=|42m--6m|=4∴42m--6m=±4解得m=2或-6或6±∵m>0∴m=2或6+(3)x<-1或5<x<6考点:1.求反比例函数解析式;2.反比例函数与一次函数交点问题. 23.已知四边形ABCD的一组对边,AD BC的延长线相交于点E.(1)如图1,若90ABC ADC ∠=∠=,求证ED EA EC EB =; (2)如图2,若120ABC ∠=,3cos 5ADC ∠=,5CD =,12AB =,CDE ∆的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边,AB DC 的延长线相交于点F ,若3cos cos 5ABC ADC ∠=∠=,5CD =,CF ED n ==,直接写出AD 的长(用含n 的式子表示).【答案】(1)证明见解析;(2);(3)5256n n ++(3)由(1)(2)提供的思路即可求解. 试题解析:(1)∵∠ADC=90° ∴∠EDC=90° ∴∠ABE=∠CDE 又∵∠AEB=∠CED ∴ΔEAB ∽ΔECD ∴EB EAED EC= ∴ED EA EC EB =由(1)有:ΔECG ∽ΔEAH ∴EG CGEH AH=∴∴S 四边形ABCD =S ΔAEH -S ΔECG -S ΔABH=116622⨯⨯--⨯⨯(3)5256n n ++考点:相似三角形的判定与性质.24.已知点(1,1),(4,6)A B -在抛物线2y ax bx =+上.(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,)(2)m m >,直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H ,设抛物线与x 轴的正半轴交于点E ,连接,FH AE ,求证//FH AE ; (3)如图2,直线AB 分别交x 轴,y 轴于,C D 两点,点P 从点C 出发,沿射线CD 方向个单位长度,同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度,点M 是直线PQ 与抛物线的一个交点,当运动到秒时,2QM PM =,直接写出的值.【答案】(1)抛物线的解析式为:y=12x 2-12x ;(2)证明见解析;(3.(3)进行分类讨论 即可得解.试题解析:(1)∵点A (-1,1),B (4,6)在抛物线y=ax 2+bx 上 ∴a-b=1,16a+4b=6 解得:a=12,b=-12∴抛物线的解析式为:y=12x 2-12x设直线AF的解析式为y=kx+m∵A (-1,1)在直线AF上,∴-k+m=1即:k=m-1∴直线AF的解析式可化为:y=(m-1)x+m与y=12x2-12x联立,得(m-1)x+m=12x2-12x∴(x+1)(x-2m)=0 ∴x=-1或2m∴点G的横坐标为2m考点:二次函数综合题.。

2017年武汉市中考数学试卷及答案

2017年武汉市中考数学试卷及答案

2017年武汉市初中毕业生考试数学试卷考试时间:2017年6月20日14:30~16:30 一、选择题(共10小题,每小题3分,共30分) 1.计算36的结果为( ) A .6B .-6C .18D .-182.若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4B .a >4C .a <4D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)3 4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1。

65 1.70 1.75 1。

80 人数23234 1则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1。

70、1.75D .1。

70、1。

705.计算(x +1)(x +2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( ) A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( ) A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23 B .23 C . D .3210.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( ) A .4 B .5 C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算2×3+(-4)的结果为___________ 12.计算111+-+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD 15.如图,在△ABC中,AB=AC=3=2CE,则DE的长为___________16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x-3=2(x-1)18.(本题8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表各部门人数分布扇形图部门员工人数每人所创的年利润/万元A 5 10B b8C c 5(1)①在扇形图中,C部门所对应的圆心角的度数为___________②在统计表中,b=___________,c=___________(2)求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D (1) 求证:AO 平分∠BAC (2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数xky =的图象相交于A (-3,a )和B 两点 (1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >-56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E (1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB (2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上 (1) 求抛物线的解析式(2) 如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE(3) 如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM =2PM ,直接写出t 的值。

2017年湖北省武汉市数学中考试卷及参考答案PDF

2017年湖北省武汉市数学中考试卷及参考答案PDF

23. (10 分)已知四边形 ABCD 的一组对边 AD、BC 的延长线交于点 E. (1)如图 1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB; (2)如图 2,若∠ABC=120°,cos∠ADC= ,CD=5,AB=12,△CDE 的面积为 6, 求四边形 ABCD 的面积; (3) 如图 3, 另一组对边 AB、 DC 的延长线相交于点 F. 若 cos∠ABC=cos∠ADC= , CD=5,CF=ED=n,直接写出 AD 的长(用含 n 的式子表示)
13. (3 分)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线 AE 交 DC 于点 E, 连接 BE.若 AE=AB,则∠EBC 的度数为 .
14. (3 分)一个不透明的袋中共有 5 个小球,分别为 2 个红球和 3 个黄球,它 们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率 为 . ,∠BAC=120°,点 D、E 都在边 BC .
D. (2,﹣3) )
7. (3 分)某物体的主视图如图所示,则该物体可能为(
A.
B.
C.
D.
8. (3 分)按照一定规律排列的 n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最 后三个数的和为 768,则 n 为( A.9 B.10 C.11 D.12 )
9. (3 分) 已知一个三角形的三边长分别为 5、 7、 8, 则其内切圆的半径为 ( A. B. C. D.
24. (12 分)已知点 A(﹣1,1) 、B(4,6)在抛物线 y=ax2+bx 上 (1)求抛物线的解析式; (2)如图 1,点 F 的坐标为(0,m) (m>2) ,直线 AF 交抛物线于另一点 G, 过点 G 作 x 轴的垂线,垂足为 H.设抛物线与 x 轴的正半轴交于点 E,连接 FH、 AE,求证:FH∥AE; (3)如图 2,直线 AB 分别交 x 轴、y 轴于 C、D 两点.点 P 从点 C 出发,沿射 线 CD 方向匀速运动,速度为每秒 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度为每秒 1 个单位长度. 点 M 是直线 PQ 与抛物线的一个交点, 当运动到 t 秒时, QM=2PM, 直接写出 t 的值.

2017年武汉市中考数学试卷(含答案解析版)

2017年武汉市中考数学试卷(含答案解析版)

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.6 B.﹣6C.18 D.﹣182.若代数式在实数范围内有意义,则实数 a 的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠45 的为()3.下列计算的结果是x10÷x2 B.x6﹣x C.x2?x3 D.(x2)3A.x4.在一次中学生田径运动会上,参加男子跳高的15 名运动员的成绩如下表所示:成绩 1.50 1.60 1.65 1.70 1.75 1.80/m人数 2 3 2 3 4 1为()则这些运动员成绩的中位数、众数分别A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()2+2 B.x2+3 x+2 C.x2+3 x+3 D.x2+2 x+2A.x6.点A(﹣3,2)关于y 轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A.B.C.D.8.按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、⋯,若最后三个数的和为768,则n 为()第1页(共22页)A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算﹣的结果为.13.如图,在?ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.一个不透明的袋中共有 5 个小球,分别为 2 个红球和 3 个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2 ,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.2+(a2﹣1)x﹣a 的图象与x 轴的一个交点的坐16.已知关于x 的二次函数y=ax标为(m,0).若2<m<3,则a 的取值范围是.三、解答题(共8题,共72分)第2页(共22页)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部员工人每人所创的年利润/门数万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?第3页(共22页)21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=9°0,求证:ED?EA=EC?E;B(2)如图2,若∠ABC=12°0,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)第4页(共22页)2+bx上24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.第5页(共22页)2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3 分)(2017?武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18解:=6.故选:A.2.(3 分)(2017?武汉)若代数式在实数范围内有意义,则实数 a 的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.5 的为()3.(3 分)(2017?武汉)下列计算的结果是x10÷x2 B.x6﹣x C.x2?x3 D.(x2)3A.x解:A、x10÷x2=x8.6﹣x=x6﹣x.B、xC、x2?x3=x5.2)3=x6D、(x4.(3 分)(2017?武汉)在一次中学生田径运动会上,参加男子跳高的15 名运动员的成绩如下表所示:成绩1.50 1.60 1.65 1.70 1.75 1.80/m人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70解:共15 名学生,中位数落在第8 名学生处,第8 名学生的跳高成绩为 1.70m,故中位数为 1.70;跳高成绩为 1.75m 的人数最多,故跳高成绩的众数为 1.75;故选C.第6页(共22页)5.(3 分)(2017?武汉)计算(x+1)(x+2)的结果为()2+2 B.x2+3 x+2 C.x2+3 x+3 D.x2+2 x+2A.x解:原式=x2+2 x+x+2 =x2+3x+2,故选B6.(3 分)(2017?武汉)点A(﹣3,2)关于y 轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)标为(3,2),解:A(﹣3,2)关于y 轴对称的点的坐故选:B.7.(3 分)(2017?武汉)某物体的主视图如图所示,则该物体可能为()A.B.C.D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3 分)(2017?武汉)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、⋯,若最后三个数的和为768,则n 为()A.9 B.10 C.11 D.12解:由题意,得第n 个数为(﹣2)n,2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,那么(﹣当n 为偶数:整理得出:3×2n﹣2=768,解得:n=10;n﹣2=768,则求不出整数,3×2当n 为奇数:整理得出:﹣故选B.为(﹣2)n 是解9.(3 分)(2017?武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆22页)第7页(共的半径为()A.B.C.D.解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4 ,∵?BC?AD= (AB+BC+AC)?r,×5× 4 = ×20×r,∴r= ,故选C10.(3 分)(2017?武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7解:如图:故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017?武汉)计算2×3+(﹣4)的结果为2.解:原式=6﹣4=2,故答案为:212.(3分)(2017?武汉)计算﹣的结果为.解:原式=,故答案为:.13.(3分)(2017?武汉)如图,在?ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=18°0﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.14.(3分)(2017?武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:15.(3分)(2017?武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.解:将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=12°0,∴BN=CN,∠B=∠ACB=3°0.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=12°0,∠DAE=6°0,∴∠BAD+∠CAE=6°0,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=6°0.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设C E=2x,则C M=x,EM=x,FM=4x﹣x=3x,EF=ED=﹣66x.6x,FM=3x,EM=x,在Rt△EFM中,FE=6﹣∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.3.故答案为:3﹣2+(a2﹣1)x﹣a的图象与 16.(3分)(2017?武汉)已知关于x的二次函数y=axx轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或2.﹣3<a<﹣解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;2.3<a<﹣当a<0时,2<﹣a<3,解得﹣2.故答案为:<a<或﹣3<a<﹣72分)三、解答题(共8题,共解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.(8分)(2017?武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣E F=BF﹣E F,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017?武汉)某公司共有A、B、C三个部门,根据每个部门的员工和扇形图计表人数和相应每人所创的年利润绘制成如下的统表各部门人数及每人所创年利润统计部员工人每人所创的年利润/门数万元A510B b8C c5108°数为的度(1)①在扇形图中,C部门所对应的圆心角②在统计表中,b=9,c=6.(2)求这个公司平均每人所创年利润数为:360°×30%=108°;解:(1)①在扇形图中,C部门所对应的圆心角的度②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).20.(8分)(2017?武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计20件.其中甲种奖品每件40元,乙种奖品每件30元划购买甲、乙两种奖品共多650元,求甲、乙两种奖品各购买了(1)如果购买甲、乙两种奖品共花费了少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?x件,乙种奖品购买了(20﹣x)件,解:(1)设甲种奖品购买了x)=650,根据题意得40x+30(20﹣解得x=5,20﹣x=15,则5件,乙种奖品购买了15件;答:甲种奖品购买了x)件,(20﹣(2)设甲种奖品购买了x件,乙种奖品购买了根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017?武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=9°0,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.22.(10分)(2017?武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,><∴或,<>得结合抛物线y=x2﹣5x﹣6的图象可知,由><<或>,<<>∴或,<<∴此时x<﹣1,<<<由得,,>><<∴,>解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017?武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=9°0,求证:ED?EA=EC?E;B(2)如图2,若∠ABC=12°0,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)解:(1)如图1中,∵∠ADC=9°0,∠EDC+∠ADC=18°0,∴∠EDC=9°0,∵∠ABC=9°0,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED?EA=EC?E.B2中,过C作CF⊥AD于F,AG⊥EB于G.(2)如图在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴?ED?CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=12°0,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=3°0,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣B G=9﹣6,∴S四边形A BCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.C H=4,DH=3,3中,作CH⊥AD于H,则(3)如图∴tan∠E=,D G=3a,AG=4a,作AG⊥DF于点G,设A D=5a,则∴FG=DF﹣D G=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.2+bx上24.(12分)(2017?武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).y=k1x+b1,设直线AE的解析式为将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.y=k0x+b0,(3)设直线AB的解析式为1,1)、B(4,6)代入y=k0x+b0中,将A(﹣,解得:,∴直线AB的解析式为y=x+2.2,t),点Q的坐标为(t﹣(t,0).时间为t秒时,点P的坐标为当运动P Q上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点当点M在线段M′,则△PQP′∽△MQM′,如图2所示.第21页(共22页)∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.第22页(共22页)。

2017年武汉市中考数学试卷(含答案

2017年武汉市中考数学试卷(含答案

2017年省市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式1a−4在实数围有意义,则实数a的取值围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A .9B .10C .11D .129.(3分)已知一个三角形的三边长分别为5、7、8,则其切圆的半径为( )A .√32B .32C .√3D .2√3 10.(3分)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为 .12.(3分)计算x x+1﹣1x+1的结果为 . 13.(3分)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.(3分)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16.(3分)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值围是 .三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数 每人所创的年利润/万元 A5 10 Bb 8 Cc 5(1)①在扇形图中,C 部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年省市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解:√36=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•)若代数式1a−4在实数围有意义,则实数a的取值围为()A.a=4 B.a>4 C.a<4 D.a≠4【考点】62:分式有意义的条件.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1.50 1.60 1.65 1.70 1.75 1.80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【考点】4B:多项式乘多项式.【专题】11 :计算题;512:整式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【考点】U3:由三视图判断几何体.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A .9B .10C .11D .12【考点】37:规律型:数字的变化类.【分析】观察得出第n 个数为(﹣2)n ,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n 个数为(﹣2)n ,那么(﹣2)n ﹣2+(﹣2)n ﹣1+(﹣2)n =768,当n 为偶数:整理得出:3×2n ﹣2=768,解得:n=10;当n 为奇数:整理得出:﹣3×2n ﹣2=768,则求不出整数,故选B .【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n 个数为(﹣2)n 是解决问题的关键.9.(3分)(2017•)已知一个三角形的三边长分别为5、7、8,则其切圆的半径为( )A .√32B .32C .√3D .2√3 【考点】MI :三角形的切圆与心.【分析】如图,AB=7,BC=5,AC=8,切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由AD 2=AB 2﹣BD 2=AC 2﹣CD 2,可得72﹣x 2=82﹣(5﹣x )2,解得x=1,推出AD=4√3,由12•BC•AD=12(AB +BC +AC )•r ,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4√3=12×20×r , ∴r=√3,故选C【点评】本题考查三角形的切圆与心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求切圆的半径,属于中考常考题型.10.(3分)(2017•)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7【考点】KJ :等腰三角形的判定与性质.【分析】①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E ,△ACE 就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•)计算2×3+(﹣4)的结果为2.【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•)计算xx+1﹣1x+1的结果为x−1x+1.【考点】6B :分式的加减法.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=x−1x+1, 故答案为:x−1x+1. 【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB ∥CD ,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形角和定理求出∠ABE=70°,即可得出∠EBC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:25【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .【考点】KD :全等三角形的判定与性质;KQ :勾股定理;PB :翻折变换(折叠问题);R2:旋转的性质.【分析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,由AB=AC=2√3、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE ≌△AFE (SAS ),进而可得出DE=FE ,设CE=2x ,则CM=x ,EM=√3x 、FM=4x ﹣x=3x 、EF=ED=6﹣6x ,在Rt △EFM 中利用勾股定理可得出关于x 的一元二次方程,解之可得出x 的值,再将其代入DE=6﹣6x 中即可求出DE 的长.【解答】解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中,{AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3.故答案为:3√3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x 的一元二次方程是解题的关键.16.(3分)(2017•)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值围是13<a <12或﹣3<a <﹣2 .【考点】HA :抛物线与x 轴的交点.【分析】先用a 表示出抛物线与x 轴的交点,再分a >0与a <0两种情况进行讨论即可.【解答】解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x +a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 【点评】本题考查的是抛物线与x 轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•)解方程:4x ﹣3=2(x ﹣1)【考点】86:解一元一次方程.【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x ﹣3=2(x ﹣1)4x ﹣3=2x ﹣24x ﹣2x=﹣2+32x=1x=12【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号各项后能消去分母,就先去括号.18.(8分)(2017•)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【考点】KD:全等三角形的判定与性质.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b=9,c=6(2)求这个公司平均每人所创年利润.【考点】VB:扇形统计图;W2:加权平均数.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【专题】12 :应用题.【分析】(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买甲、乙两种奖品共花费了650元列方程40x +30(20﹣x )=650,然后解方程求出x ,再计算20﹣x 即可;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组{20−x ≤2x 40x +30(20−x)≤680,然后解不等式组后确定x 的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x ≤8, ∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•)如图,△ABC接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.【考点】MA:三角形的外接圆与外心;T7:解直角三角形.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=53BC=10,由勾股定理求出BE=8,证出BE∥OA,得出OABE=ODDE,求出OD=2513,得出CD═9013,而BE∥OA,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴BC CE =35, ∴CE=53BC=10, ∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=kx即可得到结论;(2)根据已知条件得到M(m+42,m),N(6m,m),根据MN=4列方程即可得到结论;(3)根据6x−5>x得到6−x2+5xx−5>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=kx的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(m+42,m),N在反比例函数y=6x上,∴N(6m,m),∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m=4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0, ∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得{x <−1或x >6x <5, ∴{x <−1x <5或{x >6x <5, ∴此时x <﹣1,由{x 2−5x −6<0x −5>0得,{−1<x <6x >5, ∴{−1<x <6x >5, 解得:5<x <6,综上,原不等式的解集是:x <﹣1或5<x <6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【考点】SO:相似形综合题.【分析】(1)只要证明△EDC∽△EBA,可得EDEB=ECEA,即可证明ED•EA=EC•EB;(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .想办法求出EB ,AG 即可求出△ABE 的面积,即可解决问题;(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,只要证明△AFG ∽△CEH ,可得AG CH =FG EH ,即4a 5+n−3a =4n+3,求出a 即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC +∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴ED EB =EC EA, ∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35, ∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6, ∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴EF EG =CF AG , ∴6EG =6√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F , 易证△AFG ∽△CEH ,∴AG CH =FG EH, ∴4a 5+n−3a =4n+3, ∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.【考点】HF :二次函数综合题.【分析】(1)根据点A 、B 的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A 、F 的坐标利用待定系数法,可求出直线AF 的解析式,联立直线AF 和抛物线的解析式成方程组,通过解方程组可求出点G 的坐标,进而可得出点H 的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A 、E (F 、H )的坐标利用待定系数法,可求出直线AE (FH )的解析式,由此可证出FH ∥AE ;(3)根据点A 、B 的坐标利用待定系数法,可求出直线AB 的解析式,进而可找出点P 、Q 的坐标,分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况考虑,借助相似三角形的性质可得出点M 的坐标,再利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之即可得出结论.【解答】解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x ,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12,∴直线AE 的解析式为y=﹣12x +12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m )、H (2m ,0)代入y=k 2x +b 2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x +b 0,将A (﹣1,1)、B (4,6)代入y=k 0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4),解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A 、B 的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A 、E (F 、H )的坐标利用待定系数法,求出直线AE (FH )的解析式:(3)分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况,借助相似三角形的性质找出点M 的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省武汉市2014年中考数学试卷
一、单项选择题(共10小题,每小题3分,共30分)
2.(3分)(2014•武汉)若在实数范围内有意义,则x的取值范围是()
3.(3分)(2014•武汉)光速约为3000 000千米/秒,将数字300000用科学记数法表示为
4.(3分)(2014•武汉)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如
6.(3分)(2014•武汉)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),
以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C 的坐标为()
缩小为原来的后得到线段
7.(3分)(2014•武汉)如图是由4个大小相同的正方体搭成的几何体,其俯视图是()....
8.(3分)(2014•武汉)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:
=0.4
9.(3分)(2014•武汉)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…
按此规律第5个图中共有点的个数是()
10.(3分)(2014•武汉)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()
....
PA=PB=
FB
PA=PB=

==,
FB
r+﹣(
r
APB==,
二、填空题(共6小题,每小题3分,满分18分)
11.(3分)(2014•武汉)计算:﹣2+(﹣3)= ﹣5.
12.(3分)(2014•武汉)分解因式:a3﹣a= a(a+1)(a﹣1).
13.(3分)(2014•武汉)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的
位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.
∴指针指向红色的概率为:
故答案为:.
14.(3分)(2014•武汉)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200米.

15.(3分)(2014•武汉)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分
别相交于C,D两点,且OC=3BD,则实数k的值为.
x CE=
坐标为(
﹣,

故答案为:
16.(3分)(2014•武汉)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,
则BD的长为.
=
故答案为:
三、解答题(共9小题,满分72分,应写出文字说明、证明过程或演算步骤)
17.(6分)(2014•武汉)解方程:=.
18.(6分)(2014•武汉)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.

19.(6分)(2014•武汉)如图,AC和BD相交于点O,OA=OC,OB=OD.
求证:DC∥AB.
20.(7分)(2014•武汉)如图,在直角坐标系中,A(0,4),C(3,0).
(1)①画出线段AC关于y轴对称线段AB;
②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;
(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.

k=2
k=
21.(7分)(2014•武汉)袋中装有大小相同的2个红球和2个绿球.
(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.
①求第一次摸到绿球,第二次摸到红球的概率;
②求两次摸到的球中有1个绿球和1个红球的概率;
(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.
∴第一次摸到绿球,第二次摸到红球的概率为:=
个红球的为:=
个红球的概率是:=.
22.(8分)(2014•武汉)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;
(2)如图(2),若点P是的中点,求PA的长.
的中点,PA==
=
AB=13 AC=5 OP=,

PA==3
PA=3.
23.(10分)(2014•武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

24.(10分)(2014•武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P 从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ,CP,若AQ⊥CP,求t的值;
(3)试证明:PQ的中点在△ABC的一条中位线上.
时,,
=,再根据
,得出=,代入计算即可;
DF=
=
=
=
=
t=
时,△
=
=
t=;

=4
25.(12分)(2014•武汉)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B 两点.
(1)直线AB总经过一个定点C,请直接出点C坐标;
(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;
(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

x+3
或.
),点
a+3
a+3a
PQ AM+PQ
PQ
(﹣a+3a
==
).
).
的纵坐标分别为m n t
=t

=
y=
x
2

2。

相关文档
最新文档